Nestronics
Naturally occurring element. Selenium is incorporated into selenoproteins, such as glutathione peroxidases (GPxs) and thioredoxin reductases (TrxRs), which play critical roles in protecting cells from oxidative damage.
Involved in GPx, TrxR, ans Selenoprotien P which protect normal cells from oxidative stress.
Important in Thyroid hormone metabolism, immune system regulation, reproductive health, and Brain and heart protection.
-recommended daily allowance (RDA) for selenium is about 55 µg/day for adults. (upper tolerance 400ug/day)
-One Brazil nut may contain 50-300ug/nut
Sodium selenite (Na₂SeO₃) is a selenium compound with well-documented anticancer and chemopreventive properties
-Oxidation state: +4 (selenite form of selenium)
-Type: Inorganic selenium compound (water-soluble)
-Sodium selenite generates reactive oxygen species (ROS) selectively in tumor cells.
-Induces cytochrome c release, caspase-3 activation, and DNA fragmentation.
-Reduces VEGF expression and endothelial cell migration.
-Blocks cell division at G2/M phase
-Suppresses MMP-2 and MMP-9 activity
-Activates p53
-Inhibits NF-κB
-PI3K/Akt/mTOR Suppression
-Inactivation of Thioredoxin/Glutathione systems
Narrow therapeutic window:
-Low micromolar (≤5 µM) → anticancer
-High (>10 µM) → toxic to normal cells
Some Selenium Supplements use Sodium Selenite as the active ingredient.
- NOW Foods Selenium, Nature's Bounty Selenium, etc
Other common form is Selenomethionine, as it is better absorbed (found in brazil nuts),
but might be less effective?
Sodium selenite might protect against toxicity
of AgNPs.
also here
Se NPs might be hepatoprotective.
Selenium nanoparticles (SeNPs) are a biocompatible, less-toxic,
and more controllable form of selenium compared to inorganic salts (like sodium selenite).
Major SeNPs hepatoprotective mechanisms
Mechanism Description Key markers affected
1. Antioxidant activity SeNPs boost antioxidant enzyme ↓ ROS, ↓ MDA, ↑ GSH, ↑ GPx
systems (GPx, SOD, CAT) and scavenge
ROS directly.
2. Anti-inflammatory effect Downregulate NF-κB, TNF-α, ↓ TNF-α, ↓ IL-1β, ↓ IL-6
IL-6, and COX-2 pathways.
3. Anti-apoptotic action Balance between Bcl-2/Bax and reduce ↑ Bcl-2, ↓ Bax, ↓ Caspase-3
caspase-3 activation in hepatocytes.
4. Metal/toxin chelation SeNPs can bind or transform toxic ↓ liver metal accumulation
metals (Cd²⁺, Hg²⁺, As³⁺)
into less harmful complexes.
5. Mitochondrial protection Maintain membrane potential, Preserved ΔΨm, ↑ ATP
prevent mitochondrial ROS burst,
and ATP loss.
6. Regeneration support Stimulate hepatocyte proliferation ↑ PCNA, improved histology
and repair via redox signaling
and selenoproteins.
Comparison: SeNPs vs. Sodium Selenite
Property SeNPs Sodium Selenite
Toxicity Low Moderate–high
Bioavailability Controlled, often slow- Rapid, less controllable
release
ROS balance Adaptive, mild antioxidant Can flip to pro-oxidant easily
Safety margin Wide Narrow
Hepatoprotection Strong, sustained Protective at low dose,
toxic at high dose
Below is shown one method of making Selenium Nanoparticles using Ascorbic Acid as a reducing agent. Mix at 250RPM 80mL of Distilled Water with 1/64 tsp of AA (Ascorbic Acid/ Vitamin C).
Let mix for 5 minutes. Then add drop wise 100ug of liquid Selenium in the form of Sodium Selenite. This selenium solutions is available from
Allergy Research Group, and other places. Typically 1/2 teaspoon is 100mcg. Let mix at 250RPM for 30 minutes. The color will change slighty yellow/brown,
and more importantly the green and violet lasers pointers will clearly show the presence of the nanoparticles.
