Database Query Results : , ,

NA, Not Available: Click to Expand ⟱
none (reserved)

Scientific Papers found: Click to Expand⟱
4572-   Mitochondrial electron transport chain, ROS generation and uncoupling
- Review, NA, NA
*UCPs↝, *ETC↝, *ROS↝,
2433- 2DG,    Hexokinase inhibitor 2-deoxyglucose coordinates citrullination of vimentin and apoptosis of fibroblast-like synoviocytes by inhibiting HK2 /mTORC1-induced autophagy
- in-vitro, Arthritis, NA - in-vivo, NA, NA
Vim↓, HK2↓,
2432- 2DG,    Inhibition of glycolytic enzyme hexokinase II (HK2) suppresses lung tumor growth
- in-vitro, Lung, H23 - in-vitro, Lung, KP2 - in-vivo, NA, NA
HK2↓, Apoptosis↑, TumAuto↑, TumCG↓,
1337- 2DG,  Rad,    2-deoxy-D-glucose causes cytotoxicity, oxidative stress, and radiosensitization in pancreatic cancer
- in-vivo, NA, NA
ChemoSen↑, GlucoseCon↓, ROS↑,
1341- 3BP,    The HK2 Dependent “Warburg Effect” and Mitochondrial Oxidative Phosphorylation in Cancer: Targets for Effective Therapy with 3-Bromopyruvate
- Review, NA, NA
Glycolysis↓, OXPHOS↓, *toxicity↓, ROS↑, GSH↓, eff↑,
1340- 3BP,    Safety and outcome of treatment of metastatic melanoma using 3-bromopyruvate: a concise literature review and case study
- Review, NA, NA
Glycolysis↓, HK2↓, LDH↓, OXPHOS↓, angioG↓, H2O2↑, eff↑,
3537- 5-HTP,    5-Hydroxytryptophan: a clinically-effective serotonin precursor
- Review, NA, NA
*5HT↑, *BioAv↑, *BBB↑,
540- Akk,    Akkermansia muciniphila: a potential booster to improve the effectiveness of cancer immunotherapy
- Analysis, NA, NA
GutMicro↑, carcinogenesis↓, ChemoSideEff↓,
541- Akk,    Akkermansia muciniphila as a Next-Generation Probiotic in Modulating Human Metabolic Homeostasis and Disease Progression: A Role Mediated by Gut-Liver-Brain Axes?
- Review, NA, NA
GutMicro↑, PD-1↝, CD8+↑, IL8↑,
551- AL,    The Influence of Heating on the Anticancer Properties of Garlic
- Analysis, NA, NA
other↓,
550- AL,    A Review on Anticancer Activities of Garlic (Allium sativum L.)
- Review, NA, NA
ChemoSideEff↓, other↝,
548- AL,    Aged Garlic and Cancer: A Systematic Review
- Review, NA, NA
Risk↓,
547- AL,    Garlic and Cancer: A Critical Review of the Epidemiologic Literature
- Review, NA, NA
Risk↓,
546- AL,    Effects of garlic intake on cancer: a systematic review of randomized clinical trials and cohort studies
- Review, NA, NA
Risk↓, TumVol↓,
236- AL,    Allicin: Chemistry and Biological Properties
- Analysis, NA, NA
GSH↓, Bacteria↓, LDL↓, ROS↑, NRF2↑, cognitive↑, memory↑, BP↓, RNS↓,
251- AL,    Inhibition of allicin in Eca109 and EC9706 cells via G2/M phase arrest and mitochondrial apoptosis pathway
- in-vitro, ESCC, Eca109 - in-vitro, ESCC, EC9706 - in-vivo, NA, NA
Apoptosis↑, P53↑, P21↑, CHK1↑, CycB/CCNB1↓, BAX↑, Casp3↑, Casp9↑, Cyt‑c↑,
1023- AL,    Allicin May Promote Reversal of T-Cell Dysfunction in Periodontitis via the PD-1 Pathway
- in-vitro, NA, NA - Analysis, NA, NA
PD-L1↓,
2557- AL,    Allicin, a naturally occurring antibiotic from garlic, specifically inhibits acetyl-CoA synthetase
- in-vitro, NA, NA
ACSS2↓,
278- ALA,    The Multifaceted Role of Alpha-Lipoic Acid in Cancer Prevention, Occurrence, and Treatment
- Review, NA, NA
ROS↑, NRF2↑, Inflam↓, frataxin↑, *BioAv↓, ChemoSen↑, Hif1a↓, eff↑, FAK↓, ITGB1↓, MMP2↓, MMP9↓, EMT↓, Snail↓, Vim↓, Zeb1↓, P53↑, MGMT↓, Mcl-1↓, Bcl-xL↓, Bcl-2↓, survivin↓, Casp3↑, Casp9↑, BAX↑, p‑Akt↓, GSK‐3β↓, *antiOx↑, *ROS↓, selectivity↑, angioG↓, MMPs↓, NF-kB↓, ITGB3↓, NADPH↓,
272- ALA,    Evidence that α-lipoic acid inhibits NF-κB activation independent of its antioxidant function
- in-vitro, NA, HUVECs
NF-kB↓,
289- ALA,  HCA,  EA,    Cancer Metabolism: Fasting Reset, the Keto-Paradox and Drugs for Undoing
- Analysis, NA, NA
ACLY↓,
1124- ALA,    Alpha lipoic acid inhibits proliferation and epithelial mesenchymal transition of thyroid cancer cells
- in-vitro, Thyroid, BCPAP - in-vitro, Thyroid, HTH-83 - in-vitro, Thyroid, CAL-62 - in-vitro, Thyroid, FTC-133 - in-vivo, NA, NA
TumCP↓, AMPK↑, mTOR↓, TumCMig↓, TumCI↓, EMT↓, E-cadherin↑, β-catenin/ZEB1↓, Vim↓, Snail↓, Twist↓, TGF-β↓, p‑SMAD2↓, TumCG↓,
4282- ALA,    Effect of add-on alpha lipoic acid on psychopathology in patients with treatment-resistant schizophrenia: a pilot randomized double-blind placebo-controlled trial
- Trial, NA, NA
*antiOx↑, *Inflam↓, *lipid-P↓, *adiP↑, *cognitive∅, *BDNF↑,
3438- ALA,    The Potent Antioxidant Alpha Lipoic Acid
- Review, NA, NA - Review, AD, NA
*antiOx↑, *cardioP↑, *cognitive↑, *AntiAge↑, *Inflam↓, *AntiCan↑, *neuroP↑, *IronCh↑, *ROS↑, *Weight↓, *Ach↑, *ROS↓, *GSH↑, *lipid-P↓, *memory↑, *NRF2↑, *ChAT↑, *GlucoseCon↑, *Acetyl-CoA↑,
3439- ALA,    The effect of alpha lipoic acid on the developmental competence of mouse isolated preantral follicles
- in-vitro, NA, NA
*ROS↓, *TAC↑, *eff↑, *SOD↑, *GPx↑, *Catalase↑, *GlucoseCon↑, *antiOx↑,
3444- ALA,    Alpha-Lipoic Acid Nootropic Review: Benefits, Use, Dosage & Side Effects
- Review, NA, NA
*BBB↑, *cognitive↑, *neuroP↑, *antiOx↑,
3450- ALA,    α-Lipoic Acid Inhibits Expression of IL-8 by Suppressing Activation of MAPK, Jak/Stat, and NF-κB in H. pylori-Infected Gastric Epithelial AGS Cells
- in-vitro, NA, AGS
*IL8↓, *MAPK↓, *JAK↓, *STAT↓, *NF-kB↓,
3456- ALA,    Renal-Protective Roles of Lipoic Acid in Kidney Disease
- Review, NA, NA
*RenoP↑, *ROS↓, *antiOx↑, *Inflam↓, *Sepsis↓, *IronCh↑, *BUN↓, *creat↓, *TNF-α↓, *IL6↓, *IL1β↓, *MDA↓, *NRF2↑, *HO-1↑, *NQO1↑, *chemoP↑, *eff↑, *NF-kB↓,
3540- ALA,    Thioctic (lipoic) acid: a therapeutic metal-chelating antioxidant?
- in-vitro, NA, NA
*lipid-P↓, *H2O2↓, *IronCh↑,
1235- ALA,  Cisplatin,    α-Lipoic acid prevents against cisplatin cytotoxicity via activation of the NRF2/HO-1 antioxidant pathway
- in-vitro, Nor, HEI-OC1 - ex-vivo, NA, NA
ROS↑, HO-1↓, *toxicity↓, chemoP↑, *ROS↓, *HO-1↑, *SOD1↑, *NRF2↑,
4283- ALC,    Rapid-acting antidepressant-like effects of acetyl-l-carnitine mediated by PI3K/AKT/BDNF/VGF signaling pathway in mice
- in-vivo, NA, NA
*BDNF↑, *p‑Akt↑, *PI3K↑,
1253- aLinA,    The Antitumor Effects of α-Linolenic Acid
- Review, NA, NA
PPARγ↑, COX2↓, E6↓, E7↓, P53↑, p‑ERK↓, p38↓, lipid-P↑, ROS⇅, MPT↑, MMP↓, Cyt‑c↑, Casp↑, iNOS↓, NO↓, Casp3↑, Bcl-2↓, Hif1a↓, FASN↓, CRP↓, IL6↓, IL1β↓, IFN-γ↓, TNF-α↓, Twist↓, VEGF↓, MMP2↓, MMP9↓,
1123- aLinA,    Linoleic acid induces an EMT-like process in mammary epithelial cells MCF10A
- in-vitro, BC, NA - in-vitro, NA, MCF10
TumCP↑, E-cadherin↓, Snail↑, Twist↑, ZEB2↑, FAK↑, NF-kB↑, MMP2↓, MMP9↓, *EMT↑, TumCI↑,
552- Anamu,    A critical review of the therapeutic potential of dibenzyl trisulphide isolated from Petiveria alliacea L (guinea hen weed, anamu)
- Review, NA, NA
p‑MAPK↑, Th1 response↓, Th2↑,
553- Anamu,    The anti-inflammatory and analgesic effects of a crude extract of Petiveria alliacea L. (Phytolaccaceae)
- in-vivo, NA, NA
TumCMig↓,
554- Anamu,    Petiveria alliacea extracts uses multiple mechanisms to inhibit growth of human and mouse tumoral cells
- in-vitro, NA, 769-P
TumCCA↑, HSP70/HSPA5↓, HSP90↓,
931- And,    Effect of Andrographis Paniculata Aqueous Extract on Hyperammonemia Induced Alteration of Oxidative and Nitrosative Stress Factors in the Liver, Spleen and Kidney of Rats
- in-vivo, NA, NA
*SOD↝, *Catalase↝, *ROS↓, *MDA↓, *NO↓,
1159- And,    Andrographolide, an Anti-Inflammatory Multitarget Drug: All Roads Lead to Cellular Metabolism
- Review, NA, NA
NRF2↑, COX2↓, IL6↓, IL8↓, IL1↓, iNOS↓, MPO↓, TNF-α↓, VEGF↓, Hif1a↓, p‑AMPK↑,
1156- And,    Exploring the potential of Andrographis paniculata for developing novel HDAC inhibitors: an in silico approach
- Analysis, NA, NA
HDAC↓,
1348- And,    Andrographolide Inhibits ER-Positive Breast Cancer Growth and Enhances Fulvestrant Efficacy via ROS-FOXM1-ER-α Axis
- in-vitro, BC, MCF-7 - in-vitro, BC, T47D - in-vivo, NA, NA
ERα/ESR1↓, TumCG↓, ROS↑, FOXM1↓, eff↑,
1151- Api,    Plant flavone apigenin inhibits HDAC and remodels chromatin to induce growth arrest and apoptosis in human prostate cancer cells: In vitro and in vivo study
- in-vitro, Pca, PC3 - in-vitro, Pca, 22Rv1 - in-vivo, NA, NA
TumCCA↑, Apoptosis↑, HDAC↓, P21↑, BAX↑, TumCG↓, Bcl-2↓, Bax:Bcl2↑, HDAC1↓, HDAC3↓,
983- Api,    Apigenin acts as a partial agonist action at estrogen receptors in vivo
- in-vivo, NA, NA
ERα/ESR1↑, ERβ↑,
416- Api,    In Vitro and In Vivo Anti-tumoral Effects of the Flavonoid Apigenin in Malignant Mesothelioma
- vitro+vivo, NA, NA
Bax:Bcl2↑, P53↑, ROS↑, Casp9↑, Casp8↑, cl‑PARP1↑, p‑ERK⇅, p‑JNK↓, p‑p38↑, p‑Akt↓, cJun↓, NF-kB↓, EGFR↓, TumCCA↑,
1999- Api,  doxoR,    Apigenin ameliorates doxorubicin-induced renal injury via inhibition of oxidative stress and inflammation
- in-vitro, Nor, NRK52E - in-vitro, Nor, MPC5 - in-vitro, BC, 4T1 - in-vivo, NA, NA
neuroP↑, ChemoSen∅, RenoP↑, selectivity↑, chemoP↑, ROS↑, *ROS∅, *antiOx↑, *toxicity↓,
1550- Api,    Formulation and characterization of an apigenin-phospholipid phytosome (APLC) for improved solubility, in vivo bioavailability, and antioxidant potential
- Analysis, NA, NA
*BioAv↑, *antiOx↑,
1564- Api,    Apigenin-induced prostate cancer cell death is initiated by reactive oxygen species and p53 activation
- in-vitro, Pca, 22Rv1 - in-vivo, NA, NA
MDM2↓, NF-kB↓, p65↓, P21↑, ROS↑, GSH↓, MMP↓, Cyt‑c↑, Apoptosis↑, P53↑, eff↓, Bcl-xL↓, Bcl-2↓, BAX↑, Casp↑, TumCG↓, TumVol↓, TumW↓,
1540- Api,    Determination of Total Apigenin in Herbs by Micellar Electrokinetic Chromatography with UV Detection
- Analysis, NA, NA
*BioAv↑,
1541- Api,  EGCG,    Prospective cohort comparison of flavonoid treatment in patients with resected colorectal cancer to prevent recurrence
- Human, NA, NA
OS↑, Remission↓, Dose∅,
1542- Api,    Bioavailability of Apigenin from Apiin-Rich Parsley in Humans
- Human, NA, NA
*BioAv?, *Half-Life?,
1543- Api,    Therapeutical properties of apigenin: a review on the experimental evidence and basic mechanisms
- Review, NA, NA
TNF-α↓, IL1β↓, IL6↓, IL10↓, COX2↓, iNOS↓, Inflam↓, Dose∅, Dose∅,
1545- Api,    The Potential Role of Apigenin in Cancer Prevention and Treatment
- Review, NA, NA
TNF-α↓, IL6↓, IL1α↓, P53↑, Bcl-xL↓, Bcl-2↓, BAX↑, Hif1a↓, VEGF↓, TumCCA↑, DNAdam↑, Apoptosis↑, CycB/CCNB1↓, cycA1/CCNA1↓, CDK1↓, PI3K↓, Akt↓, mTOR↓, IKKα↓, ERK↓, p‑Akt↓, p‑P70S6K↓, p‑S6↓, p‑ERK↓, p‑P90RSK↑, STAT3↓, MMP2↓, MMP9↓, TumCP↓, TumCMig↓, TumCI↓, Wnt/(β-catenin)↓,
1546- Api,    Apigenin in Cancer Prevention and Therapy: A Systematic Review and Meta-Analysis of Animal Models
- Review, NA, NA
TumVol↓, TumW↓, AntiCan↑, Apoptosis↑, TumCCA↑,
1547- Api,    Apigenin: Molecular Mechanisms and Therapeutic Potential against Cancer Spreading
- Review, NA, NA
angioG↓, EMT↓, CSCs↓, TumCCA↑, Dose∅, ROS↑, MMP↓, Catalase↓, GSH↓, PI3K↓, Akt↓, NF-kB↓, OCT4↓, Nanog↓, SIRT3↓, SIRT6↓, eff↑, eff↑, Cyt‑c↑, Bax:Bcl2↑, p‑GSK‐3β↓, FOXO3↑, p‑STAT3↓, MMP2↓, MMP9↓, COX2↓, MMPs↓, NRF2↓, HDAC↓, Telomerase↓, eff↑, eff↑, eff↑, eff↑, eff↑, XIAP↓, survivin↓, CK2↓, HSP90↓, Hif1a↓, FAK↓, EMT↓,
1549- Api,  Chemo,    Chemoprotective and chemosensitizing effects of apigenin on cancer therapy
- Review, NA, NA
ChemoSideEff↓, *toxicity∅, ChemoSen↑, eff↑, eff↑, eff↑,
1551- Api,    Chemotherapeutic effects of Apigenin in breast cancer: Preclinical evidence and molecular mechanisms; enhanced bioavailability by nanoparticles
- Review, NA, NA
*BioAv↑,
1553- Api,    Role of Apigenin in Cancer Prevention via the Induction of Apoptosis and Autophagy
- Review, NA, NA
Dose∅, TumVol↓, Dose∅, COX2↓, Hif1a↓, TumCCA↑, P53↑, P21↑, Casp3↑, DNAdam↑, TumAuto↝,
1554- Api,    A Review on Flavonoid Apigenin: Dietary Intake, ADME, Antimicrobial Effects, and Interactions with Human Gut Microbiota
- Review, NA, NA
*BioAv↑, *BioAv↑, *BioAv↑, *BioAv↓, *eff↑,
1555- Api,    USDA Database for the Flavonoid Content of Selected Foods
- Analysis, NA, NA
Dose?,
1556- Api,    Dissolution and antioxidant potential of apigenin self nanoemulsifying drug delivery system (SNEDDS) for oral delivery
- Analysis, NA, NA
*BioAv↑, *Dose∅,
1560- Api,    Apigenin as an anticancer agent
- Review, NA, NA
Apoptosis↑, Casp3∅, Casp8∅, TNF-α∅, Cyt‑c↑, MMP2↓, MMP9↓, Snail↓, Slug↓, NF-kB↓, p50↓, PI3K↓, Akt↓, p‑Akt↓,
1563- Api,  MET,    Metformin-induced ROS upregulation as amplified by apigenin causes profound anticancer activity while sparing normal cells
- in-vitro, Nor, HDFa - in-vitro, PC, AsPC-1 - in-vitro, PC, MIA PaCa-2 - in-vitro, Pca, DU145 - in-vitro, Pca, LNCaP - in-vivo, NA, NA
selectivity↑, selectivity↑, selectivity↓, ROS↑, eff↑, tumCV↓, MMP↓, Dose∅, eff↓, DNAdam↑, Apoptosis↑, TumAuto↑, Necroptosis↑, p‑P53↑, BIM↑, BAX↑, p‑PARP↑, Casp3↑, Casp8↑, Casp9↑, Cyt‑c↑, Bcl-2↓, AIF↑, p62↑, LC3B↑, MLKL↑, p‑MLKL↓, RIP3↑, p‑RIP3↑, TumCG↑, TumW↓,
2636- Api,    Apigenin unveiled: an encyclopedic review of its preclinical and clinical insights
- Review, NA, NA
*AntiCan↑, *cardioP↑, *neuroP↑, *Inflam↓, *antiOx↑, *hepatoP↑, ChemoSen↑,
4279- Api,    The Beneficial Role of Apigenin against Cognitive and Neurobehavioural Dysfunction: A Systematic Review of Preclinical Investigations
- Review, NA, NA
*antiOx↑, *Inflam↓, *BBB↑, *5HT↑, *CREB↑, *BDNF↑, *memory↑, *motorD↑, *Mood↑, *cognitive↑, *ROS↓,
3827- Aroma,    A medicinal herb, Melissa officinalis L. ameliorates depressive-like behavior of rats in the forced swimming test via regulating the serotonergic neurotransmitter
- in-vivo, NA, NA
*Mood↑,
4278- ART/DHA,    Artemisinin Ameliorates the Neurotoxic Effect of 3-Nitropropionic Acid: A Possible Involvement of the ERK/BDNF/Nrf2/HO-1 Signaling Pathway
- in-vivo, NA, NA
*IL6↓, *Casp3↓, *Casp9↓, *BDNF↑, *ERK↑, *NRF2↑, *HO-1↑, *neuroP↑, *antiOx↑, *Inflam↓,
3395- ART/DHA,    Artesunate Induces Ferroptosis in Hepatic Stellate Cells and Alleviates Liver Fibrosis via the ROCK1/ATF3 Axis
- in-vitro, NA, HSC-T6
*Ferroptosis↑, *GSH↓, *ROCK1↓,
3392- ART/DHA,    Artemisinin inhibits inflammatory response via regulating NF-κB and MAPK signaling pathways
- in-vitro, Nor, Hep3B - in-vivo, NA, NA
*Inflam↓, *NF-kB↓, *ROS↓, *p‑p38↓, *p‑ERK↓,
3385- ART/DHA,    Interaction of artemisinin protects the activity of antioxidant enzyme catalase: A biophysical study
- Study, NA, NA
*NF-kB↑, *Catalase↑,
2576- ART/DHA,  AL,    The Synergistic Anticancer Effect of Artesunate Combined with Allicin in Osteosarcoma Cell Line in Vitro and in Vivo
- in-vitro, OS, MG63 - in-vivo, NA, NA
eff↑, tumCV↓, Casp3↑, Casp9↑, Apoptosis↑, TumCG↓,
1076- ART/DHA,    The Potential Mechanisms by which Artemisinin and Its Derivatives Induce Ferroptosis in the Treatment of Cancer
- Review, NA, NA
Ferroptosis↑, ROS↑, ER Stress↑, i-Iron↓, TumAuto↑, AMPK↑, mTOR↑, P70S6K↑, Fenton↑, lipid-P↑, ROS↑, ChemoSen↑, NRF2↑, NRF2↓,
985- ART/DHA,    Artemisinin suppresses aerobic glycolysis in thyroid cancer cells by downregulating HIF-1a, which is increased by the XIST/miR-93/HIF-1a pathway
- in-vitro, Thyroid, TPC-1 - Human, NA, NA
XIST↓, Hif1a↓, Glycolysis↓, TumCCA↑, TumMeta↓,
1099- ART/DHA,    Dihydroartemisinin inhibits IL-6-induced epithelial–mesenchymal transition in laryngeal squamous cell carcinoma via the miR-130b-3p/STAT3/β-catenin signaling pathway
- in-vitro, NA, NA
EMT↓, TumCI↓, STAT3↓, β-catenin/ZEB1↓,
555- ART/DHA,    Artemisinin as an anticancer drug: Recent advances in target profiling and mechanisms of action
- Review, NA, NA
STAT3↓,
556- ART/DHA,    Artemisinins as a novel anti-cancer therapy: Targeting a global cancer pandemic through drug repurposing
- Review, NA, NA
IL6↓, IL1↓, TNF-α↓, TGF-β↓, NF-kB↓, MIP2↓, PGE2↓, NO↓, Hif1a↓, KDR/FLK-1↓, VEGF↓, MMP2↓, TIMP2↑, ITGB1↑, NCAM↑, p‑ATM↑, p‑ATR↑, p‑CHK1↑, p‑Chk2↑, Wnt/(β-catenin)↓, PI3K↓, Akt↓, ERK↓, cMyc↓, mTOR↓, survivin↓, cMET↓, EGFR↓, cycD1/CCND1↓, cycE1↓, CDK4/6↓, p16↑, p27↑, Apoptosis↑, TumAuto↑, Ferroptosis↑, oncosis↑, TumCCA↑, ROS↑, DNAdam↑, RAD51↓, HR↓,
558- ART/DHA,    Artemisinin and Its Synthetic Derivatives as a Possible Therapy for Cancer
- Review, NA, NA
ROS↑, oncosis↑, Apoptosis↑, LysoPr↑, TumAuto↑, Wnt/(β-catenin)↑, AMP↓, NF-kB↓, Myc↓, CREBBP↓, mTOR↓, E-cadherin↑,
560- ART/DHA,    Dihydroartemisinin shift the immune response towards Th1, inhibit the tumor growth in vitro and in vivo
- in-vivo, NA, NA
IL4↓, CD4+↓, CD25+↓, FoxP3+↓, Treg lymp↓,
576- ART/DHA,    Profiling of Multiple Targets of Artemisinin Activated by Hemin in Cancer Cell Proteome
- Analysis, NA, NA
GSTP1/GSTπ↓, TfR1/CD71↓,
573- ART/DHA,    Artesunate suppresses tumor growth and induces apoptosis through the modulation of multiple oncogenic cascades in a chronic myeloid leukemia xenograft mouse model
- vitro+vivo, NA, NA
p‑p38↓, p‑ERK↓, p‑CREB↓, p‑Chk2↓, p‑STAT5↓, p‑RSK↓, SOCS1↑, Apoptosis↑, Casp3↑,
568- ART/DHA,    Mechanism-Guided Design and Synthesis of a Mitochondria-Targeting Artemisinin Analogue with Enhanced Anticancer Activity
- in-vitro, NA, MDA-MB-231 - in-vitro, NA, HeLa - in-vitro, NA, SkBr3 - in-vitro, NA, HCT116
Iron↝,
564- ART/DHA,  Cisplatin,    Dihydroartemisinin as a Putative STAT3 Inhibitor, Suppresses the Growth of Head and Neck Squamous Cell Carcinoma by Targeting Jak2/STAT3 Signaling
- in-vitro, NA, HN30
JAK2↓, STAT3↓, MMP2↓, MMP9↓, Mcl-1↓, Bcl-xL↓, cycD1/CCND1↓, VEGF↓, TumCCA↑, ChemoSen↑,
562- ART/DHA,    Artesunate exerts an anti-immunosuppressive effect on cervical cancer by inhibiting PGE2 production and Foxp3 expression
- in-vivo, NA, HeLa
CD4+↓, CD25+↓, FoxP3+↓, Treg lymp↓, PGE2↓, FOXP3↓, COX2↓,
561- ART/DHA,    Antitumor and immunomodulatory properties of artemether and its ability to reduce CD4+ CD25+ FoxP3+ T reg cells in vivo
- in-vivo, NA, NA
TumCG↓, CD4+↓, CD25+↓, FoxP3+↓, IL4↑,
559- ART/DHA,    Artemisinin and its derivatives: a promising cancer therapy
- Review, NA, NA
ROS↑,
1334- AS,    Astragalus membranaceus: A Review of Its Antitumor Effects on Non-Small Cell Lung Cancer
- Review, NA, NA
TumCP↓, Apoptosis↑, NF-kB↓, p50↓, cycD1/CCND1↓, Bcl-xL↓, ChemoSen↑, angioG↓, ChemoSen↑,
1097- AS,    Astragalus Inhibits Epithelial-to-Mesenchymal Transition of Peritoneal Mesothelial Cells by Down-Regulating β-Catenin
- in-vitro, Nor, HMrSV5 - in-vivo, NA, NA
*EMT↓, *E-cadherin↑, *α-SMA↓, *Vim↓, *β-catenin/ZEB1↓, *Smad7↑,
1096- ASA,    Aspirin inhibit platelet-induced epithelial-to-mesenchymal transition of circulating tumor cells (Review)
- Review, NA, NA
TumMeta↓, COX1↓, CTC↓,
2461- ASA,    Aspirin and platelets: the antiplatelet action of aspirin and its role in thrombosis treatment and prophylaxis
- Review, NA, NA
AntiAg↑, COX1↓, eff↑,
1304- ASA,    Aspirin Inhibits Colorectal Cancer via the TIGIT-BCL2-BAX pathway in T Cells
- in-vitro, CRC, NA - in-vivo, NA, NA
TumCP↓, Apoptosis↑, Bcl-2↓, BAX↑, IL10↓, TNF-β↓,
1363- Ash,  doxoR,    Withaferin A Synergizes the Therapeutic Effect of Doxorubicin through ROS-Mediated Autophagy in Ovarian Cancer
- in-vitro, Ovarian, A2780S - in-vitro, Ovarian, CaOV3 - in-vivo, NA, NA
ChemoSen↑, ROS↑, DNAdam↑, TumCCA↑, LC3B↑, TumCG↓, cl‑Casp3↑,
1360- Ash,  immuno,    Withaferin A Increases the Effectiveness of Immune Checkpoint Blocker for the Treatment of Non-Small Cell Lung Cancer
- in-vitro, Lung, H1650 - in-vitro, Lung, A549 - in-vitro, CRC, HCT116 - in-vitro, BC, MDA-MB-231 - in-vivo, NA, NA
PD-L1↑, eff↓, ROS↑, ER Stress↑, Apoptosis↑, BAX↑, Bak↑, BAD↑, Bcl-2↓, XIAP↓, survivin↓, cl‑PARP↑, CHOP↑, p‑eIF2α↑, ICD↑, eff↑,
1179- Ash,    Withaferin-A Inhibits Colon Cancer Cell Growth by Blocking STAT3 Transcriptional Activity
- in-vitro, CRC, HCT116 - in-vivo, NA, NA
TumCP↓, TumCMig↓, STAT3↓, TumVol↓, TumW↓,
1178- Ash,    Withaferin A suppresses the expression of vascular endothelial growth factor in Ehrlich ascites tumor cells via Sp1 transcription factor
- in-vitro, Nor, HUVECs - in-vivo, NA, NA
*VEGF↓, *angioG↓, *ascitic↓, *Sp1/3/4↓,
1176- Ash,    Metabolic Alterations in Mammary Cancer Prevention by Withaferin A in a Clinically Relevant Mouse Model
- in-vivo, NA, NA
TumVol↓, Apoptosis↑, Glycolysis↓, PKM2↓, PGK1↓, ALDOAiso2↓,
1172- Ash,    Withaferin A Inhibits Fatty Acid Synthesis in Rat Mammary Tumors
- in-vitro, BC, MCF-7 - in-vitro, BC, MDA-MB-231 - in-vivo, NA, NA
FASN↓, ACLY↓, ACC1↓, CPT1A↓, SREBP1↓,
3674- Ash,    Ashwagandha in brain disorders: A review of recent developments
- Review, NA, NA
*neuroP↑,
3673- Ash,    An overview on ashwagandha: a Rasayana (rejuvenator) of Ayurveda
- Review, NA, NA
*cognitive↑, *Inflam↓, *Strength↑, *VitC↑, *memory↑,
3672- Ash,    Critical review of the Withania somnifera (L.) Dunal: ethnobotany, pharmacological efficacy, and commercialization significance in Africa
- Review, NA, NA
*cardioP↑, *antiOx↑, *ROS↓, *neuroP↑, *Inflam↓, *Apoptosis↓,
3685- Ash,    Withania somnifera as a Potential Anxiolytic and Anti-inflammatory Candidate Against Systemic Lipopolysaccharide-Induced Neuroinflammation
- in-vivo, NA, NA
*TNF-α↓, *IL1β↓, *IL6↓, *iNOS↓, *COX2↓, *NOX↓, *cognitive↑, *Inflam↓, *NF-kB↓,
3686- Ash,    Adaptogenic and Anxiolytic Effects of Ashwagandha Root Extract in Healthy Adults: A Double-blind, Randomized, Placebo-controlled Clinical Study
- Study, NA, NA
*Sleep↑,
3689- Ash,    Ashwagandha attenuates TNF-α- and LPS-induced NF-κB activation and CCL2 and CCL5 gene expression in NRK-52E cells
- in-vitro, NA, NRK52E
*RenoP↑, *NF-kB↓, *MCP1↓, *RANTES↓,
4679- Ash,    Induced cancer stem-like cells as a model for biological screening and discovery of agents targeting phenotypic traits of cancer stem cell
- in-vitro, NA, NA
CSCs↓,
3158- Ash,    Natural products triptolide, celastrol, and withaferin A inhibit the chaperone activity of peroxiredoxin I
- Study, NA, NA
Prx↓,
3176- Ash,    Apoptosis is induced in leishmanial cells by a novel protein kinase inhibitor withaferin A and is facilitated by apoptotic topoisomerase I-DNA complex
- in-vitro, NA, NA
PKCδ↓, TOP1∅, ROS↑, GSH↓, DNAdam↑, MMP↓, Cyt‑c↑,
3170- Ash,    Withaferin A protects against hyperuricemia induced kidney injury and its possible mechanisms
- in-vitro, Nor, NRK52E - in-vivo, NA, NA
*RenoP↑, *hepatoP↑, *creat↓, *BUN↓, *uricA↓, *Apoptosis↓, *α-SMA↓,
4808- ASTX,    Anti-Tumor Effects of Astaxanthin by Inhibition of the Expression of STAT3 in Prostate Cancer
- in-vitro, Pca, DU145 - in-vivo, NA, NA
TumCP↓, STAT3↓, Apoptosis↑, TumCMig↓, TumCI↓,
875- B-Gluc,    Chemistry, physico-chemistry and applications linked to biological activities of β-glucans
- Review, NA, NA
AntiCan↑,
876- B-Gluc,    Clinical and Physiological Perspectives of β-Glucans: The Past, Present, and Future
- Review, NA, NA
AntiTum↑,
874- B-Gluc,    Potential promising anticancer applications of β-glucans: a review
- Review, NA, NA
AntiCan↑, TumCG↓, BAX↑, Bcl-2↓, IFN-γ↑, PI3K/Akt↑, MAPK↑, NFAT↑, NF-kB↑, ROS↑, NK cell↑, TumCCA↑, ERK↓, Telomerase↓,
1098- BA,    Baicalein inhibits fibronectin-induced epithelial–mesenchymal transition by decreasing activation and upregulation of calpain-2
- in-vitro, Nor, MCF10 - in-vivo, NA, NA
*TumCMig↓, *F-actin↓, *E-cadherin↑, *ZO-1↑, *N-cadherin↓, *Vim↓, *Snail↓, *cal2↓, *Ca+2↝,
1532- Ba,    Baicalein as Promising Anticancer Agent: A Comprehensive Analysis on Molecular Mechanisms and Therapeutic Perspectives
- Review, NA, NA
ROS↑, ER Stress↑, Ca+2↑, MMPs↓, Cyt‑c↑, Casp3↑, ROS↑, DR5↑, ROS↑, BAX↑, Bcl-2↓, MMP↓, Casp3↑, Casp9↑, P53↑, p16↑, P21↑, p27↑, HDAC10↑, MDM2↓, Apoptosis↑, PI3K↓, Akt↓, p‑Akt↓, p‑mTOR↓, NF-kB↓, p‑IκB↓, IκB↑, BAX↑, Bcl-2↓, ROS⇅, BNIP3↑, p38↑, 12LOX↓, Mcl-1↓, Wnt?, GLI2↓, AR↓, eff↑,
2047- BA,    Sodium butyrate inhibits migration and induces AMPK-mTOR pathway-dependent autophagy and ROS-mediated apoptosis via the miR-139-5p/Bmi-1 axis in human bladder cancer cells
- in-vitro, CRC, T24 - in-vitro, Nor, SV-HUC-1 - in-vitro, Bladder, 5637 - in-vivo, NA, NA
HDAC↓, AntiTum↑, TumCMig↓, AMPK↑, mTOR↑, TumAuto↑, ROS↑, miR-139-5p↑, BMI1↓, TumCI?, E-cadherin↑, N-cadherin↓, Vim↓, Snail↓, cl‑PARP↑, cl‑Casp3↑, BAX↑, Bcl-2↓, Bcl-xL↓, MMP↓, PINK1↑, PARK2↑, TumMeta↓, TumCG↓, LC3II↑, p62↓, eff↓,
4305- Ba,    Study on the Molecular Mechanism of Baicalin Phosphorylation of Tau Protein Content in a Cell Model of Intervention Cognitive Impairment
- in-vitro, NA, SH-SY5Y
*cognitive↑, *p‑Akt↑, *p‑GSK‐3β↑, *p‑tau↓, *neuroP↑, *NF-kB↓, *AMPK↑, *NRF2↑,
2599- Ba,    Baicalein induces apoptosis and autophagy of breast cancer cells via inhibiting PI3K/AKT pathway in vivo and vitro
- in-vitro, BC, MCF-7 - in-vitro, BC, MDA-MB-231 - in-vivo, NA, NA
TumCP↓, Apoptosis↑, p‑Akt↓, p‑mTOR↓, NF-kB↓, p‑IKKα↓, IKKα↑, PI3K↓, MMP↓, TumAuto↑, TumVol↓, TumW↓,
2609- Ba,    Baicalein: unveiling the multifaceted marvel of hepatoprotection and beyond
- Review, NA, NA
*hepatoP↑, *neuroP↑, *Inflam↓,
2614- Ba,    Therapeutic potentials of baicalin and its aglycone, baicalein against inflammatory disorders
- Review, NA, NA
*toxicity↓, *antiOx↑, *Inflam↓, *ROS↓, *NF-kB↓, *MCP1↓, *hepatoP↑, *neuroP↑,
2293- Ba,    Baicalein suppresses inflammation and attenuates acute lung injury by inhibiting glycolysis via HIF‑1α signaling
- in-vitro, Nor, MH-S - in-vivo, NA, NA
*Hif1a↓, *Glycolysis↓, *Inflam↓, *HK2↓, *PFK1↓, *PKM2↓,
2475- Ba,    Baicalein triggers ferroptosis in colorectal cancer cells via blocking the JAK2/STAT3/GPX4 axis
- in-vitro, CRC, HCT116 - in-vitro, CRC, DLD1 - in-vivo, NA, NA
tumCV↓, GPx4↓, STAT3↓, Ferroptosis↑,
1299- BBR,    Effects of Berberine and Its Derivatives on Cancer: A Systems Pharmacology Review
- Review, NA, NA
TumCCA↑, TP53↑, COX2↓, Bax:Bcl2↑, ROS↑, VEGFR2↓, Akt↓, ERK↓, MMP2↓, MMP9↓, IL8↑, P21↑, p27↑, E-cadherin↓, Fibronectin↓, cMyc↓,
2021- BBR,    Berberine: An Important Emphasis on Its Anticancer Effects through Modulation of Various Cell Signaling Pathways
- Review, NA, NA
*antiOx?, *Inflam↓, Apoptosis↑, TumCCA↑, BAX↑, eff↑, VEGF↓, PI3K↓, Akt↓, mTOR↓, Telomerase↓, β-catenin/ZEB1↓, Wnt↓, EGFR↓, AP-1↓, NF-kB↓, COX2↑, NRF2↓, RadioS↑, STAT3↓, ERK↓, AR↓, ROS↑, eff↑, selectivity↑, selectivity↑, BioAv↓, DNMT1↓, cMyc↓,
1399- BBR,  Rad,    Radiotherapy Enhancing and Radioprotective Properties of Berberine: A Systematic Review
- Review, NA, NA
*ROS↓, *MDA↓, *TNF-α↓, *TGF-β↓, *IL10↑, ROS↑, DNAdam↑, mtDam↑, MMP↓, Apoptosis↑, TumCCA↑, Hif1a↓, VEGF↓, RadioS↑,
1375- BBR,    13-[CH2CO-Cys-(Bzl)-OBzl]-Berberine: Exploring The Correlation Of Anti-Tumor Efficacy With ROS And Apoptosis Protein
- in-vitro, CRC, HCT8 - in-vivo, NA, NA
ROS↑, TumCP↓, XIAP↓, TumCG↓, *toxicity↓,
2706- BBR,    Berberine Inhibits Growth of Liver Cancer Cells by Suppressing Glutamine Uptake
- in-vitro, HCC, Hep3B - in-vitro, HCC, Bel-7402 - in-vivo, NA, NA
TumCP↓, glut↓, SLC12A5↓, cMyc↓, GLS↓,
2711- BBR,    Berberine inhibits the progression of breast cancer by regulating METTL3-mediated m6A modification of FGF7 mRNA
- in-vitro, BC, MCF-7 - in-vitro, BC, MDA-MB-231 - in-vivo, NA, NA
TumCP↓, TumCI↓, TumCMig↓, Apoptosis↑, FGF↓, IGFBP3↑,
2712- BBR,    Suppression of colon cancer growth by berberine mediated by the intestinal microbiota and the suppression of DNA methyltransferases (DNMTs)
- in-vitro, Colon, HT29 - in-vivo, NA, NA
TumCG↓, GutMicro↑, other↝, IL10↓, cMyc↓, DNMT1↓, DNMTs↓,
2692- BBR,    Berberine affects osteosarcoma via downregulating the caspase-1/IL-1β signaling axis
- in-vitro, OS, MG63 - in-vitro, OS, SaOS2 - in-vivo, NA, NA
Casp1↓, IL1β↓, TumCG↓, Dose↝, Apoptosis↑, Inflam↓,
2335- BBR,    Chemoproteomics reveals berberine directly binds to PKM2 to inhibit the progression of colorectal cancer
- in-vitro, CRC, HT29 - in-vitro, CRC, HCT116 - in-vivo, NA, NA
PKM2↓, Glycolysis↓, p‑STAT3↓, Bcl-2↓, cycD1/CCND1↓, TumCG↓, Ki-67↓, lactateProd↓, glucose↓,
1092- BBR,    Berberine as a Potential Anticancer Agent: A Comprehensive Review
- Review, NA, NA
Apoptosis↑, TumCCA↑, TumAuto↑, TumCI↓, IL1↓, IL6↓, TNF-α↓, LDH↓, P2X7↓, proCasp1↓, Casp1↓, ASC↓,
4275- BBR,    Pharmacological effects of berberine on mood disorders
- Review, NA, NA
*antiOx↑, *Inflam↓, *hepatoP↑, *eff↑, *5HT↑, *Mood↑, *BDNF↑,
4274- BBR,    Berberine exerts antidepressant effects in vivo and in vitro through the PI3K/AKT/CREB/BDNF signaling pathway
- in-vivo, NA, NA
*IL1β↓, *IL6↓, *TNF-α↓, *CRP↓, *CREB↑, *BDNF↑,
4340- BBR,    Agonist-dependent differential effects of berberine in human platelet aggregation
- Human, NA, NA
*AntiAg↑, *other?,
943- BetA,    Betulinic acid suppresses breast cancer aerobic glycolysis via caveolin-1/NF-κB/c-Myc pathway
- in-vitro, BC, MCF-7 - in-vitro, BC, MDA-MB-231 - in-vivo, NA, NA
Glycolysis↓, lactateProd↓, GlucoseCon↓, ECAR↓, cMyc↓, LDHA↓, p‑PDK1↓, PDK1↓, Cav1↑, *Glycolysis↑, selectivity↑, OCR↓, OXPHOS↓,
2745- BetA,    Betulinic acid inhibits colon cancer cell and tumor growth and induces proteasome-dependent and -independent downregulation of specificity proteins (Sp) transcription factors
- in-vitro, CRC, RKO - in-vitro, CRC, SW480 - in-vivo, NA, NA
Apoptosis↑, TumCG↓, Sp1/3/4↓, survivin↓, VEGF↓, p65↓, EGFR↓, cycD1/CCND1↓, ROS↑, MMP↓,
2741- BetA,    Betulinic acid triggers apoptosis and inhibits migration and invasion of gastric cancer cells by impairing EMT progress
- in-vitro, GC, SNU16 - in-vitro, GC, NCI-N87 - in-vivo, NA, NA
TumCG↓, TumCMig↓, TumCI↓, N-cadherin↓, E-cadherin↑, EMT↓, Ki-67↓, MMP2↓,
2738- BetA,    Betulinic Acid Suppresses Breast Cancer Metastasis by Targeting GRP78-Mediated Glycolysis and ER Stress Apoptotic Pathway
- in-vitro, BC, MDA-MB-231 - in-vitro, BC, BT549 - in-vivo, NA, NA
TumCI↓, TumCMig↓, Glycolysis↓, lactateProd↓, GRP78/BiP↑, ER Stress↑, PERK↑, p‑eIF2α↑, β-catenin/ZEB1↓, cMyc↓, ROS↑, angioG↓, Sp1/3/4↓, DNAdam↑, TOP1↓, TumMeta↓, MMP2↓, MMP9↓, N-cadherin↓, Vim↓, E-cadherin↑, EMT↓, LDHA↓, p‑PDK1↓, PDK1↓, ECAR↓, OCR↓, Hif1a↓, STAT3↓,
2733- BetA,    Betulinic Acid Inhibits Cell Proliferation in Human Oral Squamous Cell Carcinoma via Modulating ROS-Regulated p53 Signaling
- in-vitro, Oral, KB - in-vivo, NA, NA
TumCP↓, TumVol↓, mt-Apoptosis↑, Casp3↑, Casp9↑, BAX↑, Bcl-2↑, OCR↓, TumCCA↑, ROS↑, eff↓, P53↑, STAT3↓, cycD1/CCND1↑,
4273- BetA,    Betulinic acid, a natural PDE inhibitor restores hippocampal cAMP/cGMP and BDNF, improve cerebral blood flow and recover memory deficits in permanent BCCAO induced vascular dementia in rats
- in-vivo, NA, NA
*neuroP↑, *BDNF↑, *ROS↓, *Inflam↓, *cognitive↑,
4081- betaCar,    Vitamin A supplementation and risk of skeletal fracture
- Study, NA, NA
BMD↓,
3696- BM,    Discovery of Molecular Networks of Neuroprotection Conferred by Brahmi Extract in Aβ42-Induced Toxicity Model of Drosophila melanogaster Using a Quantitative Proteomic Approach
- in-vivo, NA, NA
*neuroP↑, *memory↑,
4277- BM,    Reversion of BDNF, Akt and CREB in Hippocampus of Chronic Unpredictable Stress Induced Rats: Effects of Phytochemical, Bacopa Monnieri
- in-vivo, NA, NA
*BDNF↑, *p‑CREB↑,
4271- Bor,    Effects of Boron on Learning and Behavioral Disorders in Rat Autism Model Induced by Intracerebroventricular Propionic Acid
- in-vivo, NA, NA
*BDNF↝,
3511- Bor,    Boron
- Review, NA, NA
*memory↑, *motorD↑, *neuroP↑, Ca+2↓, ATF4↑, NRF2↑, *Inflam↓, *ROS↓,
3506- Bor,    Boron Chemistry for Medical Applications
- Review, NA, NA
radioP↑, selectivity↑,
3505- Bor,    Mineral requirements for mitochondrial function: A connection to redox balance and cellular differentiation
- Review, NA, NA
*glucose↓, *creat↓, *SOD↑, *MMP↑, *ROS↓,
3504- Bor,    Boron Contents of German Mineral and Medicinal Waters and Their Bioavailability in Drosophila melanogaster and Humans
- Review, NA, NA
other↑, BioAv↑,
3503- Bor,    Chemical disposition of boron in animals and humans
- Review, NA, NA
*Half-Life↑, *other↑,
3502- Bor,    Plasma boron concentrations in the general population: a cross-sectional analysis of cardio-metabolic and dietary correlates
- Review, NA, NA
*Half-Life↑, *VitD↑, *cardioP↑, *RenoP↓,
3520- Bor,    Effect of boron element on photoaging in rats
- in-vivo, NA, NA
*hepatoP↑, *BMD↑, *COX2↓, *IL8↓, *NF-kB↓, *IL6↓, *TNF-α↓,
3519- Bor,    Boron-Based Inhibitors of the NLRP3 Inflammasome
- Review, NA, NA
NLRP3↓,
726- Bor,    Redox Mechanisms Underlying the Cytostatic Effects of Boric Acid on Cancer Cells—An Issue Still Open
- Review, NA, NA
NAD↝, SAM-e↝, PSA↓, IGF-1↓, Cyc↓, P21↓, p‑MEK↓, p‑ERK↓, ROS↑, SOD↓, Catalase↓, MDA↑, GSH↓, IL1↓, IL6↓, TNF-α↓, BRAF↝, MAPK↝, PTEN↝, PI3K/Akt↝, eIF2α↑, ATF4↑, ATF6↑, NRF2↑, BAX↑, BID↑, Casp3↑, Casp9↑, Bcl-2↓, Bcl-xL↓,
718- Bor,    Boric Acid Exhibits Anticancer Properties in Human Endometrial Cancer Ishikawa Cells
- in-vitro, NA, NA
OSI↑, TNF-α↓, IL1↓, Casp3↑, Apoptosis↑, TOS↑,
721- Bor,    Polymers Based on Phenyl Boric Acid in Tumor-Targeted Therapy
- Analysis, NA, NA
SA↓,
717- Bor,  PacT,    Boric acid as a protector against paclitaxel genotoxicity
- in-vitro, NA, NA
ChemoSideEff↓,
730- Bor,  Cisplatin,    The Effect of Boric Acid and Borax on Oxidative Stress, Inflammation, ER Stress and Apoptosis in Cisplatin Toxication and Nephrotoxicity Developing as a Result of Toxication
- in-vivo, NA, NA
*ROS↓, *Inflam↓, RenoP↑,
701- Bor,    Dietary boron intake and prostate cancer risk
- Analysis, NA, NA
Risk↓,
702- Bor,  GEN,  SeMet,  Rad,    Evaluation of ecological and in vitro effects of boron on prostate cancer risk (United States)
- Analysis, NA, NA
Risk↓, TumCMig↓, Bcl-2↓,
703- Bor,    Boron intake and prostate cancer risk
- Analysis, NA, NA
Risk∅,
712- Bor,    Boron concentrations in selected foods from borate-producing regions in Turkey
- Analysis, NA, NA
Risk↓,
713- Bor,    Effects of dietary boron on cervical cytopathology and on micronucleus frequency in exfoliated buccal cells
- Analysis, NA, NA
Risk↓,
714- Bor,    Dietary Boron and Hormone Replacement Therapy as Risk Factors for Lung Cancer in Women
- Analysis, NA, NA
Risk↓,
754- Bor,  HRT,    Dietary Boron and Hormone Replacement Therapy as Risk Factors for Lung Cancer in Women
- Analysis, NA, NA
Risk↓,
758- Bor,    Comparative effects of daily and weekly boron supplementation on plasma steroid hormones and proinflammatory cytokines
- Human, NA, NA
*hs-CRP↓, *TNF-α↓, *SHBG↓, *DHT↑, *cortisol↑, *VitD↑, *BioAv↑, *Inflam↓,
759- Bor,    The nutritional and metabolic effects of boron in humans and animals
- in-vivo, NA, NA
DHT↑, VitD↑, HDL↓,
700- Bor,    Diadenosine phosphates and S-adenosylmethionine: novel boron binding biomolecules detected by capillary electrophoresis
- Analysis, NA, NA
SAM-e↝,
746- Bor,    Organoboronic acids/esters as effective drug and prodrug candidates in cancer treatments: challenge and hope
- Review, NA, NA
eff↑, *toxicity↓, ROS↑, LAT↓, AntiCan↑, AR↓, PSMB5↓, IGF-1↓, PSA↓, TumVol↓, eff↑, Rho↓, Cdc42↓, Ca+2↓, eff↑,
747- Bor,    Growing Evidence for Human Health Benefits of Boron
- Review, NA, NA
TumCG↓, Risk↓,
699- Bor,    Boric Acid Alleviates Gastric Ulcer by Regulating Oxidative Stress and Inflammation-Related Multiple Signaling Pathways
- in-vivo, NA, NA
*ROS↓, *MDA↓, *TNF-α↓, *IL6↓, *JAK2↓, *STAT3↓, *AMPK↑, *Sema3A/PlexinA1↑,
698- Bor,    Boron deprivation decreases liver S-adenosylmethionine and spermidine and increases plasma homocysteine and cysteine in rats
- in-vitro, NA, NA
SAM-e↑,
697- Bor,    Boron-containing compounds as preventive and chemotherapeutic agents for cancer
- Review, NA, NA
serineP↓, NADHdeh↓, Apoptosis↑,
1185- Bos,    The journey of boswellic acids from synthesis to pharmacological activities
- Review, NA, NA
BAX↑, NF-kB↓, cl‑PARP↑, Casp3↑, Casp8↑,
1416- Bos,    Anti-cancer properties of boswellic acids: mechanism of action as anti-cancerous agent
- Review, NA, NA
5LO↓, TumCCA↑, LC3B↓, PI3K↓, Akt↓, Glycolysis↓, AMPK↑, mTOR↓, Let-7↑, COX2↓, VEGF↓, CXCR4↓, MMP2↓, MMP9↓, HIF-1↓, angioG↓, TumCP↓, TumCMig↓, NF-kB↓,
1422- Bos,    Boswellic acid exerts antitumor effects in colorectal cancer cells by modulating expression of the let-7 and miR-200 microRNA family
- in-vitro, CRC, NA - in-vivo, NA, NA
5LO↓, TumCG↓, Let-7↑, miR-200b↑, NF-kB↓, cMyc↓, cycD1/CCND1↓, MMP9↓, CXCR4↓, VEGF↓, Bcl-xL↓, survivin↓, IAP1↓, XIAP↓, TumCG↓, CDK6↓, Vim↓, E-cadherin↑,
4269- Bos,    Boswellia serrata gum resin aqueous extract upregulatesBDNF but not CREB expression in adult male rat hippocampus
- in-vivo, NA, NA
*BDNF↑, *CREB∅,
1230- CA,  Caff,    Caffeine and Caffeic Acid Inhibit Growth and Modify Estrogen Receptor and Insulin-like Growth Factor I Receptor Levels in Human Breast Cancer
- in-vitro, BC, MCF-7 - in-vitro, BC, MDA-MB-231 - Human, NA, NA
TumVol↓, TumCG↓, ER(estro)↓, cycD1/CCND1↓, IGF-1R↓, p‑Akt↓,
4342- CA,    Antiplatelet effects of caffeic acid due to Ca(2+) mobilizationinhibition via cAMP-dependent inositol-1, 4, 5-trisphosphate receptor phosphorylation
- in-vitro, NA, NA
*AntiAg↑, *TXA2↓, *COX1↓,
1011- CA,    Dihydrocaffeic acid improves IL-1β-induced inflammation and cartilage degradation via inhibiting NF-κB and MAPK signalling pathways
- in-vivo, NA, NA
iNOS↓, IL6↓, SOX9↑, NF-kB↓, MAPK↓,
145- CA,  CUR,    The anti-cancer effects of carotenoids and other phytonutrients resides in their combined activity
- in-vitro, NA, NA
AR↓, ARE/EpRE↑,
4264- CA,    Carnosic Acid Mitigates Depression-Like Behavior in Ovariectomized Mice via Activation of Nrf2HO-1 Pathway
- in-vivo, NA, NA
*NRF2↑, *HO-1↑, *Trx1↑, *BDNF↑, *5HT↑, *ROS↓, *TNF-α↓, *IL1β↓, *iNOS↓,
4267- Caff,    Caffeine‐mediated BDNF release regulates long‐term synaptic plasticity through activation of IRS2 signaling
- in-vivo, NA, NA
*cognitive↑, *memory↑, *Mood↑, *BDNF↑, *TrkB↑,
4268- Caff,    Modulatory effect of coffee fruit extract on plasma levels of brain-derived neurotrophic factor in healthy subjects
- Study, NA, NA
*BDNF↑,
1206- Caff,    Caffeine inhibits TGFβ activation in epithelial cells, interrupts fibroblast responses to TGFβ, and reduces established fibrosis in ex vivo precision-cut lung slices
- in-vitro, NA, NA - ex-vivo, NA, NA
Fibrosis↓, TGF-β↓, α-SMA↓,
4266- CAP,    Capsaicin effects on brain-derived neurotrophic factor in rat dorsal root ganglia and spinal cord
- in-vivo, NA, NA
*BDNF↑,
1260- CAP,    Capsaicin inhibits in vitro and in vivo angiogenesis
- vitro+vivo, NA, NA
VEGF↓, angioG↓, TumCCA↑, cycD1/CCND1↓, Akt↓,
2013- CAP,    Capsaicin, a component of red peppers, inhibits the growth of androgen-independent, p53 mutant prostate cancer cells
- in-vitro, Pca, PC3 - in-vitro, Pca, LNCaP - in-vitro, Pca, DU145 - in-vivo, NA, NA
TumCP↓, P53↑, P21↑, BAX↑, PSA↓, AR↓, NF-kB↓, Proteasome↓, TumVol↓, eff∅,
3871- Carno,    Unveiling the Hidden Therapeutic Potential of Carnosine, a Molecule with a Multimodal Mechanism of Action: A Position Paper
- Review, NA, NA
*ROS↓, *NO↓, *Inflam↓,
603- Catechins,    Catechins induce oxidative damage to cellular and isolated DNA through the generation of reactive oxygen species
- in-vitro, NA, HL-60
ROS↑, DNAdam↑, H2O2↑,
1103- CBD,    Cannabidiol inhibits invasion and metastasis in colorectal cancer cells by reversing epithelial-mesenchymal transition through the Wnt/β-catenin signaling pathway
- vitro+vivo, NA, NA
Apoptosis↑, TumCP↓, TumCMig↓, TumMeta↓, EMT↓, E-cadherin↑, N-cadherin↓, Snail↓, Vim↓, Hif1a↓, Wnt/(β-catenin)↓, AXIN1↑, TumVol↓, TumW↓,
1244- CGA,  immuno,    Cancer Differentiation Inducer Chlorogenic Acid Suppresses PD-L1 Expression and Boosts Antitumor Immunity of PD-1 Antibody
- in-vivo, NA, NA
PD-L1↓, T-Cell↑, eff↑,
1083- CGA,    In Silico Insight the Prediction of Chlorogenic Acid in Coffee through Cyclooxygenase-2 (COX2) Interaction
- Analysis, NA, NA
COX2↓,
4490- Chit,  FA,    Chitosan Nanoparticle-Based Drug Delivery Systems: Advances, Challenges, and Future Perspectives
- Review, NA, NA
EPR↑, *BioAv↑, *eff↑, *other↝, *Insulin↑, *Bacteria↓, eff↑, ChemoSen↑,
4487- Chit,  PreB,    Unravelling the Role of Chitin and Chitosan in Prebiotic Activity and Correlation With Cancer: A Narrative Review
- Review, NA, NA
*GutMicro↑, Apoptosis↑, BAX↑, Bcl-2↓, *Inflam↓, AntiTum↑,
4477- Chit,    Recent Advances in Chitosan and its Derivatives in Cancer Treatment
- Review, NA, NA
*BioAv↑, AntiTum↑, eff↑, TumCG↓, angioG↓, TumMeta↓, eff↑, *toxicity↓, other↝,
4476- Chit,    Chitosan decreases total cholesterol in women: a randomized, double-blind, placebo-controlled trial
- Trial, NA, NA
*LDL↓,
4262- Chol,    Choline up-regulates BDNF and down-regulates TrkB neurotrophin receptor in rat cortical cell culture
- in-vitro, NA, NA
*TrkB↑, *BDNF↑,
4260- CHr,    Chrysin modulates the BDNF/TrkB/AKT/Creb neuroplasticity signaling pathway: Acting in the improvement of cognitive flexibility and declarative, working and aversive memory deficits caused by hypothyroidism in C57BL/6 female mice
- in-vivo, NA, NA
*BDNF↑, *TrkB↑, *Akt↑, *CREB↑, *memory↑, *cognitive↑,
953- CHr,    Inhibition of Hypoxia-Inducible Factor-1α and Vascular Endothelial Growth Factor by Chrysin in a Rat Model of Choroidal Neovascularization
- in-vivo, NA, NA
Hif1a↓, VEGF↓,
1143- CHr,    Chrysin inhibited tumor glycolysis and induced apoptosis in hepatocellular carcinoma by targeting hexokinase-2
- in-vitro, HCC, HepG2 - in-vivo, NA, NA - in-vitro, HCC, HepG3 - in-vitro, HCC, HUH7
HK2↓, GlucoseCon↓, lactateProd↓, Glycolysis↓, Apoptosis↑,
2798- CHr,    Chrysin: a histone deacetylase 8 inhibitor with anticancer activity and a suitable candidate for the standardization of Chinese propolis
- in-vitro, BC, MDA-MB-231 - in-vivo, NA, NA
HDAC↓, HDAC8↓, TumCG↓, Diff↑,
2793- CHr,    Chrysin Inhibits TAMs-Mediated Autophagy Activation via CDK1/ULK1 Pathway and Reverses TAMs-Mediated Growth-Promoting Effects in Non-Small Cell Lung Cancer
- in-vitro, Lung, A549 - in-vitro, Lung, H157 - in-vivo, NA, NA
TumCG↓, M2 MC↑, CDK1↓,
1568- Cin,    Can Cinnamon be the Silver Bullet for Cancer?
- Review, NA, NA
VEGF↓, Hif1a↓,
3890- Cin,    The Therapeutic Roles of Cinnamaldehyde against Cardiovascular Diseases
- Review, NA, NA
*cardioP↑, *Inflam↓, *ROS↓, *lipid-P↓, *AntiAg↑, *angioG↑, *GutMicro↑, *ER Stress↓,
4259- Cin,    The Potential of Cinnamon as Anti-Depressant
- Review, NA, NA
*Inflam↓, *BDNF↑, *TNF-α↓, *lipid-P↓, *Mood↑,
1588- Citrate,    ATP citrate lyase (ACLY) inhibitors: An anti-cancer strategy at the crossroads of glucose and lipid metabolism
- Review, NA, NA
ACLY↓,
1587- Citrate,    ATP citrate lyase: A central metabolic enzyme in cancer
- Review, NA, NA
ACLY↓, other↓, PFK1↓, ATP↓, PFK2↓, Mcl-1↓, Casp3↑, Casp2↑, Casp9↑, IGF-1R↓, PI3K↓, Akt↓, p‑Akt↓, p‑ERK↓, PTEN↑, Snail↓, E-cadherin↑, ChemoSen↑,
1574- Citrate,    Citrate Suppresses Tumor Growth in Multiple Models through Inhibition of Glycolysis, the Tricarboxylic Acid Cycle and the IGF-1R Pathway
- in-vitro, Lung, A549 - in-vitro, Melanoma, WM983B - in-vivo, NA, NA
TumCG↓, eff↑, T-Cell↑, p‑IGF-1R↓, p‑Akt↓, PTEN↑, p‑eIF2α↑, OCR↓, ROS↓, ECAR∅, IL1↑, TNF-α↑, IL10↑, IGF-1R↓, eIF2α↑, PTEN↑, TCA↓, Glycolysis↓, selectivity↑, *toxicity∅, Dose∅,
1583- Citrate,    Extracellular citrate and metabolic adaptations of cancer cells
- Review, NA, NA
Warburg↓, OXPHOS↓, Dose∅, TumCP↓, ATP↓, eff↑, Apoptosis↑, TumCG↓, PFK1↓,
1591- Citrate,    The biological significance of cancer: mitochondria as a cause of cancer and the inhibition of glycolysis with citrate as a cancer treatment
- Analysis, NA, NA
Glycolysis↓, PDK1↓, SDH↓,
3995- CoQ10,    Effects of Coenzyme Q10 on TNF-alpha secretion in human and murine monocytic cell lines
- in-vitro, NA, NA
*TNF-α↓, *antiOx↑, *Inflam↓,
4764- CoQ10,  VitE,    Auxiliary effect of trolox on coenzyme Q10 restricts angiogenesis and proliferation of retinoblastoma cells via the ERK/Akt pathway
- in-vitro, RPE, Y79 - in-vitro, Nor, ARPE-19 - in-vivo, NA, NA
tumCV↓, Apoptosis↑, ROS↑, MMP↓, TumCCA↑, VEGF↓, ERK↓, Akt↓, ChemoSen↑, chemoP↑, toxicity↓, angioG↓,
4208- Croc,    Antidepressant Effect of Crocus sativus Aqueous Extract and its Effect on CREB, BDNF, and VGF Transcript and Protein Levels in Rat Hippocampus
- in-vivo, NA, NA
*BDNF↑, *CREB↑, *p‑CREB↑,
3635- Croc,    A Review of Potential Efficacy of Saffron (Crocus sativus L.) in Cognitive Dysfunction and Seizures
- Review, NA, NA
*memory↑, *cognitive↑, *BioAv↑, *ROS↓, *IL1↓, *TNF-α↓, *NF-kB↓, *neuroP↑, *lipid-P↓, *Thiols↑, *antiOx↑, *AChE↓, *MAOA↝, *SIRT1↑, *PGC-1α↑, *Ach↑,
1595- Cu,    The Multifaceted Roles of Copper in Cancer: A Trace Metal Element with Dysregulated Metabolism, but Also a Target or a Bullet for Therapy
- Review, NA, NA
eff↑, ROS↑, eff↓,
1596- Cu,  CDT,    Unveiling the promising anticancer effect of copper-based compounds: a comprehensive review
- Review, NA, NA
TumCD↑, Apoptosis↓, ROS↑, angioG↑, Cupro↑, Paraptosis↑, eff↑, eff↓, selectivity↑, DNAdam↑, eff↑, eff↑, eff↑, eff↑, Fenton↑, H2O2↑, eff↑, eff↑, eff↑, RadioS↑, ChemoSen↑, eff↑, *toxicity↝, other↑, eff↑,
1597- Cu,    Anticancer potency of copper(II) complexes of thiosemicarbazones
- Review, NA, NA
eff↑, ROS↑,
1598- Cu,    Targeting copper in cancer therapy: 'Copper That Cancer'
- Review, NA, NA
eff↓, eff↑, Dose∅, eff↑, angioG↑, ROS↑,
1599- Cu,    Copper in tumors and the use of copper-based compounds in cancer treatment
- Review, NA, NA
ROS↑, RadioS↑,
1600- Cu,    Cu(II) complex that synergistically potentiates cytotoxicity and an antitumor immune response by targeting cellular redox homeostasis
- Review, NA, NA
ER Stress↑, ROS↑, AntiTum↑, GSH↓, Ferroptosis↑, selectivity↑, GSH/GSSG↓, *ROS∅, eff↑,
1603- Cu,  BP,  SDT,    Glutathione Depletion-Induced ROS/NO Generation for Cascade Breast Cancer Therapy and Enhanced Anti-Tumor Immune Response
- in-vitro, BC, 4T1 - in-vivo, NA, NA
GSH↓, Fenton↑, ROS↑, NO↑, sonoS↑, eff↑, NO↑, *toxicity∅, eff?,
1604- Cu,    Targeting copper metabolism: a promising strategy for cancer treatment
- Review, NA, NA
eff↓, eff↓, ROS↑, eff↑,
1572- Cu,    Recent Advances in Cancer Therapeutic Copper-Based Nanomaterials for Antitumor Therapy
- Review, NA, NA
eff↑, Fenton↑, ROS↑, eff↑, mtDam↑, BAX↑, Bcl-2↓, MMP↓, Cyt‑c↑, Casp3↑, ER Stress↑, CHOP↑, Apoptosis↑, selectivity↑, eff↑, Pyro↑, Paraptosis↑, Cupro↑, ChemoSen↑, eff↑,
1571- Cu,    Copper in cancer: From pathogenesis to therapy
- Review, NA, NA
*toxicity↝, ROS↑, lipid-P↓, HNE↑, MAPK↑, JNK↑, AP-1↑, Beclin-1↑, ATG7↑, TumAuto↑, Apoptosis↑, HO-1↑, NQO1↑, mt-ROS↑, Fenton↑,
1570- Cu,    Development of copper nanoparticles and their prospective uses as antioxidants, antimicrobials, anticancer agents in the pharmaceutical sector
- Review, NA, NA
selectivity↑, antiOx↑, ROS↑, eff↑, GSH↓, lipid-P↑, Catalase↓, SOD↓, other↑,
1569- Cu,    Copper Nanoparticles as Therapeutic Anticancer Agents
- Review, NA, NA
Dose∅, Dose∅, ROS↑,
1590- Cuc,    ATP citrate lyase (ACLY) inhibitors: An anti-cancer strategy at the crossroads of glucose and lipid metabolism
- Review, NA, NA
ACLY↓,
1510- CUR,  Chemo,    Combination therapy in combating cancer
- Review, NA, NA
*NRF2↑, *GSH↑, *ROS↓, ChemoSideEff↓, eff↑, OS↓, chemoP↑,
1792- CUR,  LEC,    Chondroprotective effect of curcumin and lecithin complex in human chondrocytes stimulated by IL-1β via an anti-inflammatory mechanism
- in-vitro, Arthritis, RAW264.7 - NA, NA, HCC-38
*Inflam↓, *NF-kB↓, *iNOS↓, *COX2↓, *NO↓, *PGE2↓, *MMPs↑, *TIMP1↑, *BioEnh↑,
1383- CUR,  BBR,  RES,    Regulation of GSK-3 activity by curcumin, berberine and resveratrol: Potential effects on multiple diseases
- Review, NA, NA
GSK‐3β↝, ROS↑,
1505- CUR,    Epigenetic targets of bioactive dietary components for cancer prevention and therapy
- Review, NA, NA
TumCCA↑, Apoptosis↑, DNMTs↓, HDAC↓, HATs↓, TumCP↓, p300↓, HDAC1↓, HDAC3↓, HDAC8↓, NF-kB↓,
1982- CUR,    Inhibition of thioredoxin reductase by curcumin analogs
- in-vitro, NA, NA
eff↑, TrxR↓,
3586- CUR,  PI,    Influence of piperine on the pharmacokinetics of curcumin in animals and human volunteers
- in-vivo, NA, NA
*BioAv↑,
3579- CUR,  SNP,    Metal–Curcumin Complexes in Therapeutics: An Approach to Enhance Pharmacological Effects of Curcumin
- Review, NA, NA
*IronCh↑, *BioAv↑, *antiOx↑, *Inflam↓, *BioAv↑, ROS↑, *neuroP↑, *eff↑,
3585- CUR,    Nanoparticle encapsulation improves oral bioavailability of curcumin by at least 9-fold when compared to curcumin administered with piperine as absorption enhancer
- Study, NA, NA
*BioAv↑,
3797- CUR,    Curcumin reverses cognitive deficits through promoting neurogenesis and synapse plasticity via the upregulation of PSD95 and BDNF in mice
- in-vitro, NA, NA
*cognitive↑, *BDNF↑, *PSD95↑, *memory↑,
4171- CUR,    Curcumin produces neuroprotective effects via activating brain-derived neurotrophic factor/TrkB-dependent MAPK and PI-3K cascades in rodent cortical neurons
- in-vivo, NA, NA
*BDNF↑, *TrkB↑, *CREB↑, *Mood↑, *neuroP↑,
4175- CUR,    Effects of curcumin on learning and memory deficits, BDNF, and ERK protein expression in rats exposed to chronic unpredictable stress
- in-vivo, NA, NA
*BDNF↑, *ERK↑,
2974- CUR,    Curcumin Suppresses Metastasis via Sp-1, FAK Inhibition, and E-Cadherin Upregulation in Colorectal Cancer
- in-vitro, CRC, HCT116 - in-vitro, CRC, HT29 - in-vitro, CRC, HCT15 - in-vitro, CRC, COLO205 - in-vitro, CRC, SW-620 - in-vivo, NA, NA
TumCMig↓, TumCI↓, TumCG↓, TumMeta↓, Sp1/3/4↓, HDAC4↓, FAK↓, CD24↓, E-cadherin↑, EMT↓, TumCP↓, NF-kB↓, AP-1↝, STAT3↓, P53?, β-catenin/ZEB1↓, NOTCH1↝, Hif1a↝, PPARα↝, Rho↓, MMP2↓, MMP9↓,
2813- CUR,    Oxidative Metabolites of Curcumin Poison Human Type II Topoisomerases
- Review, NA, NA
TOP2↑,
2579- CUR,  ART/DHA,    Curcumin-Artemisinin Combination Therapy for Malaria
- in-vivo, NA, NA
OS↑, toxicity↓,
4831- CUR,    The dual role of curcumin and ferulic acid in counteracting chemoresistance and cisplatin-induced ototoxicity
- in-vitro, NA, NA
*NRF2↑, *P53↓, *NF-kB↓, ROS↑, Inflam↓, ChemoSen↑,
4337- CUR,    Inhibitory effect of curcumin, a food spice from turmeric, on platelet-activating factor- and arachidonic acid-mediated platelet aggregation through inhibition of thromboxane formation and Ca2+ signaling
- in-vitro, NA, NA
*AntiAg↑, *TXA2↓,
144- CUR,  Bical,    Combination of curcumin and bicalutamide enhanced the growth inhibition of androgen-independent prostate cancer cells through SAPK/JNK and MEK/ERK1/2-mediated targeting NF-κB/p65 and MUC1-C
- in-vitro, Pca, PC3 - in-vitro, NA, DU145 - in-vitro, NA, LNCaP
p‑ERK↑, p‑JNK↓, MUC1↓, p65↓,
1108- CUR,    Curcumin: a potent agent to reverse epithelial-to-mesenchymal transition
- Review, NA, NA
EMT↓,
1034- CUR,  immuno,    Enhanced anti‐tumor effects of the PD‐1 blockade combined with a highly absorptive form of curcumin targeting STAT3
- in-vivo, NA, NA
DCells↑, T-Cell↑,
483- CUR,  PDT,    Visible light and/or UVA offer a strong amplification of the anti-tumor effect of curcumin
- in-vivo, NA, A431
TumVol↓, TumCP↓, Apoptosis↑,
1882- DCA,    Dichloroacetate (DCA) as a potential metabolic-targeting therapy for cancer
- Analysis, NA, NA
PDKs↓, PDH↑, lactateProd↓, Half-Life∅,
1881- DCA,  Chemo,    Co-treatment of dichloroacetate, omeprazole and tamoxifen exhibited synergistically antiproliferative effect on malignant tumors: in vivo experiments and a case report
- in-vitro, NA, HT1080 - in-vitro, NA, WI38 - Case Report, Var, NA
eff↑, selectivity↑, OS↑,
1875- DCA,    Dichloroacetate inhibits neuroblastoma growth by specifically acting against malignant undifferentiated cells
- in-vitro, neuroblastoma, NA - in-vivo, NA, NA
selectivity↑, AntiCan↑, TumVol↓, PDKs↓, mt-OXPHOS↑, MMP↓, Glycolysis↓, toxicity↓, Warburg↓, ROS↑, eff↑,
1866- DCA,  MET,  BTZ,    Targeting metabolic pathways alleviates bortezomib-induced neuropathic pain without compromising anticancer efficacy in a sex-specific manner
- in-vivo, NA, NA
eff↑, TumCG↓, Hif1a↓, PDH↑, lactateProd↓, TumVol↓, TumW↓, Glycolysis↑, neuroP↑,
1868- DCA,  MET,    Long-term stabilization of stage 4 colon cancer using sodium dichloroacetate therapy
- Case Report, NA, NA
eff↑, toxicity∅, MMP↓, Apoptosis↑, selectivity↑, pH↝, Dose↝, Dose↝, eff↑,
4177- DHA,    Dietary omega-3 fatty acids normalize BDNF levels, reduce oxidative damage, and counteract learning disability after traumatic brain injury in rats
- in-vivo, NA, NA
*BDNF↑, *CREB↑, *ROS↓, *cognitive↑,
4178- DHA,    The salutary effects of DHA dietary supplementation on cognition, neuroplasticity, and membrane homeostasis after brain trauma
- in-vivo, NA, NA
*BDNF↑, *CREB↑, *cognitive↑, *SOD↑,
1184- DHA,    Syndecan-1-Dependent Suppression of PDK1/Akt/Bad Signaling by Docosahexaenoic Acid Induces Apoptosis in Prostate Cancer
- in-vitro, Pca, PC3 - in-vitro, Pca, LNCaP - in-vivo, NA, NA
SDC1↑, p‑PCK1↓, Akt↓, BAD↓,
1035- DHA,    Docosahexaenoic acid reverses PD-L1-mediated immune suppression by accelerating its ubiquitin-proteasome degradation
- vitro+vivo, NA, NA
PD-L1↓, FASN↓,
1855- dietFMD,    Impact of modified short-term fasting and its combination with a fasting supportive diet during chemotherapy on the incidence and severity of chemotherapy-induced toxicities in cancer patients - a controlled cross-over pilot study
- Trial, NA, NA
ChemoSideEff↓, QoL↑, IGF-1↓, Insulin↓,
1857- dietFMD,    Fasting cycles retard growth of tumors and sensitize a range of cancer cell types to chemotherapy
- in-vitro, BC, 4T1 - in-vivo, NA, NA
TumCG↓, ChemoSen↑, OS↑,
1844- dietFMD,    Unlocking the Potential: Caloric Restriction, Caloric Restriction Mimetics, and Their Impact on Cancer Prevention and Treatment
- Review, NA, NA
Risk↓, AMPK↑, Akt↓, mTOR↓, SIRT1↑, Hif1a↓, NRF2↓, SOD↑, ROS↑, IGF-1↓, p‑Akt↓, PI3K↑, GutMicro↑, OS↑, eff↝, ROS↑, TumCCA↑, *DNArepair↑, DNAdam↑,
1861- dietFMD,  Chemo,    Fasting induces anti-Warburg effect that increases respiration but reduces ATP-synthesis to promote apoptosis in colon cancer models
- in-vitro, Colon, CT26 - in-vivo, NA, NA
selectivity↑, ChemoSen↑, BG↓, AminoA↓, Warburg↓, OCR↑, ATP↓, ROS↑, Apoptosis↑, GlucoseCon↓, PI3K↓, PTEN↑, GLUT1↓, GLUT2↓, HK2↓, PFK1↓, PKA↓, ATP:AMP↓, Glycolysis↓, lactateProd↓,
2273- dietMet,    Methionine and cystine double deprivation stress suppresses glioma proliferation via inducing ROS/autophagy
- in-vitro, GBM, U87MG - in-vitro, GBM, U251 - in-vivo, NA, NA
ROS↑, GSH↓, TumCP↓, TumAuto↑, LC3II↑,
2155- dietP,    Transepithelial Anti-Neuroblastoma Response to Kale among Four Vegetable Juices Using In Vitro Model Co-Culture System
- in-vivo, neuroblastoma, Caco-2 - NA, NA, SH-SY5Y
AntiCan↑, ROS↑, eff↑, eff↑, eff↑,
2161- dietP,    Plant-Based Diets and Cancer Prognosis: a Review of Recent Research
- Review, NA, NA
OS↑, eff↑, eff↑,
4989- Dipy,    Dipyridamole
- Review, NA, NA
AntiAg↑,
4341- EA,    Novel Bioactivity of Ellagic Acid in Inhibiting Human Platelet Activation
- in-vitro, NA, NA
*AntiAg↑, *AntiAg↑,
4255- EA,    Effects of nutritional interventions on BDNF concentrations in humans: a systematic review
- Review, NA, NA
*BDNF↑,
4252- EA,    Effect of ellagic acid on BDNF/PI3K/AKT-mediated signaling pathways in mouse models of depression
- in-vivo, NA, NA
*BDNF↑, *p‑AKT1↑,
2402- EA,    Ellagic Acid and Its Metabolites as Potent and Selective Allosteric Inhibitors of Liver Pyruvate Kinase
- in-vitro, NA, NA
PKL↓,
989- EGCG,  Citrate,    In vitro and in vivo study of epigallocatechin-3-gallate-induced apoptosis in aerobic glycolytic hepatocellular carcinoma cells involving inhibition of phosphofructokinase activity
- in-vitro, HCC, NA - in-vivo, NA, NA
PFK↓, Glycolysis↓, lactateProd↓, GlucoseCon↓, TumCP↓, TumCCA↑, Casp3↑, cl‑PARP↑, Apoptosis↑, Casp8↑, Casp9↑, Cyt‑c↝, MMP↓, BAD↑, GLUT2↓, PKM2∅,
665- EGCG,    Anticancer effects of epigallocatechin-3-gallate nanoemulsion on lung cancer cells through the activation of AMP-activated protein kinase signaling pathway
- in-vitro, NA, H1299
AMPK↑, TumCP↓, TumCMig↓, TumCI↓,
661- EGCG,  GoldNP,    Epigallocatechin-3-Gallate-Loaded Gold Nanoparticles: Preparation and Evaluation of Anticancer Efficacy in Ehrlich Tumor-Bearing Mice
- vitro+vivo, NA, NA
Apoptosis↑, TumVol↓,
663- EGCG,    EGCG-coated silver nanoparticles self-assemble with selenium nanowires for treatment of drug-resistant bacterial infections by generating ROS and disrupting biofilms
- in-vitro, NA, NA
ROS↑,
664- EGCG,  SNP,    Epigallocatechin-3-gallate-capped Ag nanoparticles: preparation and characterization
- Analysis, NA, NA
other↑,
666- EGCG,    The Role of EGCG in Breast Cancer Prevention and Therapy
- Review, NA, NA
ROMO1↑, VEGF↓, TumCG↓,
650- EGCG,    Cellular thiol status-dependent inhibition of tumor cell growth via modulation of retinoblastoma protein phosphorylation by (-)-epigallocatechin
- in-vitro, NA, NA
TumCCA↑, p‑pRB↓,
645- EGCG,    The Effect of Ultrasound, Oxygen and Sunlight on the Stability of (−)-Epigallocatechin Gallate
- Analysis, NA, NA
eff↑, pH↓,
643- EGCG,    New insights into the mechanisms of polyphenols beyond antioxidant properties; lessons from the green tea polyphenol, epigallocatechin 3-gallate
- Analysis, NA, NA
H2O2↑, Fenton↑, PDGFR-BB↑, EGFR↓, VEGFR2↓, IGFR↓, Ca+2↑, NO↑, Sp1/3/4↓, NF-kB↓, AP-1↓, STAT1↓, STAT3↓, FOXO↓, mtDam↑, TumAuto↑,
639- EGCG,    Immunomodulatory Effects of Green Tea Catechins and Their Ring Fission Metabolites in a Tumor Microenvironment Perspective
- Review, NA, NA
TIMP3↑, MMP2↓, MMP9↓,
637- EGCG,  CAP,    Cancer prevention trial of a synergistic mixture of green tea concentrate plus Capsicum (CAPSOL-T) in a random population of subjects ages 40-84
- Human, NA, NA
ENOX2↓,
667- EGCG,    Anti-cancer effect of EGCG and its mechanisms
- Review, NA, NA
RPSA↓,
695- EGCG,  TFdiG,    The antioxidant and pro-oxidant activities of green tea polyphenols: a role in cancer prevention
- in-vitro, NA, HL-60
ROS↑, IronCh↑, Apoptosis↑,
692- EGCG,    EGCG: The antioxidant powerhouse in lung cancer management and chemotherapy enhancement
- Review, NA, NA
ROS↑, Apoptosis↑, DNAdam↑, CTR1↑, JWA↑, β-catenin/ZEB1↓, P53↑, Vim↓, VEGF↓, p‑Akt↓, Hif1a↓, COX2↓, ERK↓, NF-kB↓, Akt↓, Bcl-xL↓, miR-210↓,
691- EGCG,    Preclinical Pharmacological Activities of Epigallocatechin-3-gallate in Signaling Pathways: An Update on Cancer
- Review, NA, NA
Apoptosis↑, necrosis↑, TumAuto↑, ERK↓, p38↓, NF-kB↓, VEGF↓,
685- EGCG,  CUR,  SFN,  RES,  GEN  The “Big Five” Phytochemicals Targeting Cancer Stem Cells: Curcumin, EGCG, Sulforaphane, Resveratrol and Genistein
- Analysis, NA, NA
Bcl-2↓, survivin↓, XIAP↓, EMT↓, Apoptosis↑, Nanog↓, cMyc↓, OCT4↓, Snail↓, Slug↓, Zeb1↓, TCF↓,
683- EGCG,    Targeting the AMP-Activated Protein Kinase for Cancer Prevention and Therapy
- Review, NA, NA
AMPK↑, TumCP↓, P21↑, mTOR↓, COX2↓,
682- EGCG,    Suppressive Effects of EGCG on Cervical Cancer
- Review, NA, NA
E7↓, E6↓, PI3K/Akt↓, P53↑, p27↑, P21↑, CDK2↓, mTOR↓, HIF-1↓, IGF-1↓, EGFR↓, ERK↓, VEGF↓,
680- EGCG,    Cancer preventive and therapeutic effects of EGCG, the major polyphenol in green tea
- Review, NA, NA
NF-kB↓, STAT3↓, PI3K↓, HGF/c-Met↓, Akt↓, ERK↓, MAPK↓, AR↓, Casp↑, Ki-67↓, PARP↑, Bcl-2↓, BAX↑, PCNA↓, p27↑, P21↑,
676- EGCG,  Chemo,    The Potential of Epigallocatechin Gallate (EGCG) in Targeting Autophagy for Cancer Treatment: A Narrative Review
- Review, NA, NA
PI3k/Akt/mTOR↓, Apoptosis↑, ROS↑, TumAuto↑,
672- EGCG,    Molecular Targets of Epigallocatechin—Gallate (EGCG): A Special Focus on Signal Transduction and Cancer
- Review, NA, NA
DNMT1↓, HDAC↓, G9a↓, PRC2↓, DNMT3A↓, 67LR↓, Apoptosis↑, TumCCA↑,
670- EGCG,    Epigallocatechin-3-gallate and its nanoformulation in cervical cancer therapy: the role of genes, MicroRNA and DNA methylation patterns
- Review, NA, NA
TumCCA↑, P53↑, ERK↓, EGFR↓, p‑ERK↑, VEGF↓, Hif1a↓, miR-203↓, miR-210↑,
669- EGCG,    Epigallocatechin-3-gallate and cancer: focus on the role of microRNAs
- Review, NA, NA
Let-7↑, KRAS↓,
2562- EGCG,    Green Tea Epigallocatechin 3-Gallate Reduced Platelet Aggregation and Improved Anticoagulant Proteins in Patients with Transfusion-Dependent β-Thalassemia: A Randomized Placebo-Controlled Clinical Trial
- Trial, NA, NA
AntiAg↑, other↝,
2563- EGCG,    Cardioprotective effect of epigallocatechin gallate in myocardial ischemia/reperfusion injury and myocardial infarction: a meta-analysis in preclinical animal studies
- Review, NA, NA
cardioP↑, ROS↑, AntiAg↑, eff↑, COX1↓,
3201- EGCG,    Epigallocatechin Gallate (EGCG): Pharmacological Properties, Biological Activities and Therapeutic Potential
- Review, NA, NA
*AntiCan↑, *cardioP↑, *neuroP↑, *BioAv↝, *BioAv↓, *BioAv↓, *Dose↝, *Half-Life↝, *BioAv↑, *BBB↑, *hepatoP↓, *other↓, *Inflam↓, *NF-kB↓, *AP-1↓, *iNOS↓, *COX2↓, *ROS↓, *RNS↓, *IL8↓, *JAK↓, *PDGFR-BB↓, *IGF-1R↓, *MMP2↓, *P53↓, *NRF2↑, *TNF-α↓, *IL6↓, *E2Fs↑, *SOD1↑, *SOD2↑, Casp3↑, Cyt‑c↑, PARP↑, DNMTs↓, Telomerase↓, Hif1a↓, MMPs↓, BAX↑, Bak↑, Bcl-2↓, Bcl-xL↓, P53↑, PTEN↑, TumCP↓, MAPK↓, HGF/c-Met↓, TIMP1↑, HDAC↓, MMP9↓, uPA↓, GlutMet↓, ChemoSen↑, chemoP↑,
3211- EGCG,    Antioxidation Function of EGCG by Activating Nrf2/HO-1 Pathway in Mice with Coronary Heart Disease
- in-vivo, NA, NA
*cardioP↑, *VEGF↓, *MMP2↓, *SOD↑, *ROS↓, *HO-1↑, *NQO1↑, *NRF2↑,
2309- EGCG,  Chemo,    Targeting Glycolysis with Epigallocatechin-3-Gallate Enhances the Efficacy of Chemotherapeutics in Pancreatic Cancer Cells and Xenografts
- in-vitro, PC, MIA PaCa-2 - in-vitro, Nor, HPNE - in-vitro, PC, PANC1 - in-vivo, NA, NA
TumCG↓, eff↑, ROS↑, ECAR↓, ChemoSen↑, selectivity↑, Glycolysis↓, PFK↓, PKA↓, HK2∅, LDHA∅, PFKP↓, PKM2↓, H2O2↑, TumW↓,
1516- EGCG,    Epigallocatechin Gallate (EGCG): Pharmacological Properties, Biological Activities and Therapeutic Potential
- Review, NA, NA
*Dose∅, Half-Life∅, BioAv∅, BBB↑, toxicity∅, eff↓, Apoptosis↑, Casp3↑, Cyt‑c↑, cl‑PARP↑, DNMTs↓, Telomerase↓, angioG↓, Hif1a↓, NF-kB↓, MMPs↓, BAX↑, Bak↑, Bcl-2↓, Bcl-xL↓, P53↑, PTEN↑, IGF-1↓, H3↓, HDAC1↓, *LDH↓, *ROS↓,
1503- EGCG,    Epigenetic targets of bioactive dietary components for cancer prevention and therapy
- Review, NA, NA
selectivity↑, DNMT1↓, RECK↑, MMPs↓, TumCI↓, angioG↓, TumMeta↓, HATs↓, IκB↑, NF-kB↓, IL6↓, COX2↓, NOS2↓, ac‑H3↑, ac‑H4↑, eff↑,
1321- EMD,    Antitumor effects of emodin on LS1034 human colon cancer cells in vitro and in vivo: roles of apoptotic cell death and LS1034 tumor xenografts model
- in-vitro, CRC, LS1034 - in-vivo, NA, NA
tumCV↓, TumCCA↑, ROS↑, Ca+2↑, MMP↓, Apoptosis↑, Cyt‑c↑, Casp9↑, Bax:Bcl2↑,
1330- EMD,    Aloe emodin-induced apoptosis in t-HSC/Cl-6 cells involves a mitochondria-mediated pathway
- in-vitro, NA, NA
tumCV↓, Casp3↑, Casp9↑, MMP↓, Cyt‑c↑, BAX↑, Bax:Bcl2↑,
950- EMD,    Emodin Decreases Hepatic Hypoxia-Inducible Factor-1[Formula: see text] by Inhibiting its Biosynthesis
- in-vivo, NA, NA - in-vitro, Liver, HepG2
HIF-1↓,
4174- Ex,    Exercise-Mediated Neurogenesis in the Hippocampus via BDNF
- Review, NA, NA
*neuroP↑, *cognitive↑, *memory↑, *BDNF↑, *neuroG↑,
2144- Ex,    Physical activity, hormone replacement therapy and breast cancer risk: A meta-analysis of prospective studies
- Analysis, NA, NA
Risk↓, Dose?, eff↑,
1039- F,    Anti-Proliferative and Pro-Apoptotic vLMW Fucoidan Formulas Decrease PD-L1 Surface Expression in EBV Latency III and DLBCL Tumoral B-Cells by Decreasing Actin Network
- in-vitro, NA, NA
TumCP↓, Apoptosis↑, PD-L1↓,
1114- F,    The Potential Effect of Fucoidan on Inhibiting Epithelial-to-Mesenchymal Transition, Proliferation, and Increase in Apoptosis for Endometriosis Treatment: In Vivo and In Vitro Study
- vitro+vivo, NA, NA
tumCV↓, TumCMig↓, VEGF↓, EMT↓, Apoptosis↑,
1155- F,    The anti-cancer effects of fucoidan: a review of both in vivo and in vitro investigations
- Review, NA, NA
*toxicity↓, Casp3↑, Casp7↑, Casp8↑, Casp9↑, VEGF↓, angioG↓, PI3K↓, Akt↓, PARP↑, Bak↑, BID↑, Fas↑, Mcl-1↓, survivin↓, XIAP↓, ERK↓, EMT↓, EM↑, IM↓, Snail↓, Slug↓, Twist↓,
1622- FA,    Folate and Its Impact on Cancer Risk
- Review, NA, NA
eff↓,
3716- FA,    Ferulic Acid as a Protective Antioxidant of Human Intestinal Epithelial Cells
- in-vitro, IBD, NA - in-vivo, NA, NA
*antiOx↑, *Inflam↓, *ER Stress↓, *other↑, *angioG↑, *Hif1a↑, *VEGF↑, *NO↓, *SIRT1↑, *PERK↓, *ATF4↓, *CHOP↓, *GutMicro↑,
4251- FA,    Antidepressant-Like Effect of Ferulic Acid via Promotion of Energy Metabolism Activity
- in-vivo, NA, NA
*BDNF↑, *ATP↑, *Mood↑,
4249- FA,    Folic acid supplementation during pregnancy prevents cognitive impairments and BDNF imbalance in the hippocampus of the offspring after neonatal hypoxia-ischemia
- in-vivo, NA, NA
*BDNF↑, *memory↑, *neuroP↑,
2860- FIS,    Fisetin induces autophagy in pancreatic cancer cells via endoplasmic reticulum stress- and mitochondrial stress-dependent pathways
- in-vitro, PC, PANC1 - in-vitro, PC, Bxpc-3 - in-vitro, Nor, hTERT-HPNE - in-vivo, NA, NA
AMPK↑, mTOR↑, UPR↑, ER Stress↑, selectivity↑, TumCP↓, PERK↑, ATF4↑, ATF6↑,
4250- Flav,    Dietary Flavonoids Interaction with CREB-BDNF Pathway: An 
Unconventional Approach for Comprehensive Management of Epilepsy
- Review, NA, NA
*ERK↑, *BDNF↑, *CREB↑,
4030- FulvicA,    Therapeutic Potential of Fulvic Acid in Chronic Inflammatory Diseases and Diabetes
- Review, NA, NA
*Inflam↓, TNF-α↓, *COX2↓, *PGE2↓, *ROS↓, *GutMicro↑, *BioEnh↑, *BioEnh↑, *SOD↑, *Catalase↑, *GPx↑,
947- GA,    Gallic acid, a phenolic compound, exerts anti-angiogenic effects via the PTEN/AKT/HIF-1α/VEGF signaling pathway in ovarian cancer cells
- in-vitro, Ovarian, OVCAR-3 - in-vitro, Melanoma, A2780S - in-vitro, Nor, IOSE364 - Human, NA, NA
TumCG↓, VEGF↓, angioG↓, p‑Akt↓, Hif1a↓, PTEN↑, BioAv↑, *toxicity↓,
4248- Gala,    Meta-analysis of randomized controlled trials of galantamine in schizophrenia: significant cognitive enhancement
- Review, NA, NA
*BDNF↑, *cognitive↑,
934- Gallo,    Galloflavin (CAS 568-80-9): a novel inhibitor of lactate dehydrogenase
- Analysis, NA, NA
LDH↓, Glycolysis↓, Apoptosis↑,
1971- GamB,    Gambogic acid triggers vacuolization-associated cell death in cancer cells via disruption of thiol proteostasis
- in-vitro, Nor, MCF10 - in-vitro, BC, MDA-MB-435 - in-vitro, BC, MDA-MB-468 - in-vivo, NA, NA
Paraptosis↑, ER Stress↑, MMP↓, eff↓, selectivity↑, p‑ERK↑, p‑JNK↑, eff↓,
1969- GamB,    Gambogic acid promotes apoptosis and resistance to metastatic potential in MDA-MB-231 human breast carcinoma cells
- in-vitro, BC, MDA-MB-231 - in-vivo, NA, NA
AntiTum↑, TumCI↓, Apoptosis↑, ROS↑, Cyt‑c↑, Akt↓, mTOR↓, TumCG↓, TumMeta↓,
1958- GamB,    Gambogenic acid induces apoptosis and autophagy through ROS-mediated endoplasmic reticulum stress via JNK pathway in prostate cancer cells
- in-vitro, Pca, NA - in-vivo, NA, NA
AntiCan↑, TumCP↓, TumAuto↑, eff↑, JNK↑, ROS↑, ER Stress↑, eff↓, TumCG↓,
1959- GamB,    Gambogic acid induces GSDME dependent pyroptotic signaling pathway via ROS/P53/Mitochondria/Caspase-3 in ovarian cancer cells
- in-vitro, Ovarian, NA - in-vivo, NA, NA
AntiCan↑, Pyro↑, tumCV?, CellMemb↓, cl‑Casp3↑, GSDME-N↑, ROS?, p‑P53↑, eff↓, MMP↓, Bcl-2↓, BAX↑, mtDam↑, Cyt‑c↑, TumCG↓, CD4+↑, CD8+↑,
1964- GamB,    Gambogic acid suppresses the pentose phosphate pathway by covalently inhibiting 6PGD protein in cancer cells
- in-vitro, NA, NA
PPP↓, 6PGD↓,
832- GAR,  Rad,    Garcinol, a Histone Acetyltransferase Inhibitor, Radiosensitizes Cancer Cells by Inhibiting Non-Homologous End Joining
- in-vitro, Lung, A549 - in-vitro, NA, HeLa
HATs↓, other↑,
824- GAR,    Garcinol A Novel Inhibitor of Platelet Activation and Apoptosis
- in-vitro, NA, NA
AntiAg↓,
820- GAR,    Garcinol in gastrointestinal cancer prevention: recent advances and future prospects
- Review, NA, NA
Fas↑, TRAIL↑, PARP↑, BAX↑, Bcl-2↓, ROS↑, STAT3↓, Apoptosis↑, MMP2↓, MMP9↓,
809- GAR,    High-Throughput Screen of Natural Product Libraries for Hsp90 Inhibitors
- Review, NA, NA
HRI↓, HSP90↓,
827- GAR,    Garcinol Is an HDAC11 Inhibitor
- in-vitro, NA, NA
HDAC11↓,
795- GAR,    Garcinol—A Natural Histone Acetyltransferase Inhibitor and New Anti-Cancer Epigenetic Drug
- Review, NA, NA
HATs↓, BAX↑, PARP↑, Bcl-2↓, Casp3↑, Casp9↑, DR5↑, cFLIP↓, MMP2↓, MMP9↓, STAT3↓, p‑Akt↓,
800- GAR,    Garcinol Regulates EMT and Wnt Signaling Pathways In Vitro and In Vivo, Leading to Anticancer Activity against Breast Cancer Cells
- in-vitro, BC, MDA-MB-231 - in-vitro, BC, BT549 - in-vivo, NA, NA
EMT↓, MET↑, E-cadherin↑, Vim↓, Zeb1↓, ZEB2↑, miR-200c↑, Let-7↑, p‑β-catenin/ZEB1↓, NF-kB↓,
805- GAR,  Cisplatin,  PacT,    Garcinol Exhibits Anti-Neoplastic Effects by Targeting Diverse Oncogenic Factors in Tumor Cells
- Review, NA, NA
ERK↓, PI3K/Akt↓, Wnt/(β-catenin)↓, STAT3↓, NF-kB↓, ChemoSen↑, COX2↓, Casp3↑, Casp9↑, BAX↑, Bcl-2↓, VEGF↓, TGF-β↓, HATs↓, E-cadherin↑, Vim↓, Zeb1↓, ZEB2↓, Let-7↑, MMP9↓, TumCCA↑, ROS↑, MMP↓, IL6↓, NOTCH1↓,
1188- Gb,    The potential of Ginkgo biloba in the treatment of human diseases and the relationship to Nrf2-mediated antioxidant protection
- Review, NA, NA
*NRF2↑, *ROS↓,
1189- Gb,    New insight into the mechanisms of Ginkgo biloba leaves in the treatment of cancer
- Review, NA, NA
Apoptosis↑, TumCP↓, TumCI↓, TumCMig↓, Inflam↓, antiOx↑, angioG↓,
4245- Gb,    Standardized extract of Ginkgo biloba enhances memory persistence over time
- in-vivo, NA, NA
*memory↑, *BDNF↑,
790- GE,    A Toxicological Evaluation of Germanium Sesquioxide (Organic Germanium)
- vitro+vivo, NA, NA
other↓,
1504- GEN,    Epigenetic targets of bioactive dietary components for cancer prevention and therapy
- Review, NA, NA
DNMTs↓, P21↑, p16↑, ac‑H3↑, ac‑H4↑, TumCCA↑, Casp↑, Apoptosis↑, hTERT/TERT↓, BTG3↑,
4247- GI,    6-Shogaol from Dried Ginger Protects against Intestinal Ischemia/Reperfusion by Inhibiting Cell Apoptosis via the BDNF/TrkB/PI3K/AKT Pathway
- vitro+vivo, NA, NA
*BDNF↑, *TrkB↑, *PI3K↑, *Akt↑, *Apoptosis↓, *Inflam↓, *antiOx↑,
4246- GI,    Ginger oil-loaded transdermal adhesive patch treats post-traumatic stress disorder
- in-vivo, NA, NA
*BDNF↑, *Inflam↓,
4242- Gins,    Ginseng Extract G115 Attenuates Ethanol-Induced Depression in Mice by Increasing Brain BDNF Levels
- in-vivo, NA, NA
*BDNF↑, *Mood↑, *neuroP↑,
3999- Gins,    Panax ginseng enhances cognitive performance in Alzheimer disease
- Trial, NA, NA
*cognitive↑,
4510- GLA,    Gamma-linolenic acid therapy of human glioma-a review of in vitro, in vivo, and clinical studies
- Review, NA, NA
Apoptosis↑, selectivity↑, eff↓, ROS↑, lipid-P↑, P53↑, radioP↑, chemoP↑,
4597- GoldNP,  Chit,    Influence of chitosan coating on the oral bioavailability of gold nanoparticles in rats
- in-vivo, NA, NA
*BioAv↑,
1407- GoldNP,  Z,    The antioxidant effects of silver, gold, and zinc oxide nanoparticles on male mice in in vivo condition
- in-vivo, NA, NA
ROS↑, GPx↓, Catalase↓,
941- Gos,  Rad,    The Lactate Dehydrogenase Inhibitor Gossypol Inhibits Radiation-Induced Pulmonary Fibrosis
- in-vivo, NA, NA
lactateProd↓, other↓, TGF-β↓,
849- Gra,    Annona muricata silver nanoparticles exhibit strong anticancer activities against cervical and prostate adenocarcinomas through regulation of CASP9 and the CXCL1/CXCR2 genes axis
- in-vitro, Pca, PC3 - in-vitro, Nor, PNT1A - in-vitro, NA, HeLa
Casp9↑, CXCL1↓, *toxicity↓,
846- Gra,    Cytotoxic effect of Annona muricata Linn leaves extract on Capan-1 cells
- in-vitro, NA, Ca9-22
other↑,
845- Gra,    A Review on Annona muricata and Its Anticancer Activity
- Review, NA, NA
GlucoseCon↓, ATP↓, HIF-1↓, GLUT1↓, GLUT4↓, HK2↓, LDHA↓, ERK↓, Akt↓, Apoptosis↑, NF-kB↓, ROS↑, Bax:Bcl2↑, MMP↓, Casp3↑, Casp9↑, p‑JNK↓,
842- Gra,    Phytochemical screening, anti-oxidant activity and in vitro anticancer potential of ethanolic and water leaves extracts of Annona muricata (Graviola)
- in-vitro, NA, NA - in-vitro, Nor, NA
other↓, *toxicity↓,
834- Gra,    Anticancer Properties of Graviola (Annona muricata): A Comprehensive Mechanistic Review
- Review, NA, NA
EGFR↓, PI3K/Akt↓, NF-kB↓, JAK↓, STAT↓, Hif1a↓, GLUT1↓, GLUT4↓, ROS↑, Catalase↑, SOD↑, HO-1↑,
1232- Gra,    Graviola: A Systematic Review on Its Anticancer Properties
- Review, NA, NA
EGFR↓, cycD1/CCND1↓, Bcl-2↓, TumCCA↑, Apoptosis↑, ROS↑, MMP↓, BAX↑, Cyt‑c↑, Hif1a↓, NF-kB↓, GLUT1↓, GLUT4↓, HK2↓, LDHA↓, ATP↓,
4343- H2,    Inhibitory effects of hydrogen on in vitro platelet activation and in vivo prevention of thrombosis formation
- vitro+vivo, NA, NA
*antiOx↑, *AntiAg↑, *NO↑, *ERK↑,
4344- H2,    Hydrogen May Inhibit Collagen-Induced Platelet Aggregation: An ex vivo and in vivo Study
- in-vivo, NA, NA - ex-vivo, NA, NA
*AntiAg↑,
4345- H2,    The Benefit of Hydrogen Gas as an Adjunctive Therapy for Chronic Obstructive Pulmonary Disease
- Human, NA, NA
*Inflam↓, *antiOx↑, *ROS↓, *NLRP3↑, *NF-kB↓, *SOD↑, *Catalase↑, *AntiAg↑,
4346- H2,    Medical Application of Hydrogen in Hematological Diseases
- Review, NA, NA
*AntiAg↑, *TNF-α↓, *IL6↓, *IFN-γ↓, *NF-kB↓,
4347- H2,    Hydrogen may inhibit collagen-induced platelet aggregation: an ex vivo and in vivo study
- ex-vivo, NA, NA
*AntiAg↑,
4237- H2,    Hydrogen-Rich Saline Protects Against Spinal Cord Injury in Rats
- in-vitro, NA, NA
*Apoptosis↓, *ROS↓, *motorD↑, *BDNF↑,
2525- H2,    Hydrogen-Rich Saline Attenuates Cardiac and Hepatic Injury in Doxorubicin Rat Model by Inhibiting Inflammation and Apoptosis
- in-vivo, NA, NA
OS↓, cardioP↑, *AST↓, ALAT↓, *ROS↓, *MDA↓, *hepatoP↑, *Inflam↓, chemoP↑,
2524- H2,    Protective effect of hydrogen-rich water on liver function of colorectal cancer patients treated with mFOLFOX6 chemotherapy
- Trial, NA, NA
hepatoP↑, ALAT↓, AST↓, Dose↝, Dose↝,
2517- H2,    Molecular Hydrogen Enhances Proliferation of Cancer Cells That Exhibit Potent Mitochondrial Unfolded Protein Response
- in-vitro, Var, A549 - in-vitro, NA, HCT116 - in-vitro, NA, HeLa - in-vitro, NA, HepG2 - in-vitro, NA, HT1080 - in-vitro, NA, PC3 - in-vitro, NA, SH-SY5Y
TumCP↓, other↝, eff↝, mt-UPR↑,
2507- H2,    Hydrogen protects against chronic intermittent hypoxia induced renal dysfunction by promoting autophagy and alleviating apoptosis
- in-vivo, NA, NA
*RenoP↑, *ROS↓, *Apoptosis↓, *ER Stress↓, *CHOP↓, *Casp12↓, *GRP78/BiP↓, *LC3‑Ⅱ/LC3‑Ⅰ↑, *Beclin-1↑, *p62↓, *mTOR↓,
2514- H2,    Hydrogen: A Novel Option in Human Disease Treatment
- Review, NA, NA
*Inflam↓, *IL1β↓, *IL6↓, *IL8↓, *IL10↓, *TNF-α↓, *ROS↓, *HO-1↓, *NRF2↑, *ER Stress↓, H2O2↑,
3152- H2,  VitC,  Rad,    Hydrogen and Vitamin C Combination Therapy: A Novel Method of Radioprotection
- in-vitro, Nor, HUVECs - in-vivo, NA, NA
AntiTum↑, OS↑, QoL↑, TumVol↓, radioP↑, Dose↑, Dose↝, eff↑,
1633- HCA,    Hydroxycitric Acid Alleviated Lung Ischemia-Reperfusion Injury by Inhibiting Oxidative Stress and Ferroptosis through the Hif-1α Pathway
- in-vivo, NA, NA - in-vitro, Nor, HUVECs
*other↓, *Inflam↓, *MDA↓, *ROS↓, *Iron↓, *SOD↓, *Hif1a↓, *HO-1↓,
1589- HCA,    ATP citrate lyase (ACLY) inhibitors: An anti-cancer strategy at the crossroads of glucose and lipid metabolism
- Review, NA, NA
ACLY↓, eff↑,
1630- HCA,    Chemistry and biochemistry of (-)-hydroxycitric acid from Garcinia
- Review, NA, NA
ACLY↓, FASN↓, lipoGen↓, Weight↓,
602- HCAs,    Prooxidant activity of hydroxycinnamic acids on DNA damage in the presence of Cu(II) ions: mechanism and structure-activity relationship
- Analysis, NA, NA
ROS↑, DNAdam↑,
1160- HibSad,    Hibiscus sabdariffa anthocyanins are potential modulators of estrogen receptor alpha activity with favourable toxicology: a computational analysis using molecular docking, ADME/Tox prediction, 2D/3D QSAR and molecular dynamics simulation
- Analysis, NA, NA
ER(estro)↓,
1153- HNK,    Honokiol Eliminates Glioma/Glioblastoma Stem Cell-Like Cells via JAK-STAT3 Signaling and Inhibits Tumor Progression by Targeting Epidermal Growth Factor Receptor
- in-vitro, GBM, U251 - in-vitro, GBM, U87MG - in-vivo, NA, NA
tumCV↓, Apoptosis↑, TumCMig↓, TumCI↓, Bcl-2↓, EGFR↓, CD133↓, Nestin↓, Akt↓, ERK↓, Casp3↑, p‑STAT3↓, TumCG↓,
2886- HNK,    Liposomal honokiol inhibits non-small cell lung cancer progression and enhances PD-1 blockade via suppressing M2 macrophages polarization
- in-vitro, Lung, A549 - in-vitro, Lung, H460 - in-vivo, NA, NA
eff↑, BioAv↑, eff↑, PI3K↓, Akt↓,
2879- HNK,    Honokiol Inhibits Lung Tumorigenesis through Inhibition of Mitochondrial Function
- in-vitro, Lung, H226 - in-vivo, NA, NA
tumCV↓, selectivity↑, TumCP↓, TumCCA↑, Apoptosis↑, mt-ROS↑, Casp3↑, Casp7↑, OCR↓, Cyt‑c↑, ATP↓, mitResp↓, AMP↑, AMPK↑,
2880- HNK,    Honokiol inhibits breast cancer cell metastasis by blocking EMT through modulation of Snail/Slug protein translation
- in-vitro, BC, MCF-7 - in-vitro, BC, MDA-MB-231 - in-vitro, BC, 4T1 - in-vivo, NA, NA
tumCV↓, E-cadherin↑, Snail↓, Slug↓, Vim↓, TumMeta↓, p‑eIF2α↑,
2865- HNK,    Liposomal Honokiol induces ROS-mediated apoptosis via regulation of ERK/p38-MAPK signaling and autophagic inhibition in human medulloblastoma
- in-vitro, MB, DAOY - vitro+vivo, NA, NA
BioAv↓, BioAv↓, TumCP↓, selectivity↑, P53↑, P21↑, CDK4↓, cycD1/CCND1↓, mtDam↑, ROS↑, eff↓, Casp3↑, BAX↑, LC3II↑, Beclin-1↑, ATG7↑, p62↑, eff↑, ChemoSen↑, *toxicity↓,
4240- HNK,    Honokiol Exerts Antidepressant Effects in Rats Exposed to Chronic Unpredictable Mild Stress by Regulating Brain Derived Neurotrophic Factor Level and Hypothalamus–Pituitary–Adrenal Axis Activity
- in-vivo, NA, NA
*BDNF↑,
4239- HNK,    Honokiol reverses depressive-like behavior and decrease in brain BDNF levels induced by chronic corticosterone injections in mice
- in-vivo, NA, NA
*Mood↑, *BDNF↑,
2081- HNK,    Honokiol induces ferroptosis in colon cancer cells by regulating GPX4 activity
- in-vitro, Colon, RKO - in-vitro, Colon, HCT116 - in-vitro, Colon, SW48 - in-vitro, Colon, HT-29 - in-vitro, Colon, LS174T - in-vitro, Colon, HCT8 - in-vitro, Colon, SW480 - in-vivo, NA, NA
tumCV↓, ROS↑, Iron↑, GPx4↓, mtDam↑, Ferroptosis↑, TumVol↓, TumW↓,
2073- HNK,    Honokiol induces apoptosis and autophagy via the ROS/ERK1/2 signaling pathway in human osteosarcoma cells in vitro and in vivo
- in-vitro, OS, U2OS - in-vivo, NA, NA
TumCD↑, TumAuto↑, Apoptosis↑, TumCCA↑, GRP78/BiP↑, ROS↑, eff↓, p‑ERK↑, selectivity↑, Ca+2↑, MMP↓, Casp3↑, Casp9↑, cl‑PARP↑, Bcl-2↓, Bcl-xL↓, survivin↓, LC3B-II↑, ATG5↑, TumVol↓, TumW↓, ER Stress↑,
886- HPT,    Impact of hyper- and hypothermia on cellular and whole-body physiology
- Analysis, NA, NA
MMP↓, OXPHOS↓, ATP↓, ROS↑, Apoptosis↑, Cyt‑c↑,
4638- HT,    Hydroxytyrosol induces apoptosis in human colon cancer cells through ROS generation
- in-vitro, CRC, DLD1 - NA, NA, 1-
selectivity↑, ROS↑, Akt↑, FOXO3↓, Apoptosis↑,
4642- HT,    Hydroxytyrosol, a natural molecule from olive oil, suppresses the growth of human hepatocellular carcinoma cells via inactivating AKT and nuclear factor-kappa B pathways
- in-vitro, HCC, HepG2 - NA, NA, Hep3B - NA, NA, SK-HEP-1
TumCP↓, TumCCA↑, Apoptosis↑, Akt↓, NF-kB↓, TumCG↓, angioG↓,
4645- HT,    Hydroxytyrosol: Bioavailability, toxicity, and clinical applications
- Review, NA, NA
*antiOx↑, *Inflam↓, AntiTum↑, *BioAv↓, *Half-Life↓, *BioAv↝, *BioAv↓,
601- HTyr,    Dihydroxyphenylethanol induces apoptosis by activating serine/threonine protein phosphatase PP2A and promotes the endoplasmic reticulum stress response in human colon carcinoma cells
- in-vivo, NA, HT-29
TumCG↓, Apoptosis↑, ER Stress↑, UPR↑, CHOP↑, JNK↑, TNF-α↓, PPP2R1A↑,
4213- Hup,    Huperzine A-Liposomes Efficiently Improve Neural Injury in the Hippocampus of Mice with Chronic Intermittent Hypoxia
- in-vivo, NA, NA
*cognitive↑, *SOD↑, *GPx↑, *MDA↓, *ROS↓, *Iron↓, *TfR1/CD71↓, *FTL↓, *ERK↑, *PKA↑, *CREB↑, *BDNF↑, *PSD95↑, *neuroP↑,
4209- Hup,    Huperzine A, reduces brain iron overload and alleviates cognitive deficit in mice exposed to chronic intermittent hypoxia
- in-vivo, NA, NA
*ROS↓, *cognitive↑, *neuroP↑, *Bax:Bcl2↓, *Casp3↑, *NADPH↓, *NOX↓, *TfR1/CD71↓, *Iron↓, *PSD95↑, *BDNF↑,
4211- Hup,    Huperzine A ameliorates obesity-related cognitive performance impairments involving neuronal insulin signaling pathway in mice
- in-vitro, NA, NA
*memory↑, *p‑Akt↑, *BACE↓, *cognitive↑,
1166- IVM,    The importin α/β-specific inhibitor Ivermectin affects HIF-dependent hypoxia response pathways
- in-vitro, NA, NA
importin α/β↓, Hif1a↓,
1167- IVM,    The river blindness drug Ivermectin and related macrocyclic lactones inhibit WNT-TCF pathway responses in human cancer
- vitro+vivo, NA, NA
Wnt↓, TCF↓, TumCP↓, Apoptosis↑, β-catenin/ZEB1↓, cycD1/CCND1↓,
1918- JG,    ROS -mediated p53 activation by juglone enhances apoptosis and autophagy in vivo and in vitro
- in-vitro, Liver, HepG2 - in-vivo, NA, NA
TumCG↓, TumCP↓, Apoptosis↑, TumAuto↑, AMPK↑, mTOR↑, P53↑, H2O2↑, ROS↑, toxicity↝, p62↓, DR5↑, Casp8↑, PARP↑, cl‑Casp3↑,
1925- JG,    Redox regulation of mitochondrial functional activity by quinones
- in-vitro, NA, NA
other↓, ROS↑, MMP↓, eff↝,
4011- K+,    Sodium and potassium intakes among US adults: NHANES 2003–2008
- Analysis, NA, NA
*Dose↓, *eff↑, *BP↓,
4014- K+,    The effects of boiling and leaching on the content of potassium and other minerals in potatoes
- Analysis, NA, NA
*other↓, *eff↑, *other↓,
867- Lae,    Effects of the Gut microbiota on Amygdalin and its use as an anti-cancer therapy: Substantial review on the key components involved in altering dose efficacy and toxicity
- Review, NA, NA
other↑,
866- Lae,    Amygdalin from Apricot Kernels Induces Apoptosis and Causes Cell Cycle Arrest in Cancer Cells: An Updated Review
- Review, NA, NA
BAX↑, Casp3↑, Bcl-2↓, TumCCA↑,
864- Lae,    Can Amygdalin Provide any Benefit in Integrative Anticancer Treatment?
- Review, NA, NA
TumCCA↑, COX2↝, E-cadherin↑, other∅, other∅,
862- Lae,    Molecular mechanism of amygdalin action in vitro: review of the latest research
- Review, NA, NA
BAX↑, Casp3↑, Bcl-2↓, Akt↓, mTOR↓, p19↑, TumCCA↑, other↓,
859- Lae,    Vitamin B17 and its Proposed Application in Treating Cancer
- Analysis, NA, NA
other↑,
870- Lae,    Physician Beware: Severe Cyanide Toxicity from Amygdalin Tablets Ingestion
- Case Report, NA, NA
other↑,
868- Lae,    The Postulated Mechanism of Action of Amygdalin (Vitamin B17) on Cancer Cells
- Review, NA, NA
other∅,
860- Lae,    Amygdalin as a Promising Anticancer Agent: Molecular Mechanisms and Future Perspectives for the Development of New Nanoformulations for Its Delivery
- Review, NA, NA
eff↑, Casp3↑, Bcl-2↓,
1796- LEC,    A comprehensive review on pleiotropic effects and therapeutic potential of soy lecithin
- Review, NA, NA
BioAv↑, antiOx↑, LDL↓, memory↑,
1789- LEC,    Lecithin Supplements and Breast Cancer Risk
- Analysis, NA, NA
AntiCan↑, Risk↓,
1794- LEC,    Effects of abomasal infusion of soybean or sunflower lecithin on nutrient digestibility and milk production in lactating dairy cows
- in-vivo, NA, NA
BioAv↑, other↑,
1793- LEC,    Unmasking Sunflower Lecithin: Does Science Support the Claims?
- Review, NA, NA
BioEnh↑, memory↑, Inflam↓, GutMicro↑, antiOx↑,
1100- LT,    Luteolin, a flavonoid, as an anticancer agent: A review
- Review, NA, NA
TumCP↓, TumCCA↑, Apoptosis↑, EMT↓, E-cadherin↑, N-cadherin↓, Snail↓, Vim↓, ROS↑, ER Stress↑, mtDam↑, p‑eIF2α↝, p‑PERK↝, p‑CHOP↝, p‑ATF4↝, cl‑Casp12↝,
4294- LT,    Luteolin reduces zinc-induced tau phosphorylation at Ser262/356 in an ROS-dependent manner in SH-SY5Y cells
- in-vitro, NA, SH-SY5Y
*tau↓, *antiOx↑,
4338- LT,    Luteolin: a natural product with multiple mechanisms for atherosclerosis
- Review, NA, NA
*Inflam↓, *ROS↓, *PDGF↓, *lipid-P↓, *AMPK↑, *SIRT1↑, *AntiAg↑,
4339- LT,    Luteolin inhibits GPVI-mediated platelet activation, oxidative stress, and thrombosis
- in-vivo, NA, NA
*AntiAg↑, *ROS↓,
2923- LT,    Luteolin induces apoptosis through endoplasmic reticulum stress and mitochondrial dysfunction in Neuro-2a mouse neuroblastoma cells
- in-vitro, NA, NA
Apoptosis↑, TumCD↑, Casp12↑, Casp9↑, Casp3↑, ER Stress↑, CHOP↑, GRP78/BiP↑, GRP94↑, cl‑ATF6↑, p‑eIF2α↑, MMP↓, JNK↓, p38↑, ERK↑, Cyt‑c↑,
2924- LT,    Luteolin selectively kills STAT3 highly activated gastric cancer cells through enhancing the binding of STAT3 to SHP-1
- in-vitro, GC, NA - in-vivo, NA, NA
p‑STAT3↓, STAT3↓, Mcl-1↓, survivin↓, Bcl-xL↓, HSP90↓,
2903- LT,    Luteolin induces apoptosis by ROS/ER stress and mitochondrial dysfunction in gliomablastoma
- in-vitro, GBM, U251 - in-vitro, GBM, U87MG - in-vivo, NA, NA
ER Stress↑, ROS↑, PERK↑, eIF2α↑, ATF4↑, CHOP↑, Casp12↑, eff↓, UPR↑, MMP↓, Cyt‑c↑, Bcl-2↓, BAX↑, TumCG↓, Weight∅, ALAT∅, AST∅,
2905- LT,    Luteolin blocks the ROS/PI3K/AKT pathway to inhibit mesothelial-mesenchymal transition and reduce abdominal adhesions
- in-vivo, NA, HMrSV5
*ROS↓, *p‑Akt↓, *Vim↓, *E-cadherin↑, *PI3K↓,
2910- LT,  FA,    Folic acid-modified ROS-responsive nanoparticles encapsulating luteolin for targeted breast cancer treatment
- in-vitro, BC, 4T1 - in-vivo, NA, NA
BioAv↓, BioAv↑, eff↑, tumCV↓, e-H2O2↓, i-H2O2∅,
4194- Lut,  Zeax,    Effect of macular pigment carotenoids on cognitive functions: A systematic review
- Review, NA, NA
*MPOD↑, *cognitive↑, *memory↑,
4193- Lut,  Zeax,    Effects of a Lutein and Zeaxanthin Intervention on Cognitive Function: A Randomized, Double-Masked, Placebo-Controlled Trial of Younger Healthy Adults
- Trial, NA, NA
*MPOD↑, *cognitive↑, *memory↑,
4192- Lut,  Zeax,    Lutein and Zeaxanthin Supplementation Improves Dynamic Visual and Cognitive Performance in Children: A Randomized, Double-Blind, Parallel, Placebo-Controlled Study
- Trial, NA, NA
*MPOD↑, *cognitive↑, *memory↑, *BDNF↑,
4232- Lut,    Luteolin Treatment Ameliorates Brain Development and Behavioral Performance in a Mouse Model of CDKL5 Deficiency Disorder
- in-vivo, NA, NA
*BDNF↑, *Mood↑, *neuroG↑, *TrkB↑,
3260- Lyco,    Lycopene in human health
- Review, NA, NA
*BioAv↝, *BioAv↓, *ROS⇅, *BioAv↝,
3287- Lyco,    Recent technological strategies for enhancing the stability of lycopene in processing and production
- Review, NA, NA
*eff↑,
4227- Lyco,    Lycopene Alleviates Depression-Like Behavior in Chronic Social Defeat Stress-Induced Mice by Promoting Synaptic Plasticity via the BDNF-TrkB Pathway
- in-vivo, NA, NA
*BDNF↑, *TrkB↑, *PSD95↑,
1714- Lyco,    Lycopene reduces ovarian tumor growth and intraperitoneal metastatic load
- in-vitro, Ovarian, OV-MZ-6 - in-vivo, NA, NA
ChemoSen↑, CA125↓, ITGA5↓, ITGB1↓, MMP9↓, FAK↓, EMT↓, MAPK↓, MMP9↓, antiOx↑, Ki-67↓, MAPK↓,
2544- M-Blu,    Methylene blue and its importance in medicine
- Review, NA, NA
*ROS↓, antiOx↑, BBB↑, neuroP↑, GSR↓, tau↓,
2531- M-Blu,    Anticancer activity of methylene blue via inhibition of heat shock protein 70
- in-vitro, Lung, A549 - in-vivo, NA, NA
tumCV↓, HSP70/HSPA5↓, LDH↓, SOD↑,
1899- MeJa,    Methyl jasmonate induces production of reactive oxygen species and alterations in mitochondrial dynamics that precede photosynthetic dysfunction and subsequent cell death
- in-vitro, NA, NA
ROS↑, MMP↓, eff↓, H2O2?,
1784- MEL,    Melatonin as adjuvant cancer care with and without chemotherapy: a systematic review and meta-analysis of randomized trials
- Review, NA, NA
Remission↑,
1786- MEL,    What is known about melatonin, chemotherapy and altered gene expression in breast cancer (Review)
- Review, NA, NA
AntiTum↑, Risk↓, ChemoSen↑,
1777- MEL,    Melatonin as an antioxidant: under promises but over delivers
- Review, NA, NA
*ROS↓, *Fenton↓, *antiOx↑, *toxicity∅, *GPx↑, *GSR↑, *GSH↑, *NO↓, *Iron↓, *Copper↓, *IL1β↓, *iNOS↓, *Casp3↓, *BBB↑, *RenoP↑, chemoP↑, *Ca+2↝, eff↑, *PKCδ?, ChemoSen↑, eff↑, Akt↓, DR5↑, selectivity↑, ROS↑, eff↑,
1776- MEL,    Therapeutic strategies of melatonin in cancer patients: a systematic review and meta-analysis
- Review, NA, NA
Remission↑, OS↑, neuroP↑, VEGF↓, KISS1↑, TumCP↓, ChemoSideEff↓, radioP↑, Dose∅, *ROS↓, DNArepair↑, ROS↑,
2456- MET,    Direct inhibition of hexokinase activity by metformin at least partially impairs glucose metabolism and tumor growth in experimental breast cancer
- in-vitro, BC, MDA-MB-231 - in-vivo, NA, NA
GlucoseCon↓, TumCG↓, HK2↓, p‑AMPK↑, TXNIP↓, *toxicity↓,
2385- MET,    Metformin activates chaperone-mediated autophagy and improves disease pathologies in an Alzheimer disease mouse model
- in-vitro, AD, H4 - in-vitro, NA, HEK293 - in-vivo, NA, NA - in-vitro, NA, SH-SY5Y
*HK2↓, *PKM2↓, *Dose↝, IKKα↑, memory↑, p‑Hsc70↑, APP↓,
2384- MET,    Integration of metabolomics and transcriptomics reveals metformin suppresses thyroid cancer progression via inhibiting glycolysis and restraining DNA replication
- in-vitro, Thyroid, BCPAP - in-vivo, NA, NA - in-vitro, Thyroid, TPC-1
Glycolysis↓, OXPHOS↑, tumCV↓, TumCI↓, TumCMig↓, EMT↓, Apoptosis↑, TumCCA↑, LDHA↓, PKM2↓, IDH1↑, TumCG↓,
2378- MET,    Metformin inhibits epithelial-mesenchymal transition of oral squamous cell carcinoma via the mTOR/HIF-1α/PKM2/STAT3 pathway
- in-vitro, SCC, CAL27 - in-vivo, NA, NA
TumCP↓, TumCMig↓, TumCI↓, EMT↓, mTOR↓, Hif1a↓, PKM2↓, STAT3↓, E-cadherin↑, Vim↓, Snail↓, STAT3↓,
1043- MET,  immuno,    Metformin reduces PD-L1 on tumor cells and enhances the anti-tumor immune response generated by vaccine immunotherapy
- in-vitro, NA, NA
eff↑, PD-L1↓, Ki-67↑, TIM-3↑, L-sel↑,
2260- MF,    Alternative magnetic field exposure suppresses tumor growth via metabolic reprogramming
- in-vitro, GBM, U87MG - in-vitro, GBM, LN229 - in-vivo, NA, NA
TumCP↓, TumCG↓, OS↑, ROS↑, SOD2↑, eff↓, ECAR↓, OCR↑, selectivity↑, *toxicity∅, TumVol↓, PGC-1α↑, OXPHOS↑, Glycolysis↓, PKM2↓,
2250- MF,  MNPs,    Confronting stem cells with surface-modified magnetic nanoparticles and low-frequency pulsed electromagnetic field
- Review, NA, NA
*Ca+2↑, *Dose↝, *BioAv↓,
2252- MF,  HPT,    Cellular Response to ELF-MF and Heat: Evidence for a Common Involvement of Heat Shock Proteins?
- Review, NA, NA
HSPs∅, *HSPs↑, eff↝, *eff↑, eff↑, eff↓,
4571- MF,    Magnetic Fields and Reactive Oxygen Species
- Review, NA, NA
*ROS⇅, *ETC↓, Dose↝, Dose↝,
4568- MF,    Extremely low-frequency pulses of faint magnetic field induce mitophagy to rejuvenate mitochondria
- Study, NA, NA
*ETC↓, *OCR↑, *MMP↑, *ROS⇅, *MMP⇅,
4352- MF,    Differences in lethality between cancer cells and human lymphocytes caused by LF-electromagnetic fields
- in-vitro, lymphoma, K562 - NA, NA, U937 - NA, NA, HL-60
Apoptosis↑, eff↑,
3477- MF,    Electromagnetic fields regulate calcium-mediated cell fate of stem cells: osteogenesis, chondrogenesis and apoptosis
- Review, NA, NA
*Ca+2↑, *VEGF↑, *angioG↑, Ca+2↑, ROS↑, Necroptosis↑, TumCCA↑, Apoptosis↑, *ATP↑, *FAK↑, *Wnt↑, *β-catenin/ZEB1↑, *ROS↑, p38↑, MAPK↑, β-catenin/ZEB1↓, CSCs↓, TumCP↓, ROS↑, RadioS↑, Ca+2↑, eff↓, NO↑,
3479- MF,    Evaluation of Pulsed Electromagnetic Field Effects: A Systematic Review and Meta-Analysis on Highlights of Two Decades of Research In Vitro Studies
- Review, NA, NA
*eff↓, eff↝, *Hif1a↑, *VEGF↑, *TIMP1↑, *E2Fs↑, *MMP2↑, *MMP9↑, Apoptosis↑,
3480- MF,    Cellular and Molecular Effects of Magnetic Fields
- Review, NA, NA
ROS↑, *Ca+2↑, *Inflam↓, *Akt↓, *mTOR↓, selectivity↑, *memory↑, *MMPs↑, *VEGF↑, *FGF↑, *PDGF↑, *TNF-α↑, *HGF/c-Met↑, *IL1↑,
3482- MF,    Pulsed Electromagnetic Fields Increase Angiogenesis and Improve Cardiac Function After Myocardial Ischemia in Mice
- in-vitro, NA, NA
*cardioP↑, *VEGF↑, *VEGFR2↑, *Hif1a↑, *FGF↑, *ITGB1↑, *angioG↑,
3486- MF,    Pulsed electromagnetic field potentiates etoposide-induced MCF-7 cell death
- in-vitro, NA, NA
ChemoSen↑, tumCV↓, cl‑PARP↑, Casp7↑, Casp9↑, survivin↓, BAX↑, DNAdam↑, ROS↑, eff↓,
3501- MF,    Unveiling the Power of Magnetic-Driven Regenerative Medicine: Bone Regeneration and Functional Reconstruction
- Review, NA, NA
*VEGF↑, *BMPs↓, *SMAD4↑, *SMAD5↑, *Ca+2↑,
3463- MF,    Pulsed Electromagnetic Fields Alleviates Hepatic Oxidative Stress and Lipids Accumulation in db/db mice
- in-vivo, NA, NA
*hepatoP↑, *MDA↓, *GSSG↓, *GSH↑, *GPx↑, *antiOx↑, *SREBP1↓,
3468- MF,    An integrative review of pulsed electromagnetic field therapy (PEMF) and wound healing
- Review, NA, NA
*other↑, *necrosis↓, *IL6↑, *TGF-β↑, *iNOS↑, *MMP2↑, *MCP1↑, *HO-1↑, *Inflam↓, *IL1β↓, *IL6↓, *TNF-α↓, *BioAv↑, eff⇅, DNAdam↑, Apoptosis↑, ROS↑, TumCP↓, *ROS↓, *FGF↑,
3469- MF,    Pulsed Electromagnetic Fields (PEMF)—Physiological Response and Its Potential in Trauma Treatment
- Review, NA, NA
*eff↑, *eff↝, *other↑, Ca+2↑, ROS↑, HSP70/HSPA5↑, *NOTCH↑, *HEY1↑, *p38↑, *MAPK↑,
4104- MF,    Effects of exposure to extremely low-frequency electromagnetic fields on spatial and passive avoidance learning and memory, anxiety-like behavior and oxidative stress in male rats
- in-vivo, NA, NA
*memory↑, *ROS↑,
4103- MF,    Comparing the Effects of Long-term Exposure to Extremely Low-frequency Electromagnetic Fields With Different Values on Learning, Memory, Anxiety, and β-amyloid Deposition in Adult Rats
- in-vivo, NA, NA
*Dose↝, *memory↑, *ROS↑, *MDA↑,
4109- MF,    Overexpression of miR-26b-5p regulates the cell cycle by targeting CCND2 in GC-2 cells under exposure to extremely low frequency electromagnetic fields
- in-vitro, NA, NA
*other↝,
4093- MF,    Low-intensity electromagnetic fields induce human cryptochrome to modulate intracellular reactive oxygen species
- in-vivo, NA, NA
*ROS↑, *eff↑,
4116- MF,    Low‑frequency pulsed electromagnetic field promotes functional recovery, reduces inflammation and oxidative stress, and enhances HSP70 expression following spinal cord injury
- in-vivo, NA, NA
*Inflam↓, *TNF-α↓, *IL1β↓, *iNOS↓, *ROS↓, *Catalase↑, *SOD↑, HSP70/HSPA5↑,
4117- MF,    Pulsed electromagnetic fields improve the healing process of Achilles tendinopathy: a pilot study in a rat model
- in-vivo, NA, NA
*other↑,
3741- MF,    Promising application of Pulsed Electromagnetic Fields (PEMFs) in musculoskeletal disorders
- Review, NA, NA
*eff↑, *BMD↑, *Inflam↓, *PGE2↓, *IL6↓, *IL8↓, *NF-kB↓, *mTOR↝,
4150- MF,    Enhanced effect of combining bone marrow mesenchymal stem cells (BMMSCs) and pulsed electromagnetic fields (PEMF) to promote recovery after spinal cord injury in mice
- in-vitro, NA, NA
*BDNF↑, *VEGF↑,
4149- MF,    Pulsed Electro-Magnetic Field (PEMF) Effect on Bone Healing in Animal Models: A Review of Its Efficacy Related to Different Type of Damage
- Review, NA, NA
*other↑, *BDNF↑, *BMPs↑, *BMD↑,
493- MF,    Extremely low-frequency electromagnetic field induces acetylation of heat shock proteins and enhances protein folding
- in-vitro, NA, HEK293 - in-vitro, Liver, AML12
ATP↑, HSP70/HSPA5↓, HSP90↓,
504- MF,    Effect of Magnetic Fields on Tumor Growth and Viability
- in-vivo, NA, NA
TumCG↓,
494- MF,    Effects of Various Densities of 50 Hz Electromagnetic Field on Serum IL-9, IL-10, and TNF-α Levels
- in-vivo, NA, NA
IL9↓, TNF-α↓,
495- MF,    How a High-Gradient Magnetic Field Could Affect Cell Life
- in-vitro, NA, HeLa
Apoptosis↑, CellMemb↑,
497- MF,    In Vitro and in Vivo Study of the Effect of Osteogenic Pulsed Electromagnetic Fields on Breast and Lung Cancer Cells
- vitro+vivo, NA, MCF-7 - vitro+vivo, NA, A549
TumCG↓, TumVol↓, Casp3↑, Casp7↑, Apoptosis↑, DNAdam↑, TumCCA↑, ChemoSen↑, EPR↑,
498- MF,    Stimulation of osteogenic differentiation in human osteoprogenitor cells by pulsed electromagnetic fields: an in vitro study
- in-vitro, NA, NA
Calcium↑, MMP1↑, MMP3↑, BMPs↑,
499- MF,    The Effect of Pulsed Electromagnetic Fields on Angiogenesis
- Review, NA, NA
angioG↑, VEGF↑, VGCC↑,
503- MF,    Effects of acute and chronic low frequency electromagnetic field exposure on PC12 cells during neuronal differentiation
- in-vitro, NA, PC12
ROS↑, Ca+2↑,
489- MF,    Time-varying magnetic fields of 60 Hz at 7 mT induce DNA double-strand breaks and activate DNA damage checkpoints without apoptosis
- in-vitro, NA, HeLa - in-vitro, NA, IMR90
DNAdam↑,
488- MF,    Repetitive exposure to a 60-Hz time-varying magnetic field induces DNA double-strand breaks and apoptosis in human cells
- in-vitro, NA, HeLa - in-vitro, NA, IMR90
DNAdam↑, p‑γH2AX↑, Chk2↑, p38↑, Apoptosis↑,
582- MF,  immuno,  VitC,    Magnetic field boosted ferroptosis-like cell death and responsive MRI using hybrid vesicles for cancer immunotherapy
- in-vitro, Pca, TRAMP-C1 - in-vivo, NA, NA
Fenton↑, Ferroptosis↑, ROS↑, TumCG↓, Iron↑, GPx4↓,
590- MF,  VitC,    Sub-millitesla magnetic field effects on the recombination reaction of flavin and ascorbic acid radicals
- in-vitro, NA, NA
RPM↑,
594- MF,  VitC,    Static Magnetic Field Effect on the Fremy's Salt-Ascorbic Acid Chemical Reaction Studied by Continuous-Wave Electron Paramagnetic Resonance
- Analysis, NA, NA
RPM↑,
523- MF,  MTX,    Extremely low-frequency magnetic fields significantly enhance the cytotoxicity of methotrexate and can reduce migration of cancer cell lines via transiently induced plasma membrane damage
- in-vitro, AML, THP1 - in-vitro, NA, PC12 - in-vivo, Cerv, HeLa
H2O2↑, TumCD↑, CellMemb↑, eff↑,
539- MF,    Pulsed Magnetic Field Improves the Transport of Iron Oxide Nanoparticles through Cell Barriers
- in-vitro, NA, NA
eff↑,
505- MF,    Amplitude-modulated electromagnetic fields for the treatment of cancer: Discovery of tumor-specific frequencies and assessment of a novel therapeutic approach
- Case Report, NA, NA
Pain↓, OS↑,
514- MF,    Therapeutic electromagnetic field effects on angiogenesis and tumor growth
- in-vivo, NA, NA
TumVol↓,
509- MF,    Is extremely low frequency pulsed electromagnetic fields applicable to gliomas? A literature review of the underlying mechanisms and application of extremely low frequency pulsed electromagnetic fields
- Review, NA, NA
Ca+2↑, TumAuto↑, Apoptosis↑, angioG↓, ROS↑,
510- MF,    Effect of a 9 mT pulsed magnetic field on C3H/Bi female mice with mammary carcinoma. A comparison between the 12 Hz and the 460 Hz frequencies
- in-vivo, NA, NA
OS↑,
511- MF,    Optimization of a therapeutic electromagnetic field (EMF) to retard breast cancer tumor growth and vascularity
- in-vivo, NA, NA
TumVol↓,
517- MF,  Rad,    Therapeutic Electromagnetic Field (TEMF) and gamma irradiation on human breast cancer xenograft growth, angiogenesis and metastasis
- in-vivo, NA, MDA-MB-231
TumMeta↓, TumCG↓,
518- MF,    Moderate and strong static magnetic fields directly affect EGFR kinase domain orientation to inhibit cancer cell proliferation
- in-vitro, NA, HCT116
EGFR↓, p‑EGFR↓,
521- MF,    Magnetic field effects in biology from the perspective of the radical pair mechanism
- Analysis, NA, NA
*RPM↑, *ROS↝,
199- MFrot,  MF,    Modulation of Cellular Response to Different Parameters of the Rotating Magnetic Field (RMF)—An In Vitro Wound Healing Study
- in-vivo, Wounds, L929 - NA, NA, HaCaT
*ROS↑, *Ca+2↓, *other↝, *other↝, *other↝, *other↝, *other↝, *other?,
209- MFrot,  MF,    The effect of a rotating magnetic field on the antioxidant system in healthy volunteers - preliminary study
- Human, NA, NA
*SOD↑, *Catalase↑, *ROMO1↑, *MDA↓, *TAC↑, *ROS↓,
223- MFrot,  MF,    The effect of rotating magnetic fields on the growth of Deal's guinea pig sarcoma transplanted subcutaneously in guinea pigs
- in-vivo, NA, NA
TumCG↓,
226- MFrot,  MF,    Involvement of midkine expression in the inhibitory effects of low-frequency magnetic fields on cancer cells
- in-vitro, NA, A549 - in-vitro, NA, LoVo
TumCP↓, eff↝,
213- MFrot,  MF,    Rotating Magnetic Field-Assisted Reactor Enhances Mechanisms of Phage Adsorption on Bacterial Cell Surface
- in-vitro, NA, NA
CellMemb↑,
595- MFrot,  VitC,  MF,    The Effect of Alternating Magnetic Field Exposure and Vitamin C on Cancer Cells
- in-vitro, PC, MIA PaCa-2 - in-vitro, CRC, SW-620 - in-vitro, NA, HT1080 - in-vitro, Pca, PC3 - in-vitro, OS, U2OS - in-vitro, BC, MCF-7 - in-vitro, Nor, CCD-18Co
TumCD↑, eff↑, *TumCG∅,
769- Mg,    Magnesium and cancer: more questions than answers
- Review, NA, NA
Risk↓,
770- Mg,    Magnesium and cancer: a dangerous liason
- Analysis, NA, NA
Risk↓,
772- Mg,    https://pmc.ncbi.nlm.nih.gov/articles/PMC4759402/
- Analysis, NA, NA
OS↑,
774- Mg,  Calc,  Chemo,    Dietary Intake of Magnesium or Calcium and Chemotherapy-Induced Peripheral Neuropathy in Colorectal Cancer Patients
- Analysis, NA, NA
ChemoSideEff↓,
781- Mg,    Hypomagnesemia in the Cancer Patient
- Analysis, NA, NA
other↓,
784- Mg,    Direct and indirect associations between dietary magnesium intake and breast cancer risk
- Analysis, NA, NA
Risk↓, CRP↓,
785- Mg,    Magnesium: The overlooked electrolyte in blood cancers?
- Analysis, NA, NA
Risk↓,
4169- Mg,    Effects of Elevation of Brain Magnesium on Fear Conditioning, Fear Extinction, and Synaptic Plasticity in the Infralimbic Prefrontal Cortex and Lateral Amygdala
- in-vivo, NA, NA
*BDNF↑, *memory↑,
4168- Mg,    Antidepressant-like activity of magnesium in the olfactory bulbectomy model is associated with the AMPA/BDNF pathway
- in-vivo, NA, NA
*BDNF↑,
1892- MGO,    Role of Glyoxalase 1 (Glo1) and methylglyoxal (MG) in behavior: recent advances and mechanistic insights
- Review, NA, NA
MGO↑, ROS↑, other↝, GABA↑, other∅,
4226- Moringa,    The Oil Formulation Derived from Moringa Oleifera Seeds Ameliorates Behavioral Abnormalities in Water-immersion Restraint Stress Mouse Model
- in-vivo, NA, NA
*neuroP↑, *Mood↑, *BDNF↑, *AChE↓, *MDA↓,
3844- Moringa,    Review of the Safety and Efficacy of Moringa oleifera
- Review, NA, NA
*antiOx↑, *RenoP↑, *hepatoP↑, *radioP↑, *eff↑, *toxicity↓, *ROS↓, *lipid-P↓, *DNAdam↓, *Catalase↑, *SOD↑, *GPx↑, *GSR↑, *GSTs↑, *AST↓, *ALAT↓, *ALP↓, *Bil↓,
3845- Moringa,    Protective effects of Moringa oleifera Lam. leaves against arsenic-induced toxicity in mice
- in-vitro, NA, NA
*eff↑,
3850- MSM,    The Influence of Methylsulfonylmethane on Inflammation-Associated Cytokine Release before and following Strenuous Exercise
- Human, NA, NA
*Inflam↓, *IL1β↓, *NF-kB↓, *NLRP3↓, *ROS↓,
3846- MSM,    Accumulation of methylsulfonylmethane in the human brain: identification by multinuclear magnetic resonance spectroscopy
- Human, NA, NA
*Dose↝, *BBB↑, *eff↓,
3811- mushLions,    Hericium erinaceus (Bull.) Pers. Ethanolic Extract with Antioxidant Properties on Scopolamine-Induced Memory Deficits in a Zebrafish Model of Cognitive Impairment
- in-vitro, NA, NA
*memory↑, *BBB↑, *GSH↑, *AChE↓, *MDA↓,
3810- mushLions,    Key Mechanisms and Potential Implications of Hericium erinaceus in NLRP3 Inflammasome Activation by Reactive Oxygen Species during Alzheimer’s Disease
- Review, NA, NA
*neuroP↑, *p‑tau↓, *APP↓, *Aβ↓, *ROS↓, *Inflam↓, *NLRP3↓,
3809- mushLions,    The Monkey Head Mushroom and Memory Enhancement in Alzheimer's Disease
- Review, NA, NA
*cognitive↑, *Apoptosis↓, *Aβ↓, *AChE↓, *BACE↓,
3808- mushLions,    Neuroprotective Metabolites of Hericium erinaceus Promote Neuro-Healthy Aging
- in-vitro, NA, NA
*Inflam↓, *ROS↓, *neuroP↑,
3806- mushLions,    Dietary Supplementation of Lion's Mane Medicinal Mushroom, Hericium erinaceus (Agaricomycetes), and Spatial Memory in Wild-Type Mice
- in-vitro, NA, NA
*motorD↑, *memory↑,
1573- MushReishi,    Ganoderma lucidum (Reishi mushroom) for cancer treatment
- Review, NA, NA
ChemoSen↑, CR3↝, eff↑, NK cell↑, T-Cell↑, QoL↑,
1141- Myr,    Myricetin: targeting signaling networks in cancer and its implication in chemotherapy
- Review, NA, NA
*PI3K↑, *Akt↑, p‑Akt↓, SIRT3↑, p‑ERK↓, p38↓, VEGF↓, MEK↓, MKK4↓, MMP9↓, Raf↓, F-actin↓, MMP2↓, COX2↓, BMP2↓, cycD1/CCND1↓, Bax:Bcl2↑, EMT↓, EGFR↓, TumAuto↑,
4167- NAC,    N-acetylcysteine in psychiatry: current therapeutic evidence and potential mechanisms of action
- Review, NA, NA
*GSH↑, *antiOx↑, *ROS↓,
4160- NAD,    The biochemical pathways of central nervous system neural degeneration in niacin deficiency
- Review, NA, NA
*BDNF↑, *TrkB↑,
4225- NarG,    Naringin treatment improves functional recovery by increasing BDNF and VEGF expression, inhibiting neuronal apoptosis after spinal cord injury
- in-vivo, NA, NA
*motorD↑, *BDNF↑, *VEGF↑, *Bax:Bcl2↓, *Casp3↓, *Apoptosis↓, *eff↑,
981- NarG,  QC,    Anti-estrogenic and anti-aromatase activities of citrus peels major compounds in breast cancer
- in-vivo, NA, NA
TumVol↓, CYP19↓,
1808- NarG,    Intake of flavonoids and lung cancer
- Analysis, NA, NA
AntiCan↑, CYP1A1↓,
1807- NarG,    A Systematic Review of the Preventive and Therapeutic Effects of Naringin Against Human Malignancies
- Review, NA, NA
AntiTum↑, TumCP↓, tumCV↓, TumCCA↑, Mcl-1↓, RAS↓, e-Raf↓, VEGF↓, AntiAg↑, MMP2↓, MMP9↓, TIMP2↑, TIMP1↑, p38↓, Wnt↓, β-catenin/ZEB1↑, Casp↑, P53↑, BAX↑, COX2↓, GLO-I↓, CYP1A1↑, lipid-P↓, p‑Akt↓, p‑mTOR↓, VCAM-1↓, P-gp↓, survivin↓, Bcl-2↓, ROS↑, ROS↑, MAPK↑, STAT3↓, chemoP↑,
1806- NarG,    Naringin: Nanotechnological Strategies for Potential Pharmaceutical Applications
- Review, NA, NA
Inflam↓, antiOx↓, AntiCan↑, BioAv↓, BioAv↓, BioAv↑, INF-γ↓, IL6↓, TNF-α↓, IL10↑, CRP↓,
1805- NarG,    Naringenin suppresses epithelial ovarian cancer by inhibiting proliferation and modulating gut microbiota
- in-vitro, Ovarian, A2780S - in-vivo, NA, NA
TumCP↓, TumCMig↓, PI3K↓, TumVol↓, TumW↓, BioAv↑, GutMicro↑, Dose∅, eff↑, EGFR↓, cycD1/CCND1↓, toxicity∅,
1804- NarG,    Beneficial effects of citrus flavanones naringin and naringenin and their food sources on lipid metabolism: An update on bioavailability, pharmacokinetics, and mechanisms
- Review, NA, NA
GutMicro↝, BioAv↝,
1799- NarG,    Naringenin as potent anticancer phytocompound in breast carcinoma: from mechanistic approach to nanoformulations based therapeutics
- Review, NA, NA
TumCCA↑, BioAv↑, Half-Life∅, TNF-α↓, Casp8↑, BAX↑, Bak↑, EGF↓, mTOR↓, PI3K↓, ERK↓, Akt↓, NF-kB↓, VEGF↓, angioG↓, antiOx↑, EMT↓, OS↑, MAPK↓, ChemoSen↑, MMP9↓, MMP2↓, ROS↑, ROS↑, GSH↓, Casp3↑, ROS↑,
1798- NarG,    Naringenin: A potential flavonoid phytochemical for cancer therapy
- Review, NA, NA
*Inflam↓, *antiOx↓, neuroP↑, hepatoP↑, AntiCan↑, Apoptosis↑, TumCCA↑, angioG↓, ROS↝, SOD↑, TGF-β↓, Treg lymp↓, IL1β↓, *BioAv↝, ChemoSen↑, cardioP↑,
946- Nimb,    Nimbolide retards T cell lymphoma progression by altering apoptosis, glucose metabolism, pH regulation, and ROS homeostasis
- in-vivo, NA, NA
Apoptosis↑, Bcl-2↓, P53↑, cl‑Casp3↑, Cyt‑c↑, ROS↑, SOD↓, Catalase↓, Glycolysis↓, GLUT3↓, LDHA↓, MCT1↓, NHE1↓, ATPase↓, CAIX↓,
991- OA,    Blockade of glycolysis-dependent contraction by oroxylin a via inhibition of lactate dehydrogenase-a in hepatic stellate cells
- in-vivo, NA, NA - in-vivo, Nor, NA
*Glycolysis↓, *GlucoseCon↓, *lactateProd↓, *ECAR↓, *HK2↓, *PFK↓, *PKM2↓, *LDHA↓,
1229- OA,    Review of the Clinical Effect of Orlistat
- Review, NA, NA
NPC1L1↓, FASN↓, ER Stress↑, angioG↓, TumCG↓,
4629- OLE,    Oleuropein exhibits anticancer effects by inducing apoptosis and inhibiting cell motility in MCF7 and MDA-MB231 breast cancer cells
- in-vitro, BC, MDA-MB-231 - NA, NA, MCF-7
TumCG↓, Apoptosis↑,
969- OLST,    Orlistat as a FASN inhibitor and multitargeted agent for cancer therapy
- Review, NA, NA
FASN↓,
1812- Oxy,    Hyperbaric oxygen suppressed tumor progression through the improvement of tumor hypoxia and induction of tumor apoptosis in A549-cell-transferred lung cancer
- in-vitro, Lung, A549 - in-vivo, Lung, NA - in-vitro, NA, BEAS-2B
TumCG↓, CD31↑, P53↓, Dose∅, other↑, Apoptosis↑, Hif1a↑, selectivity↑,
1811- Oxy,    Hyperbaric oxygen therapy and cancer—a review
- Review, NA, NA
toxicity∅, AntiTum↑, MAPK↑, ERK↓, ChemoSen↑, ChemoSen↑, RadioS↑,
1986- Part,    Modulation of Cell Surface Protein Free Thiols: A Potential Novel Mechanism of Action of the Sesquiterpene Lactone Parthenolide
- in-vitro, NA, NA
JNK↑, ROS↑, eff↓, NF-kB↓, Trx↓,
1985- Part,    KEAP1 Is a Redox Sensitive Target That Arbitrates the Opposing Radiosensitive Effects of Parthenolide in Normal and Cancer Cells
- in-vitro, Pca, LNCaP - in-vitro, Pca, DU145 - in-vitro, Nor, PrEC - in-vivo, NA, NA
ROS↑, NADPH↑, RadioS↑, radioP↑, Trx↓, *ox-Keap1↑, ox-Keap1↓, rd-Keap1↑, *NRF2↑, NRF2∅, NF-kB↓,
2036- PB,    Phenylbutyrate induces apoptosis in human prostate cancer and is more potent than phenylacetate
- in-vitro, Pca, NA - in-vivo, NA, NA
TumCG↓, eff↑, Diff↑,
2035- PB,    Sodium Phenylbutyrate Controls Neuroinflammatory and Antioxidant Activities and Protects Dopaminergic Neurons in Mouse Models of Parkinson’s Disease
- in-vitro, Nor, glial - in-vivo, NA, NA
*ROS↓, *Inflam↑, *P21↓, *antiOx↑, *GSH↑, *NF-kB↓, *neuroP↑, *HDAC↓, *iNOS↓, *TNF-α↓, *IL1β↓, *LDL↓, ROS↓,
2052- PB,    Lipid-regulating properties of butyric acid and 4-phenylbutyric acid: Molecular mechanisms and therapeutic applications
- Review, NA, NA
*HDAC↓, *Half-Life↑, *Half-Life↑, *lipoGen↓, *ER Stress↓, *FAO↑, *ROS↓, *BioAv↑,
2048- PB,    Sodium Phenylbutyrate Inhibits Tumor Growth and the Epithelial-Mesenchymal Transition of Oral Squamous Cell Carcinoma In Vitro and In Vivo
- in-vitro, OS, CAL27 - in-vitro, Oral, HSC3 - in-vitro, OS, SCC4 - in-vivo, NA, NA
*NH3↓, *HDAC↓, *ER Stress↓, Apoptosis?, Bcl-2↓, cl‑Casp3↑, TGF-β↑, N-cadherin↓, E-cadherin↑, TumVol↓, eff↑,
2044- PB,  DCA,    Differential inhibition of PDKs by phenylbutyrate and enhancement of pyruvate dehydrogenase complex activity by combination with dichloroacetate
- in-vivo, NA, NA
PDK1↓, PDKs↓, eff↑, PDH↑,
2063- PB,  Rad,    Phenylbutyrate sensitizes human glioblastoma cells lacking wild-type p53 function to ionizing radiation
- in-vitro, GBM, U87MG - NA, NA, U251
RadioS↑, eff↝, P53↝,
2421- PB,    Sodium butyrate inhibits aerobic glycolysis of hepatocellular carcinoma cells via the c‐myc/hexokinase 2 pathway
- in-vitro, HCC, HCCLM3 - in-vivo, NA, NA - in-vitro, HCC, Bel-7402 - in-vitro, HCC, SMMC-7721 cell - in-vitro, Nor, L02
Glycolysis↓, Apoptosis↑, TumCP↓, lactateProd↓, GlucoseCon↓, HK2↓, ChemoSen↑, *toxicity↓, cMyc↓, PFK1↓, LDHA↓, cMyc↓, ChemoSen↑,
998- PB,    Phenyl butyrate inhibits pyruvate dehydrogenase kinase 1 and contributes to its anti-cancer effect
- in-vivo, NA, NA
p‑PDH↓, PDH↑, PDK1↓, HDAC↓, Glycolysis↓, MMP↓, Apoptosis↑,
3248- PBG,    Propolis as a promising functional ingredient: A comprehensive review on extraction, bioactive properties, bioavailability, and industrial applications
- Review, NA, NA
*BioAv↓, *Half-Life↓,
3247- PBG,    Bioavailability and In Vivo Antioxidant Activity of a Standardized Polyphenol Mixture Extracted from Brown Propolis
- Review, NA, NA
Half-Life↝, BioAv↓, Half-Life↝, BioAv↓,
1678- PBG,  5-FU,  sericin,    In vitro and in vivo anti-colorectal cancer effect of the newly synthesized sericin/propolis/fluorouracil nanoplatform through modulation of PI3K/AKT/mTOR pathway
- in-vitro, CRC, Caco-2 - in-vivo, NA, NA
PI3K↓, Akt↓, mTOR↓, TumCP↓, Bcl-2↓, BAX↑, Casp3↑, Casp9↑, ROS↓, FOXO1↑, *toxicity∅, eff↑,
3250- PBG,    Allergic Inflammation: Effect of Propolis and Its Flavonoids
- Review, NA, NA
*SOD↑, *GPx↑, *Catalase↑, *Prx↑, *HO-1↑, *Inflam↓, *TNF-α↓, *IL1β↓, *IL4↑, *IL10↑, *TLR4↓, *LOX1↓, *COX1↓, *COX2↓, *NF-kB↓, *AP-1↓, *ROS↓, *GSH↑, *TGF-β↓, *IL8↓, *MMP9↓, *α-SMA↓, *MDA↓,
3252- PBG,    Propolis Extract and Its Bioactive Compounds—From Traditional to Modern Extraction Technologies
- Review, NA, NA
*Inflam↓, *TNF-α↓, *NF-kB↓, *MAPK↓, *ERK↓, *antiOx↑, *NRF2↑, *cardioP↑, *Glycolysis↑, *Ca+2↓, *HO-1↑, *NRF2↑, *neuroP↑,
1763- PG,    Generation of Hydrogen Peroxide in Cancer Cells: Advancing Therapeutic Approaches for Cancer Treatment
- Review, NA, NA
*antiOx↑, *ROS↓, *ROS↑,
1256- PI,    Hypoxia potentiates the cytotoxic effect of piperlongumine in pheochromocytoma models
- in-vitro, adrenal, PHEO - in-vivo, NA, NA
Apoptosis↑, ROS↑, TumCMig↓, TumCI↓, EMT↓, angioG↓, Necroptosis↑, MAPK↑, ERK↑,
4221- PI,    Piperine-like alkamides from Piper nigrum induce BDNF promoter and promote neurite outgrowth in Neuro-2a cells
- in-vitro, NA, NA
*Mood↑, *BDNF↑,
1162- PI,    Piperine Inhibits the Activities of Platelet Cytosolic Phospholipase A2 and Thromboxane A2 Synthase without Affecting Cyclooxygenase-1 Activity: Different Mechanisms of Action Are Involved in the Inhibition of Platelet Aggregation and Macrophage Inflammatory Response
- in-vitro, NA, NA
*cPLA2↓, TXA2↓, COX2↓, PGE2↓, PGD2↓,
1938- PL,    Piperlongumine regulates epigenetic modulation and alleviates psoriasis-like skin inflammation via inhibition of hyperproliferation and inflammation
- Study, PSA, NA - in-vivo, NA, NA
ROS↑, Apoptosis↑, MMP↓, TumCCA↑, DNAdam↑, STAT3↓, Akt↓, PCNA↓, Ki-67↓, cycD1/CCND1↓, Bcl-2↓, K17↓, HDAC↓, ROS↑, *IL1β↓, *IL6↓, *TNF-α↓, *IL17↓, *IL22↓,
1939- PL,    Piperlongumine selectively kills hepatocellular carcinoma cells and preferentially inhibits their invasion via ROS-ER-MAPKs-CHOP
- in-vitro, HCC, HepG2 - in-vitro, HCC, HUH7 - in-vivo, NA, NA
TumCMig↓, TumCI↓, ER Stress↑, selectivity↑, tumCV↓, ROS↑, GSH↓, eff↓, Ca+2↑, MAPK↑, CHOP↑, Dose↝,
1943- PL,    Piperlongumine treatment inactivates peroxiredoxin 4, exacerbates endoplasmic reticulum stress, and preferentially kills high-grade glioma cells
- in-vitro, GBM, NA - in-vivo, NA, NA
selectivity↑, ROS↑, selectivity↑, Prx4↓, *Prx4∅, ER Stress↑, CHOP↑, UPR↑,
2944- PL,    Piperlongumine, a Potent Anticancer Phytotherapeutic, Induces Cell Cycle Arrest and Apoptosis In Vitro and In Vivo through the ROS/Akt Pathway in Human Thyroid Cancer Cells
- in-vitro, Thyroid, IHH4 - in-vitro, Thyroid, 8505C - in-vivo, NA, NA
ROS↑, selectivity↑, tumCV↓, TumCCA↑, Apoptosis↑, ERK↑, Akt↓, mTOR↓, neuroP↑, Bcl-2↓, Casp3↑, PARP↑, JNK↑, *toxicity↓, eff↓, TumW↓,
2995- PL,    Piperlongumine overcomes osimertinib resistance via governing ubiquitination-modulated Sp1 turnover
- in-vitro, Lung, H1975 - in-vitro, Lung, PC9 - in-vivo, NA, NA
Sp1/3/4↓, cMET↓, Apoptosis↑, Cyt‑c↑, p‑ERK↓, p‑Akt↓, TumCG↓,
1046- ProBio,  immuno,    Combination Therapy of Bifidobacterium longum RAPO With Anti-PD-1 Treatment Enhances Anti-tumor Immune Response in Association With Gut Microbiota Modulation
- in-vivo, NA, NA
TumVol↓, GutMicro↑,
4170- ProBio,  PB,    Prebiotic feeding elevates central brain derived neurotrophic factor, N-methyl-d-aspartate receptor subunits and d-serine
- in-vivo, NA, NA
*BDNF↑, *GutMicro↑,
1238- PTS,    Pterostilbene suppresses gastric cancer proliferation and metastasis by inhibiting oncogenic JAK2/STAT3 signaling: In vitro and in vivo therapeutic intervention
- in-vitro, GC, NA - in-vivo, NA, NA
TumCCA↑, TumCP↓, TumCMig↓, TumCI↓, TumVol↓, TumW↓, Weight∅, JAK2↓, STAT3↓,
3925- PTS,    Analysis of Safety from a Human Clinical Trial with Pterostilbene
- Trial, NA, NA
*toxicity↓, *Half-Life↑, *BioAv↑,
3361- QC,    Quercetin ameliorates testosterone secretion disorder by inhibiting endoplasmic reticulum stress through the miR-1306-5p/HSD17B7 axis in diabetic rats
- in-vivo, Nor, NA - in-vitro, NA, NA
*BG↓, *ROS↓, *SOD↑, *MDA↓, *ER Stress↓, *iNOS↓, *CHOP↓, *GRP78/BiP↓, *antiOx↓, *Inflam↓, *JAK2↑, *STAT3?,
3357- QC,    The polyphenol quercetin induces cell death in leukemia by targeting epigenetic regulators of pro-apoptotic genes
- in-vitro, AML, HL-60 - NA, NA, U937
DNMT1↓, DNMT3A↓, HDAC↓, ac‑H3↑, ac‑H4↑, BAX↑, APAF1↑, BNIP3↑, STAT3↑,
3358- QC,    Effects of quercetin on the DNA methylation pattern in tumor therapy: an updated review
- Review, NA, NA
TET1↑, DNMTs↓,
3350- QC,    Quercetin and the mitochondria: A mechanistic view
- Review, NA, NA
*antiOx↑, *Inflam↓, *NRF2↑, ROS⇅, *NRF2↑, *HO-1↑, *PPARα↑, *PGC-1α↑, *SIRT1↑, *ATP↑, ATP↓, ERK↓, cl‑PARP↑, Casp9↑, Casp8↑, BAX↑, MMP↓, Cyt‑c↑, Casp3↑, HSP27↓, HSP72↓, RAS↓, Raf↓,
3348- QC,    Quercetin and iron metabolism: What we know and what we need to know
- Review, NA, NA
*IronCh↑, *ROS↓, *AntiAg↑, *Fenton↓, *lipid-P↓, *hepatoP↑, *RenoP↑, HIF-1↑, ROS↑,
3337- QC,    Endoplasmic Reticulum Stress-Relieving Effect of Quercetin in Thapsigargin-Treated Hepatocytes
- in-vitro, NA, HepG2
*Inflam↓, *UPR↓, *GRP58↓, *XBP-1↓, *ER Stress↓, *antiOx↑, TNF-α↓, p‑eIF2α↓, p‑IRE1↓, p‑JNK↓, CHOP↓,
3335- QC,    Recent advances on the improvement of quercetin bioavailability
- Review, NA, NA
*BioAv↓,
2342- QC,    Quercetin Inhibits the Proliferation of Glycolysis-Addicted HCC Cells by Reducing Hexokinase 2 and Akt-mTOR Pathway
- in-vitro, HCC, Bel-7402 - in-vitro, HCC, SMMC-7721 cell - in-vivo, NA, NA
TumCP↓, HK2↓, Akt↓, mTOR↓, GlucoseCon↓, lactateProd↓, Glycolysis↓,
2303- QC,  doxoR,    Quercetin greatly improved therapeutic index of doxorubicin against 4T1 breast cancer by its opposing effects on HIF-1α in tumor and normal cells
- in-vitro, BC, 4T1 - in-vivo, NA, NA
cardioP↑, hepatoP↑, TumCG↓, OS↑, ChemoSen↑, chemoP↑, Hif1a↓, *Hif1a↑, selectivity↑, TumVol↓, OS↑,
2341- QC,    Quercetin suppresses the mobility of breast cancer by suppressing glycolysis through Akt-mTOR pathway mediated autophagy induction
- in-vitro, BC, MCF-7 - in-vitro, BC, MDA-MB-231 - in-vivo, NA, NA
MMP2↓, MMP9↓, VEGF↓, Glycolysis↓, lactateProd↓, PKM2↓, GLUT1↓, LDHA↓, TumAuto↑, Akt↓, mTOR↓, TumMeta↓, MMP3↓, eff↓, GlucoseCon↓, lactateProd↓, TumAuto↑, LC3B-II↑,
75- QC,    Quercetin targets hnRNPA1 to overcome enzalutamide resistance in prostate cancer cells
- in-vitro, Pca, HEK293 - in-vitro, NA, 22Rv1 - in-vitro, NA, C4-2B
hnRNPA1↓, PSA↓, NKX3.1↓, FKBP5↓, UBE2C↓, AR-FL↓, AR-V7↑, AR↓,
77- QC,  EGCG,    The dietary bioflavonoid quercetin synergizes with epigallocathechin gallate (EGCG) to inhibit prostate cancer stem cell characteristics, invasion, migration and epithelial-mesenchymal transition
- in-vitro, Pca, CD44+ - in-vitro, NA, CD133+ - in-vitro, NA, PC3 - in-vitro, NA, LNCaP
Casp3↑, Casp7↑, Bcl-2↓, survivin↓, XIAP↓, EMT↓, Vim↓, Slug↓, Snail↓, β-catenin/ZEB1↓, LEF1↓, TCF↓, Nanog↓,
58- QC,  doxoR,    Quercetin induces cell cycle arrest and apoptosis in CD133+ cancer stem cells of human colorectal HT29 cancer cell line and enhances anticancer effects of doxorubicin
- in-vitro, CRC, HT-29 - in-vitro, NA, CD133+
Bcl-2↓,
39- QC,    A Comprehensive Analysis and Anti-Cancer Activities of Quercetin in ROS-Mediated Cancer and Cancer Stem Cells
- Analysis, NA, NA
ROS↑, GSH↓, IL6↓, COX2↓, IL8↓, iNOS↓, TNF-α↓, MAPK↑, ERK↑, SOD↑, ATP↓, Casp↑, PI3K/Akt↓, mTOR↓, NOTCH1↓, Bcl-2↓, BAX↑, IFN-γ↓, TumCP↓, TumCCA↑, Akt↓, P70S6K↓, *Keap1↓, *GPx↑, *Catalase↑, *HO-1↑, *NRF2↑, NRF2↑, eff↑, HIF-1↓,
914- QC,    Quercetin and Cancer Chemoprevention
- Review, NA, NA
GSH↓, ROS↑, TumCCA↑, Ca+2↑, MMP↓, Casp3↑, Casp8↑, Casp9↑, β-catenin/ZEB1↓, AMPKα↑, ASK1↑, p38↑, TRAIL↑, DR5↑, cFLIP↓, Apoptosis↑,
915- QC,    Hormesis and synergy: pathways and mechanisms of quercetin in cancer prevention and management
- Review, NA, NA
ROS↑,
918- QC,  CUR,  VitC,    Anti- and pro-oxidant effects of oxidized quercetin, curcumin or curcumin-related compounds with thiols or ascorbate as measured by the induction period method
- Analysis, NA, NA
ROS↑, ROS↑,
920- QC,    Interfering with ROS Metabolism in Cancer Cells: The Potential Role of Quercetin
- Review, NA, NA
GSH↓, ROS↑,
922- QC,    Quercetin and ovarian cancer: An evaluation based on a systematic review
- Review, NA, NA
ROS↑,
909- QC,    Exploring the therapeutic potential of quercetin in cancer treatment: Targeting long non-coding RNAs
- Review, NA, NA
other↓, other↑,
908- QC,    Molecular Targets Underlying the Anticancer Effects of Quercetin: An Update
- Review, NA, NA
AntiCan↑, ROS↑,
907- QC,    A Comprehensive Study on the Anti-cancer Effects of Quercetin and Its Epigenetic Modifications in Arresting Progression of Colon Cancer Cell Proliferation
- Review, NA, NA
AntiCan↑,
906- QC,    The interplay between reactive oxygen species and antioxidants in cancer progression and therapy: a narrative review
- Review, NA, NA
ROS↑,
905- QC,    Anti- and pro-oxidant effects of quercetin in copper-induced low density lipoprotein oxidation. Quercetin as an effective antioxidant against pro-oxidant effects of urate
- Analysis, NA, NA
ROS↑,
904- QC,    Antioxidant and prooxidant effects of quercetin on glyceraldehyde-3-phosphate dehydrogenase
- Analysis, NA, NA
ROS↑, H2O2↑,
903- QC,    Potential toxicity of quercetin: The repression of mitochondrial copy number via decreased POLG expression and excessive TFAM expression in irradiated murine bone marrow
- in-vivo, NA, NA
ROS⇅,
902- QC,    Prooxidant activities of quercetin, p-courmaric acid and their derivatives analysed by quantitative structure–activity relationship
- Analysis, NA, NA
ROS↑,
882- RES,    Resveratrol: A Double-Edged Sword in Health Benefits
- Review, NA, NA
AntiTum↑, Casp3↑, Casp9↑, BAX↑, Bcl-2↓, Bcl-xL↓, P53↑, NAF1↓, NRF2↑, ROS↑, Apoptosis↑, HDAC↓, TumCCA↑, TumAuto↑, angioG↓, iNOS↓,
1506- RES,    Epigenetic targets of bioactive dietary components for cancer prevention and therapy
- Review, NA, NA
DNMTs↓, BRCA1↑, HDAC↓, SIRT1↑, p300↓, survivin↓, HDAC1↓, HDAC3↓, HDAC8↓,
1511- RES,  Chemo,    Combination therapy in combating cancer
- Review, NA, NA
eff↑, *NRF2↑, *GSH↑, *ROS↓, chemoPv↑, ChemoSideEff↓,
1282- RES,    Resveratrol Inhibits CD4+ T Cell Activation by Enhancing the Expression and Activity of Sirt1
- vitro+vivo, NA, NA
T-Cell↓, SIRT1↑, CD4+↓,
3798- RES,    Resveratrol reverses hippocampal synaptic markers injury and SIRT1 inhibition against developmental Pb exposure
- in-vivo, NA, NA
*SIRT1↑, *BDNF↑, *PSD95↑, *memory↑,
2564- RES,    Effect of resveratrol on platelet aggregation by fibrinogen protection
- in-vitro, NA, NA
AntiAg↑, antiOx↓, COX2↓,
2565- RES,    https://onlinelibrary.wiley.com/doi/10.1111/j.1365-2141.2007.06788.x
- in-vitro, NA, NA - in-vivo, NA, NA
AntiAg↑, TXA2↑, PKCδ↑, Dose↝,
3070- RES,    Resveratrol inhibits tumor progression by down-regulation of NLRP3 in renal cell carcinoma
- in-vitro, RCC, ACHN - in-vitro, RCC, 786-O - in-vivo, NA, NA
TumCP↓, TumCMig↓, TumCI↓, Apoptosis↑, NLRP3↓,
3060- RES,    Resveratrol targeting NRF2 disrupts the binding between KEAP1 and NRF2-DLG motif to ameliorate oxidative stress damage in mice pulmonary infection
- in-vitro, Nor, RAW264.7 - in-vivo, NA, NA
*NRF2↑, *antiOx↑, *ROS↓,
3058- RES,    Resveratrol inhibits estrogen-induced breast carcinogenesis through induction of NRF2-mediated protective pathways
- in-vivo, NA, NA
*Nrf1?,
3053- RES,    Resveratrol represses estrogen-induced mammary carcinogenesis through NRF2-UGT1A8-estrogen metabolic axis activation
- in-vitro, NA, NA
NRF2↑, DNAdam↓,
3082- RES,    Resveratrol Ameliorates the Malignant Progression of Pancreatic Cancer by Inhibiting Hypoxia-induced Pancreatic Stellate Cell Activation
- in-vitro, PC, PANC1 - in-vitro, PC, MIA PaCa-2 - in-vivo, NA, NA
VEGF↓, CXCL12↓, IL6↓, α-SMA↓, Hif1a↓, TumCI↓, EMT↓,
2687- RES,    Effects of resveratrol, curcumin, berberine and other nutraceuticals on aging, cancer development, cancer stem cells and microRNAs
- Review, NA, NA - Review, AD, NA
NF-kB↓, P450↓, COX2↓, Hif1a↓, VEGF↓, *SIRT1↑, SIRT1↓, SIRT2↓, ChemoSen⇅, cardioP↑, *memory↑, *angioG↑, *neuroP↑, STAT3↓, CSCs↓, RadioS↑, Nestin↓, Nanog↓, TP53↑, P21↑, CXCR4↓, *BioAv↓, EMT↓, Vim↓, Slug↓, E-cadherin↑, AMPK↑, MDR1↓, DNAdam↑, TOP2↓, PTEN↑, Akt↓, Wnt↓, β-catenin/ZEB1↓, cMyc↓, MMP7↓, MALAT1↓, TCF↓, ALDH↓, CD44↓, Shh↓, IL6↓, VEGF↓, eff↑, HK2↓, ROS↑, MMP↓,
3033- RosA,    Rosemary (Rosmarinus officinalis) Extract Modulates CHOP/GADD153 to Promote Androgen Receptor Degradation and Decreases Xenograft Tumor Growth
- in-vitro, Pca, 22Rv1 - in-vitro, Pca, LNCaP - vitro+vivo, NA, NA
ER Stress↑, selectivity↑, AR↓, TumCG↓, TumCCA↑, CHOP↑, PERK↓, GRP78/BiP↑, PSA↓,
3020- RosA,    Protective Effect of Rosmarinic Acid on Endotoxin-Induced Neuronal Damage Through Modulating GRP78/PERK/MANF Pathway
- in-vivo, Nor, NA - in-vitro, NA, SH-SY5Y
*cognitive↑, *PERK↓, *GRP78/BiP↓, *ER Stress↓,
3028- RosA,    Network pharmacology mechanism of Rosmarinus officinalis L.(Rosemary) to improve cell viability and reduces apoptosis in treating Alzheimer’s disease
- in-vitro, AD, HT22 - in-vivo, NA, NA
*Aβ↓, *Apoptosis↓, *antiOx↑, *neuroP↑, *eff↑, *IGF-1↑, *MMP9↑, *Src↓, *MAPK↓, *MMP↑,
3013- RosA,    Rosmarinic acid inhibits angiogenesis and its mechanism of action in vitro
- in-vitro, NA, NA
*BioAv↑, *antiOx↑, *Inflam↓, *ROS↓, *VEGF↓, *IL8↓,
3010- RosA,    Exploring the mechanism of rosmarinic acid in the treatment of lung adenocarcinoma based on bioinformatics methods and experimental validation
- in-vitro, Lung, A549 - in-vivo, NA, NA
TumCG↓, Ki-67↓, FABP4↑, PPARα↑, ROS↑, Apoptosis↑, MMP9↓, IGFBP3↓, MMP2↓, EMT↓, TumCI↓, PI3K↓, Akt↓, mTOR↓, Gli1↓, PPARγ↑, Cyt‑c↑,
3007- RosA,    Hepatoprotective effects of rosmarinic acid: Insight into its mechanisms of action
- Review, NA, NA
*ROS↓, *lipid-P↓, *Inflam↓, *neuroP↑, *angioG↓, *eff↑, *AST↓, *ALAT↓, *GSSG↓, *eNOS↓, *iNOS↓, *NO↓, *NF-kB↓, *MMP2↓, *MDA↓, *TNF-α↓, *GSH↑, *SOD↑, *IL6↓, *PGE2↓, *COX2↓, *mTOR↑,
3035- RosA,    Rosmarinic Acid Decreases the Malignancy of Pancreatic Cancer Through Inhibiting Gli1 Signaling
- in-vitro, PC, NA - in-vivo, NA, NA
Gli1↓, TumCCA↑, TumCMig↓, TumCI↓, CDK2↓, cycE/CCNE↓, P21↑, p27↑,
4575- RT,  SNP,    Rutin-Loaded Silver Nanoparticles With Antithrombotic Function
- in-vivo, NA, NA
*AntiThr↑, *AntiAg↑, *antiOx↑, *Inflam↓,
1251- RT,  OLST,    Rutin and orlistat produce antitumor effects via antioxidant and apoptotic actions
- in-vitro, BC, MCF-7 - in-vitro, PC, PANC1 - in-vivo, NA, NA
TumVol↓, *CEA↓, *FASN↓, *ROS↓, *MDA↓, *GSH↑, Apoptosis↑,
3939- SAMe,  VitB12,  ALC,    Efficacy of a Vitamin/Nutriceutical Formulation for Moderate-stage to Later-stage Alzheimer's disease: A Placebo-controlled Pilot Study
- Trial, NA, NA
*cognitive↑, *Mood↑,
2141- Se,    Selenium and cancer risk: Wide-angled Mendelian randomization analysis
- Review, NA, NA
Dose↝, Risk↝,
2142- Se,    A U-shaped association between selenium intake and cancer risk
- Review, NA, NA
*Risk↝, Dose↝, *Risk↓,
4214- Se,    Selenium ameliorates cognitive impairment through activating BDNF/TrkB pathway
- in-vivo, NA, NA
*memory↑, *other↑, *BDNF↑, *TrkB↑,
4216- Se,    Selenium ameliorates mercuric chloride-induced brain damage through activating BDNF/TrKB/PI3K/AKT and inhibiting NF-κB signaling pathways
- in-vitro, NA, NA
*BDNF↑, *TrkB↓, *PI3K↑, *Akt↑, *neuroP↑,
4605- Se,    Selenium nanoparticles: An insight on its Pro-oxidant andantioxidant properties
- Review, NA, NA
*antiOx↑, *selenoP↑, *Dose↝, *toxicity↓, ROS↑, ER Stress↑,
4606- Se,  VitC,    Antibacterial and anti-biofilm efficacy of selenium nanoparticles against Pseudomonas aeruginosa: Characterization and in vitro analysis
- in-vitro, NA, NA
*Dose↝, *Dose↝, *Bacteria↓,
4607- Se,  SNP,    A Review on synthesis and their antibacterial activity of Silver and Selenium nanoparticles against biofilm forming Staphylococcus aureus
- Review, NA, NA
*Bacteria↓, *eff↑, ROS↑, *Dose↝, *eff↑, toxicity↝, *Sepsis↓, *other↝, eff↑,
4734- Se,  CPT-11,    Cytotoxicity and therapeutic effect of irinotecan combined with selenium nanoparticles
- in-vitro, CRC, HCT8 - in-vivo, NA, NA
chemoP↑, ChemoSen↑, P53↑, Apoptosis↑, TumCG↓, Casp↑, Dose↝, NRF2↓, selectivity↑, *NRF2↑,
4757- Se,  Chemo,    The protective role of selenium on the toxicity of cisplatin-contained chemotherapy regimen in cancer patients
- Trial, NA, NA
Dose↝, *ALP↓, chemoP↑,
4453- Se,    Selenium Nanoparticles: Green Synthesis and Biomedical Application
- Review, NA, NA
*toxicity↓, *Bacteria↓, ROS↑, MMP↓, ER Stress↑, P53↑, Apoptosis↑, Casp9↑, DNAdam↑, TumCCA↑, eff↑, Catalase↓, SOD↓, GSH↓, selectivity↓, selectivity↑, PCNA↓, eff↑, *ALAT↓, *AST↓, *ALP↓, *creat↓, *Inflam↓, *toxicity↓, selectivity↑,
4440- Se,  SNP,    Selenium, silver, and gold nanoparticles: Emerging strategies for hepatic oxidative stress and inflammation reduction
- Review, NA, NA
*hepatoP↑, *antiOx↑, *Inflam↓, *ROS↓, *SOD↑, *GPx↑, *lipid-P↓,
4467- Se,  VitC,  Chit,    Nano-chitosan-coated, green-synthesized selenium nanoparticles as a novel antifungal agent against Sclerotinia sclerotiorum in vitro study
- Study, NA, NA
*Dose↝, *Dose↝,
4466- Se,    Synthesis and Characterization of Selenium Nanoparticles and its Effects on in vitro Rumen Feed Degradation, Ruminal Parameters, and Total Gas Production
- Study, NA, NA
other?,
4465- Se,  VitC,    Selenium nanoparticles: Synthesis, in-vitro cytotoxicity, antioxidant activity and interaction studies with ct-DNA and HSA, HHb and Cyt c serum proteins
- Study, NA, NA
*other↝, *eff↑, AntiCan↑, *Dose↝, *BioAv↑, *other↝,
4464- Se,    Antioxidant Properties of Selenium Nanoparticles Synthesized Using Tea and Herb Water Extracts
- Study, NA, NA
*eff↑, *eff↝,
4491- Se,  Chit,  VitC,    Synthesis of a Bioactive Composition of Chitosan–Selenium Nanoparticles
- Study, NA, NA
*ROS↓, *selenoP↑, *antiOx↑, *Inflam↓, *Risk↓, *toxicity↓, AntiTum↑, Dose↝,
4485- Se,    Selenium stimulates the antitumour immunity: Insights to future research
- Review, NA, NA
*antiOx↑, chemoPv↑, ROS↑, Imm↑, selenoP↑, *IL2↑, *IL4↑, *TNF-α↓, *TGF-β↓, *EMT↓, Risk↓, *GPx↑, *TrxR↑,
4190- Sesame,    Sesame Seeds: A Nutrient-Rich Superfood
- Review, NA, NA
*antiOx↑, *LDL↓, *Aβ↓, *TNF-α↓, *SOD↑, *SIRT1↑, *Catalase↑, *GSH↑, *MDA↓, *GSTs↑, *IL4↑, *GPx↑, *COX2↓, *PGE2↓, *NO↓, CDK2↑, COX2↑, MMP9↑, ICAM-1↓, *BDNF↑, *PPARγ↑, *AChE↓, *Inflam↓, *HO-1↑, *NF-kB↓, *ROS↓,
4201- SFN,    Activation of BDNF by transcription factor Nrf2 contributes to antidepressant-like actions in rodents
- in-vivo, NA, NA
*NRF2↑, *BDNF↑, *HDAC2↓, *Mood↑,
4200- SFN,    Sulforaphane activates anti-inflammatory microglia, modulating stress resilience associated with BDNF transcription
- in-vitro, NA, NA
*NRF2↑, *BDNF↑, *Inflam↓,
1136- SFN,    Sulforaphane inhibits epithelial-mesenchymal transition by activating extracellular signal-regulated kinase 5 in lung cancer cells
- in-vitro, Lung, NA - in-vivo, NA, NA
TumCMig↓, E-cadherin↑, ZO-1↑, N-cadherin↓, Snail↓, ERK5↑, EMT↓,
1061- SFN,    Relevance of the natural HDAC inhibitor sulforaphane as a chemopreventive agent in urologic tumors
- vitro+vivo, NA, NA
AntiTum↑, HDAC↓,
3191- SFN,    Sulforaphane exhibits potent renoprotective effects in preclinical models of kidney diseases: A systematic review and meta-analysis
- Review, NA, NA
Prot↝, RenoP↑,
2403- SFN,    Reversal of the Warburg phenomenon in chemoprevention of prostate cancer by sulforaphane
- in-vitro, Pca, LNCaP - in-vitro, Pca, 22Rv1 - in-vitro, Pca, PC3 - in-vivo, NA, NA
ECAR↓, HK2↓, PKM2↓, LDHA↓, Glycolysis↓, Warburg↓,
2404- SFN,    Prostate cancer chemoprevention by sulforaphane in a preclinical mouse model is associated with inhibition of fatty acid metabolism
- in-vitro, Pca, LNCaP - in-vitro, Pca, 22Rv1 - in-vivo, NA, NA
ACC1↓, FASN↓, CPT1A↓, β-oxidation↓, SREBP1?, HK2↓, PKM2↓, LDHA↓, Glycolysis↓,
1732- SFN,    Sulforaphane, a Dietary Component of Broccoli/Broccoli Sprouts, Inhibits Breast Cancer Stem Cells
- in-vitro, BC, MCF-7 - in-vitro, BC, SUM159 - in-vivo, NA, NA
TumCD↑, CSCs↓, Wnt↓, β-catenin/ZEB1↓, *BioAv↑, angioG↓, VEGF↓, Hif1a↓, MMP2↓, MMP9↓, Casp3↑, *Half-Life∅,
1428- SFN,    Broccoli or Sulforaphane: Is It the Source or Dose That Matters?
- Review, NA, NA
HDAC↓, NRF2↑,
1434- SFN,  GEM,    Sulforaphane Potentiates Gemcitabine-Mediated Anti-Cancer Effects against Intrahepatic Cholangiocarcinoma by Inhibiting HDAC Activity
- in-vitro, CCA, HuCCT1 - in-vitro, CCA, HuH28 - in-vivo, NA, NA
HDAC↓, ac‑H3↑, ChemoSen↑, tumCV↓, TumCP↓, TumCCA↑, Apoptosis↑, cl‑Casp3↑, TumCI↓, VEGF↓, VEGFR2↓, Hif1a↓, eNOS↓, EMT?, TumCG↓, Ki-67↓, TUNEL↑, P21↑, p‑Chk2↑, CDC25↓, BAX↑, *ROS↓, NQO1?,
1502- SFN,    Epigenetic targets of bioactive dietary components for cancer prevention and therapy
- Review, NA, NA
HDAC↓, AntiCan↑, DNMTs↓, hTERT/TERT↓, selectivity↑,
1437- SFN,    Dietary Sulforaphane in Cancer Chemoprevention: The Role of Epigenetic Regulation and HDAC Inhibition
- Review, NA, NA
HDAC↓, HDAC1↓, HDAC2↓, HDAC3↓, HDAC8↓, eff↑, ac‑HSP90↑, DNMT1↓, DNMT3A↓, hTERT/TERT↓, NRF2↑, HO-1↑, NQO1↑, miR-155↓, miR-200c↑, SOX9↓, *toxicity↓,
2166- SFN,    Sulforaphane targets cancer stemness and tumor initiating properties in oral squamous cell carcinomas via miR-200c induction
- in-vitro, Oral, NA - in-vivo, NA, NA
CSCs↓, selectivity↑, TumCMig↓, TumCI↓,
1509- SFN,    Combination therapy in combating cancer
- Review, NA, NA
NRF2↑, ChemoSideEff↓, eff↑, TumCP↓, Apoptosis↑, TumCCA↑, eff↑, PSA↓, P53↑, Hif1a↓, CAIX↓, chemoR↓, 5HT↓,
3648- SIL,    Silymarin/Silybin and Chronic Liver Disease: A Marriage of Many Years
- Review, NA, NA
*antiOx↑, *Inflam↓, *lipid-P↓, *necrosis↓, *hepatoP↑, *IL1↓, *IL6↓, *TNF-α↓, *IFN-γ↓, MAPK↓, Apoptosis↑, Cyt‑c↑, Casp3↑, Casp9↑, *PPARγ↑, *GLUT4↑, *HSPs↓, *HSP27↑, *Trx↑, *SIRT1↑, *ALAT↓, *GSH↑, *lipid-P↓, *TNF-α↓, TumCG↓, P21↑, CDK4↑,
3652- SIL,    Silibinin ameliorates anxiety/depression-like behaviors in amyloid β-treated rats by upregulating BDNF/TrkB pathway and attenuating autophagy in hippocampus
- in-vivo, NA, NA
*hepatoP↑, *other↑,
3651- SIL,    Aminotransferase levels and silymarin in de novo tacrine-treated patients with Alzheimer's disease
- Trial, NA, NA
*hepatoP↑, *ALAT↓,
3646- SIL,    "Silymarin", a promising pharmacological agent for treatment of diseases
- Review, NA, NA
*P-gp↓, *Inflam↓, *hepatoP↑, *antiOx↑, *GSH↑, *BioAv↑, *SOD↑, *IFN-γ↓, *IL4↓, *IL10↓, *Half-Life↓, *TNF-α↓, *ALAT↓, *AST↓, Akt↓, chemoP↑, β-catenin/ZEB1↓, TumCP↓, MMP↓, Cyt‑c↑, *RenoP↑, *BBB↑,
3647- SIL,    Silymarin Modulates Microbiota in the Gut to Improve the Health of Sow from Late Gestation to Lactation
- in-vivo, NA, NA
*IL1β↓, *GutMicro↝, *Inflam↓,
4203- SIL,    Unlocking the Neuroprotective Potential of Silymarin: A Promising Ally in Safeguarding the Brain from Alzheimer’s Disease and Other Neurological Disorders
- Review, NA, NA
*MAPK↝, *AMPK↝, *NF-kB↓, *mTOR↝, *PI3K↝, *Akt↝, *BioAv↝, *memory↑, *BDNF↑, *TNF-α↓,
4206- SIL,    Silymarin ameliorates experimentally induced depressive like behavior in rats: Involvement of hippocampal BDNF signaling, inflammatory cytokines and oxidative stress response
- in-vivo, NA, NA
*BDNF↑, *5HT↑, *antiOx↑, *IL6↓, *TNF-α↓, *Mood↑,
3282- SIL,    Role of Silymarin in Cancer Treatment: Facts, Hypotheses, and Questions
- Review, NA, NA
hepatoP↑, AntiCan↑, TumCMig↓, Hif1a↓, selectivity↑, toxicity∅, *antiOx↑, *Inflam↓, TumCCA↑, P21↑, CDK4↓, NF-kB↓, ERK↓, PSA↓, TumCG↓, p27↑, COX2↓, IL1↓, VEGF↓, IGFBP3↑, AR↓, STAT3↓, Telomerase↓, Cyt‑c↑, Casp↑, eff↝, HDAC↓, HATs↑, Zeb1↓, E-cadherin↑, miR-203↑, NHE1↓, MMP2↓, MMP9↓, PGE2↓, Vim↓, Wnt↓, angioG↓, VEGF↓, *TIMP1↓, EMT↓, TGF-β↓, CD44↓, EGFR↓, PDGF↓, *IL8↓, SREBP1↓, MMP↓, ATP↓, uPA↓, PD-L1↓, NOTCH↓, *SIRT1↑, SIRT1↓, CA↓, Ca+2↑, chemoP↑, cardioP↑, Dose↝, Half-Life↝, BioAv↓, BioAv↓, BioAv↓, toxicity↝, Half-Life↓, ROS↓, FAK↓,
3304- SIL,    Silymarin induces inhibition of growth and apoptosis through modulation of the MAPK signaling pathway in AGS human gastric cancer cells
- in-vitro, GC, AGS - in-vivo, NA, NA
BAX↑, p‑JNK↑, p‑p38↑, cl‑PARP↑, Bcl-2↓, p‑ERK↓, TumVol↓, Apoptosis↑, tumCV↓,
3305- SIL,    Silymarin inhibits proliferation of human breast cancer cells via regulation of the MAPK signaling pathway and induction of apoptosis
- in-vitro, BC, MDA-MB-231 - in-vitro, BC, MCF-7 - in-vivo, NA, NA
TumCP↓, tumCV↓, BAX↑, cl‑PARP↑, Casp9↑, p‑JNK↑, Bcl-2↓, p‑p38↓, p‑ERK↓, *toxicity∅, Dose↝, *hepatoP↑, Inflam↓, AntiCan↑,
3308- SIL,    Structural basis of Nrf2 activation by flavonolignans from silymarin
- Analysis, NA, NA
*antiOx↑, *chemoP↑, *NRF2↑,
3309- SIL,    Silymarin as a Natural Antioxidant: An Overview of the Current Evidence and Perspectives
- Review, NA, NA
*ROS↓, *IronCh↑, *MMP↑, *NRF2↑, *Inflam↓, *hepatoP↑, *HSPs↑, *Trx↑, *SIRT2↑, *GSH↑, *ROS↑, *NADPH↓, *iNOS↓, *NF-kB↓, *BioAv↓, *Dose↝, *BioAv↑,
3295- SIL,    Hepatoprotective effect of silymarin
- Review, NA, NA
*hepatoP↑, *ROS↓, *GSH↑, *BioAv↝, ERK↓, NF-kB↓, STAT3↓, COX2↓, Inflam↓, IronCh↑, lipid-P↓, ALAT↓, AST↓, TNF-α↓, *α-SMA↓, *SOD↑,
3333- SIL,    Silymarin attenuated nonalcoholic fatty liver disease through the regulation of endoplasmic reticulum stress proteins GRP78 and XBP-1 in mice
- in-vivo, NA, NA
*GRP78/BiP↓, *XBP-1↓,
3331- SIL,    The clinical anti-inflammatory effects and underlying mechanisms of silymarin
- Review, NA, NA
*Inflam↓, *NF-kB↓, *NLRP3↓, *COX2↓, *iNOS↓, *neuroP↑, *p‑ERK↓, *p38↓, *MAPK↓, *EGFR↓, *ROS↓, *lipid-P?, *5LO↓,
3317- SIL,    Unlocking the Neuroprotective Potential of Silymarin: A Promising Ally in Safeguarding the Brain from Alzheimer's Disease and Other Neurological Disorders
- Review, NA, NA
*neuroP↑,
3314- SIL,    Silymarin: Unveiling its pharmacological spectrum and therapeutic potential in liver diseases—A comprehensive narrative review
- Review, NA, NA
*antiOx↑, *hepatoP↑, *Half-Life↑, *ROS↓, *GSH↑, *hepatoP↑, *lipid-P↓, *TNF-α↓, *IFN-γ↓, *IL2↓, *IL4↓, *NF-kB↓, *iNOS↓, *OATPs↓, *OCT4↓, *Inflam↓, *PGE2↓, MMPs↓, VEGF↓, angioG↓, STAT3↓, *ALAT↓, *AST↓, Dose↝,
3313- SIL,    Silymarin attenuates post-weaning bisphenol A-induced renal injury by suppressing ferroptosis and amyloidosis through Kim-1/Nrf2/HO-1 signaling modulation in male Wistar rats
- in-vivo, NA, NA
*NRF2↑, *HO-1↑, *creat↓, *BUN↓, *RenoP↑, *MDA↓, *TNF-α↓, *IL1β↓, *Cyt‑c↓, *Casp3↓, *GSTs↓, *GSH↑, *GPx4↑, *SOD↑, *GSR↓, *Ferroptosis↓,
2410- SIL,    Autophagy activated by silibinin contributes to glioma cell death via induction of oxidative stress-mediated BNIP3-dependent nuclear translocation of AIF
- in-vitro, GBM, U87MG - in-vitro, GBM, U251 - in-vivo, NA, NA
TumAuto↑, ATP↓, Glycolysis↓, H2O2↑, P53↑, GSH↓, xCT↓, BNIP3↝, MMP↑, mt-ROS↑, mtDam↑, HK2↓, PFKP↓, PKM2↓, TumCG↓,
1001- SIL,    Silibinin down-regulates PD-L1 expression in nasopharyngeal carcinoma by interfering with tumor cell glycolytic metabolism
- in-vitro, NA, NA
TumCG↓, Glycolysis↓, OXPHOS↑, LDHA↓, lactateProd↓, i-citrate↑, Hif1a↓, PD-L1↓,
978- SIL,    A comprehensive evaluation of the therapeutic potential of silibinin: a ray of hope in cancer treatment
- Review, NA, NA
PI3K↓, Akt↓, NF-kB↓, Wnt/(β-catenin)↓, MAPK↓, TumCP↓, TumCCA↑, Apoptosis↑, p‑EGFR↓, JAK2↓, STAT5↓, cycD1/CCND1↓, hTERT/TERT↓, AP-1↓, MMP9↓, miR-21↓, miR-155↓, Casp9↑, BID↑, ERK↓, Akt2↓, DNMT1↓, P53↑, survivin↓, Casp3↑, ROS↑,
4128- Silicon,    Silicon as Versatile Player in Plant and Human Biology: Overlooked and Poorly Understood
- Review, NA, NA
*other↑, *BMD↑, *Dose↝, *cognitive↑, *Dose?,
4126- Silicon,  H2,    Oral Administration of Si-Based Agent Attenuates Oxidative Stress and Ischemia-Reperfusion Injury in a Rat Model: A Novel Hydrogen Administration Method
- in-vivo, NA, NA
*creat↓, *ROS↓, *other↑, *MDA↓, *other↑, *Inflam↓,
1049- SK,    Shikonin inhibits immune checkpoint PD-L1 expression on macrophage in sepsis by modulating PKM2
- in-vivo, NA, NA
TNF-α↓, IL6↓, IFN-γ↓, IL1β↓, PD-L1↓, p‑PKM2↓,
2357- SK,    GTPBP4 promotes hepatocellular carcinoma progression and metastasis via the PKM2 dependent glucose metabolism
- Study, HCC, NA - in-vivo, NA, NA
AntiTum↑, GTPBP4↓, PKM2↓, lactateProd↓, GlucoseCon↓, Glycolysis↓, E-cadherin↑, TumCG↓,
2356- SK,    ESM1 enhances fatty acid synthesis and vascular mimicry in ovarian cancer by utilizing the PKM2-dependent warburg effect within the hypoxic tumor microenvironment
- in-vitro, Ovarian, CaOV3 - in-vitro, Ovarian, OV90 - in-vivo, NA, NA
PKM2↓, Glycolysis↓, FASN↓, lactateProd↓, Warburg↓, TumCG↓, VM↓,
2230- SK,    Shikonin induces ROS-based mitochondria-mediated apoptosis in colon cancer
- in-vitro, CRC, HCT116 - in-vivo, NA, NA
TumCG↓, Bcl-2↓, ROS↑, Bcl-xL↓, MMP↓, Casp↑, selectivity↑, cycD1/CCND1↓, TumCCA↑, eff↓,
2228- SK,    Shikonin induced Apoptosis Mediated by Endoplasmic Reticulum Stress in Colorectal Cancer Cells
- in-vitro, CRC, HCT116 - in-vitro, CRC, HCT15 - in-vivo, NA, NA
Apoptosis↑, Bcl-2↓, Casp3↑, Casp9↑, cl‑PARP↑, GRP78/BiP↑, PERK↑, eIF2α↑, ATF4↑, CHOP↑, JNK↑, eff↓, ER Stress↑, ROS↑, TumCG↓,
2222- SK,    The anti-tumor effect of shikonin on osteosarcoma by inducing RIP1 and RIP3 dependent necroptosis
- in-vitro, OS, U2OS - in-vitro, OS, 143B - in-vivo, NA, NA
Necroptosis↑, RIP1↑, RIP3↑, OS↑, P53↑,
3048- SK,    Shikonin inhibits triple-negative breast cancer-cell metastasis by reversing the epithelial-to-mesenchymal transition via glycogen synthase kinase 3β-regulated suppression of β-catenin signaling
- in-vitro, BC, MDA-MB-231 - in-vitro, BC, 4T1 - in-vitro, Nor, MCF12A - in-vivo, NA, NA
tumCV↓, selectivity↑, EMT↓, TumCMig↓, TumCI↓, E-cadherin↑, N-cadherin↓, Vim↓, Snail↓, β-catenin/ZEB1↓, GSK‐3β↑,
1343- SK,    Simple ROS-responsive micelles loaded Shikonin for efficient ovarian cancer targeting therapy by disrupting intracellular redox homeostasis
- in-vitro, Ovarian, A2780S - in-vivo, NA, A2780S
*BioAv↓, ROS↑, GSH↓, TumCG↓,
1342- SK,    RIP1 and RIP3 contribute to shikonin-induced DNA double-strand breaks in glioma cells via increase of intracellular reactive oxygen species
- in-vitro, GBM, NA - in-vivo, NA, NA
RIP1↑, RIP3↑, DNAdam↑, ROS↑, GSH↓,
2008- SK,  Cisplatin,    Enhancement of cisplatin-induced colon cancer cells apoptosis by shikonin, a natural inducer of ROS in vitro and in vivo
- in-vitro, CRC, HCT116 - in-vivo, NA, NA
ChemoSen↑, selectivity↑, i-ROS↑, DNAdam↑, MMP↓, TumCCA↑, eff↓, *toxicity↓,
2192- SK,    Shikonin Inhibits Tumor Growth of ESCC by suppressing PKM2 mediated Aerobic Glycolysis and STAT3 Phosphorylation
- in-vitro, ESCC, KYSE-510 - in-vitro, ESCC, Eca109 - in-vivo, NA, NA
TumCP↓, Glycolysis↓, GlucoseCon↓, lactateProd↓, PKM2↓, p‑PKM2↓, p‑STAT3↓, GLUT1↓, HK2↓, TumW↓,
2185- SK,    Shikonin Inhibits Tumor Growth in Mice by Suppressing Pyruvate Kinase M2-mediated Aerobic Glycolysis
- in-vitro, Lung, LLC1 - in-vitro, Melanoma, B16-BL6 - in-vivo, NA, NA
Glycolysis↓, GlucoseCon↓, lactateProd↓, PKM2↓, selectivity↑, Warburg↓, TumVol↓, TumW↓,
2182- SK,  Cisplatin,    Shikonin inhibited glycolysis and sensitized cisplatin treatment in non-small cell lung cancer cells via the exosomal pyruvate kinase M2 pathway
- in-vitro, Lung, A549 - in-vitro, Lung, PC9 - in-vivo, NA, NA
tumCV↓, TumCP↓, TumCI↓, TumCMig↓, Apoptosis↑, PKM2↓, Glycolysis↓, GlucoseCon↓, lactateProd↓, ChemoSen↑, TumVol↓, TumW↓, GLUT1↓,
2201- SK,    Shikonin promotes ferroptosis in HaCaT cells through Nrf2 and alleviates imiquimod-induced psoriasis in mice
- in-vitro, PSA, HaCaT - in-vivo, NA, NA
*eff↑, *IL6↓, *IL17↓, *TNF-α↓, *lipid-P↑, *NRF2↓, *HO-1↝, *NCOA4↝, *GPx4↓, *Ferroptosis↓, *Inflam↓, *ROS↓, *Iron↓,
2194- SK,    Efficacy of Shikonin against Esophageal Cancer Cells and its possible mechanisms in vitro and in vivo
- in-vitro, ESCC, Eca109 - in-vitro, ESCC, EC9706 - in-vivo, NA, NA
tumCV↓, TumCCA↑, Apoptosis↑, EGFR↓, PI3K↓, Hif1a↓, PKM2↓, cycD1/CCND1↓, AntiTum↑,
335- SNP,  PDT,    Biogenic Silver Nanoparticles for Targeted Cancer Therapy and Enhancing Photodynamic Therapy
- Review, NA, NA
ROS↑, GSH↓, GPx↑, Catalase↓, SOD↓, p38↑, BAX↑, Bcl-2↓,
337- SNP,  immuno,    Silver nanoparticle induced immunogenic cell death can improve immunotherapy
- Review, NA, NA
PD-L1↓,
342- SNP,    Silver nanoparticles; a new hope in cancer therapy?
- Review, NA, NA
ROS↑, DNAdam↑, Apoptosis↑, mtDam↑,
347- SNP,    The Role of Silver Nanoparticles in the Diagnosis and Treatment of Cancer: Are There Any Perspectives for the Future?
- Review, NA, NA
ROS↑, Apoptosis↑, ER Stress↑,
355- SNP,    Cytotoxicity and Genotoxicity of Biogenic Silver Nanoparticles in A549 and BEAS-2B Cell Lines
- in-vitro, Lung, A549 - in-vitro, NA, BEAS-2B
ROS↑, DNAdam↑, Apoptosis↑,
306- SNP,    Cancer Therapy by Silver Nanoparticles: Fiction or Reality?
- Analysis, NA, NA
EPR↝, ROS↑, IL1↑, IL8↑, ER Stress↑, MMP9↑, MMP↓, Cyt‑c↑, Apoptosis↑, Hif1a↑, BBB↑, GutMicro↝, eff↑, eff↑, RadioS↑,
309- SNP,    Interference of silver, gold, and iron oxide nanoparticles on epidermal growth factor signal transduction in epithelial cells
- in-vitro, NA, A431
ROS↑, Akt↓, p‑ERK↓,
312- SNP,  wortm,    Inhibition of autophagy enhances the anticancer activity of silver nanoparticles
- vitro+vivo, NA, HeLa
APA↑, p62↓, PIK3CA↑, TumVol↓,
320- SNP,    Silver nanoparticles induce endoplasmatic reticulum stress response in zebrafish
- vitro+vivo, NA, HUH7
ROS↑, ER Stress↑, TNF-α↑,
321- SNP,    I-131 doping of silver nanoparticles platform for tumor theranosis guided drug delivery
- in-vivo, NA, NA
other↑,
403- SNP,  RF,    Synergetic effects of silver and gold nanoparticles in the presence of radiofrequency radiation on human kidney cells
- in-vitro, NA, HNK
Apoptosis↝,
393- SNP,    Green synthesized plant-based silver nanoparticles: therapeutic prospective for anticancer and antiviral activity
- in-vitro, NA, HCT116
mtDam↑, ROS↑, TumCCA↑, Casp3↑, BAX↑, Bcl-2↓, P53↑,
367- SNP,    Presence of an Immune System Increases Anti-Tumor Effect of Ag Nanoparticle Treated Mice
- in-vivo, NA, NA
ROS↑, mtDam↑, TumCG↓,
374- SNP,    Silver nanoparticles selectively treat triple‐negative breast cancer cells without affecting non‐malignant breast epithelial cells in vitro and in vivo
- in-vitro, BC, MCF-7 - in-vitro, BC, MDA-MB-231 - in-vivo, NA, NA
ER Stress↑, DNAdam↑, ROS↑, Apoptosis↑, GSH/GSSG↓, NADPH/NADP+↓, TumCG↓, UPR↑,
375- SNP,  ALA,    Alpha-Lipoic Acid Prevents Side Effects of Therapeutic Nanosilver without Compromising Cytotoxicity in Experimental Pancreatic Cancer
- in-vitro, PC, Bxpc-3 - in-vitro, PC, PANC1 - in-vitro, PC, MIA PaCa-2 - in-vivo, NA, NA
mtDam↑, ROS↑, *toxicity↓, Dose∅, selectivity↑,
2208- SNP,    Sepsis diagnosis and treatment using nanomaterials
- Review, NA, NA
Bacteria↓,
1902- SNP,    Modulation of the mechanism of action of antibacterial silver N-heterocyclic carbene complexes by variation of the halide ligand
- in-vitro, NA, NA
TrxR↓, GSR↓, GSH↓,
2834- SNP,  Gluc,    Electrochemical oxidation of glucose on silver nanoparticle-modified composite electrodes
- Study, NA, NA
Dose?,
2837- SNP,    Trojan-Horse Mechanism in the Cellular Uptake of Silver Nanoparticles Verified by Direct Intra- and Extracellular Silver Speciation Analysis
- in-vitro, NA, NA
eff↑,
2538- SNP,  SDT,  Z,    Dual-functional silver nanoparticle-enhanced ZnO nanorods for improved reactive oxygen species generation and cancer treatment
- Study, Var, NA - vitro+vivo, NA, NA
ROS↑, eff↑, eff↑, TumCP↓, toxicity↓,
4547- SNP,  GoldNP,  VitC,    Exploration of Biocompatible Ascorbic Acid Reduced and Stabilized Gold Nanoparticles, as Sensitive and Selective Detection Nanoplatform for Silver Ion in Solution
- Study, NA, NA
*eff↑,
4545- SNP,  VitC,  Citrate,    Ascorbic Acid-assisted Green Synthesis of Silver Nanoparticles: pH and Stability Study
- Study, NA, NA
*other↝, *other↝, *eff↑, *eff↑,
4542- SNP,    Silver Nanoparticles (AgNPs): Comprehensive Insights into Bio/Synthesis, Key Influencing Factors, Multifaceted Applications, and Toxicity─A 2024 Update
- Review, NA, NA
AntiCan↑, DNAdam↑, ATP↓, Apoptosis↑, ROS↓, TumCCA↑, *Bacteria↓, *BMD↑,
4432- SNP,    Emerging nanostructure-based strategies for breast cancer therapy: innovations, challenges, and future directions
- Review, NA, NA
ROS↑, TumCP↓, Apoptosis↑,
4426- SNP,    Antiangiogenic properties of silver nanoparticles
- Study, NA, NA
angioG↑, TumCG↓, TumCI↓, TumMeta↓, VEGF↓, PI3K↓, Akt↓,
4580- SNP,    Biogenic Synthesis of Antibacterial, Hemocompatible, and Antiplatelets Lysozyme Functionalized Silver Nanoparticles through the One-Step Process for Therapeutic Applications
- in-vitro, NA, NA
*AntiAg↑,
4562- SNP,  VitC,    Eco-friendly Synthesis of Silver Nanoparticles using Ascorbic Acid and its Optical Characterization
- Study, NA, NA
*other↑, *other↝,
4578- SNP,    Green synthesized novel silver nanoparticles and their application as anticoagulant and thrombolytic agents: A perspective
- Review, NA, NA
*AntiThr↑,
4576- SNP,    Nanosilver, Next-Generation Antithrombotic Agent
- Study, NA, NA
*AntiAg↑, *Bacteria↓,
4574- SNP,    Advances in nano silver-based biomaterials and their biomedical applications
- Review, NA, NA
*Wound Healing↑, *AntiThr↑, *AntiAg↑, eff↑,
4573- SNP,    Bioactive silver nanoparticles derived from Carica papaya floral extract and its dual-functioning biomedical application
- in-vitro, Var, MCF-7 - NA, NA, HEK293
toxicity↓, Bacteria↓, selectivity↑,
4557- SNP,    The apoptotic effect of nanosilver is mediated by a ROS- and JNK-dependent mechanism involving the mitochondrial pathway in NIH3T3 cells
- in-vitro, NA, NIH-3T3 - in-vitro, CRC, HCT116
Cyt‑c↑, ROS↑, JNK↑,
4596- SNP,    Oral administration of silver nanomaterials affects the gut microbiota and metabolic profile altering the secretion of 5-HT in mice
- in-vivo, NA, NA
*GutMicro↝, *5HT↑,
4595- SNP,    ORAL DELIVERY OF SILVER NANOPARTICLES – A REVIEW
- Review, NA, NA
*BioAv↝,
4592- SNP,  Chit,    Chitosan conjugated silver nanoparticles: the versatile antibacterial agents
- in-vitro, NA, NA
*Bacteria↓,
4591- SNP,  Chit,    Synthesis and Characterization of Multifunctional Chitosan–Silver Nanoparticles: An In-Vitro Approach for Biomedical Applications
- in-vitro, NA, NA
*Bacteria↓, *Wound Healing↑,
4590- SNP,  Chit,    Silver nanochitosan: a sustainable approach for enhanced antimicrobial, antioxidant, and anticancer applications
- in-vitro, NA, NA
*Bacteria↓, *Wound Healing↑,
4589- SNP,  Chit,    Synthesis and Characterization of Chitosan–Silver Nanocomposite Film: Antibacterial and Cytotoxicity Study
- in-vitro, NA, NA
*Bacteria↓,
4588- SNP,  Chit,    Solid-state tailored silver nanocomposites from chitosan: Synthesis, antimicrobial evaluation and molecular docking
- in-vitro, NA, NA
*Bacteria↓,
4587- SNP,  Chit,    Multifunctional Silver Nanoparticles Based on Chitosan: Antibacterial, Antibiofilm, Antifungal, Antioxidant, and Wound-Healing Activities
- in-vitro, NA, NA
*Bacteria↓, *Wound Healing↑,
4583- SNP,    Metal-Based Nanoparticles for Cardiovascular Diseases
- Review, NA, NA
RadioS↑, *ROS↑, *BBB↝,
4377- SNP,    Interaction between silver nanoparticles of 20 nm (AgNP20 ) and human neutrophils: induction of apoptosis and inhibition of de novo protein synthesis by AgNP20 aggregates
- in-vitro, NA, NA
eff↑, Apoptosis↑,
4362- SNP,    Enhancing Colorectal Cancer Radiation Therapy Efficacy using Silver Nanoprisms Decorated with Graphene as Radiosensitizers
- in-vitro, CRC, HCT116 - in-vitro, CRC, HT29 - in-vivo, NA, NA
eff↑, TumCG↓, OS↑, RadioS↑, eff↑, ROS↑, DNAdam↑, eff↝,
1512- Squ,    Combination therapy in combating cancer
- Review, NA, NA
ChemoSideEff↓, *ROS↓, *GSH↑, eff↑, chemoP↑,
4215- SY,    Safflower yellow alleviates cognitive impairment in mice by modulating cholinergic system function, oxidative stress, and CREB/BDNF/TrkB signaling pathway
- in-vivo, NA, NA
*memory↑, *AChE↓, *ChAT↑, *SOD↓, *MDA↓, *GPx↑, *BDNF↑, *TrkB↑, *CREB↑, *ROS↓,
3951- Taur,    Taurine Supplementation Alleviates Blood Pressure via Gut–Brain Communication in Spontaneously Hypertensive Rats
- in-vivo, NA, NA
*BP↓, *Inflam↓, *ROS↓, *cardioP↑, *GutMicro↑, *BBB↑,
3955- Taur,    Mechanism of neuroprotective function of taurine
- in-vitro, NA, NA
*Ca+2↓, *MMP↑, *Apoptosis↓, *Bcl-2↑, *cal2↓, *LDH↓,
3418- TQ,    Thymoquinone suppresses metastasis of melanoma cells by inhibition of NLRP3 inflammasome
- in-vitro, Melanoma, A375 - in-vivo, NA, NA
TumMeta↓, TumCMig↓, NLRP3↓, Casp1↓, IL1β↓, IL18↓, ROS↓, NF-kB↓,
3420- TQ,    Thymoquinone alleviates the accumulation of ROS and pyroptosis and promotes perforator skin flap survival through SIRT1/NF-κB pathway
- in-vitro, Nor, HUVECs - in-vitro, NA, NA
*NF-kB↓, *NLRP3↓, *angioG↑, *MMP9↑, *VEGF↑, *OS↑, *Pyro?, *ROS↓, *Apoptosis↓, *SIRT1↑, *SOD1↑, *HO-1↑, *eNOS↑, *ASC?, *Casp1↓, *IL1β↓, *IL18↓,
3429- TQ,    Thymoquinone exerts potent growth-suppressive activity on leukemia through DNA hypermethylation reversal in leukemia cells
- in-vitro, AML, NA - in-vivo, NA, NA
DNMT1↓, Sp1/3/4↓, NF-kB↓, Apoptosis↑, Casp↑, Bcl-xL↓, COX2↓, iNOS↓, 5LO↓, TNF-α↓, cycD1/CCND1↓, BioAv↝, TumCG↓,
3405- TQ,  doxoR,    Protective effect of thymoquinone against doxorubicin-induced cardiotoxicity and the underlying mechanism
- vitro+vivo, NA, NA
*cardioP↑, *NRF2↑, *HO-1↑, *ROS↓, *NQO1↑, *COX2↓, *NOX4↓, *GPx4↑, *FTH1↑, *p‑mTOR↓, *TGF-β↓,
3407- TQ,    Thymoquinone and its pharmacological perspective: A review
- Review, NA, NA
*antiOx↑, *ROS↓, *GSTs↑, *GSR↑, *GSH↑, *RenoP↑, *IL1β↓, *TNF-α↓, *MMP13↓, *COX2↓, *PGE2↓, *radioP↑, Twist↓, EMT↓, NF-kB↓, p‑PI3K↓, p‑Akt↓, p‑GSK‐3β↓, DNMT1↓, HDAC↓,
3412- TQ,    Thymoquinone induces oxidative stress-mediated apoptosis through downregulation of Jak2/STAT3 signaling pathway in human melanoma cells
- in-vitro, Melanoma, SK-MEL-28 - in-vivo, NA, NA
Apoptosis↑, JAK2↓, STAT3↓, cycD1/CCND1↓, survivin↓, ROS↑, eff↓,
4173- TQ,    Thymoquinone Can Improve Neuronal Survival and Promote Neurogenesis in Rat Hippocampal Neurons
- in-vivo, NA, NA
*neuroP↑, *Casp3↓, *Apoptosis↓, *ERK↑, *JNK↑, *CREB↑, *iNOS↑, *BDNF∅,
2133- TQ,  CUR,  Cisplatin,    Thymoquinone and curcumin combination protects cisplatin-induced kidney injury, nephrotoxicity by attenuating NFκB, KIM-1 and ameliorating Nrf2/HO-1 signalling
- in-vitro, Nor, HEK293 - in-vivo, NA, NA
*creat↓, *TNF-α↓, *IL6↓, *MRP↓, *GFR↑, *mt-ATPase↑, *p‑Akt↑, *NRF2↑, *HO-1↑, *Casp3↓, *NF-kB↓, *RenoP↑,
2128- TQ,    Thymoquinone inhibits phorbol ester-induced activation of NF-κB and expression of COX-2, and induces expression of cytoprotective enzymes in mouse skin in vivo
- in-vivo, NA, NA
*COX2↓, *NF-kB↓, *p‑Akt↓, *p‑cJun↓, *p‑p38↓, *HO-1↑, *NADPH↑, *GSTA1↑, *antiOx↑, *Inflam↓, *NQO1↑, *GCLC↑, *GSTA1↑,
2100- TQ,    Dual properties of Nigella Sative: Anti-oxidant and Pro-oxidant
- Review, NA, NA
ROS⇅, *antiOx↑, *SOD↑, *MPO↑, *neuroP↑, *chemoP↑, *radioP↑, NF-kB↓, IAP1↓, IAP2↓, XIAP↓, Bcl-xL↓, survivin↓, COX2↓, MMP9↓, VEGF↓, ROS↑, P21↑, HDAC↓, GSH↓, GADD45A↑, AIF↑, STAT3↓,
2099- TQ,  Cisplatin,    Thymoquinone and cisplatin as a therapeutic combination in lung cancer: In vitro and in vivo
- in-vitro, Lung, H460 - in-vitro, Lung, H146 - in-vivo, NA, NA
ChemoSen↑, TumCP↓, tumCV↓, Apoptosis↑, NF-kB↓,
2105- TQ,    Thymoquinone Promotes Pancreatic Cancer Cell Death and Reduction of Tumor Size through Combined Inhibition of Histone Deacetylation and Induction of Histone Acetylation
- in-vitro, PC, AsPC-1 - in-vitro, PC, MIA PaCa-2 - in-vitro, PC, Hs766t - in-vivo, NA, NA
tumCV↓, TumCP↓, TumCCA↑, Apoptosis↑, P53↑, Bcl-2↓, P21↑, ac‑H4↑, HDAC↓, HDAC1↓, HDAC2↓, HDAC3↓, TumVol↓,
2083- TQ,    Thymoquinone inhibits proliferation in gastric cancer via the STAT3 pathway in vivo and in vitro
- in-vitro, GC, HGC27 - in-vitro, GC, BGC-823 - in-vitro, GC, SGC-7901 - in-vivo, NA, NA
p‑STAT3↓, JAK2↓, c-Src↓, Bcl-2↓, cycD1/CCND1↓, survivin↓, VEGF↓, Casp3?, Casp7?, Casp9?, *toxicity∅, TumVol↓,
2454- Trip,    Natural product triptolide induces GSDME-mediated pyroptosis in head and neck cancer through suppressing mitochondrial hexokinase-ΙΙ
- in-vitro, HNSCC, HaCaT - in-vivo, NA, NA
GSDME-N↑, Pyro↑, cMyc↓, HK2↓, BAD↑, BAX↑, Casp3↑, NRF2↓, xCT↓, ROS↑, eff↑, Glycolysis↓, GlucoseCon↓, lactateProd↓, ATP↓, xCT↓, eff↑,
1058- UA,    Ursolic acid, an antagonist for transforming growth factor (TGF)-beta1
- in-vivo, NA, NA
TGF-β↓,
4853- Uro,    Urolithin A, a novel natural compound to target PI3K/AKT/mTOR pathway in pancreatic cancer
- vitro+vivo, PC, MIA PaCa-2 - in-vitro, NA, PANC1
p‑Akt↓, p‑p70S6↓, TumCG↓, OS↑, PI3K↓, mTOR↓, TumCP↓, TumCMig↓, Apoptosis↑, TAMS↓, Treg lymp↓, Wnt↓, IGF-1↓, *toxicity↓, *BioAv↑, Half-Life↝,
4616- VitA,RetA,  VitC,  VitD3,  VitE,  Rad  Vitamins and Radioprotective Effect: A Review
- Review, NA, NA
*radioP↑, *ROS↓,
4031- VitB3,    Nicotinamide Riboside-The Current State of Research and Therapeutic Uses
- Review, NA, NA
*cardioP↑, *neuroP↑, *NAD↑, *SIRT1↑, *NADPH↑, *ROS↓, *IL2↓, *IL5↓, *IL6↓, *TNF-α↓, *Inflam↓, *BioAv↝, *BioAv↑,
4336- VitB5,    Effectiveness of long-term treatment with pantethine in patients with dyslipidemia
- Trial, NA, NA
*LDL↓, *HDL↑,
4335- VitB5,    Pantethine, a derivative of vitamin B(5) used as a nutritional supplement, favorably alters low-density lipoprotein cholesterol metabolism in low- to moderate-cardiovascular risk North American subjects: a triple-blinded placebo and diet-controlled investigation
- Trial, NA, NA
*LDL↓,
4181- VitB6,    Vitamin B6 prevents cognitive impairment in experimental pneumococcal meningitis
- in-vivo, NA, NA
*BDNF↑, *memory↑,
636- VitC,    Acute Effects of Vitamin C Exposure On Colonic Crypts: Direct Modulation of pH Regulation
- in-vivo, NA, NA
pH↓, SVCT-2∅,
635- VitC,  VitK3,    The combination of ascorbate and menadione causes cancer cell death by oxidative stress and replicative stress
- in-vitro, NA, NA
RNR↓, GSH↓, Trx1↓, GPx↓, lipid-P↑, AIF↑, ROS↑,
634- VitC,    Intravenous ascorbic acid to prevent and treat cancer-associated sepsis?
- Analysis, NA, NA
other↓, iNOS↓, eNOS↑,
633- VitC,    Diverse antitumor effects of ascorbic acid on cancer cells and the tumor microenvironment
- Analysis, NA, NA
Fenton↑, ROS↑, EMT↓, DNAdam↑, PARP↑, NAD↓, ATP↓, Apoptosis↑,
632- VitC,    High-Dose Vitamin C: Preclinical Evidence for Tailoring Treatment in Cancer Patients
- Review, NA, NA
SVCT-2∅, ROS↑, Hif1a↓, PARP∅, TET2↑,
114- VitC,  QC,    Chemoprevention of prostate cancer cells by vitamin C plus quercetin: role of Nrf2 in inducing oxidative stress
- in-vitro, Pca, PC3 - in-vitro, NA, DU145
GPx↓, GSR↓, NQO1↓, NRF2↓, ROS↑,
615- VitC,    High Dose IV Vitamin C and Metastatic Breast Cancer: A Case Report
- Case Report, NA, NA
OS↑, Remission↑,
616- VitC,    Suppression of alkaline phosphatase in prostate cancer patients by high dose intravenous Vitamin C Treatment: Three cases
- Case Report, NA, NA
PSA↓, ALP↓,
617- VitC,  Chemo,    The Use of Vitamin C with Chemotherapy in Cancer Treatment: An Annotated Bibliography
- Review, NA, NA
TumCG↓, ChemoSideEff↓,
620- VitC,    Case Study: High-Dose Intravenous Vitamin C in the Treatment of a Patient with Adenocarcinoma of the Kidney
- Case Report, NA, NA
OS↑,
623- VitC,    The Involvement of Ascorbic Acid in Cancer Treatment
- Review, NA, NA
ROS↑, GLUT1↓, ATP↓,
624- VitC,    Ascorbic Acid in Colon Cancer: From the Basic to the Clinical Applications
- Review, NA, NA
OS↑,
626- VitC,    Systematic Review of Intravenous Ascorbate in Cancer Clinical Trials
- Review, NA, NA
OS↑, H2O2↑,
627- VitC,    High-Dose Vitamin C for Cancer Therapy
- Review, NA, NA
ROS↑, PARP↑, GAPDH↓, DNAdam↑, ATP↓,
628- VitC,  Mg,    Enhanced Anticancer Effect of Adding Magnesium to Vitamin C Therapy: Inhibition of Hormetic Response by SVCT-2 Activation
- in-vivo, Colon, CT26 - in-vitro, NA, MCF-7 - in-vitro, NA, SkBr3
AntiCan↑, SVCT-2↝, TumCD↑, ROS↑, P21↑, proCasp3↑, TumVol↓, DNAdam↑, NAD↓,
629- VitC,  Cu,  Fe,    The antioxidant ascorbic acid mobilizes nuclear copper leading to a prooxidant breakage of cellular DNA: implications for chemotherapeutic action against cancer
- in-vitro, NA, NA
ROS↑, DNAdam↑, NAD↓,
596- VitC,    High-Dose Vitamin C in Advanced-Stage Cancer Patients
- Review, NA, NA
ChemoSideEff↓, ROS↑, H2O2↑, Fenton↑, Hif1a↝, Dose↑, BioAv↓, Dose↝, Half-Life↝, IL1β↓, IL2↓, IL8↓, TNF-α↓,
598- VitC,    Ascorbic Acid in Cancer Treatment: Let the Phoenix Fly
- Review, NA, NA
H2O2↑, ROS↑, TET1↑, DNAdam↑, G6PD∅,
599- VitC,    Generation of Hydrogen Peroxide in Cancer Cells: Advancing Therapeutic Approaches for Cancer Treatment
- Review, NA, NA
H2O2↑, DNAdam↑, ROS↑, Fenton↑, Apoptosis↑, necrosis↑,
600- VitC,  VitK3,    Serum markers variation consistent with autoschizis induced by ascorbic acid-menadione in patients with prostate cancer
- in-vitro, NA, NA
autoS↑, TumCD↑,
579- VitC,  MF,    Effect of Magnetic Field on Ascorbic Acid Oxidase Activity, I
- in-vitro, NA, NA
other↝,
605- VitC,    Therapeutic Use of Vitamin C in Cancer: Physiological Considerations
- Review, NA, NA
ROS↑, ChemoSideEff↓,
606- VitC,    Understanding the Therapeutic Potential of Ascorbic Acid in the Battle to Overcome Cancer
- Review, NA, NA
ROS↑, H2O2↑, Fenton↑,
607- VitC,    Intravenously administered vitamin C as cancer therapy: three cases
- Case Report, NA, NA
necrosis↑, OS↑,
611- VitC,    Characterization of a new malignant human T-cell line (PFI-285) sensitive to ascorbic acid
- in-vitro, NA, NA
TumCD↑,
613- VitC,    High-dose Vitamin C (Ascorbic Acid) Therapy in the Treatment of Patients with Advanced Cancer
- Review, NA, NA
H2O2↑,
1217- VitC,    High-dose vitamin C suppresses the invasion and metastasis of breast cancer cells via inhibiting epithelial-mesenchymal transition
- in-vitro, BC, Bcap37 - in-vitro, BC, MDA-MB-231 - in-vivo, NA, NA
TumCMig↓, E-cadherin↑, Vim↓, EMT↓,
3126- VitC,    Safety of High-Dose Vitamin C in Non-Intensive Care Hospitalized Patients with COVID-19: An Open-Label Clinical Study
- Study, NA, NA
*NLRP3↓, *ROS↓, *antiOx↑,
4617- VitD3,    Vitamin D3 and its Potential to Ameliorate Chemical and Radiation-Induced Skin Injury During Cancer Therapy
- Case Report, NA, NA
radioP↑,
1223- VitD3,    Vitamin D3 Treatment Influences PGE2 and TGFβ in Normal and Increased Breast Cancer Risk Women
- Trial, NA, NA
*TGF-β↑, *PGE2↓,
4185- VitD3,    Effects of vitamin D supplementation on neuroplasticity in older adults: a double-blinded, placebo-controlled randomised trial
- Study, NA, NA
*other↑, *BDNF∅,
4184- VitD3,    Neuroplasticity-related effects of vitamin D relevant to its neuroprotective effects: A narrative review
- Review, NA, NA
*BDNF↑, *cognitive↑,
4183- VitD3,  Ex,    Combined Exercise and Vitamin D on Brain-Derived Neurotrophic Factor
- Review, NA, NA
*BDNF↑, *Inflam↓, *other↝,
4187- VitD3,    Protective effects of vitamin D on neurophysiologic alterations in brain aging: role of brain-derived neurotrophic factor (BDNF)
- in-vivo, NA, NA
*BDNF↑, *MDA↓, *Casp3↓,
4186- VitD3,    The Association of Vitamin D, Nerve Growth Factor (NGF), Brain-Derived Neurotrophic Factor (BDNF), and Glial Cell-Derived Neurotrophic Factor (GDNF) with Development in Children
- Study, NA, NA
*BDNF∅,
2365- VitD3,    Vitamin D Affects the Warburg Effect and Stemness Maintenance of Non- Small-Cell Lung Cancer Cells by Regulating the PI3K/AKT/mTOR Signaling Pathway
- in-vitro, Lung, A549 - in-vitro, Lung, H1975 - in-vivo, NA, NA
Glycolysis↓, Warburg↓, GLUT1↓, LDHA↓, HK2↓, PKM2↓, OCT4↓, SOX2↓, Nanog↓, PI3K↓, Akt↓, mTOR↓,
4179- VitE,    Vitamin E protects against oxidative damage and learning disability after mild traumatic brain injury in rats
- in-vivo, NA, NA
*BDNF↑,
4309- VitK2,    Vitamins in the Prevention and Support Therapy of Neurodegenerative Diseases
- Review, NA, NA
*Apoptosis↓, *ROS↓, *antiOx↑, *cognitive↑, *memory↑, *Risk↓, *p‑tau↓,
4188- VitK2,    Vitamin K2 protects against aluminium chloride-mediated neurodegeneration
- in-vivo, NA, NA
*BDNF↑, *Aβ↓, *cognitive↑, *Ach↑, *Inflam↓,
2279- VitK2,    Vitamin K2 Induces Mitochondria-Related Apoptosis in Human Bladder Cancer Cells via ROS and JNK/p38 MAPK Signal Pathways
- in-vitro, Bladder, T24 - in-vitro, Bladder, J82 - in-vitro, Nor, HEK293 - in-vitro, Nor, L02 - in-vivo, NA, NA
MMP↓, Cyt‑c↑, Casp3↑, p‑JNK↑, p‑p38↑, ROS↑, eff↓, tumCV↓, selectivity↑, *toxicity↓, TumVol↓,
1823- VitK2,  VitK3,    Vitamins K2, K3 and K5 exert antitumor effects on established colorectal cancer in mice by inducing apoptotic death of tumor cells
- in-vitro, CRC, NA - in-vivo, NA, NA
TumCP↓, TumCCA↑, Casp3↑,
4196- Z,    The effect of zinc supplementation on brain derived neurotrophic factor: A meta-analysis
- Review, NA, NA
*BDNF∅,
4197- Z,    The Effect of Zinc Supplementation on Circulating Levels of Brain-Derived Neurotrophic Factor (BDNF): A Systematic Review and Meta-Analysis of Randomized Controlled Trials
- Review, NA, NA
*BDNF↑, *other↓, *eff↑, *Inflam↓, *antiOx↑,
604- ZO,    Plant-Mediated Zinc Oxide Nanoparticles: Advances in the New Millennium towards Understanding Their Therapeutic Role in Biomedical Applications
- Review, NA, NA
ROS↑, Apoptosis↑, DNAdam↑,
2414- β‐Ele,    Beta‐elemene inhibits breast cancer metastasis through blocking pyruvate kinase M2 dimerization and nuclear translocation
- in-vitro, BC, MDA-MB-231 - in-vitro, BC, MCF-7 - in-vivo, NA, NA
TumCMig↓, TumCI↓, TumMeta↓, Glycolysis↓, GlucoseCon↓, lactateProd↓, PKM2↓, EGFR↓, GLUT1↓, LDHA↓, ECAR↓, OCR↓,
2425- γ-Toc,    Anticancer Effects of γ-Tocotrienol Are Associated with a Suppression in Aerobic Glycolysis
- in-vitro, NA, MCF-7 - in-vivo, NA, NA
TumCG↓, GlucoseCon↓, ATP↓, lactateProd↓, Glycolysis↓, HK2↓, PFK↓, PKM2↓, LDHA↓, Akt↓, p‑mTOR↓, cMyc↓,

* indicates research on normal cells as opposed to diseased cells
Total Research Paper Matches: 780

Pathway results for Effect on Cancer / Diseased Cells:


NA, unassigned

chemoPv↑, 2,  

Redox & Oxidative Stress

antiOx↓, 2,   antiOx↑, 7,   ARE/EpRE↑, 1,   Catalase↓, 7,   Catalase↑, 1,   CYP1A1↓, 1,   CYP1A1↑, 1,   ENOX2↓, 1,   Fenton↑, 11,   Ferroptosis↑, 6,   frataxin↑, 1,   GPx↓, 3,   GPx↑, 1,   GPx4↓, 3,   GSH↓, 23,   GSH/GSSG↓, 2,   GSR↓, 3,   GSTP1/GSTπ↓, 1,   H2O2?, 1,   H2O2↑, 16,   e-H2O2↓, 1,   i-H2O2∅, 1,   HDL↓, 1,   HNE↑, 1,   HO-1↓, 1,   HO-1↑, 3,   ICD↑, 1,   Iron↑, 2,   Iron↝, 1,   i-Iron↓, 1,   ox-Keap1↓, 1,   rd-Keap1↑, 1,   lipid-P↓, 3,   lipid-P↑, 5,   MDA↑, 1,   MGO↑, 1,   MPO↓, 1,   NADHdeh↓, 1,   NADPH/NADP+↓, 1,   NAF1↓, 1,   NQO1?, 1,   NQO1↓, 1,   NQO1↑, 2,   NRF2↓, 7,   NRF2↑, 12,   NRF2∅, 1,   OSI↑, 1,   OXPHOS↓, 5,   OXPHOS↑, 3,   mt-OXPHOS↑, 1,   PARK2↑, 1,   Prx↓, 1,   Prx4↓, 1,   RNS↓, 1,   ROMO1↑, 1,   ROS?, 1,   ROS↓, 6,   ROS↑, 168,   ROS⇅, 5,   ROS↝, 1,   i-ROS↑, 1,   mt-ROS↑, 3,   RPM↑, 2,   SAM-e↑, 1,   SAM-e↝, 2,   selenoP↑, 1,   SIRT3↓, 1,   SIRT3↑, 1,   SOD↓, 5,   SOD↑, 5,   SOD2↑, 1,   TOS↑, 1,   Trx↓, 2,   Trx1↓, 1,   TrxR↓, 2,   xCT↓, 3,  

Metal & Cofactor Biology

IronCh↑, 2,   TfR1/CD71↓, 1,  

Mitochondria & Bioenergetics

AIF↑, 3,   ATP↓, 17,   ATP↑, 1,   CDC25↓, 1,   EGF↓, 1,   Insulin↓, 1,   MEK↓, 1,   p‑MEK↓, 1,   mitResp↓, 1,   MKK4↓, 1,   MMP↓, 40,   MMP↑, 1,   MPT↑, 1,   mtDam↑, 12,   OCR↓, 6,   OCR↑, 2,   PGC-1α↑, 1,   PINK1↑, 1,   Raf↓, 2,   e-Raf↓, 1,   SDH↓, 1,   XIAP↓, 8,  

Core Metabolism/Glycolysis

12LOX↓, 1,   6PGD↓, 1,   ACC1↓, 2,   ACLY↓, 7,   ACSS2↓, 1,   ALAT↓, 3,   ALAT∅, 1,   ALDOAiso2↓, 1,   AminoA↓, 1,   AMP↓, 1,   AMP↑, 1,   AMPK↑, 11,   p‑AMPK↑, 2,   ATG7↑, 2,   ATP:AMP↓, 1,   CAIX↓, 2,   Cav1↑, 1,   i-citrate↑, 1,   cMyc↓, 14,   CPT1A↓, 2,   p‑CREB↓, 1,   ECAR↓, 6,   ECAR∅, 1,   FABP4↑, 1,   FASN↓, 8,   G6PD∅, 1,   GAPDH↓, 1,   GLO-I↓, 1,   GLS↓, 1,   glucose↓, 1,   GlucoseCon↓, 17,   glut↓, 1,   GLUT2↓, 2,   GlutMet↓, 1,   Glycolysis↓, 36,   Glycolysis↑, 1,   HK2↓, 18,   HK2∅, 1,   IDH1↑, 1,   lactateProd↓, 22,   LAT↓, 1,   LDH↓, 4,   LDHA↓, 14,   LDHA∅, 1,   LDL↓, 2,   lipoGen↓, 1,   NAD↓, 3,   NAD↝, 1,   NADPH↓, 1,   NADPH↑, 1,   NPC1L1↓, 1,   p‑PCK1↓, 1,   PDH↑, 4,   p‑PDH↓, 1,   PDK1↓, 5,   p‑PDK1↓, 2,   PDKs↓, 3,   PFK↓, 3,   PFK1↓, 4,   PFK2↓, 1,   PFKP↓, 2,   PGK1↓, 1,   PI3K/Akt↓, 4,   PI3K/Akt↑, 1,   PI3K/Akt↝, 1,   PI3k/Akt/mTOR↓, 1,   PIK3CA↑, 1,   PKL↓, 1,   PKM2↓, 19,   PKM2∅, 1,   p‑PKM2↓, 2,   PPARα↑, 1,   PPARα↝, 1,   PPARγ↑, 2,   PPP↓, 1,   PSMB5↓, 1,   RNR↓, 1,   RPSA↓, 1,   p‑S6↓, 1,   SIRT1↓, 2,   SIRT1↑, 3,   SIRT2↓, 1,   SREBP1?, 1,   SREBP1↓, 2,   TCA↓, 1,   Warburg↓, 7,   β-oxidation↓, 1,  

Cell Death

Akt↓, 38,   Akt↑, 1,   p‑Akt↓, 18,   APAF1↑, 1,   Apoptosis?, 1,   Apoptosis↓, 1,   Apoptosis↑, 119,   Apoptosis↝, 1,   mt-Apoptosis↑, 1,   ASK1↑, 1,   autoS↑, 1,   BAD↓, 1,   BAD↑, 3,   Bak↑, 5,   BAX↑, 46,   Bax:Bcl2↑, 8,   Bcl-2↓, 50,   Bcl-2↑, 1,   Bcl-xL↓, 17,   BID↑, 3,   BIM↑, 1,   BMP2↓, 1,   BTG3↑, 1,   Casp↑, 10,   Casp1↓, 3,   proCasp1↓, 1,   Casp12↑, 2,   cl‑Casp12↝, 1,   Casp2↑, 1,   Casp3?, 1,   Casp3↑, 47,   Casp3∅, 1,   cl‑Casp3↑, 7,   proCasp3↑, 1,   Casp7?, 1,   Casp7↑, 5,   Casp8↑, 9,   Casp8∅, 1,   Casp9?, 1,   Casp9↑, 29,   cFLIP↓, 2,   Chk2↑, 1,   p‑Chk2↓, 1,   p‑Chk2↑, 2,   CK2↓, 1,   Cupro↑, 2,   Cyt‑c↑, 30,   Cyt‑c↝, 1,   DR5↑, 5,   Fas↑, 2,   Ferroptosis↑, 6,   GSDME-N↑, 2,   HGF/c-Met↓, 2,   hTERT/TERT↓, 4,   IAP1↓, 2,   IAP2↓, 1,   iNOS↓, 8,   JNK↓, 1,   JNK↑, 7,   p‑JNK↓, 4,   p‑JNK↑, 4,   JWA↑, 1,   MAPK↓, 8,   MAPK↑, 8,   MAPK↝, 1,   p‑MAPK↑, 1,   Mcl-1↓, 7,   MCT1↓, 1,   MDM2↓, 2,   MLKL↑, 1,   p‑MLKL↓, 1,   Myc↓, 1,   Necroptosis↑, 4,   necrosis↑, 3,   oncosis↑, 2,   p27↑, 7,   P2X7↓, 1,   p38↓, 4,   p38↑, 6,   p‑p38↓, 2,   p‑p38↑, 3,   Paraptosis↑, 3,   PPP2R1A↑, 1,   Proteasome↓, 1,   Pyro↑, 3,   RIP1↑, 2,   p‑RSK↓, 1,   survivin↓, 18,   Telomerase↓, 6,   TRAIL↑, 2,   TumCD↑, 9,   TUNEL↑, 1,  

Kinase & Signal Transduction

AMPKα↑, 1,   p‑p70S6↓, 1,   SOX9↓, 1,   SOX9↑, 1,   Sp1/3/4↓, 6,  

Transcription & Epigenetics

carcinogenesis↓, 1,   cJun↓, 1,   H3↓, 1,   ac‑H3↑, 4,   ac‑H4↑, 4,   HATs↓, 5,   HATs↑, 1,   KISS1↑, 1,   miR-21↓, 1,   other?, 1,   other↓, 10,   other↑, 13,   other↝, 7,   other∅, 4,   p‑pRB↓, 1,   PRC2↓, 1,   Prot↝, 1,   sonoS↑, 1,   tumCV?, 1,   tumCV↓, 27,  

Protein Folding & ER Stress

ATF6↑, 2,   cl‑ATF6↑, 1,   CHOP↓, 1,   CHOP↑, 9,   p‑CHOP↝, 1,   eIF2α↑, 4,   p‑eIF2α↓, 1,   p‑eIF2α↑, 5,   p‑eIF2α↝, 1,   ER Stress↑, 25,   GRP78/BiP↑, 5,   GRP94↑, 1,   HRI↓, 1,   p‑Hsc70↑, 1,   HSP27↓, 1,   HSP70/HSPA5↓, 3,   HSP70/HSPA5↑, 2,   HSP72↓, 1,   HSP90↓, 5,   ac‑HSP90↑, 1,   HSPs∅, 1,   p‑IRE1↓, 1,   PERK↓, 1,   PERK↑, 4,   p‑PERK↝, 1,   UPR↑, 5,   mt-UPR↑, 1,  

Autophagy & Lysosomes

APA↑, 1,   ATG5↑, 1,   Beclin-1↑, 2,   BNIP3↑, 2,   BNIP3↝, 1,   LC3B↓, 1,   LC3B↑, 2,   LC3B-II↑, 2,   LC3II↑, 3,   p62↓, 3,   p62↑, 2,   TumAuto↑, 22,   TumAuto↝, 1,  

DNA Damage & Repair

p‑ATM↑, 1,   p‑ATR↑, 1,   BRCA1↑, 1,   CHK1↑, 1,   p‑CHK1↑, 1,   DNAdam↓, 1,   DNAdam↑, 35,   DNArepair↑, 1,   DNMT1↓, 9,   DNMT3A↓, 3,   DNMTs↓, 8,   G9a↓, 1,   GADD45A↑, 1,   HR↓, 1,   importin α/β↓, 1,   MGMT↓, 1,   NKX3.1↓, 1,   p16↑, 3,   P53?, 1,   P53↓, 1,   P53↑, 29,   P53↝, 1,   p‑P53↑, 2,   PARP↑, 9,   PARP∅, 1,   p‑PARP↑, 1,   cl‑PARP↑, 11,   cl‑PARP1↑, 1,   PCNA↓, 3,   RAD51↓, 1,   SIRT6↓, 1,   TP53↑, 2,   p‑γH2AX↑, 1,  

Cell Cycle & Senescence

CDK1↓, 2,   CDK2↓, 2,   CDK2↑, 1,   CDK4↓, 2,   CDK4↑, 1,   Cyc↓, 1,   cycA1/CCNA1↓, 1,   CycB/CCNB1↓, 2,   cycD1/CCND1↓, 20,   cycD1/CCND1↑, 1,   cycE/CCNE↓, 1,   cycE1↓, 1,   p19↑, 1,   P21↓, 1,   P21↑, 20,   TumCCA↑, 63,  

Proliferation, Differentiation & Cell State

ALDH↓, 1,   AR-FL↓, 1,   AR-V7↑, 1,   AXIN1↑, 1,   BMI1↓, 1,   BRAF↝, 1,   CD133↓, 1,   CD24↓, 1,   CD44↓, 2,   cMET↓, 2,   CREBBP↓, 1,   CSCs↓, 6,   Diff↑, 2,   EMT?, 1,   EMT↓, 31,   ERK↓, 21,   ERK↑, 4,   p‑ERK↓, 10,   p‑ERK↑, 4,   p‑ERK⇅, 1,   ERK5↑, 1,   FGF↓, 1,   FOXM1↓, 1,   FOXO↓, 1,   FOXO1↑, 1,   FOXO3↓, 1,   FOXO3↑, 1,   Gli1↓, 2,   GSK‐3β↓, 1,   GSK‐3β↑, 1,   GSK‐3β↝, 1,   p‑GSK‐3β↓, 2,   GTPBP4↓, 1,   HDAC↓, 22,   HDAC1↓, 6,   HDAC10↑, 1,   HDAC11↓, 1,   HDAC2↓, 2,   HDAC3↓, 5,   HDAC4↓, 1,   HDAC8↓, 4,   IGF-1↓, 7,   IGF-1R↓, 3,   p‑IGF-1R↓, 1,   IGFBP3↓, 1,   IGFBP3↑, 2,   IGFR↓, 1,   Let-7↑, 5,   mTOR↓, 21,   mTOR↑, 4,   p‑mTOR↓, 4,   Nanog↓, 5,   Nestin↓, 2,   NOTCH↓, 1,   NOTCH1↓, 2,   NOTCH1↝, 1,   OCT4↓, 3,   p300↓, 2,   P70S6K↓, 1,   P70S6K↑, 1,   p‑P70S6K↓, 1,   p‑P90RSK↑, 1,   PI3K↓, 22,   PI3K↑, 1,   p‑PI3K↓, 1,   PTEN↑, 8,   PTEN↝, 1,   RAS↓, 2,   Shh↓, 1,   SOX2↓, 1,   c-Src↓, 1,   STAT↓, 1,   STAT1↓, 1,   STAT3↓, 28,   STAT3↑, 1,   p‑STAT3↓, 6,   STAT5↓, 1,   p‑STAT5↓, 1,   TCF↓, 4,   TOP1↓, 1,   TOP1∅, 1,   TOP2↓, 1,   TOP2↑, 1,   TumCG↓, 74,   TumCG↑, 1,   VGCC↑, 1,   Wnt?, 1,   Wnt↓, 7,   Wnt/(β-catenin)↓, 5,   Wnt/(β-catenin)↑, 1,  

Migration

5LO↓, 3,   67LR↓, 1,   Akt2↓, 1,   AntiAg↓, 1,   AntiAg↑, 7,   AP-1↓, 3,   AP-1↑, 1,   AP-1↝, 1,   APP↓, 1,   ATPase↓, 1,   CA↓, 1,   Ca+2↓, 2,   Ca+2↑, 12,   CD31↑, 1,   Cdc42↓, 1,   CDK4/6↓, 1,   CXCL12↓, 1,   E-cadherin↓, 2,   E-cadherin↑, 22,   EM↑, 1,   F-actin↓, 1,   FAK↓, 5,   FAK↑, 1,   Fibronectin↓, 1,   Fibrosis↓, 1,   GLI2↓, 1,   hnRNPA1↓, 1,   ITGA5↓, 1,   ITGB1↓, 2,   ITGB1↑, 1,   ITGB3↓, 1,   Ki-67↓, 7,   Ki-67↑, 1,   KRAS↓, 1,   L-sel↑, 1,   LEF1↓, 1,   LysoPr↑, 1,   MALAT1↓, 1,   MET↑, 1,   miR-139-5p↑, 1,   miR-155↓, 2,   miR-200b↑, 1,   miR-200c↑, 2,   miR-203↓, 1,   miR-203↑, 1,   MMP1↑, 1,   MMP2↓, 23,   MMP3↓, 1,   MMP3↑, 1,   MMP7↓, 1,   MMP9↓, 28,   MMP9↑, 2,   MMPs↓, 7,   MUC1↓, 1,   N-cadherin↓, 8,   NCAM↑, 1,   NFAT↑, 1,   PDGF↓, 1,   PKA↓, 2,   PKCδ↓, 1,   PKCδ↑, 1,   RECK↑, 1,   Rho↓, 2,   RIP3↑, 3,   p‑RIP3↑, 1,   SA↓, 1,   SDC1↑, 1,   serineP↓, 1,   Slug↓, 6,   p‑SMAD2↓, 1,   Snail↓, 14,   Snail↑, 1,   TET1↑, 2,   TGF-β↓, 8,   TGF-β↑, 1,   TIMP1↑, 2,   TIMP2↑, 2,   TIMP3↑, 1,   Treg lymp↓, 4,   TumCI?, 1,   TumCI↓, 29,   TumCI↑, 1,   TumCMig↓, 34,   TumCP↓, 61,   TumCP↑, 1,   TumMeta↓, 15,   Twist↓, 4,   Twist↑, 1,   TXNIP↓, 1,   uPA↓, 2,   VCAM-1↓, 1,   Vim↓, 18,   Zeb1↓, 5,   ZEB2↓, 1,   ZEB2↑, 2,   ZO-1↑, 1,   α-SMA↓, 2,   β-catenin/ZEB1↓, 14,   β-catenin/ZEB1↑, 1,   p‑β-catenin/ZEB1↓, 1,  

Angiogenesis & Vasculature

angioG↓, 24,   angioG↑, 4,   ATF4↑, 5,   p‑ATF4↝, 1,   EGFR↓, 16,   p‑EGFR↓, 2,   eNOS↓, 1,   eNOS↑, 1,   EPR↑, 2,   EPR↝, 1,   HIF-1↓, 5,   HIF-1↑, 1,   Hif1a↓, 34,   Hif1a↑, 2,   Hif1a↝, 2,   KDR/FLK-1↓, 1,   miR-210↓, 1,   miR-210↑, 1,   NO↓, 2,   NO↑, 4,   PDGFR-BB↑, 1,   TAMS↓, 1,   TXA2↓, 1,   TXA2↑, 1,   VEGF↓, 39,   VEGF↑, 1,   VEGFR2↓, 3,   VM↓, 1,  

Barriers & Transport

BBB↑, 3,   CellMemb↓, 1,   CellMemb↑, 3,   CTR1↑, 1,   GLUT1↓, 10,   GLUT3↓, 1,   GLUT4↓, 3,   NHE1↓, 2,   P-gp↓, 1,   SLC12A5↓, 1,   SVCT-2↝, 1,   SVCT-2∅, 2,  

Immune & Inflammatory Signaling

ASC↓, 1,   CD25+↓, 3,   CD4+↓, 4,   CD4+↑, 1,   COX1↓, 3,   COX2↓, 23,   COX2↑, 2,   COX2↝, 1,   CR3↝, 1,   CRP↓, 3,   CXCL1↓, 1,   CXCR4↓, 3,   DCells↑, 1,   FOXP3↓, 1,   FoxP3+↓, 3,   ICAM-1↓, 1,   IFN-γ↓, 3,   IFN-γ↑, 1,   IKKα↓, 1,   IKKα↑, 2,   p‑IKKα↓, 1,   IL1↓, 6,   IL1↑, 2,   IL10↓, 3,   IL10↑, 2,   IL18↓, 1,   IL1α↓, 1,   IL1β↓, 7,   IL2↓, 1,   IL4↓, 1,   IL4↑, 1,   IL6↓, 15,   IL8↓, 3,   IL8↑, 3,   IL9↓, 1,   Imm↑, 1,   INF-γ↓, 1,   Inflam↓, 9,   IκB↑, 2,   p‑IκB↓, 1,   JAK↓, 1,   JAK2↓, 5,   M2 MC↑, 1,   MIP2↓, 1,   NF-kB↓, 43,   NF-kB↑, 2,   NK cell↑, 2,   p50↓, 2,   p65↓, 3,   PD-1↝, 1,   PD-L1↓, 9,   PD-L1↑, 1,   PGD2↓, 1,   PGE2↓, 4,   PSA↓, 8,   SOCS1↑, 1,   T-Cell↓, 1,   T-Cell↑, 4,   Th1 response↓, 1,   Th2↑, 1,   TNF-α↓, 19,   TNF-α↑, 2,   TNF-α∅, 1,   TNF-β↓, 1,   VitD↑, 1,  

Cellular Microenvironment

IM↓, 1,   pH↓, 2,   pH↝, 1,   TIM-3↑, 1,  

Synaptic & Neurotransmission

5HT↓, 1,   GABA↑, 1,   tau↓, 1,  

Protein Aggregation

NLRP3↓, 3,  

Hormonal & Nuclear Receptors

AR↓, 9,   CDK6↓, 1,   CYP19↓, 1,   DHT↑, 1,   ER(estro)↓, 2,   ERα/ESR1↓, 1,   ERα/ESR1↑, 1,   ERβ↑, 1,   FKBP5↓, 1,  

Drug Metabolism & Resistance

BioAv↓, 12,   BioAv↑, 9,   BioAv↝, 2,   BioAv∅, 1,   BioEnh↑, 1,   chemoR↓, 1,   ChemoSen↑, 39,   ChemoSen⇅, 1,   ChemoSen∅, 1,   Dose?, 3,   Dose↑, 2,   Dose↝, 19,   Dose∅, 16,   eff?, 1,   eff↓, 34,   eff↑, 113,   eff⇅, 1,   eff↝, 9,   eff∅, 1,   Half-Life↓, 1,   Half-Life↝, 5,   Half-Life∅, 3,   MDR1↓, 1,   P450↓, 1,   RadioS↑, 12,   selectivity↓, 2,   selectivity↑, 49,   TET2↑, 1,  

Clinical Biomarkers

ALAT↓, 3,   ALAT∅, 1,   ALP↓, 1,   AR↓, 9,   AST↓, 2,   AST∅, 1,   BG↓, 1,   BMD↓, 1,   BMPs↑, 1,   BP↓, 1,   BRAF↝, 1,   BRCA1↑, 1,   CA125↓, 1,   Calcium↑, 1,   CRP↓, 3,   CTC↓, 1,   E6↓, 2,   E7↓, 2,   EGFR↓, 16,   p‑EGFR↓, 2,   ERα/ESR1↓, 1,   ERα/ESR1↑, 1,   FOXM1↓, 1,   GutMicro↑, 7,   GutMicro↝, 2,   hTERT/TERT↓, 4,   IL6↓, 15,   Ki-67↓, 7,   Ki-67↑, 1,   KRAS↓, 1,   LDH↓, 4,   Myc↓, 1,   NOS2↓, 1,   PD-L1↓, 9,   PD-L1↑, 1,   PSA↓, 8,   TP53↑, 2,   VitD↑, 1,   XIST↓, 1,  

Functional Outcomes

AntiCan↑, 20,   AntiTum↑, 16,   cardioP↑, 6,   chemoP↑, 15,   ChemoSideEff↓, 14,   cognitive↑, 1,   hepatoP↑, 4,   K17↓, 1,   memory↑, 4,   neuroP↑, 6,   OS↓, 2,   OS↑, 23,   Pain↓, 1,   QoL↑, 3,   radioP↑, 6,   Remission↓, 1,   Remission↑, 3,   RenoP↑, 3,   Risk↓, 19,   Risk↝, 1,   Risk∅, 1,   toxicity↓, 5,   toxicity↝, 3,   toxicity∅, 5,   TumVol↓, 38,   TumW↓, 16,   UBE2C↓, 1,   Weight↓, 1,   Weight∅, 2,  

Infection & Microbiome

Bacteria↓, 3,   CD8+↑, 2,  
Total Targets: 804

Pathway results for Effect on Normal Cells:


Redox & Oxidative Stress

antiOx?, 1,   antiOx↓, 2,   antiOx↑, 53,   Bil↓, 1,   Catalase↑, 10,   Catalase↝, 1,   Copper↓, 1,   Fenton↓, 2,   Ferroptosis↓, 2,   Ferroptosis↑, 1,   GCLC↑, 1,   GPx↑, 12,   GPx4↓, 1,   GPx4↑, 2,   GSH↓, 1,   GSH↑, 20,   GSR↓, 1,   GSR↑, 3,   GSSG↓, 2,   GSTA1↑, 2,   GSTs↓, 1,   GSTs↑, 3,   H2O2↓, 1,   HDL↑, 1,   HO-1↓, 2,   HO-1↑, 16,   HO-1↝, 1,   Iron↓, 5,   Keap1↓, 1,   ox-Keap1↑, 1,   lipid-P?, 1,   lipid-P↓, 14,   lipid-P↑, 1,   MDA↓, 20,   MDA↑, 1,   MPO↑, 1,   MPOD↑, 3,   NOX4↓, 1,   NQO1↑, 4,   Nrf1?, 1,   NRF2↓, 1,   NRF2↑, 28,   Prx↑, 1,   Prx4∅, 1,   RNS↓, 1,   ROMO1↑, 1,   ROS↓, 80,   ROS↑, 9,   ROS⇅, 3,   ROS↝, 2,   ROS∅, 2,   RPM↑, 1,   selenoP↑, 2,   SOD↓, 2,   SOD↑, 19,   SOD↝, 1,   SOD1↑, 3,   SOD2↑, 1,   TAC↑, 2,   Thiols↑, 1,   Trx↑, 2,   Trx1↑, 1,   TrxR↑, 1,   UCPs↝, 1,   uricA↓, 1,   VitC↑, 1,  

Metal & Cofactor Biology

FTH1↑, 1,   FTL↓, 1,   IronCh↑, 6,   NCOA4↝, 1,   TfR1/CD71↓, 2,  

Mitochondria & Bioenergetics

ATP↑, 3,   ETC↓, 2,   ETC↝, 1,   Insulin↑, 1,   MMP↑, 5,   MMP⇅, 1,   OCR↑, 1,   PGC-1α↑, 2,  

Core Metabolism/Glycolysis

Acetyl-CoA↑, 1,   adiP↑, 1,   p‑AKT1↑, 1,   ALAT↓, 7,   AMPK↑, 3,   AMPK↝, 1,   BUN↓, 3,   cPLA2↓, 1,   CREB↑, 11,   CREB∅, 1,   p‑CREB↑, 2,   ECAR↓, 1,   FAO↑, 1,   FASN↓, 1,   glucose↓, 1,   GlucoseCon↓, 1,   GlucoseCon↑, 2,   Glycolysis↓, 2,   Glycolysis↑, 2,   HK2↓, 3,   lactateProd↓, 1,   LDH↓, 2,   LDHA↓, 1,   LDL↓, 5,   lipoGen↓, 1,   NAD↑, 1,   NADPH↓, 2,   NADPH↑, 2,   NH3↓, 1,   PFK↓, 1,   PFK1↓, 1,   PKM2↓, 3,   PPARα↑, 1,   PPARγ↑, 2,   SIRT1↑, 11,   SIRT2↑, 1,   SREBP1↓, 1,  

Cell Death

Akt↓, 1,   Akt↑, 4,   Akt↝, 1,   p‑Akt↓, 2,   p‑Akt↑, 4,   Apoptosis↓, 12,   Bax:Bcl2↓, 2,   Bcl-2↑, 1,   Casp1↓, 1,   Casp12↓, 1,   Casp3↓, 7,   Casp3↑, 1,   Casp9↓, 1,   Cyt‑c↓, 1,   Ferroptosis↓, 2,   Ferroptosis↑, 1,   GRP58↓, 1,   HEY1↑, 1,   HGF/c-Met↑, 1,   iNOS↓, 12,   iNOS↑, 2,   JNK↑, 1,   MAPK↓, 4,   MAPK↑, 1,   MAPK↝, 1,   necrosis↓, 2,   p38↓, 1,   p38↑, 1,   p‑p38↓, 2,   Pyro?, 1,  

Kinase & Signal Transduction

Sp1/3/4↓, 1,  

Transcription & Epigenetics

Ach↑, 3,   AntiThr↑, 3,   p‑cJun↓, 1,   other?, 2,   other↓, 5,   other↑, 13,   other↝, 14,  

Protein Folding & ER Stress

CHOP↓, 3,   ER Stress↓, 9,   GRP78/BiP↓, 4,   HSP27↑, 1,   HSPs↓, 1,   HSPs↑, 2,   PERK↓, 2,   UPR↓, 1,   XBP-1↓, 2,  

Autophagy & Lysosomes

Beclin-1↑, 1,   LC3‑Ⅱ/LC3‑Ⅰ↑, 1,   p62↓, 1,  

DNA Damage & Repair

DNAdam↓, 1,   DNArepair↑, 1,   P53↓, 2,  

Cell Cycle & Senescence

E2Fs↑, 2,   P21↓, 1,  

Proliferation, Differentiation & Cell State

EMT↓, 2,   EMT↑, 1,   ERK↓, 1,   ERK↑, 6,   p‑ERK↓, 2,   FGF↑, 3,   p‑GSK‐3β↑, 1,   HDAC↓, 3,   HDAC2↓, 1,   IGF-1↑, 1,   IGF-1R↓, 1,   mTOR↓, 2,   mTOR↑, 1,   mTOR↝, 2,   p‑mTOR↓, 1,   neuroG↑, 2,   NOTCH↑, 1,   OCT4↓, 1,   PI3K↓, 1,   PI3K↑, 4,   PI3K↝, 1,   Src↓, 1,   STAT↓, 1,   STAT3?, 1,   STAT3↓, 1,   TumCG∅, 1,   Wnt↑, 1,  

Migration

5LO↓, 1,   AntiAg↑, 18,   AP-1↓, 2,   APP↓, 1,   mt-ATPase↑, 1,   Ca+2↓, 3,   Ca+2↑, 4,   Ca+2↝, 2,   cal2↓, 2,   CEA↓, 1,   E-cadherin↑, 3,   F-actin↓, 1,   FAK↑, 1,   ITGB1↑, 1,   MMP13↓, 1,   MMP2↓, 3,   MMP2↑, 2,   MMP9↓, 1,   MMP9↑, 3,   MMPs↑, 2,   N-cadherin↓, 1,   PDGF↓, 1,   PDGF↑, 1,   PKA↑, 1,   PKCδ?, 1,   ROCK1↓, 1,   Sema3A/PlexinA1↑, 1,   SMAD4↑, 1,   SMAD5↑, 1,   Smad7↑, 1,   Snail↓, 1,   TGF-β↓, 4,   TGF-β↑, 2,   TIMP1↓, 1,   TIMP1↑, 2,   TumCMig↓, 1,   Vim↓, 3,   ZO-1↑, 1,   α-SMA↓, 4,   β-catenin/ZEB1↓, 1,   β-catenin/ZEB1↑, 1,  

Angiogenesis & Vasculature

angioG↓, 2,   angioG↑, 6,   ATF4↓, 1,   EGFR↓, 1,   eNOS↓, 1,   eNOS↑, 1,   Hif1a↓, 2,   Hif1a↑, 4,   LOX1↓, 1,   NO↓, 7,   NO↑, 1,   PDGFR-BB↓, 1,   TXA2↓, 2,   VEGF↓, 3,   VEGF↑, 9,   VEGFR2↑, 1,  

Barriers & Transport

BBB↑, 9,   BBB↝, 1,   GLUT4↑, 1,   MRP↓, 1,   OATPs↓, 1,   P-gp↓, 1,  

Immune & Inflammatory Signaling

ASC?, 1,   COX1↓, 2,   COX2↓, 12,   CRP↓, 1,   IFN-γ↓, 4,   IL1↓, 2,   IL1↑, 1,   IL10↓, 2,   IL10↑, 2,   IL17↓, 2,   IL18↓, 1,   IL1β↓, 16,   IL2↓, 2,   IL2↑, 1,   IL22↓, 1,   IL4↓, 2,   IL4↑, 3,   IL5↓, 1,   IL6↓, 18,   IL6↑, 1,   IL8↓, 8,   Inflam↓, 73,   Inflam↑, 1,   JAK↓, 2,   JAK2↓, 1,   JAK2↑, 1,   MCP1↓, 2,   MCP1↑, 1,   NF-kB↓, 28,   NF-kB↑, 1,   PGE2↓, 8,   RANTES↓, 1,   TLR4↓, 1,   TNF-α↓, 34,   TNF-α↑, 1,   VitD↑, 2,  

Cellular Microenvironment

NOX↓, 2,  

Synaptic & Neurotransmission

5HT↑, 6,   AChE↓, 6,   BDNF↑, 66,   BDNF↝, 1,   BDNF∅, 4,   ChAT↑, 2,   MAOA↝, 1,   PSD95↑, 5,   tau↓, 1,   p‑tau↓, 3,   TrkB↓, 1,   TrkB↑, 10,  

Protein Aggregation

Aβ↓, 5,   BACE↓, 2,   NLRP3↓, 5,   NLRP3↑, 1,  

Hormonal & Nuclear Receptors

cortisol↑, 1,   DHT↑, 1,   SHBG↓, 1,  

Drug Metabolism & Resistance

BioAv?, 1,   BioAv↓, 13,   BioAv↑, 28,   BioAv↝, 9,   BioEnh↑, 3,   Dose?, 1,   Dose↓, 1,   Dose↝, 14,   Dose∅, 2,   eff↓, 2,   eff↑, 27,   eff↝, 2,   Half-Life?, 1,   Half-Life↓, 3,   Half-Life↑, 6,   Half-Life↝, 1,   Half-Life∅, 1,  

Clinical Biomarkers

ALAT↓, 7,   ALP↓, 3,   ascitic↓, 1,   AST↓, 6,   BG↓, 1,   Bil↓, 1,   BMD↑, 5,   BMPs↓, 1,   BMPs↑, 1,   BP↓, 2,   CEA↓, 1,   creat↓, 7,   CRP↓, 1,   EGFR↓, 1,   GutMicro↑, 6,   GutMicro↝, 2,   hs-CRP↓, 1,   IL6↓, 18,   IL6↑, 1,   LDH↓, 2,   VitD↑, 2,  

Functional Outcomes

AntiAge↑, 1,   AntiCan↑, 3,   cardioP↑, 12,   chemoP↑, 3,   cognitive↑, 29,   cognitive∅, 1,   GFR↑, 1,   hepatoP↓, 1,   hepatoP↑, 20,   memory↑, 29,   Mood↑, 15,   motorD↑, 5,   neuroP↑, 35,   OS↑, 1,   radioP↑, 4,   RenoP↓, 1,   RenoP↑, 11,   Risk↓, 3,   Risk↝, 1,   Sleep↑, 1,   Strength↑, 1,   toxicity↓, 26,   toxicity↝, 2,   toxicity∅, 8,   Weight↓, 1,   Wound Healing↑, 4,  

Infection & Microbiome

Bacteria↓, 12,   Sepsis↓, 2,  
Total Targets: 383

Query results interpretion may depend on "conditions" listed in the research papers.
Such Conditions may include : 
  -low or high Dose
  -format for product, such as nano of lipid formations
  -different cell line effects
  -synergies with other products 
  -if effect was for normal or cancerous cells
Filter Conditions: Pro/AntiFlg:%  IllCat:%  CanType:0  Cells:%  prod#:%  Target#:%  State#:%  Dir#:%
wNotes=0 sortOrder:rid,rpid

 

Home Page