| Hepatocellular Carcinoma |
| 2424- | 2DG, | SRF, | The combination of the glycolysis inhibitor 2-DG and sorafenib can be effective against sorafenib-tolerant persister cancer cells |
| - | in-vitro, | HCC, | Hep3B | - | in-vitro, | HCC, | HUH7 |
| 2423- | 2DG, | SRF, | 2-Deoxyglucose and sorafenib synergistically suppress the proliferation and motility of hepatocellular carcinoma cells |
| - | in-vitro, | HCC, | NA |
| 234- | AL, | Allicin Induces Anti-human Liver Cancer Cells through the p53 Gene Modulating Apoptosis and Autophagy |
| - | in-vitro, | HCC, | Hep3B |
| 2659- | AL, | Allicin inhibits spontaneous and TNF-α induced secretion of proinflammatory cytokines and chemokines from intestinal epithelial cells |
| - | in-vitro, | HCC, | HT29 | - | in-vitro, | HCC, | Caco-2 |
| 276- | ALA, | Alpha lipoic acid diminishes migration and invasion in hepatocellular carcinoma cells through an AMPK-p53 axis |
| - | in-vitro, | HCC, | HepG2 | - | in-vitro, | HCC, | Hep3B |
| 264- | ALA, | α-Lipoic acid induces Endoplasmic Reticulum stress-mediated apoptosis in hepatoma cells |
| - | in-vitro, | HCC, | FaO |
| 586- | Api, | 5-FU, | 5-Fluorouracil combined with apigenin enhances anticancer activity through mitochondrial membrane potential (ΔΨm)-mediated apoptosis in hepatocellular carcinoma |
| - | in-vivo, | HCC, | NA |
| 938- | Api, | doxoR, | Apigenin and hesperidin augment the toxic effect of doxorubicin against HepG2 cells |
| - | vitro+vivo, | HCC, | HepG2 |
| 2586- | Api, | doxoR, | Apigenin sensitizes doxorubicin-resistant hepatocellular carcinoma BEL-7402/ADM cells to doxorubicin via inhibiting PI3K/Akt/Nrf2 pathway |
| - | in-vitro, | HCC, | Bel-7402 |
| 1027- | AS, | Astragalus polysaccharide (APS) attenuated PD-L1-mediated immunosuppression via the miR-133a-3p/MSN axis in HCC |
| - | vitro+vivo, | HCC, | SMMC-7721 cell |
| 3174- | Ash, | Withaferin A Acts as a Novel Regulator of Liver X Receptor-α in HCC |
| - | in-vitro, | HCC, | HepG2 | - | in-vitro, | HCC, | Hep3B | - | in-vitro, | HCC, | HUH7 |
| 3172- | Ash, | Implications of Withaferin A for the metastatic potential and drug resistance in hepatocellular carcinoma cells via Nrf2-mediated EMT and ferroptosis |
| - | in-vitro, | HCC, | HepG2 | - | in-vitro, | Nor, | HL7702 |
| 1029- | Ba, | BA, | Baicalein and baicalin promote antitumor immunity by suppressing PD-L1 expression in hepatocellular carcinoma cells |
| - | vitro+vivo, | HCC, | NA |
| 2600- | Ba, | Baicalein Induces Apoptosis and Autophagy via Endoplasmic Reticulum Stress in Hepatocellular Carcinoma Cells |
| - | in-vitro, | HCC, | SMMC-7721 cell | - | in-vitro, | HCC, | Bel-7402 |
| 2606- | Ba, | Baicalein: A review of its anti-cancer effects and mechanisms in Hepatocellular Carcinoma |
| - | Review, | HCC, | NA |
| 2608- | Ba, | Baicalein sensitizes hepatocellular carcinoma cells to 5-FU and Epirubicin by activating apoptosis and ameliorating P-glycoprotein activity |
| - | in-vitro, | HCC, | Bel-7402 |
| 2619- | Ba, | Tumor cell membrane-coated continuous electrochemical sensor for GLUT1 inhibitor screening |
| - | in-vitro, | HCC, | HepG2 | - | in-vitro, | GBM, | U87MG | - | in-vitro, | BC, | MGC803 | - | in-vitro, | Lung, | A549 |
| 2479- | Ba, | Baicalein Overcomes Tumor Necrosis Factor–Related Apoptosis-Inducing Ligand Resistance via Two Different Cell-Specific Pathways in Cancer Cells but not in Normal Cells |
| - | in-vitro, | HCC, | SW480 | - | in-vitro, | Pca, | PC3 |
| 2706- | BBR, | Berberine Inhibits Growth of Liver Cancer Cells by Suppressing Glutamine Uptake |
| - | in-vitro, | HCC, | Hep3B | - | in-vitro, | HCC, | Bel-7402 | - | in-vivo, | NA, | NA |
| 2709- | BBR, | Berberine inhibits the glycolysis and proliferation of hepatocellular carcinoma cells by down-regulating HIF-1α |
| - | in-vitro, | HCC, | HepG2 |
| 2756- | BetA, | Betulinic acid inhibits growth of hepatoma cells through activating the NCOA4-mediated ferritinophagy pathway |
| - | in-vitro, | HCC, | HUH7 | - | in-vitro, | HCC, | H1299 |
| 725- | Bor, | Boric acid exert anti-cancer effect in poorly differentiated hepatocellular carcinoma cells via inhibition of AKT signaling pathway |
| - | in-vitro, | HCC, | NA |
| 744- | Bor, | Borax affects cellular viability by inducing ER stress in hepatocellular carcinoma cells by targeting SLC12A5 |
| - | in-vitro, | HCC, | HepG2 | - | in-vitro, | Nor, | HL7702 |
| 1264- | CAP, | Capsaicin modulates proliferation, migration, and activation of hepatic stellate cells |
| - | in-vitro, | HCC, | NA |
| 2018- | CAP, | MF, | Capsaicin: Effects on the Pathogenesis of Hepatocellular Carcinoma |
| - | Review, | HCC, | NA |
| 4479- | Chit, | Chitosan nanoparticles triggered the induction of ROS-mediated cytoprotective autophagy in cancer cells |
| - | in-vitro, | Cerv, | HeLa | - | in-vitro, | HCC, | SMMC-7721 cell |
| 1033- | CHr, | Chrysin inhibits hepatocellular carcinoma progression through suppressing programmed death ligand 1 expression |
| - | vitro+vivo, | HCC, | NA |
| 1144- | CHr, | 8-bromo-7-methoxychrysin-induced apoptosis of hepatocellular carcinoma cells involves ROS and JNK |
| - | in-vitro, | HCC, | HepG2 | - | in-vitro, | HCC, | Bel-7402 | - | in-vitro, | Nor, | HL7702 |
| 1143- | CHr, | Chrysin inhibited tumor glycolysis and induced apoptosis in hepatocellular carcinoma by targeting hexokinase-2 |
| - | in-vitro, | HCC, | HepG2 | - | in-vivo, | NA, | NA | - | in-vitro, | HCC, | HepG3 | - | in-vitro, | HCC, | HUH7 |
| 2591- | CHr, | doxoR, | Chrysin enhances sensitivity of BEL-7402/ADM cells to doxorubicin by suppressing PI3K/Akt/Nrf2 and ERK/Nrf2 pathway |
| - | in-vitro, | HCC, | Bel-7402 |
| 2820- | CUR, | Hepatoprotective Effect of Curcumin on Hepatocellular Carcinoma Through Autophagic and Apoptic Pathways |
| - | in-vitro, | HCC, | HepG2 |
| 5008- | DSF, | Cu, | Overcoming the compensatory elevation of NRF2 renders hepatocellular carcinoma cells more vulnerable to disulfiram/copper-induced ferroptosis |
| - | in-vitro, | HCC, | NA |
| - | in-vitro, | HCC, | NA | - | in-vivo, | NA, | NA |
| 655- | EGCG, | A new molecular mechanism underlying the EGCG-mediated autophagic modulation of AFP in HepG2 cells |
| - | in-vitro, | HCC, | HepG2 |
| 3202- | EGCG, | Epigallocatechin-3-gallate enhances ER stress-induced cancer cell apoptosis by directly targeting PARP16 activity |
| - | in-vitro, | Cerv, | HeLa | - | in-vitro, | HCC, | QGY-7703 |
| 1320- | EMD, | SRF, | Emodin Sensitizes Hepatocellular Carcinoma Cells to the Anti-Cancer Effect of Sorafenib through Suppression of Cholesterol Metabolism |
| - | vitro+vivo, | HCC, | HepG2 | - | in-vitro, | HCC, | Hep3B | - | in-vitro, | HCC, | HUH7 | - | vitro+vivo, | Hepat, | SK-HEP-1 |
| 2422- | EMD, | Anti-Cancer Effects of Emodin on HepG2 Cells as Revealed by 1H NMR Based Metabolic Profiling |
| - | in-vitro, | HCC, | HepG2 |
| 1954- | GamB, | Gambogic acid induces apoptosis in hepatocellular carcinoma SMMC-7721 cells by targeting cytosolic thioredoxin reductase |
| - | in-vitro, | HCC, | SMMC-7721 cell |
| 826- | GAR, | Inhibition of STAT3 dimerization and acetylation by garcinol suppresses the growth of human hepatocellular carcinoma in vitro and in vivo |
| - | vitro+vivo, | HCC, | HepG2 | - | vitro+vivo, | Liver, | HUH7 |
| 4642- | HT, | Hydroxytyrosol, a natural molecule from olive oil, suppresses the growth of human hepatocellular carcinoma cells via inactivating AKT and nuclear factor-kappa B pathways |
| - | in-vitro, | HCC, | HepG2 | - | NA, | NA, | Hep3B | - | NA, | NA, | SK-HEP-1 |
| 1168- | IVM, | SRF, | Ivermectin synergizes sorafenib in hepatocellular carcinoma via targeting multiple oncogenic pathways |
| - | in-vitro, | HCC, | NA |
| 2346- | LT, | Luteolin suppressed PKM2 and promoted autophagy for inducing the apoptosis of hepatocellular carcinoma cells |
| - | in-vitro, | HCC, | HepG2 |
| 3276- | Lyco, | Lycopene modulates cellular proliferation, glycolysis and hepatic ultrastructure during hepatocellular carcinoma |
| - | in-vivo, | HCC, | NA |
| 1196- | MAG, | 2-O-Methylmagnolol, a Magnolol Derivative, Suppresses Hepatocellular Carcinoma Progression via Inhibiting Class I Histone Deacetylase Expression |
| - | in-vitro, | HCC, | NA |
| 2486- | metroC, | capec, | Sustained complete response of advanced hepatocellular carcinoma with metronomic capecitabine: a report of three cases |
| - | Case Report, | HCC, | NA |
| 2487- | metroC, | Metronomic Chemotherapy: Possible Clinical Application in Advanced Hepatocellular Carcinoma |
| - | Review, | HCC, | NA |
| 2488- | metroC, | Metronomic S-1 Chemotherapy and Vandetanib: An Efficacious and Nontoxic Treatment for Hepatocellular Carcinoma |
| - | in-vitro, | HCC, | HUH7 | - | in-vivo, | HCC, | NA |
| 2489- | metroC, | capec, | Long-lasting response with metronomic capecitabine in advanced hepatocellular carcinoma |
| - | Case Report, | HCC, | NA |
| 2490- | metroC, | Durable complete response of hepatocellular carcinoma after metronomic capecitabine |
| - | Case Report, | HCC, | NA |
| 656- | MNPs, | MF, | Effects of combined delivery of extremely low frequency electromagnetic field and magnetic Fe3O4 nanoparticles on hepatic cell lines |
| - | in-vitro, | HCC, | HepG2 | - | in-vitro, | Nor, | HL7702 |
| 1267- | NCL, | Niclosamide suppresses migration of hepatocellular carcinoma cells and downregulates matrix metalloproteinase-9 expression |
| - | in-vitro, | HCC, | NA |
| 2396- | PACs, | PKM2 is the target of proanthocyanidin B2 during the inhibition of hepatocellular carcinoma |
| - | in-vitro, | HCC, | HCCLM3 | - | in-vitro, | HCC, | SMMC-7721 cell | - | in-vitro, | HCC, | Bel-7402 | - | in-vitro, | HCC, | HUH7 | - | in-vitro, | HCC, | HepG2 | - | in-vitro, | Nor, | L02 |
| 2421- | PB, | Sodium butyrate inhibits aerobic glycolysis of hepatocellular carcinoma cells via the c‐myc/hexokinase 2 pathway |
| - | in-vitro, | HCC, | HCCLM3 | - | in-vivo, | NA, | NA | - | in-vitro, | HCC, | Bel-7402 | - | in-vitro, | HCC, | SMMC-7721 cell | - | in-vitro, | Nor, | L02 |
| - | in-vitro, | HCC, | HepG2 |
| 1939- | PL, | Piperlongumine selectively kills hepatocellular carcinoma cells and preferentially inhibits their invasion via ROS-ER-MAPKs-CHOP |
| - | in-vitro, | HCC, | HepG2 | - | in-vitro, | HCC, | HUH7 | - | in-vivo, | NA, | NA |
| 1944- | PL, | Piperlongumine, a Novel TrxR1 Inhibitor, Induces Apoptosis in Hepatocellular Carcinoma Cells by ROS-Mediated ER Stress |
| - | in-vitro, | HCC, | HUH7 | - | in-vitro, | HCC, | HepG2 |
| 4966- | PSO, | Psoralidin induces pyroptosis in both tumor cells and macrophages as well as enhances nature killer cell cytotoxicity to suppress hepatocellular carcinoma |
| - | vitro+vivo, | HCC, | HepG2 |
| 4696- | PTS, | BlueBerry Isolate, Pterostilbene, Functions as a Potential Anticancer Stem Cell Agent in Suppressing Irradiation-Mediated Enrichment of Hepatoma Stem Cells |
| - | in-vitro, | HCC, | NA |
| 2342- | QC, | Quercetin Inhibits the Proliferation of Glycolysis-Addicted HCC Cells by Reducing Hexokinase 2 and Akt-mTOR Pathway |
| - | in-vitro, | HCC, | Bel-7402 | - | in-vitro, | HCC, | SMMC-7721 cell | - | in-vivo, | NA, | NA |
| 2439- | RES, | By reducing hexokinase 2, resveratrol induces apoptosis in HCC cells addicted to aerobic glycolysis and inhibits tumor growth in mice |
| - | in-vitro, | HCC, | HCCLM3 | - | in-vitro, | Nor, | L02 | - | in-vitro, | HCC, | SMMC-7721 cell | - | in-vitro, | HCC, | Bel-7402 | - | in-vitro, | HCC, | HUH7 |
| 2988- | RES, | The Antimetastatic Effects of Resveratrol on Hepatocellular Carcinoma through the Downregulation of a Metastasis-Associated Protease by SP-1 Modulation |
| - | in-vitro, | HCC, | HUH7 |
| 3027- | RosA, | Rosmarinic acid inhibits proliferation and invasion of hepatocellular carcinoma cells SMMC 7721 via PI3K/AKT/mTOR signal pathway |
| - | in-vitro, | HCC, | SMMC-7721 cell |
| 1134- | SANG, | Sanguinarine inhibits epithelial–mesenchymal transition via targeting HIF-1α/TGF-β feed-forward loop in hepatocellular carcinoma |
| - | in-vitro, | HCC, | HepG2 | - | in-vitro, | HCC, | Hep3B | - | in-vitro, | HCC, | HUH7 |
| 4726- | Se, | Oxy, | Oxygen therapy accelerates apoptosis induced by selenium compounds via regulating Nrf2/MAPK signaling pathway in hepatocellular carcinoma |
| - | in-vivo, | HCC, | NA |
| 3181- | SFN, | Effect of sulforaphane on protein expression of Bip/GRP78 and caspase-12 in human hapetocelluar carcinoma HepG-2 cells |
| - | in-vitro, | HCC, | HepG2 |
| 2357- | SK, | GTPBP4 promotes hepatocellular carcinoma progression and metastasis via the PKM2 dependent glucose metabolism |
| - | Study, | HCC, | NA | - | in-vivo, | NA, | NA |
| 2226- | SK, | Shikonin, a Chinese plant-derived naphthoquinone, induces apoptosis in hepatocellular carcinoma cells through reactive oxygen species: A potential new treatment for hepatocellular carcinoma |
| - | in-vitro, | HCC, | HUH7 | - | in-vitro, | HCC, | Bel-7402 |
| 2224- | SK, | Shikonin induces apoptosis and autophagy via downregulation of pyrroline-5-carboxylate reductase1 in hepatocellular carcinoma cells |
| - | in-vitro, | HCC, | SMMC-7721 cell | - | in-vitro, | HCC, | HUH7 | - | in-vitro, | HCC, | HepG2 |
| 2418- | SK, | Experimental Study of Hepatocellular Carcinoma Treatment by Shikonin Through Regulating PKM2 |
| - | in-vitro, | HCC, | SMMC-7721 cell | - | in-vitro, | HCC, | HUH7 | - | in-vitro, | HCC, | HepG2 |
| 2190- | SK, | Shikonin exerts antitumor activity by causing mitochondrial dysfunction in hepatocellular carcinoma through PKM2-AMPK-PGC1α signaling pathway |
| - | in-vitro, | HCC, | HCCLM3 |
| 2186- | SK, | Shikonin differentially regulates glucose metabolism via PKM2 and HIF1α to overcome apoptosis in a refractory HCC cell line |
| - | in-vitro, | HCC, | HepG2 | - | in-vitro, | HCC, | HCCLM3 |
| 339- | SNP, | Cancer cell specific cytotoxic potential of the silver nanoparticles synthesized using the endophytic fungus, Penicillium citrinum CGJ-C2 |
| - | in-vitro, | BC, | MCF-7 | - | in-vitro, | Melanoma, | A431 | - | in-vitro, | HCC, | HepG2 |
| 2101- | TQ, | HDAC inhibition by Nigella sativa L. sprouts extract in hepatocellular carcinoma: an approach to study anti-cancer potential |
| - | Study, | HCC, | NA |
| 2110- | TQ, | Nigella sativa seed oil suppresses cell proliferation and induces ROS dependent mitochondrial apoptosis through p53 pathway in hepatocellular carcinoma cells |
| - | in-vitro, | HCC, | HepG2 | - | in-vitro, | BC, | MCF-7 | - | in-vitro, | Lung, | A549 | - | in-vitro, | Nor, | HEK293 |
| 1215- | VitC, | immuno, | Metabolomics reveals ascorbic acid inhibits ferroptosis in hepatocytes and boosts the effectiveness of anti-PD1 immunotherapy in hepatocellular carcinoma |
| - | ex-vivo, | HCC, | NA | - | in-vivo, | HCC, | NA |
| 2485- | VitC, | TACE, | High-Dose Vitamin C Promotes Regression of Multiple Pulmonary Metastases Originating from Hepatocellular Carcinoma |
| - | Case Report, | HCC, | NA |
| 1213- | VitK2, | Vitamin K2 Inhibits Hepatocellular Carcinoma Cell Proliferation by Binding to 17β-Hydroxysteroid Dehydrogenase 4 |
| - | in-vitro, | HCC, | HepG2 |
| 1211- | VitK2, | Mechanisms of PKC-Mediated Enhancement of HIF-1α Activity and its Inhibition by Vitamin K2 in Hepatocellular Carcinoma Cells |
| - | in-vitro, | HCC, | HUH7 |
| 5015- | Xan, | PEITC, | Comparison of the Impact of Xanthohumol and Phenethyl Isothiocyanate and Their Combination on Nrf2 and NF-κB Pathways in HepG2 Cells In Vitro and Tumor Burden In Vivo |
| - | in-vitro, | HCC, | HepG2 |
Query results interpretion may depend on "conditions" listed in the research papers. Such Conditions may include : -low or high Dose -format for product, such as nano of lipid formations -different cell line effects -synergies with other products -if effect was for normal or cancerous cells
Filter Conditions: Pro/AntiFlg:% IllCat:% CanType:10 Cells:% prod#:% Target#:% State#:% Dir#:%
wNotes=0 sortOrder:rid,rpid