| Liver Cancer |
| 4442- | , | Anticancer and Hepatoprotective Role of Selenium Nanoparticles against |
| - | in-vivo, | Liver, | HepG2 | - | NA, | Nor, | NA |
| 233- | AL, | 5-FU, | Allicin sensitizes hepatocellular cancer cells to anti-tumor activity of 5-fluorouracil through ROS-mediated mitochondrial pathway |
| - | in-vivo, | Liver, | NA |
| 250- | AL, | Allicin Induces p53-Mediated Autophagy in Hep G2 Human Liver Cancer Cells |
| - | in-vitro, | Liver, | HepG2 |
| 259- | ALA, | Increased ROS generation and p53 activation in alpha-lipoic acid-induced apoptosis of hepatoma cells |
| - | in-vitro, | Liver, | HepG2 | - | in-vitro, | Liver, | FaO |
| 1539- | Api, | LT, | Dietary flavones counteract phorbol 12-myristate 13-acetate-induced SREBP-2 processing in hepatic cells |
| - | in-vitro, | Liver, | HepG2 |
| 1558- | Api, | Preparation, characterization and antitumor activity evaluation of apigenin nanoparticles by the liquid antisolvent precipitation technique |
| - | in-vitro, | Liver, | HepG2 |
| 3384- | ART/DHA, | Dihydroartemisinin triggers ferroptosis in primary liver cancer cells by promoting and unfolded protein response‑induced upregulation of CHAC1 expression |
| - | in-vitro, | Liver, | Hep3B | - | in-vitro, | Liver, | HUH7 | - | in-vitro, | Liver, | HepG2 |
| 2320- | ART/DHA, | Dihydroartemisinin Inhibits the Proliferation of Leukemia Cells K562 by Suppressing PKM2 and GLUT1 Mediated Aerobic Glycolysis |
| - | in-vitro, | AML, | K562 | - | in-vitro, | Liver, | HepG2 |
| 2578- | ART/DHA, | RES, | Synergic effects of artemisinin and resveratrol in cancer cells |
| - | in-vitro, | Liver, | HepG2 | - | in-vitro, | Cerv, | HeLa |
| - | in-vitro, | Liver, | HUH7 | - | in-vivo, | Liver, | HUH7 |
| 1180- | Ash, | Withaferin A Inhibits Liver Cancer Tumorigenesis by Suppressing Aerobic Glycolysis through the p53/IDH1/HIF-1α Signaling Axis |
| - | in-vitro, | Liver, | HepG2 |
| 2022- | BBR, | GoldNP, | Rad, | Berberine-loaded Janus gold mesoporous silica nanocarriers for chemo/radio/photothermal therapy of liver cancer and radiation-induced injury inhibition |
| - | in-vitro, | Liver, | SMMC-7721 cell | - | in-vitro, | Nor, | HL7702 |
| 1405- | BBR, | Chit, | Chitosan/alginate nanogel potentiate berberine uptake and enhance oxidative stress mediated apoptotic cell death in HepG2 cells |
| - | in-vitro, | Liver, | HepG2 |
| 2707- | BBR, | Berberine exerts its antineoplastic effects by reversing the Warburg effect via downregulation of the Akt/mTOR/GLUT1 signaling pathway |
| - | in-vitro, | Liver, | HepG2 | - | in-vitro, | BC, | MCF-7 |
| 2680- | BBR, | PDT, | Photodynamic therapy-triggered nuclear translocation of berberine from mitochondria leads to liver cancer cell death |
| - | in-vitro, | Liver, | HUH7 |
| 2683- | BBR, | Berberine reduces endoplasmic reticulum stress and improves insulin signal transduction in Hep G2 cells |
| - | in-vitro, | Liver, | HepG2 |
| 2762- | BetA, | Targeting Effect of Betulinic Acid Liposome Modified by Hyaluronic Acid on Hepatoma Cells In Vitro |
| - | in-vitro, | Liver, | HepG2 |
| 727- | Bor, | RSL3, | erastin, | Enhancement of ferroptosis by boric acid and its potential use as chemosensitizer in anticancer chemotherapy |
| - | in-vitro, | Liver, | HepG2 |
| 764- | Bor, | Effect of Tumor Microenvironment on Selective Uptake of Boric Acid in HepG2 Human Hepatoma Cells |
| - | in-vitro, | Liver, | HepG2 |
| 766- | Bor, | In vitro effects of boric acid on human liver hepatoma cell line (HepG2) at the half-maximal inhibitory concentration |
| - | in-vitro, | Liver, | HepG2 |
| 1054- | CEL, | Celecoxib inhibited activation of NF-κB and expression of NF-κB P65 protein in HepG2 cells |
| - | in-vitro, | Liver, | HepG2 |
| 4482- | Chit, | Hyaluronic acid-coated chitosan nanoparticles induce ROS-mediated tumor cell apoptosis and enhance antitumor efficiency by targeted drug delivery via CD44 |
| - | in-vitro, | Lung, | A549 | - | in-vitro, | Liver, | HepG2 |
| 2795- | CHr, | Combination of chrysin and cisplatin promotes the apoptosis of Hep G2 cells by up-regulating p53 |
| - | in-vitro, | Liver, | HepG2 |
| 1586- | Citrate, | Extracellular Citrate Is a Trojan Horse for Cancer Cells |
| - | in-vitro, | Liver, | HepG2 |
| 1602- | Cu, | A simultaneously GSH-depleted bimetallic Cu(ii) complex for enhanced chemodynamic cancer therapy† |
| - | in-vitro, | BC, | MCF-7 | - | in-vitro, | BC, | 4T1 | - | in-vitro, | Lung, | A549 | - | in-vitro, | Liver, | HepG2 |
| 2308- | CUR, | Counteracting Action of Curcumin on High Glucose-Induced Chemoresistance in Hepatic Carcinoma Cells |
| - | in-vitro, | Liver, | HepG2 |
| 2808- | CUR, | Iron chelation by curcumin suppresses both curcumin-induced autophagy and cell death together with iron overload neoplastic transformation |
| - | in-vitro, | Liver, | HUH7 |
| 468- | CUR, | 5-FU, | Gut microbiota enhances the chemosensitivity of hepatocellular carcinoma to 5-fluorouracil in vivo by increasing curcumin bioavailability |
| - | vitro+vivo, | Liver, | HepG2 | - | vitro+vivo, | Liver, | 402 | - | vitro+vivo, | Liver, | Bel7 |
| 465- | CUR, | Curcumin inhibits the growth of liver cancer by impairing myeloid-derived suppressor cells in murine tumor tissues |
| - | vitro+vivo, | Liver, | HepG2 | - | vitro+vivo, | Liver, | HUH7 | - | vitro+vivo, | Liver, | MHCC-97H |
| 466- | CUR, | Curcumin circumvent lactate-induced chemoresistance in hepatic cancer cells through modulation of hydroxycarboxylic acid receptor-1 |
| - | in-vitro, | Liver, | HepG2 | - | in-vitro, | Liver, | HuT78 |
| 467- | CUR, | Curcumin inhibits liver cancer by inhibiting DAMP molecule HSP70 and TLR4 signaling |
| - | in-vitro, | Liver, | HepG2 |
| 1006- | CUR, | The effect of Curcuma longa extract and its active component (curcumin) on gene expression profiles of lipid metabolism pathway in liver cancer cell line (HepG2) |
| - | in-vitro, | Liver, | HepG2 |
| 481- | CUR, | CHr, | Api, | Flavonoid-induced glutathione depletion: Potential implications for cancer treatment |
| - | in-vitro, | Liver, | A549 | - | in-vitro, | Pca, | PC3 | - | in-vitro, | AML, | HL-60 |
| 4454- | DFE, | Cytostatic and Anti-tumor Potential of Ajwa Date Pulp against Human Hepatocellular Carcinoma HepG2 Cells |
| - | in-vitro, | Liver, | HepG2 |
| 1608- | EA, | Ellagic Acid from Hull Blackberries: Extraction, Purification, and Potential Anticancer Activity |
| - | in-vitro, | Cerv, | HeLa | - | in-vitro, | Liver, | HepG2 | - | in-vitro, | BC, | MCF-7 | - | in-vitro, | Lung, | A549 | - | in-vitro, | Nor, | HUVECs |
| 1620- | EA, | Rad, | Radiosensitizing effect of ellagic acid on growth of Hepatocellular carcinoma cells: an in vitro study |
| - | in-vitro, | Liver, | HepG2 |
| 21- | EGCG, | Tea polyphenols EGCG and TF restrict tongue and liver carcinogenesis simultaneously induced by N-nitrosodiethylamine in mice |
| - | in-vivo, | Liver, | NA |
| 20- | EGCG, | Potential Therapeutic Targets of Epigallocatechin Gallate (EGCG), the Most Abundant Catechin in Green Tea, and Its Role in the Therapy of Various Types of Cancer |
| - | in-vivo, | Liver, | NA | - | in-vivo, | Tong, | NA |
| 3241- | EGCG, | Epigallocatechin gallate triggers apoptosis by suppressing de novo lipogenesis in colorectal carcinoma cells |
| - | in-vitro, | CRC, | HCT116 | - | in-vitro, | CRC, | HT29 | - | in-vitro, | Liver, | HepG2 | - | in-vitro, | Liver, | HUH7 |
| 950- | EMD, | Emodin Decreases Hepatic Hypoxia-Inducible Factor-1[Formula: see text] by Inhibiting its Biosynthesis |
| - | in-vivo, | NA, | NA | - | in-vitro, | Liver, | HepG2 |
| 2859- | FIS, | The Natural Flavonoid Fisetin Inhibits Cellular Proliferation of Hepatic, Colorectal, and Pancreatic Cancer Cells through Modulation of Multiple Signaling Pathways |
| - | in-vitro, | Liver, | HepG2 | - | NA, | Colon, | Caco-2 |
| 2841- | FIS, | Fisetin, an Anti-Inflammatory Agent, Overcomes Radioresistance by Activating the PERK-ATF4-CHOP Axis in Liver Cancer |
| - | in-vitro, | Nor, | RAW264.7 | - | in-vitro, | Liver, | HepG2 | - | in-vitro, | Liver, | Hep3B | - | in-vitro, | Liver, | HUH7 |
| 4028- | FulvicA, | Mineral pitch induces apoptosis and inhibits proliferation via modulating reactive oxygen species in hepatic cancer cells |
| - | in-vitro, | Liver, | HUH7 |
| 1973- | GamB, | Gambogic acid deactivates cytosolic and mitochondrial thioredoxins by covalent binding to the functional domain |
| - | in-vitro, | Liver, | SMMC-7721 cell |
| 1960- | GamB, | Vem, | Calcium channel blocker verapamil accelerates gambogic acid-induced cytotoxicity via enhancing proteasome inhibition and ROS generation |
| - | in-vitro, | Liver, | HepG2 | - | in-vitro, | AML, | K562 |
| 826- | GAR, | Inhibition of STAT3 dimerization and acetylation by garcinol suppresses the growth of human hepatocellular carcinoma in vitro and in vivo |
| - | vitro+vivo, | HCC, | HepG2 | - | vitro+vivo, | Liver, | HUH7 |
| 821- | GAR, | Garcinol inhibits cell growth in hepatocellular carcinoma Hep3B cells through induction of ROS-dependent apoptosis |
| - | in-vitro, | Liver, | Hep3B |
| 4513- | GLA, | Antineoplastic Effects of Gamma Linolenic Acid on Hepatocellular Carcinoma Cell Lines |
| - | in-vitro, | Liver, | HUH7 |
| 839- | Gra, | Functional proteomic analysis revels that the ethanol extract of Annona muricata L. induces liver cancer cell apoptosis through endoplasmic reticulum stress pathway |
| - | in-vitro, | Liver, | HepG2 |
| 2863- | HNK, | Honokiol induces paraptosis-like cell death through mitochondrial ROS-dependent endoplasmic reticulum stress in hepatocellular carcinoma Hep3B cells |
| - | in-vitro, | Liver, | Hep3B |
| 1918- | JG, | ROS -mediated p53 activation by juglone enhances apoptosis and autophagy in vivo and in vitro |
| - | in-vitro, | Liver, | HepG2 | - | in-vivo, | NA, | NA |
| 1064- | LT, | Cisplatin, | Inhibition of cell survival, invasion, tumor growth and histone deacetylase activity by the dietary flavonoid luteolin in human epithelioid cancer cells |
| - | vitro+vivo, | Lung, | LNM35 | - | in-vitro, | CRC, | HT-29 | - | in-vitro, | Liver, | HepG2 | - | in-vitro, | BC, | MCF-7 | - | in-vitro, | BC, | MDA-MB-231 |
| 2922- | LT, | Combination of transcriptomic and proteomic approaches helps unravel the mechanisms of luteolin in inducing liver cancer cell death via targeting AKT1 and SRC |
| - | in-vitro, | Liver, | HUH7 |
| 4803- | Lyco, | Enhanced cytotoxic and apoptosis inducing activity of lycopene oxidation products in different cancer cell lines |
| - | in-vitro, | Pca, | PC3 | - | in-vitro, | BC, | MCF-7 | - | in-vitro, | Melanoma, | A431 | - | in-vitro, | Liver, | HepG2 | - | in-vitro, | Cerv, | HeLa | - | in-vitro, | Lung, | A549 |
| - | in-vitro, | Pca, | PC3 | - | in-vitro, | Lung, | A549 | - | in-vitro, | Cerv, | HeLa | - | in-vitro, | BC, | MCF-7 | - | in-vitro, | Liver, | HepG2 |
| 4534- | MAG, | Molecular mechanisms of apoptosis induced by magnolol in colon and liver cancer cells |
| - | in-vitro, | Liver, | HepG2 | - | in-vitro, | CRC, | COLO205 |
| 4536- | MAG, | Magnolol suppresses proliferation of cultured human colon and liver cancer cells by inhibiting DNA synthesis and activating apoptosis |
| - | in-vitro, | Liver, | HepG2 | - | in-vivo, | CRC, | COLO205 |
| 2261- | MF, | Tumor-specific inhibition with magnetic field |
| - | in-vitro, | Nor, | GP-293 | - | in-vitro, | Liver, | HepG2 | - | in-vitro, | Lung, | A549 |
| 493- | MF, | Extremely low-frequency electromagnetic field induces acetylation of heat shock proteins and enhances protein folding |
| - | in-vitro, | NA, | HEK293 | - | in-vitro, | Liver, | AML12 |
| 507- | MF, | Effects of extremely low frequency electromagnetic fields on the tumor cell inhibition and the possible mechanism |
| - | in-vitro, | Liver, | HepG2 | - | in-vitro, | Lung, | A549 | - | in-vitro, | Nor, | GP-293 |
| 221- | MFrot, | MF, | Low Frequency Magnetic Fields Enhance Antitumor Immune Response against Mouse H22 Hepatocellular Carcinoma |
| - | in-vivo, | Liver, | NA |
| 1991- | Part, | A novel SLC25A1 inhibitor, parthenolide, suppresses the growth and stemness of liver cancer stem cells with metabolic vulnerability |
| - | in-vitro, | Liver, | HUH7 |
| 2077- | PB, | Butyrate induces ROS-mediated apoptosis by modulating miR-22/SIRT-1 pathway in hepatic cancer cells |
| - | in-vitro, | Liver, | HUH7 |
| 1059- | PI, | Piperine Inhibits TGF-β Signaling Pathways and Disrupts EMT-Related Events in Human Lung Adenocarcinoma Cells |
| - | in-vitro, | Lung, | A549 | - | in-vitro, | BC, | MDA-MB-231 | - | in-vitro, | Liver, | HepG2 |
| 1946- | PL, | PI, | Piperlonguminine and Piperine Analogues as TrxR Inhibitors that Promote ROS and Autophagy and Regulate p38 and Akt/mTOR Signaling |
| - | in-vitro, | Liver, | NA |
| 3346- | QC, | Regulation of the Intracellular ROS Level Is Critical for the Antiproliferative Effect of Quercetin in the Hepatocellular Carcinoma Cell Line HepG2 |
| - | in-vitro, | Liver, | HepG2 | - | in-vitro, | Liver, | HUH7 |
| 43- | QC, | Investigation of the anti-cancer effect of quercetin on HepG2 cells in vivo |
| - | in-vivo, | Liver, | HepG3 |
| 5029- | QC, | Molecular mechanisms of action of quercetin in cancer: recent advances |
| - | in-vitro, | Liver, | HepG2 |
| 2328- | RES, | Resveratrol Inhibits Cancer Cell Metabolism by Down Regulating Pyruvate Kinase M2 via Inhibition of Mammalian Target of Rapamycin |
| - | in-vitro, | Cerv, | HeLa | - | in-vitro, | Liver, | HepG2 | - | in-vitro, | BC, | MCF-7 |
| 3031- | RosA, | Effects of rosmarinic acid against aflatoxin B1 and ochratoxin-A-induced cell damage in a human hepatoma cell line (Hep G2) |
| - | in-vitro, | Liver, | HepG2 |
| 4451- | Se, | Effects of chitosan-stabilized selenium nanoparticles on cell proliferation, apoptosis and cell cycle pattern in HepG2 cells: comparison with other selenospecies |
| - | in-vitro, | Liver, | HepG2 |
| 4449- | Se, | PEG-nanolized ultrasmall selenium nanoparticles overcome drug resistance in hepatocellular carcinoma HepG2 cells through induction of mitochondria dysfunction |
| - | in-vitro, | Liver, | HepG2 |
| 4470- | Se, | Chit, | Synthesis and cytotoxic activities of selenium nanoparticles incorporated nano-chitosan |
| - | in-vitro, | CRC, | HCT116 | - | in-vitro, | Liver, | HepG2 | - | in-vitro, | BC, | MCF-7 |
| 4471- | Se, | Green synthesis of selenium nanoparticles with extract of hawthorn fruit induced HepG2 cells apoptosis |
| - | in-vitro, | Liver, | HepG2 |
| 4488- | Se, | Chit, | PEG, | Anticancer effect of selenium/chitosan/polyethylene glycol/allyl isothiocyanate nanocomposites against diethylnitrosamine-induced liver cancer in rats |
| - | in-vivo, | Liver, | HepG2 | - | in-vivo, | Nor, | HL7702 |
| 4486- | Se, | Chit, | Selenium-Modified Chitosan Induces HepG2 Cell Apoptosis and Differential Protein Analysis |
| - | in-vitro, | Liver, | HepG2 |
| 3200- | SFN, | Sulforaphane suppresses the activity of sterol regulatory element-binding proteins (SREBPs) by promoting SREBP precursor degradation |
| - | in-vitro, | Liver, | HUH7 |
| 1459- | SFN, | Aur, | Auranofin Enhances Sulforaphane-Mediated Apoptosis in Hepatocellular Carcinoma Hep3B Cells through Inactivation of the PI3K/Akt Signaling Pathway |
| - | in-vitro, | Liver, | Hep3B | - | in-vitro, | Liver, | HepG2 |
| 3327- | SIL, | Effects of silymarin on HIF‑1α and MDR1 expression in HepG‑2 cells under hypoxia |
| - | in-vitro, | Liver, | HepG2 |
| 3326- | SIL, | Silymarin suppresses proliferation of human hepatocellular carcinoma cells under hypoxia through downregulation of the HIF-1α/VEGF pathway |
| - | in-vitro, | Liver, | HepG2 | - | in-vitro, | Liver, | Hep3B |
| 2359- | SK, | Regulating lactate-related immunometabolism and EMT reversal for colorectal cancer liver metastases using shikonin targeted delivery |
| - | in-vivo, | Liver, | NA |
| 1195- | SM, | Salvia miltiorrhiza polysaccharide activates T Lymphocytes of cancer patients through activation of TLRs mediated -MAPK and -NF-κB signaling pathways |
| - | in-vitro, | Lung, | A549 | - | in-vitro, | Liver, | HepG2 | - | in-vitro, | CRC, | HCT116 |
| 1192- | SM, | Abietane diterpenes from Salvia miltiorrhiza inhibit the activation of hypoxia-inducible factor-1 |
| - | in-vitro, | GC, | AGS | - | in-vitro, | Liver, | HepG3 |
| 1193- | SM, | Cryptotanshinone from the Salvia miltiorrhiza Bunge Attenuates Ethanol-Induced Liver Injury by Activation of AMPK/SIRT1 and Nrf2 Signaling Pathways |
| - | in-vivo, | Alcohol, | NA | - | in-vitro, | Liver, | HepG2 |
| 341- | SNP, | Bioprospecting a native silver-resistant Bacillus safensis strain for green synthesis and subsequent antibacterial and anticancer activities of silver nanoparticles |
| - | in-vitro, | Liver, | HepG2 |
| 344- | SNP, | Cytotoxicity and ROS production of manufactured silver nanoparticles of different sizes in hepatoma and leukemia cells |
| - | in-vitro, | Liver, | HepG2 |
| 369- | SNP, | Silver nanoparticles induce oxidative cell damage in human liver cells through inhibition of reduced glutathione and induction of mitochondria-involved apoptosis |
| - | in-vitro, | Liver, | NA |
| 2835- | SNP, | Gluc, | Carbohydrate functionalization of silver nanoparticles modulates cytotoxicity and cellular uptake |
| - | in-vitro, | Liver, | HepG2 |
| 4555- | SNP, | Silver nanoparticles from Dendropanax morbifera Léveille inhibit cell migration, induce apoptosis, and increase generation of reactive oxygen species in A549 lung cancer cells |
| - | in-vitro, | Lung, | A549 | - | in-vitro, | Liver, | HepG2 |
| 4429- | SNP, | Comparative proteomic analysis reveals the different hepatotoxic mechanisms of human hepatocytes exposed to silver nanoparticles |
| - | in-vitro, | Liver, | HepG2 |
| 4433- | SNP, | Advancements in metal and metal oxide nanoparticles for targeted cancer therapy and imaging: Mechanisms, applications, and safety concerns |
| - | in-vitro, | Liver, | HepG2 | - | in-vitro, | Nor, | L02 |
| 4560- | SNP, | Exploiting antidiabetic activity of silver nanoparticles synthesized using Punica granatum leaves and anticancer potential against human liver cancer cells (HepG2) |
| - | in-vitro, | Liver, | HepG2 | - | in-vitro, | Diabetic, | NA |
| 4385- | SNP, | Hepatoprotective effect of engineered silver nanoparticles coated bioactive compounds against diethylnitrosamine induced hepatocarcinogenesis in experimental mice |
| - | in-vitro, | Liver, | NA |
| 4381- | SNP, | Oxidative stress-dependent toxicity of silver nanoparticles in human hepatoma cells |
| - | in-vitro, | Liver, | HepG2 |
| 4387- | SNP, | Attenuation of diethylnitrosamine (DEN) - Induced hepatic cancer in experimental model of Wistar rats by Carissa carandas embedded silver nanoparticles |
| - | in-vitro, | Liver, | NA |
| 4373- | SNP, | In vitro toxicity of silver nanoparticles at noncytotoxic doses to HepG2 human hepatoma cells |
| - | in-vitro, | Liver, | HepG2 |
| 4371- | SNP, | Effects of Green Silver Nanoparticles on Apoptosis and Oxidative Stress in Normal and Cancerous Human Hepatic Cells in vitro |
| - | in-vitro, | Liver, | HUH7 |
| 4370- | SNP, | Effect of silver nanoparticles in the induction of apoptosis on human hepatocellular carcinoma (HepG2) cell line |
| - | in-vitro, | Liver, | HepG2 |
| 4391- | SNP, | Silver Nanoparticles Induce Apoptosis in HepG2 Cells through Particle-Specific Effects on Mitochondria |
| - | NA, | Liver, | HepG2 |
| 4390- | SNP, | Therapeutic Potential of Cucumis melo (L.) Fruit Extract and Its Silver Nanopartciles Against DEN-Induced Hepatocellular Cancer in Rats |
| - | in-vivo, | Liver, | NA |
| 4361- | SNP, | GoldNP, | Biocompatible silver, gold and silver/gold alloy nanoparticles for enhanced cancer therapy: in vitro and in vivo perspectives |
| - | in-vivo, | Liver, | HepG2 |
| 3417- | TQ, | Antiproliferative Effects of Thymoquinone in MCF-7 Breast and HepG2 Liver Cancer Cells: Possible Role of Ceramide and ER Stress |
| - | in-vitro, | BC, | MCF-7 | - | in-vitro, | Liver, | HepG2 |
| 2093- | TQ, | Regulation of NF-κB Expression by Thymoquinone; A Role in Regulating Pro-Inflammatory Cytokines and Programmed Cell Death in Hepatic Cancer Cells |
| - | in-vitro, | Liver, | HepG2 | - | in-vitro, | Nor, | NA |
| 631- | VitC, | Vitamin C preferentially kills cancer stem cells in hepatocellular carcinoma via SVCT-2 |
| - | vitro+vivo, | Liver, | NA |
| 4886- | ZER, | Zerumbone induced apoptosis in liver cancer cells via modulation of Bax/Bcl-2 ratio |
| - | in-vitro, | Liver, | HepG2 |
Query results interpretion may depend on "conditions" listed in the research papers. Such Conditions may include : -low or high Dose -format for product, such as nano of lipid formations -different cell line effects -synergies with other products -if effect was for normal or cancerous cells
Filter Conditions: Pro/AntiFlg:% IllCat:% CanType:14 Cells:% prod#:% Target#:% State#:% Dir#:%
wNotes=0 sortOrder:rid,rpid