Database Query Results : , ,

GC, Gastric Adenocarcinoma: Click to Expand ⟱
Stomach/Gastric Cancer

Scientific Papers found: Click to Expand⟱
239- AL,    Allicin induces apoptosis in gastric cancer cells through activation of both extrinsic and intrinsic pathways
- in-vitro, GC, SGC-7901
Apoptosis↑, Cyt‑c↑, Casp3↑, Casp8↑, Casp9↑, BAX↑, Fas↑, tumCV↓, DNAdam↑, ROS↑, Telomerase↓,
246- AL,    Allicin induces apoptosis of the MGC-803 human gastric carcinoma cell line through the p38 mitogen-activated protein kinase/caspase-3 signaling pathway
- in-vitro, GC, MGC803
Apoptosis↑, cl‑Casp3↑, p38↑, tumCV↓, BAX↑, Bcl-2↑,
249- AL,    Allicin induces apoptosis of the MGC-803 human gastric carcinoma cell line through the p38 mitogen-activated protein kinase/caspase-3 signaling pathway
- in-vitro, GC, MGC803
Casp3↑, p38↑, BAX↑, Bcl-2↓, p38↑, MAPK↑,
2655- AL,    Allicin and Digestive System Cancers: From Chemical Structure to Its Therapeutic Opportunities
- Review, GC, NA
TGF-β↓, cycD1/CCND1↓, cycE/CCNE↓, CDK1↓, DNAdam↑, ROS↑, BAX↑, JNK↑, MMP↓, p38↑, MAPK↑, Fas↑, Cyt‑c↑, Casp8↑, PARP↑, Casp3↑, Casp9↑, Ca+2↑, ER Stress↑, P21↑, CDK2↓, CDK6↑, TumCCA↑, CDK4↓,
2647- AL,    The Mechanism in Gastric Cancer Chemoprevention by Allicin
- Review, GC, NA
ChemoSen↓, TumCG↓, TumCCA↑, ER Stress↑, Apoptosis↑, Casp↑, DR5↑,
2667- AL,    Allicin in Digestive System Cancer: From Biological Effects to Clinical Treatment
- Review, GC, NA
AntiCan↑, ChemoSen↑, angioG↓, chemoP↑, *GutMicro↑, *antiOx↑, other↝, GSH↓, Thiols↓, *ROS↓, *hepatoP↑, *Inflam↓, *NF-kB↓,
302- ALA,    The Antioxidant Alpha-Lipoic Acid Inhibits Proliferation and Invasion of Human Gastric Cancer Cells via Suppression of STAT3-Mediated MUC4 Gene Expression
- in-vitro, GC, AGS - in-vitro, GC, BGC-823 - in-vitro, GC, MKN-28
MUC4↓, STAT3↓,
2631- Api,    Apigenin Induces Autophagy and Cell Death by Targeting EZH2 under Hypoxia Conditions in Gastric Cancer Cells
- in-vivo, GC, NA - in-vitro, GC, AGS
ER Stress↑, Hif1a↓, EZH2↓, HDAC↓, TumAuto↑, p‑mTOR↓, AMPKα↑, GRP78/BiP↑, ROS↑, MMP↓, Ca+2↑, ATF4↑, CHOP↑,
1079- ART/DHA,    Artesunate inhibits the growth and induces apoptosis of human gastric cancer cells by downregulating COX-2
- in-vitro, GC, BGC-823 - in-vitro, GC, HGC27 - in-vitro, GC, MGC803
TumCP↓, Apoptosis↑, COX2↓, BAX↑, Bcl-2↓, Casp3↑, Casp9↑, MMP↓,
4993- ART/DHA,    Dihydroartemisinin inhibits galectin-1–induced ferroptosis resistance and peritoneal metastasis of gastric cancer via the Nrf2–HO-1 pathway
- vitro+vivo, GC, NA
Ferroptosis↑, NRF2↓, HO-1↓, PI3K↓, Akt↓, TumMeta↓,
3169- Ash,    Withaferin A blocks formation of IFN-γ-induced metastatic cancer stem cells through inhibition of the CXCR4/CXCL12 pathway in the UP-LN1 carcinoma cell model
- in-vitro, GC, NA
CXCR4↓, CXCL12↓,
4809- ASTX,    Astaxanthin Inhibits Proliferation of Human Gastric Cancer Cell Lines by Interrupting Cell Cycle Progression
- in-vitro, GC, AGS - in-vitro, GC, MKN45
tumCV↓, TumCP↓, TumCCA↑, p‑ERK↓, p27↑, cycD1/CCND1↓, CDK4↓,
1032- BA,    Gut microbiome-derived butyrate inhibits the immunosuppressive factors PD-L1 and IL-10 in tumor-associated macrophages in gastric cancer
- in-vivo, GC, AGS
GutMicro↑, PD-L1↓, IL10↓, TumCG↓,
1288- Ba,    The Traditional Chinese Medicine Baicalein Potently Inhibits Gastric Cancer Cells
- in-vitro, GC, SGC-7901
TumCG↓, TumCCA↑, Apoptosis↑, MMP↓, Bcl-2↓, BAX↑,
2620- Ba,    Natural compounds targeting glycolysis as promising therapeutics for gastric cancer: A review
- Review, GC, NA
Hif1a↓, HK2↓, LDHA↓, PDK1↓, p‑Akt↓, PTEN↑, GlucoseCon↓, lactateProd↓, Glycolysis↓,
2295- Ba,  5-FU,    Baicalein reverses hypoxia-induced 5-FU resistance in gastric cancer AGS cells through suppression of glycolysis and the PTEN/Akt/HIF-1α signaling pathway
- in-vitro, GC, AGS
ChemoSen↑, HK2↓, LDHA↓, PDK1↓, Akt↓, PTEN↑, Hif1a↓, Glycolysis↓, ROS↑, CHOP↑,
2391- Ba,    Scutellaria baicalensis and its flavonoids in the treatment of digestive system tumors
- Review, GC, NA
Hif1a↓, PKM2↓, RadioS↑, Glycolysis↓, PAK↓,
1392- BBR,    Based on network pharmacology and experimental validation, berberine can inhibit the progression of gastric cancer by modulating oxidative stress
- in-vitro, GC, AGS - in-vitro, GC, MKN45
TumCG↓, TumCMig↓, ROS↑, MDA↑, SOD↓, NRF2↓, HO-1↓, Hif1a↓, EMT↓, Snail↓, Vim↓,
1394- BBR,  DL,    Synergistic Inhibitory Effect of Berberine and d-Limonene on Human Gastric Carcinoma Cell Line MGC803
- in-vitro, GC, MGC803
eff↑, ROS↑, MMP↓, Casp3↑, Bcl-2↓, TumCCA↑,
1395- BBR,    Analysis of the mechanism of berberine against stomach carcinoma based on network pharmacology and experimental validation
- in-vitro, GC, NA
Apoptosis↑, ROS↑, MMP↓, ATP↓, AMPK↑, TP53↑, p‑MAPK↓, p‑ERK↓,
1396- BBR,    Berberine induced down-regulation of matrix metalloproteinase-1, -2 and -9 in human gastric cancer cells (SNU-5) in vitro
- in-vitro, GC, SNU1041 - in-vitro, GC, SNU5
tumCV↓, ROS↑, MMP1↓, MMP2↓, MMP9↓, MMP7∅,
956- BBR,    Berberine inhibits HIF-1alpha expression via enhanced proteolysis
- in-vitro, Nor, HUVECs - in-vitro, GC, SCM1
Hif1a↓, angioG↓,
2763- BetA,    Betulinic Acid Inhibits the Stemness of Gastric Cancer Cells by Regulating the GRP78-TGF-β1 Signaling Pathway and Macrophage Polarization
- in-vitro, GC, NA
GRP78/BiP↓, TGF-β↓, ChemoSen↑, CSCs↓, SMAD2↓, SMAD3↓, OCT4↓,
2741- BetA,    Betulinic acid triggers apoptosis and inhibits migration and invasion of gastric cancer cells by impairing EMT progress
- in-vitro, GC, SNU16 - in-vitro, GC, NCI-N87 - in-vivo, NA, NA
TumCG↓, TumCMig↓, TumCI↓, N-cadherin↓, E-cadherin↑, EMT↓, Ki-67↓, MMP2↓,
1420- Bos,    Acetyl-11-keto-β-boswellic acid inhibits proliferation and induces apoptosis of gastric cancer cells through the phosphatase and tensin homolog /Akt/ cyclooxygenase-2 signaling pathway
- vitro+vivo, GC, BGC-823
TumCP↓, TumCG↓, PTEN↑, BAX↑, Bcl-2↓, p‑Akt↓, COX2↓,
939- Catechins,  5-FU,    Targeting Lactate Dehydrogenase A with Catechin Resensitizes SNU620/5FU Gastric Cancer Cells to 5-Fluorouracil
- vitro+vivo, GC, SNU620
lactateProd↓, ROS↑, tumCV↓, LDHA↓, mt-ROS↑, proApCas↑,
3258- CHr,  PBG,    Chrysin Induced Cell Apoptosis and Inhibited Invasion Through Regulation of TET1 Expression in Gastric Cancer Cells
- in-vitro, GC, MKN45
TET1↑, Apoptosis↑, TumCI↓, TumCMig↓,
2803- CHr,  5-FU,    Potentiating activities of chrysin in the therapeutic efficacy of 5-fluorouracil in gastric cancer cells
- in-vitro, GC, AGS
ChemoSen↑, TumCCA↑, eff↑, MDR1↓,
1593- Citrate,    Citrate Induces Apoptotic Cell Death: A Promising Way to Treat Gastric Carcinoma?
- in-vitro, GC, BGC-823 - in-vitro, GC, SGC-7901
PFK↓, Glycolysis↓, tumCV↓, cl‑Casp3↑, cl‑PARP↑, Apoptosis↑, ATP↓, ChemoSen↑, Mcl-1↓, glucoNG↑, FBPase↑, OXPHOS↓, TCA↓, β-oxidation↓, HK2↓, PDH↓, ROS↑,
16- CP,    Resveratrol inhibits the hedgehog signaling pathway and epithelial-mesenchymal transition and suppresses gastric cancer invasion and metastasis
- in-vitro, GC, SGC-7901
HH↓, Gli1↓, EMT↓, N-cadherin↓, E-cadherin↑, Snail↓,
4708- CUR,    Molecular mechanisms underlying curcumin-mediated microRNA regulation in carcinogenesis; Focused on gastrointestinal cancers
- Review, GC, NA
chemoPv↑, AntiCan↑, *antiOx↑, *Inflam↓, miR-21↓, miR-34a↑, miR-200b↑, miR-27a-3p↓,
410- CUR,    Nrf2 depletion enhanced curcumin therapy effect in gastric cancer by inducing the excessive accumulation of ROS
- vitro+vivo, GC, AGS - vitro+vivo, GC, HGC27
ROS↑, NRF2↑,
458- CUR,    Curcumin suppresses gastric cancer by inhibiting gastrin‐mediated acid secretion
- vitro+vivo, GC, SGC-7901
Casp3↑, Apoptosis↑, TumCP↓,
453- CUR,    Cellular uptake and apoptotic properties of gemini curcumin in gastric cancer cells
- in-vitro, GC, AGS
Bcl-2↓, survivin↓, BAX↑, TumCCA↑,
454- CUR,    Curcumin-Induced DNA Demethylation in Human Gastric Cancer Cells Is Mediated by the DNA-Damage Response Pathway
- in-vitro, GC, MGC803
TumCMig↓, TumCP↓, ROS↑, mtDam↑, DNAdam↑, Apoptosis↑, ATR↑, P21↑, p‑P53↑, GADD45A↑, p‑γH2AX↑,
455- CUR,    Curcumin Affects Gastric Cancer Cell Migration, Invasion and Cytoskeletal Remodeling Through Gli1-β-Catenin
- in-vitro, GC, SGC-7901
Shh↓, Gli1↓, FOXM1↓, β-catenin/ZEB1↓, TumCMig↓, Apoptosis↑, TumCCA↑, Wnt↓, EMT↓, E-cadherin↑, Vim↓,
456- CUR,    Curcumin Promoted miR-34a Expression and Suppressed Proliferation of Gastric Cancer Cells
- vitro+vivo, GC, SGC-7901
miR-34a↑, TumCP↓, TumCMig↓, TumCI↓, TumCCA↑, Bcl-2↓, CDK4/6↓, cycD1/CCND1↓,
457- CUR,    Curcumin regulates proliferation, autophagy, and apoptosis in gastric cancer cells by affecting PI3K and P53 signaling
- in-vitro, GC, SGC-7901 - in-vitro, GC, BGC-823
TumCP↓, Apoptosis↑, TumAuto↑, P53↑, PI3K↓, P21↑, p‑Akt↓, p‑mTOR↓, Bcl-2↓, Bcl-xL↓, LC3I↓, BAX↑, Beclin-1↑, cl‑Casp3↑, cl‑PARP↑, LC3II↑, ATG3↑, ATG5↑,
1444- Deg,    Deguelin promotes apoptosis and inhibits angiogenesis of gastric cancer
- in-vitro, GC, MKN-28
Casp9↑, Casp3↑, Hif1a↓, VEGF↓, TumCCA↑, TumCG↓, DNAdam↑, p‑Akt↓,
1607- EA,    Exploring the Potential of Ellagic Acid in Gastrointestinal Cancer Prevention: Recent Advances and Future Directions
- Review, GC, NA
STAT3↓, TumCP↓, Apoptosis↑, NF-kB↓, EMT↓, RadioS↑, antiOx↑, COX1↓, COX2↓, cMyc↓, Snail↓, Twist↓, MMP2↓, P90RSK↓, CDK8↓, PI3K↓, Akt↓, TumCCA↑, Casp8↑, PCNA↓, TGF-β↓, Shh↓, NOTCH↓, IL6↓, ALAT↓, ALP↓, AST↓, VEGF↓, P21↑, *toxicity∅, *Inflam↓, *cardioP↑, *neuroP↑, *hepatoP↑, ROS↑, *NRF2↓, *GSH↑,
2147- Ex,    The association between physical activity and gastroesophageal cancer: systematic review and meta-analysis
- Review, GC, NA
Risk↓,
2842- FIS,    Fisetin inhibits cellular proliferation and induces mitochondria-dependent apoptosis in human gastric cancer cells
- in-vitro, GC, AGS
TumCCA↑, CDK2↓, P53↑, selectivity↑, MMP↓, DNAdam↑, cl‑PARP↑, mt-ROS↑, eff↓, survivin↓,
1115- GA,    Gallic acid alleviates gastric precancerous lesions through inhibition of epithelial mesenchymal transition via Wnt/β-catenin signaling pathway
- in-vivo, GC, GES-1
TumCP↓, TumCCA↑, Wnt/(β-catenin)↓, EMT↓,
802- GAR,    Garcinol acts as an antineoplastic agent in human gastric cancer by inhibiting the PI3K/AKT signaling pathway
- in-vitro, GC, HGC27
TumCP↓, TumCI↓, Apoptosis↑, PI3K/Akt↓, Akt↓, p‑mTOR↓, cycD1/CCND1↓, MMP2↓, MMP9↓, BAX↑, Bcl-2↓,
4507- GLA,    Effect of γ-Linolenic Acid on the Transcriptional Activity of the Her-2/neu (erbB-2) Oncogene
- in-vitro, BC, BT474 - in-vitro, BC, SkBr3 - in-vitro, BC, MDA-MB-453 - in-vitro, Ovarian, SKOV3 - in-vitro, GC, NCI-N87
HER2/EBBR2↓,
2898- HNK,    Honokiol Suppression of Human Epidermal Growth Factor Receptor 2 (HER2)-Positive Gastric Cancer Cell Biological Activity and Its Mechanism
- in-vitro, GC, AGS - in-vitro, GC, NCI-N87 - in-vitro, BC, MGC803 - in-vitro, GC, SGC-7901
TumCP↓, Apoptosis↑, TumCI↓, TumCMig↓, HER2/EBBR2↓, TumCCA↑, PI3K↓, Akt↓, MMP9↓, P21↑,
2877- HNK,    Targeting histone deacetylase-3 blocked epithelial-mesenchymal plasticity and metastatic dissemination in gastric cancer
- in-vitro, GC, AGS
HDAC3↓, NF-kB↓, CEBPB↓, ER Stress↑, EMT↓, Wnt↓, β-catenin/ZEB1↓,
1927- JG,    Juglone-induced apoptosis in human gastric cancer SGC-7901 cells via the mitochondrial pathway
- in-vitro, GC, SGC-7901
Apoptosis↑, ROS↑, Bcl-2↓, BAX↑, MMP↓, Cyt‑c↑, Casp3?, Bax:Bcl2↑,
2924- LT,    Luteolin selectively kills STAT3 highly activated gastric cancer cells through enhancing the binding of STAT3 to SHP-1
- in-vitro, GC, NA - in-vivo, NA, NA
p‑STAT3↓, STAT3↓, Mcl-1↓, survivin↓, Bcl-xL↓, HSP90↓,
2913- LT,    Luteolin induces apoptosis by impairing mitochondrial function and targeting the intrinsic apoptosis pathway in gastric cancer cells
- in-vitro, GC, HGC27 - in-vitro, BC, MCF-7 - in-vitro, GC, MKN45
TumCP↓, MMP↓, Apoptosis↑, ROS↑, SOD↓, ATP↓, Bax:Bcl2↑, TumCCA↑,
4777- Lyco,    Lycopene Inhibits Activation of Epidermal Growth Factor Receptor and Expression of Cyclooxygenase-2 in Gastric Cancer Cells
- in-vitro, GC, AGS
*antiOx↑, tumCV↓, DNAdam↑, Apoptosis↑, cl‑Casp3↑, cl‑Casp9↑, Bax:Bcl2↑, ROS↓, NF-kB↓, COX2↓, EGFR↓, p38↓,
4794- Lyco,    Anticancer Effect of Lycopene in Gastric Carcinogenesis
- Review, GC, NA
*AntiCan↑, *ROS↓, *GSH↑, *GPx↑, *GSTs↑, TumCG↓, Apoptosis↑, ERK↓, Bcl-2↓, BAX↑, Cyt‑c↑, TumCCA↑, *DNAdam↓,
4793- Lyco,    Lycopene treatment inhibits activation of Jak1/Stat3 and Wnt/β-catenin signaling and attenuates hyperproliferation in gastric epithelial cells
- in-vitro, GC, AGS
antiOx↑, AntiCan↑, ROS↓, JAK1↓, STAT3↓, Wnt↓, β-catenin/ZEB1↓, cMyc↓, cycE/CCNE↓, TumCP↓, Risk↓,
4783- Lyco,    Lycopene suppresses gastric cancer cell growth without affecting normal gastric epithelial cells
- in-vitro, GC, AGS - in-vitro, GC, SGC-7901 - in-vitro, Nor, GES-1
TumCG↓, TumCCA↑, Apoptosis↑, MMP↓, selectivity↑, cycE1↓, TP53↑, *antiOx↑,
1013- Lyco,    Lycopene induces apoptosis by inhibiting nuclear translocation of β-catenin in gastric cancer cells
- in-vitro, GC, AGS
Apoptosis↑, DNAdam↑, Bax:Bcl2↑, ROS↓, β-catenin/ZEB1↓, p‑GSK‐3β↓, APC↑, β-TRCP↑, cMyc↓, cycD1/CCND1↓,
4533- MAG,    Magnolol, a natural compound, induces apoptosis of SGC-7901 human gastric adenocarcinoma cells via the mitochondrial and PI3K/Akt signaling pathways
- in-vitro, GC, SGC-7901
AntiCan↑, DNAdam↑, Apoptosis↑, TumCCA↑, Bax:Bcl2↑, MMP↓, Casp3↑, PI3K↓, Akt↓,
4518- MAG,  Cisplatin,    Evaluating the Magnolol Anticancer Potential in MKN-45 Gastric Cancer Cells
- in-vitro, GC, MKN45
ChemoSen↑, tumCV↓, BAX↑, Bcl-2↓, P21↑, P53↑, MMP9↓,
2375- MET,    Metformin inhibits gastric cancer via the inhibition of HIF1α/PKM2 signaling
- in-vitro, GC, SGC-7901
tumCV↓, TumCI↓, TumCMig↓, Apoptosis↑, PARP↓, PI3K↓, Akt↓, Hif1a↓, PKM2↓, COX2↓,
3498- MF,    Effect of Static Magnetic Field on Oxidant/Antioxidant Parameters in Cancerous and Noncancerous Human Gastric Tissues
- in-vitro, GC, NA
*SOD↑, *MDA↓, SOD↓, GPx↓, MDA↑, Catalase↑,
4015- MF,    Evaluation of the PTEN and circRNA-CDR1as Gene Expression Changes in Gastric Cancer and Normal Cell Lines Following the Exposure to Weak and Moderate 50 Hz Electromagnetic Fields
- in-vitro, GC, AGS - in-vitro, Nor, HU02
*PTEN↑, PTEN↓, Dose↝,
217- MFrot,  MF,    Effect of low-frequency rotary magnetic fields on advanced gastric cancer
- in-vivo, GC, HL-60 - in-vivo, GC, SK-HEP-1
OS↑, Pain↓, ChemoSideEff↓, Weight↑, Strength↑, Sleep↑,
1273- Myr,    Myricetin Induces Ferroptosis and Inhibits Gastric Cancer Progression by Targeting NOX4
- vitro+vivo, GC, NA
Ferroptosis↑, MDA↑, Iron↑, GSH↓, NOX4↑, NRF2↓, GPx4↓,
1226- OLST,    Knockdown of PGM1 enhances anticancer effects of orlistat in gastric cancer under glucose deprivation
- vitro+vivo, GC, NA
PGM1∅, FASN↓, Apoptosis↑, lipidLev↑, GlucoseCon↑, eff↑,
1254- PI,  VitC,    Piperlongumine combined with vitamin C as a new adjuvant therapy against gastric cancer regulates the ROS–STAT3 pathway
- in-vivo, GC, NA
STAT3⇅, eff↑, ROS↑, Apoptosis↑,
1165- PI,    Piperine inhibits IL-1β-induced IL-6 expression by suppressing p38 MAPK and STAT3 activation in gastric cancer cells
- in-vitro, GC, TMK-1
p38↓, IL6↓, STAT3↓,
1947- PL,    Piperlongumine as a direct TrxR1 inhibitor with suppressive activity against gastric cancer
- in-vitro, GC, SGC-7901 - in-vitro, GC, NA
TrxR1↓, ROS↑, ER Stress↑, mtDam↑, selectivity↑, NO↑, TumCCA↑, mt-ROS↑, Casp9↑, Bcl-2↓, Bcl-xL↓, cl‑PARP↑, eff↓, lipid-P↑,
2968- PL,  Chit,    Preparation of piperlongumine-loaded chitosan nanoparticles for safe and efficient cancer therapy
- in-vitro, GC, AGS
eff↑, Dose↝, ROS↑, BioAv↑,
4965- PSO,  Cisplatin,    The synergistic antitumor effects of psoralidin and cisplatin in gastric cancer by inducing ACSL4-mediated ferroptosis
- vitro+vivo, GC, HGC27 - vitro+vivo, GC, MKN45
TumCP↓, TumCMig↓, TumCI↓, TumCG↓, *toxicity↓, eff↑, Ferroptosis↑, ACSL4↑, GPx4↓, ChemoSen↑, chemoP↑, AntiTum↑, Sepsis↓,
1238- PTS,    Pterostilbene suppresses gastric cancer proliferation and metastasis by inhibiting oncogenic JAK2/STAT3 signaling: In vitro and in vivo therapeutic intervention
- in-vitro, GC, NA - in-vivo, NA, NA
TumCCA↑, TumCP↓, TumCMig↓, TumCI↓, TumVol↓, TumW↓, Weight∅, JAK2↓, STAT3↓,
55- QC,    Quercetin inhibits the growth of human gastric cancer stem cells by inducing mitochondrial-dependent apoptosis through the inhibition of PI3K/Akt signaling
- in-vitro, GC, GCSCs
Bcl-2↓, BAX↑, Cyt‑c↑, MMP↓, PI3K/Akt↓, Casp3↑, Casp9↑,
5026- QC,    Quercetin induces ferroptosis in gastric cancer cells by targeting SLC1A5 and regulating the p-Camk2/p-DRP1 and NRF2/GPX4 Axes
- in-vitro, GC, NA
SLC1A5↓, ROS↑, Iron↓, NRF2↓, GPx4↓, Ferroptosis↑,
101- RES,    Resveratrol inhibits the hedgehog signaling pathway and epithelial-mesenchymal transition and suppresses gastric cancer invasion and metastasis
- in-vitro, GC, SGC-7901
HH↓, Gli1↓, EMT↓, Snail↓, N-cadherin↓, E-cadherin↑,
4748- Se,  Chemo,  antiOx,    Efficacy and safety of intravenous administration of high-dose selenium for preventing chemotherapy-induced peripheral neuropathy in gastric cancer patients receiving adjuvant oxaliplatin and capecitabine after gastrectomy: a retrospective pilot study
- Trial, GC, NA
toxicity↓, chemoP∅, *neuroP↑, *Dose↝,
963- SFN,    Sulforaphane inhibits hypoxia-induced HIF-1α and VEGF expression and migration of human colon cancer cells
- in-vitro, CRC, HCT116 - in-vitro, GC, AGS
Hif1a↓, VEGF↓, angioG↓, Akt∅, ERK∅,
3199- SFN,    Sulforaphane improves chemotherapy efficacy by targeting cancer stem cell-like properties via the miR-124/IL-6R/STAT3 axis
- in-vitro, GC, NA
CSCs↓, CD133↓, BMI1↓, Nanog↓, Nestin↓,
2405- SFN,    Sulforaphane Targets the TBX15/KIF2C Pathway to Repress Glycolysis and Cell Proliferation in Gastric Carcinoma Cells
- in-vitro, GC, SGC-7901 - in-vitro, GC, BGC-823
TumCP↓, Glycolysis↓, TBX15↑, GlucoseCon↓, lactateProd↓, tumCV↓, PKM2↓, KIF2C↓,
1452- SFN,    Sulforaphane Suppresses the Nicotine-Induced Expression of the Matrix Metalloproteinase-9 via Inhibiting ROS-Mediated AP-1 and NF-κB Signaling in Human Gastric Cancer Cells
- in-vitro, GC, AGS
MMP9↓, p38↓, ERK↓, AP-1↓, ROS↓, NF-kB↓, TumCI↓, MMP9↓, HDAC↓, Glycolysis↓, Hif1a↓, *memory↑, *cognitive↑,
1471- SFN,    ROS-mediated activation of AMPK plays a critical role in sulforaphane-induced apoptosis and mitotic arrest in AGS human gastric cancer cells
- in-vitro, GC, AGS
TumCP↓, Apoptosis↑, TumCCA↑, CycB/CCNB1↑, P21↑, p‑H3↑, p‑AMPK↑, eff↓, MMP↓, Cyt‑c↑, ROS↑, eff↓,
3304- SIL,    Silymarin induces inhibition of growth and apoptosis through modulation of the MAPK signaling pathway in AGS human gastric cancer cells
- in-vitro, GC, AGS - in-vivo, NA, NA
BAX↑, p‑JNK↑, p‑p38↑, cl‑PARP↑, Bcl-2↓, p‑ERK↓, TumVol↓, Apoptosis↑, tumCV↓,
2234- SK,    Shikonin Suppresses Cell Tumorigenesis in Gastric Cancer Associated with the Inhibition of c-Myc and Yap-1
- in-vitro, GC, NA
TumCP↓, TumCI↓, TumCMig↓, cMyc↓, YAP/TEAD↓,
2227- SK,    Shikonin induces mitochondria-mediated apoptosis and enhances chemotherapeutic sensitivity of gastric cancer through reactive oxygen species
- in-vitro, GC, BGC-823 - in-vitro, GC, SGC-7901 - in-vitro, Nor, GES-1
selectivity↑, TumCP↓, TumCD↑, ROS↑, MMP↓, Casp↑, Cyt‑c↑, Endon↑, AIF↑, eff↓, ChemoSen↑, TumCCA↑, GSH/GSSG↓, lipid-P↑,
1280- SK,    Shikonin Induces Apoptotic Cell Death via Regulation of p53 and Nrf2 in AGS Human Stomach Carcinoma Cells
- in-vitro, GC, AGS
ROS↑, Casp3↑, P53↑, NRF2↓,
2199- SK,    Induction of Ferroptosis by Shikonin in Gastric Cancer via the DLEU1/mTOR/GPX4 Axis
- in-vitro, GC, NA
ROS↑, lipid-P↑, Iron↑, MDA↑, GPx4↓, Ferritin↓, DLEU1↓, mTOR↓, Ferroptosis↑,
1192- SM,    Abietane diterpenes from Salvia miltiorrhiza inhibit the activation of hypoxia-inducible factor-1
- in-vitro, GC, AGS - in-vitro, Liver, HepG3
Hif1a↓, VEGF↓,
383- SNP,    In vitro and in vivo evaluation of anti-tumorigenesis potential of nano silver for gastric cancer cells
- in-vitro, GC, MKN45
Ki-67↓, TumCP↓, CD34↓, BAX↑,
4552- SNP,  ART/DHA,    Green synthesis of silver nanoparticles using Artemisia turcomanica leaf extract and the study of anti-cancer effect and apoptosis induction on gastric cancer cell line (AGS)
- in-vitro, GC, AGS
AntiCan↑, Apoptosis↑, eff↑,
2091- TQ,    Determination of anti-cancer effects of Nigella sativa seed oil on MCF7 breast and AGS gastric cancer cells
- in-vitro, BC, MCF-7 - in-vitro, GC, AGS
Dose↝, Casp3↑, Bcl-2↓, MMP2↓, MMP9↓, HSP70/HSPA5↓,
2083- TQ,    Thymoquinone inhibits proliferation in gastric cancer via the STAT3 pathway in vivo and in vitro
- in-vitro, GC, HGC27 - in-vitro, GC, BGC-823 - in-vitro, GC, SGC-7901 - in-vivo, NA, NA
p‑STAT3↓, JAK2↓, c-Src↓, Bcl-2↓, cycD1/CCND1↓, survivin↓, VEGF↓, Casp3?, Casp7?, Casp9?, *toxicity∅, TumVol↓,
4849- Uro,    Urolithin A suppresses tumor progression and induces autophagy in gastric cancer via the PI3K/Akt/mTOR pathway
- vitro+vivo, GC, NA
TumCP↓, TumCI↓, TumCMig↓, Apoptosis↑, TumAuto↑, TumCG↓, chemoP↑, ChemoSen↑,
4846- Uro,    Urolithin A exerts anti-tumor effects on gastric cancer via activating autophagy-Hippo axis and modulating the gut microbiota
- in-vivo, GC, NA
TumCG↓, Hippo↑, Warburg↓, Apoptosis↑, GutMicro↑,
3132- VitC,    Vitamin C affects G0/G1 cell cycle and autophagy by downregulating of cyclin D1 in gastric carcinoma cells
- in-vitro, GC, MKN45
TumCCA↑, cycD1/CCND1↓,

* indicates research on normal cells as opposed to diseased cells
Total Research Paper Matches: 91

Pathway results for Effect on Cancer / Diseased Cells:


NA, unassigned

chemoPv↑, 1,  

Redox & Oxidative Stress

antiOx↑, 2,   Catalase↑, 1,   Ferroptosis↑, 5,   GPx↓, 1,   GPx4↓, 4,   GSH↓, 2,   GSH/GSSG↓, 1,   HO-1↓, 2,   Iron↓, 1,   Iron↑, 2,   lipid-P↑, 3,   MDA↑, 4,   NOX4↑, 1,   NRF2↓, 5,   NRF2↑, 1,   OXPHOS↓, 1,   ROS↓, 4,   ROS↑, 23,   mt-ROS↑, 3,   SOD↓, 3,   Thiols↓, 1,   TrxR1↓, 1,  

Metal & Cofactor Biology

Ferritin↓, 1,  

Mitochondria & Bioenergetics

AIF↑, 1,   ATP↓, 3,   KIF2C↓, 1,   MMP↓, 14,   mtDam↑, 2,  

Core Metabolism/Glycolysis

ACSL4↑, 1,   ALAT↓, 1,   AMPK↑, 1,   p‑AMPK↑, 1,   cMyc↓, 4,   FASN↓, 1,   FBPase↑, 1,   glucoNG↑, 1,   GlucoseCon↓, 2,   GlucoseCon↑, 1,   Glycolysis↓, 6,   HK2↓, 3,   lactateProd↓, 3,   LDHA↓, 3,   lipidLev↑, 1,   PDH↓, 1,   PDK1↓, 2,   PFK↓, 1,   PGM1∅, 1,   PI3K/Akt↓, 2,   PKM2↓, 3,   SLC1A5↓, 1,   TCA↓, 1,   Warburg↓, 1,   β-oxidation↓, 1,  

Cell Death

Akt↓, 7,   Akt∅, 1,   p‑Akt↓, 4,   Apoptosis↑, 30,   BAX↑, 16,   Bax:Bcl2↑, 5,   Bcl-2↓, 17,   Bcl-2↑, 1,   Bcl-xL↓, 3,   Casp↑, 2,   Casp3?, 2,   Casp3↑, 11,   cl‑Casp3↑, 4,   Casp7?, 1,   Casp8↑, 3,   Casp9?, 1,   Casp9↑, 6,   cl‑Casp9↑, 1,   Cyt‑c↑, 7,   DR5↑, 1,   Endon↑, 1,   Fas↑, 2,   Ferroptosis↑, 5,   Hippo↑, 1,   JNK↑, 1,   p‑JNK↑, 1,   MAPK↑, 2,   p‑MAPK↓, 1,   Mcl-1↓, 2,   p27↑, 1,   p38↓, 3,   p38↑, 4,   p‑p38↑, 1,   proApCas↑, 1,   survivin↓, 4,   Telomerase↓, 1,   TumCD↑, 1,   YAP/TEAD↓, 1,   β-TRCP↑, 1,  

Kinase & Signal Transduction

AMPKα↑, 1,   HER2/EBBR2↓, 2,   PAK↓, 1,  

Transcription & Epigenetics

DLEU1↓, 1,   EZH2↓, 1,   p‑H3↑, 1,   miR-21↓, 1,   miR-27a-3p↓, 1,   other↝, 1,   tumCV↓, 11,  

Protein Folding & ER Stress

CHOP↑, 2,   ER Stress↑, 5,   GRP78/BiP↓, 1,   GRP78/BiP↑, 1,   HSP70/HSPA5↓, 1,   HSP90↓, 1,  

Autophagy & Lysosomes

ATG3↑, 1,   ATG5↑, 1,   Beclin-1↑, 1,   LC3I↓, 1,   LC3II↑, 1,   TumAuto↑, 3,  

DNA Damage & Repair

ATR↑, 1,   DNAdam↑, 8,   GADD45A↑, 1,   P53↑, 4,   p‑P53↑, 1,   PARP↓, 1,   PARP↑, 1,   cl‑PARP↑, 5,   PCNA↓, 1,   TP53↑, 2,   p‑γH2AX↑, 1,  

Cell Cycle & Senescence

CDK1↓, 1,   CDK2↓, 2,   CDK4↓, 2,   CycB/CCNB1↑, 1,   cycD1/CCND1↓, 7,   cycE/CCNE↓, 2,   cycE1↓, 1,   P21↑, 7,   TumCCA↑, 23,  

Proliferation, Differentiation & Cell State

BMI1↓, 1,   CD133↓, 1,   CD34↓, 1,   CDK8↓, 1,   CEBPB↓, 1,   CSCs↓, 2,   EMT↓, 8,   ERK↓, 2,   ERK∅, 1,   p‑ERK↓, 3,   FOXM1↓, 1,   Gli1↓, 3,   p‑GSK‐3β↓, 1,   HDAC↓, 2,   HDAC3↓, 1,   HH↓, 2,   miR-34a↑, 2,   mTOR↓, 1,   p‑mTOR↓, 3,   Nanog↓, 1,   Nestin↓, 1,   NOTCH↓, 1,   OCT4↓, 1,   P90RSK↓, 1,   PI3K↓, 6,   PTEN↓, 1,   PTEN↑, 3,   Shh↓, 2,   c-Src↓, 1,   STAT3↓, 6,   STAT3⇅, 1,   p‑STAT3↓, 2,   TBX15↑, 1,   TumCG↓, 12,   Wnt↓, 3,   Wnt/(β-catenin)↓, 1,  

Migration

AP-1↓, 1,   APC↑, 1,   Ca+2↑, 2,   CDK4/6↓, 1,   CXCL12↓, 1,   E-cadherin↑, 4,   Ki-67↓, 2,   miR-200b↑, 1,   MMP1↓, 1,   MMP2↓, 5,   MMP7∅, 1,   MMP9↓, 7,   MUC4↓, 1,   N-cadherin↓, 3,   SMAD2↓, 1,   SMAD3↓, 1,   Snail↓, 4,   TET1↑, 1,   TGF-β↓, 3,   TumCI↓, 11,   TumCMig↓, 12,   TumCP↓, 21,   TumMeta↓, 1,   Twist↓, 1,   Vim↓, 2,   β-catenin/ZEB1↓, 4,  

Angiogenesis & Vasculature

angioG↓, 3,   ATF4↑, 1,   EGFR↓, 1,   Hif1a↓, 11,   NO↑, 1,   VEGF↓, 5,  

Immune & Inflammatory Signaling

COX1↓, 1,   COX2↓, 5,   CXCR4↓, 1,   IL10↓, 1,   IL6↓, 2,   JAK1↓, 1,   JAK2↓, 2,   NF-kB↓, 4,   PD-L1↓, 1,  

Hormonal & Nuclear Receptors

CDK6↑, 1,  

Drug Metabolism & Resistance

BioAv↑, 1,   ChemoSen↓, 1,   ChemoSen↑, 9,   Dose↝, 3,   eff↓, 5,   eff↑, 7,   MDR1↓, 1,   RadioS↑, 2,   selectivity↑, 4,  

Clinical Biomarkers

ALAT↓, 1,   ALP↓, 1,   AST↓, 1,   EGFR↓, 1,   EZH2↓, 1,   Ferritin↓, 1,   FOXM1↓, 1,   GutMicro↑, 2,   HER2/EBBR2↓, 2,   IL6↓, 2,   Ki-67↓, 2,   PD-L1↓, 1,   TP53↑, 2,  

Functional Outcomes

AntiCan↑, 5,   AntiTum↑, 1,   chemoP↑, 3,   chemoP∅, 1,   ChemoSideEff↓, 1,   OS↑, 1,   Pain↓, 1,   Risk↓, 2,   Sleep↑, 1,   Strength↑, 1,   toxicity↓, 1,   TumVol↓, 3,   TumW↓, 1,   Weight↑, 1,   Weight∅, 1,  

Infection & Microbiome

Sepsis↓, 1,  
Total Targets: 251

Pathway results for Effect on Normal Cells:


Redox & Oxidative Stress

antiOx↑, 4,   GPx↑, 1,   GSH↑, 2,   GSTs↑, 1,   MDA↓, 1,   NRF2↓, 1,   ROS↓, 2,   SOD↑, 1,  

DNA Damage & Repair

DNAdam↓, 1,  

Proliferation, Differentiation & Cell State

PTEN↑, 1,  

Immune & Inflammatory Signaling

Inflam↓, 3,   NF-kB↓, 1,  

Drug Metabolism & Resistance

Dose↝, 1,  

Clinical Biomarkers

GutMicro↑, 1,  

Functional Outcomes

AntiCan↑, 1,   cardioP↑, 1,   cognitive↑, 1,   hepatoP↑, 2,   memory↑, 1,   neuroP↑, 2,   toxicity↓, 1,   toxicity∅, 2,  
Total Targets: 22

Query results interpretion may depend on "conditions" listed in the research papers.
Such Conditions may include : 
  -low or high Dose
  -format for product, such as nano of lipid formations
  -different cell line effects
  -synergies with other products 
  -if effect was for normal or cancerous cells
Filter Conditions: Pro/AntiFlg:%  IllCat:%  CanType:28  Cells:%  prod#:%  Target#:%  State#:%  Dir#:%
wNotes=0 sortOrder:rid,rpid

 

Home Page