| Stomach/Gastric Cancer |
| 239- | AL, | Allicin induces apoptosis in gastric cancer cells through activation of both extrinsic and intrinsic pathways |
| - | in-vitro, | GC, | SGC-7901 |
| 246- | AL, | Allicin induces apoptosis of the MGC-803 human gastric carcinoma cell line through the p38 mitogen-activated protein kinase/caspase-3 signaling pathway |
| - | in-vitro, | GC, | MGC803 |
| 249- | AL, | Allicin induces apoptosis of the MGC-803 human gastric carcinoma cell line through the p38 mitogen-activated protein kinase/caspase-3 signaling pathway |
| - | in-vitro, | GC, | MGC803 |
| 2655- | AL, | Allicin and Digestive System Cancers: From Chemical Structure to Its Therapeutic Opportunities |
| - | Review, | GC, | NA |
| 2647- | AL, | The Mechanism in Gastric Cancer Chemoprevention by Allicin |
| - | Review, | GC, | NA |
| 2667- | AL, | Allicin in Digestive System Cancer: From Biological Effects to Clinical Treatment |
| - | Review, | GC, | NA |
| 302- | ALA, | The Antioxidant Alpha-Lipoic Acid Inhibits Proliferation and Invasion of Human Gastric Cancer Cells via Suppression of STAT3-Mediated MUC4 Gene Expression |
| - | in-vitro, | GC, | AGS | - | in-vitro, | GC, | BGC-823 | - | in-vitro, | GC, | MKN-28 |
| 2631- | Api, | Apigenin Induces Autophagy and Cell Death by Targeting EZH2 under Hypoxia Conditions in Gastric Cancer Cells |
| - | in-vivo, | GC, | NA | - | in-vitro, | GC, | AGS |
| 1079- | ART/DHA, | Artesunate inhibits the growth and induces apoptosis of human gastric cancer cells by downregulating COX-2 |
| - | in-vitro, | GC, | BGC-823 | - | in-vitro, | GC, | HGC27 | - | in-vitro, | GC, | MGC803 |
| 4993- | ART/DHA, | Dihydroartemisinin inhibits galectin-1–induced ferroptosis resistance and peritoneal metastasis of gastric cancer via the Nrf2–HO-1 pathway |
| - | vitro+vivo, | GC, | NA |
| 3169- | Ash, | Withaferin A blocks formation of IFN-γ-induced metastatic cancer stem cells through inhibition of the CXCR4/CXCL12 pathway in the UP-LN1 carcinoma cell model |
| - | in-vitro, | GC, | NA |
| 4809- | ASTX, | Astaxanthin Inhibits Proliferation of Human Gastric Cancer Cell Lines by Interrupting Cell Cycle Progression |
| - | in-vitro, | GC, | AGS | - | in-vitro, | GC, | MKN45 |
| 1032- | BA, | Gut microbiome-derived butyrate inhibits the immunosuppressive factors PD-L1 and IL-10 in tumor-associated macrophages in gastric cancer |
| - | in-vivo, | GC, | AGS |
| 1288- | Ba, | The Traditional Chinese Medicine Baicalein Potently Inhibits Gastric Cancer Cells |
| - | in-vitro, | GC, | SGC-7901 |
| 2620- | Ba, | Natural compounds targeting glycolysis as promising therapeutics for gastric cancer: A review |
| - | Review, | GC, | NA |
| 2295- | Ba, | 5-FU, | Baicalein reverses hypoxia-induced 5-FU resistance in gastric cancer AGS cells through suppression of glycolysis and the PTEN/Akt/HIF-1α signaling pathway |
| - | in-vitro, | GC, | AGS |
| 2391- | Ba, | Scutellaria baicalensis and its flavonoids in the treatment of digestive system tumors |
| - | Review, | GC, | NA |
| 1392- | BBR, | Based on network pharmacology and experimental validation, berberine can inhibit the progression of gastric cancer by modulating oxidative stress |
| - | in-vitro, | GC, | AGS | - | in-vitro, | GC, | MKN45 |
| 1394- | BBR, | DL, | Synergistic Inhibitory Effect of Berberine and d-Limonene on Human Gastric Carcinoma Cell Line MGC803 |
| - | in-vitro, | GC, | MGC803 |
| 1395- | BBR, | Analysis of the mechanism of berberine against stomach carcinoma based on network pharmacology and experimental validation |
| - | in-vitro, | GC, | NA |
| 1396- | BBR, | Berberine induced down-regulation of matrix metalloproteinase-1, -2 and -9 in human gastric cancer cells (SNU-5) in vitro |
| - | in-vitro, | GC, | SNU1041 | - | in-vitro, | GC, | SNU5 |
| 956- | BBR, | Berberine inhibits HIF-1alpha expression via enhanced proteolysis |
| - | in-vitro, | Nor, | HUVECs | - | in-vitro, | GC, | SCM1 |
| 2763- | BetA, | Betulinic Acid Inhibits the Stemness of Gastric Cancer Cells by Regulating the GRP78-TGF-β1 Signaling Pathway and Macrophage Polarization |
| - | in-vitro, | GC, | NA |
| 2741- | BetA, | Betulinic acid triggers apoptosis and inhibits migration and invasion of gastric cancer cells by impairing EMT progress |
| - | in-vitro, | GC, | SNU16 | - | in-vitro, | GC, | NCI-N87 | - | in-vivo, | NA, | NA |
| 1420- | Bos, | Acetyl-11-keto-β-boswellic acid inhibits proliferation and induces apoptosis of gastric cancer cells through the phosphatase and tensin homolog /Akt/ cyclooxygenase-2 signaling pathway |
| - | vitro+vivo, | GC, | BGC-823 |
| 939- | Catechins, | 5-FU, | Targeting Lactate Dehydrogenase A with Catechin Resensitizes SNU620/5FU Gastric Cancer Cells to 5-Fluorouracil |
| - | vitro+vivo, | GC, | SNU620 |
| 3258- | CHr, | PBG, | Chrysin Induced Cell Apoptosis and Inhibited Invasion Through Regulation of TET1 Expression in Gastric Cancer Cells |
| - | in-vitro, | GC, | MKN45 |
| 2803- | CHr, | 5-FU, | Potentiating activities of chrysin in the therapeutic efficacy of 5-fluorouracil in gastric cancer cells |
| - | in-vitro, | GC, | AGS |
| 1593- | Citrate, | Citrate Induces Apoptotic Cell Death: A Promising Way to Treat Gastric Carcinoma? |
| - | in-vitro, | GC, | BGC-823 | - | in-vitro, | GC, | SGC-7901 |
| 16- | CP, | Resveratrol inhibits the hedgehog signaling pathway and epithelial-mesenchymal transition and suppresses gastric cancer invasion and metastasis |
| - | in-vitro, | GC, | SGC-7901 |
| 4708- | CUR, | Molecular mechanisms underlying curcumin-mediated microRNA regulation in carcinogenesis; Focused on gastrointestinal cancers |
| - | Review, | GC, | NA |
| 410- | CUR, | Nrf2 depletion enhanced curcumin therapy effect in gastric cancer by inducing the excessive accumulation of ROS |
| - | vitro+vivo, | GC, | AGS | - | vitro+vivo, | GC, | HGC27 |
| 458- | CUR, | Curcumin suppresses gastric cancer by inhibiting gastrin‐mediated acid secretion |
| - | vitro+vivo, | GC, | SGC-7901 |
| 453- | CUR, | Cellular uptake and apoptotic properties of gemini curcumin in gastric cancer cells |
| - | in-vitro, | GC, | AGS |
| 454- | CUR, | Curcumin-Induced DNA Demethylation in Human Gastric Cancer Cells Is Mediated by the DNA-Damage Response Pathway |
| - | in-vitro, | GC, | MGC803 |
| 455- | CUR, | Curcumin Affects Gastric Cancer Cell Migration, Invasion and Cytoskeletal Remodeling Through Gli1-β-Catenin |
| - | in-vitro, | GC, | SGC-7901 |
| 456- | CUR, | Curcumin Promoted miR-34a Expression and Suppressed Proliferation of Gastric Cancer Cells |
| - | vitro+vivo, | GC, | SGC-7901 |
| 457- | CUR, | Curcumin regulates proliferation, autophagy, and apoptosis in gastric cancer cells by affecting PI3K and P53 signaling |
| - | in-vitro, | GC, | SGC-7901 | - | in-vitro, | GC, | BGC-823 |
| 1444- | Deg, | Deguelin promotes apoptosis and inhibits angiogenesis of gastric cancer |
| - | in-vitro, | GC, | MKN-28 |
| 1607- | EA, | Exploring the Potential of Ellagic Acid in Gastrointestinal Cancer Prevention: Recent Advances and Future Directions |
| - | Review, | GC, | NA |
| 2147- | Ex, | The association between physical activity and gastroesophageal cancer: systematic review and meta-analysis |
| - | Review, | GC, | NA |
| 2842- | FIS, | Fisetin inhibits cellular proliferation and induces mitochondria-dependent apoptosis in human gastric cancer cells |
| - | in-vitro, | GC, | AGS |
| 1115- | GA, | Gallic acid alleviates gastric precancerous lesions through inhibition of epithelial mesenchymal transition via Wnt/β-catenin signaling pathway |
| - | in-vivo, | GC, | GES-1 |
| 802- | GAR, | Garcinol acts as an antineoplastic agent in human gastric cancer by inhibiting the PI3K/AKT signaling pathway |
| - | in-vitro, | GC, | HGC27 |
| 4507- | GLA, | Effect of γ-Linolenic Acid on the Transcriptional Activity of the Her-2/neu (erbB-2) Oncogene |
| - | in-vitro, | BC, | BT474 | - | in-vitro, | BC, | SkBr3 | - | in-vitro, | BC, | MDA-MB-453 | - | in-vitro, | Ovarian, | SKOV3 | - | in-vitro, | GC, | NCI-N87 |
| 2898- | HNK, | Honokiol Suppression of Human Epidermal Growth Factor Receptor 2 (HER2)-Positive Gastric Cancer Cell Biological Activity and Its Mechanism |
| - | in-vitro, | GC, | AGS | - | in-vitro, | GC, | NCI-N87 | - | in-vitro, | BC, | MGC803 | - | in-vitro, | GC, | SGC-7901 |
| 2877- | HNK, | Targeting histone deacetylase-3 blocked epithelial-mesenchymal plasticity and metastatic dissemination in gastric cancer |
| - | in-vitro, | GC, | AGS |
| 1927- | JG, | Juglone-induced apoptosis in human gastric cancer SGC-7901 cells via the mitochondrial pathway |
| - | in-vitro, | GC, | SGC-7901 |
| 2924- | LT, | Luteolin selectively kills STAT3 highly activated gastric cancer cells through enhancing the binding of STAT3 to SHP-1 |
| - | in-vitro, | GC, | NA | - | in-vivo, | NA, | NA |
| 2913- | LT, | Luteolin induces apoptosis by impairing mitochondrial function and targeting the intrinsic apoptosis pathway in gastric cancer cells |
| - | in-vitro, | GC, | HGC27 | - | in-vitro, | BC, | MCF-7 | - | in-vitro, | GC, | MKN45 |
| 4777- | Lyco, | Lycopene Inhibits Activation of Epidermal Growth Factor Receptor and Expression of Cyclooxygenase-2 in Gastric Cancer Cells |
| - | in-vitro, | GC, | AGS |
| 4794- | Lyco, | Anticancer Effect of Lycopene in Gastric Carcinogenesis |
| - | Review, | GC, | NA |
| 4793- | Lyco, | Lycopene treatment inhibits activation of Jak1/Stat3 and Wnt/β-catenin signaling and attenuates hyperproliferation in gastric epithelial cells |
| - | in-vitro, | GC, | AGS |
| 4783- | Lyco, | Lycopene suppresses gastric cancer cell growth without affecting normal gastric epithelial cells |
| - | in-vitro, | GC, | AGS | - | in-vitro, | GC, | SGC-7901 | - | in-vitro, | Nor, | GES-1 |
| 1013- | Lyco, | Lycopene induces apoptosis by inhibiting nuclear translocation of β-catenin in gastric cancer cells |
| - | in-vitro, | GC, | AGS |
| 4533- | MAG, | Magnolol, a natural compound, induces apoptosis of SGC-7901 human gastric adenocarcinoma cells via the mitochondrial and PI3K/Akt signaling pathways |
| - | in-vitro, | GC, | SGC-7901 |
| 4518- | MAG, | Cisplatin, | Evaluating the Magnolol Anticancer Potential in MKN-45 Gastric Cancer Cells |
| - | in-vitro, | GC, | MKN45 |
| 2375- | MET, | Metformin inhibits gastric cancer via the inhibition of HIF1α/PKM2 signaling |
| - | in-vitro, | GC, | SGC-7901 |
| 3498- | MF, | Effect of Static Magnetic Field on Oxidant/Antioxidant Parameters in Cancerous and Noncancerous Human Gastric Tissues |
| - | in-vitro, | GC, | NA |
| 4015- | MF, | Evaluation of the PTEN and circRNA-CDR1as Gene Expression Changes in Gastric Cancer and Normal Cell Lines Following the Exposure to Weak and Moderate 50 Hz Electromagnetic Fields |
| - | in-vitro, | GC, | AGS | - | in-vitro, | Nor, | HU02 |
| 217- | MFrot, | MF, | Effect of low-frequency rotary magnetic fields on advanced gastric cancer |
| - | in-vivo, | GC, | HL-60 | - | in-vivo, | GC, | SK-HEP-1 |
| 1273- | Myr, | Myricetin Induces Ferroptosis and Inhibits Gastric Cancer Progression by Targeting NOX4 |
| - | vitro+vivo, | GC, | NA |
| 1226- | OLST, | Knockdown of PGM1 enhances anticancer effects of orlistat in gastric cancer under glucose deprivation |
| - | vitro+vivo, | GC, | NA |
| 1254- | PI, | VitC, | Piperlongumine combined with vitamin C as a new adjuvant therapy against gastric cancer regulates the ROS–STAT3 pathway |
| - | in-vivo, | GC, | NA |
| 1165- | PI, | Piperine inhibits IL-1β-induced IL-6 expression by suppressing p38 MAPK and STAT3 activation in gastric cancer cells |
| - | in-vitro, | GC, | TMK-1 |
| 1947- | PL, | Piperlongumine as a direct TrxR1 inhibitor with suppressive activity against gastric cancer |
| - | in-vitro, | GC, | SGC-7901 | - | in-vitro, | GC, | NA |
| 2968- | PL, | Chit, | Preparation of piperlongumine-loaded chitosan nanoparticles for safe and efficient cancer therapy |
| - | in-vitro, | GC, | AGS |
| 4965- | PSO, | Cisplatin, | The synergistic antitumor effects of psoralidin and cisplatin in gastric cancer by inducing ACSL4-mediated ferroptosis |
| - | vitro+vivo, | GC, | HGC27 | - | vitro+vivo, | GC, | MKN45 |
| 1238- | PTS, | Pterostilbene suppresses gastric cancer proliferation and metastasis by inhibiting oncogenic JAK2/STAT3 signaling: In vitro and in vivo therapeutic intervention |
| - | in-vitro, | GC, | NA | - | in-vivo, | NA, | NA |
| 55- | QC, | Quercetin inhibits the growth of human gastric cancer stem cells by inducing mitochondrial-dependent apoptosis through the inhibition of PI3K/Akt signaling |
| - | in-vitro, | GC, | GCSCs |
| 5026- | QC, | Quercetin induces ferroptosis in gastric cancer cells by targeting SLC1A5 and regulating the p-Camk2/p-DRP1 and NRF2/GPX4 Axes |
| - | in-vitro, | GC, | NA |
| 101- | RES, | Resveratrol inhibits the hedgehog signaling pathway and epithelial-mesenchymal transition and suppresses gastric cancer invasion and metastasis |
| - | in-vitro, | GC, | SGC-7901 |
| - | Trial, | GC, | NA |
| 963- | SFN, | Sulforaphane inhibits hypoxia-induced HIF-1α and VEGF expression and migration of human colon cancer cells |
| - | in-vitro, | CRC, | HCT116 | - | in-vitro, | GC, | AGS |
| 3199- | SFN, | Sulforaphane improves chemotherapy efficacy by targeting cancer stem cell-like properties via the miR-124/IL-6R/STAT3 axis |
| - | in-vitro, | GC, | NA |
| 2405- | SFN, | Sulforaphane Targets the TBX15/KIF2C Pathway to Repress Glycolysis and Cell Proliferation in Gastric Carcinoma Cells |
| - | in-vitro, | GC, | SGC-7901 | - | in-vitro, | GC, | BGC-823 |
| 1452- | SFN, | Sulforaphane Suppresses the Nicotine-Induced Expression of the Matrix Metalloproteinase-9 via Inhibiting ROS-Mediated AP-1 and NF-κB Signaling in Human Gastric Cancer Cells |
| - | in-vitro, | GC, | AGS |
| 1471- | SFN, | ROS-mediated activation of AMPK plays a critical role in sulforaphane-induced apoptosis and mitotic arrest in AGS human gastric cancer cells |
| - | in-vitro, | GC, | AGS |
| 3304- | SIL, | Silymarin induces inhibition of growth and apoptosis through modulation of the MAPK signaling pathway in AGS human gastric cancer cells |
| - | in-vitro, | GC, | AGS | - | in-vivo, | NA, | NA |
| 2234- | SK, | Shikonin Suppresses Cell Tumorigenesis in Gastric Cancer Associated with the Inhibition of c-Myc and Yap-1 |
| - | in-vitro, | GC, | NA |
| 2227- | SK, | Shikonin induces mitochondria-mediated apoptosis and enhances chemotherapeutic sensitivity of gastric cancer through reactive oxygen species |
| - | in-vitro, | GC, | BGC-823 | - | in-vitro, | GC, | SGC-7901 | - | in-vitro, | Nor, | GES-1 |
| 1280- | SK, | Shikonin Induces Apoptotic Cell Death via Regulation of p53 and Nrf2 in AGS Human Stomach Carcinoma Cells |
| - | in-vitro, | GC, | AGS |
| 2199- | SK, | Induction of Ferroptosis by Shikonin in Gastric Cancer via the DLEU1/mTOR/GPX4 Axis |
| - | in-vitro, | GC, | NA |
| 1192- | SM, | Abietane diterpenes from Salvia miltiorrhiza inhibit the activation of hypoxia-inducible factor-1 |
| - | in-vitro, | GC, | AGS | - | in-vitro, | Liver, | HepG3 |
| 383- | SNP, | In vitro and in vivo evaluation of anti-tumorigenesis potential of nano silver for gastric cancer cells |
| - | in-vitro, | GC, | MKN45 |
| 4552- | SNP, | ART/DHA, | Green synthesis of silver nanoparticles using Artemisia turcomanica leaf extract and the study of anti-cancer effect and apoptosis induction on gastric cancer cell line (AGS) |
| - | in-vitro, | GC, | AGS |
| 2091- | TQ, | Determination of anti-cancer effects of Nigella sativa seed oil on MCF7 breast and AGS gastric cancer cells |
| - | in-vitro, | BC, | MCF-7 | - | in-vitro, | GC, | AGS |
| 2083- | TQ, | Thymoquinone inhibits proliferation in gastric cancer via the STAT3 pathway in vivo and in vitro |
| - | in-vitro, | GC, | HGC27 | - | in-vitro, | GC, | BGC-823 | - | in-vitro, | GC, | SGC-7901 | - | in-vivo, | NA, | NA |
| 4849- | Uro, | Urolithin A suppresses tumor progression and induces autophagy in gastric cancer via the PI3K/Akt/mTOR pathway |
| - | vitro+vivo, | GC, | NA |
| 4846- | Uro, | Urolithin A exerts anti-tumor effects on gastric cancer via activating autophagy-Hippo axis and modulating the gut microbiota |
| - | in-vivo, | GC, | NA |
| 3132- | VitC, | Vitamin C affects G0/G1 cell cycle and autophagy by downregulating of cyclin D1 in gastric carcinoma cells |
| - | in-vitro, | GC, | MKN45 |
Query results interpretion may depend on "conditions" listed in the research papers. Such Conditions may include : -low or high Dose -format for product, such as nano of lipid formations -different cell line effects -synergies with other products -if effect was for normal or cancerous cells
Filter Conditions: Pro/AntiFlg:% IllCat:% CanType:28 Cells:% prod#:% Target#:% State#:% Dir#:%
wNotes=0 sortOrder:rid,rpid