| Cervical Cancer |
| 3435- | aLinA, | Alpha-linolenic acid-mediated epigenetic reprogramming of cervical cancer cell lines |
| - | in-vitro, | Cerv, | HeLa | - | in-vitro, | Cerv, | SiHa | - | in-vitro, | Cerv, | C33A |
| 421- | Api, | Apigenin inhibits HeLa sphere-forming cells through inactivation of casein kinase 2α |
| - | vitro+vivo, | Cerv, | HeLa |
| 2635- | Api, | CUR, | Synergistic Effect of Apigenin and Curcumin on Apoptosis, Paraptosis and Autophagy-related Cell Death in HeLa Cells |
| - | in-vitro, | Cerv, | HeLa |
| 2578- | ART/DHA, | RES, | Synergic effects of artemisinin and resveratrol in cancer cells |
| - | in-vitro, | Liver, | HepG2 | - | in-vitro, | Cerv, | HeLa |
| 2337- | BBR, | Berberine Inhibited the Proliferation of Cancer Cells by Suppressing the Activity of Tumor Pyruvate Kinase M2 |
| - | in-vitro, | CRC, | HCT116 | - | in-vitro, | Cerv, | HeLa |
| 2753- | BetA, | Betulinic acid induces apoptosis by regulating PI3K/Akt signaling and mitochondrial pathways in human cervical cancer cells |
| - | in-vitro, | Cerv, | HeLa |
| 2720- | BetA, | Betulinic acid induces apoptosis of HeLa cells via ROS-dependent ER stress and autophagy in vitro and in vivo |
| - | in-vitro, | Cerv, | HeLa |
| 2721- | BetA, | Proteomic Investigation into Betulinic Acid-Induced Apoptosis of Human Cervical Cancer HeLa Cells |
| - | in-vitro, | Cerv, | HeLa |
| 2726- | BetA, | Betulinic acid induces DNA damage and apoptosis in SiHa cells |
| - | in-vitro, | Cerv, | SiHa |
| - | in-vitro, | Cerv, | SiHa |
| 1207- | CA, | PacT, | Caffeine inhibits the anticancer activity of paclitaxel via down-regulation of α-tubulin acetylation |
| - | in-vitro, | Lung, | A549 | - | in-vitro, | Cerv, | HeLa |
| 4479- | Chit, | Chitosan nanoparticles triggered the induction of ROS-mediated cytoprotective autophagy in cancer cells |
| - | in-vitro, | Cerv, | HeLa | - | in-vitro, | HCC, | SMMC-7721 cell |
| 1145- | CHr, | Chrysin inhibits propagation of HeLa cells by attenuating cell survival and inducing apoptotic pathways |
| - | in-vitro, | Cerv, | HeLa |
| 945- | Croc, | Characterization of the Saffron Derivative Crocetin as an Inhibitor of Human Lactate Dehydrogenase 5 in the Antiglycolytic Approach against Cancer |
| - | in-vitro, | Lung, | A549 | - | in-vitro, | Cerv, | HeLa |
| 1609- | CUR, | EA, | Curcumin and Ellagic acid synergistically induce ROS generation, DNA damage, p53 accumulation and apoptosis in HeLa cervical carcinoma cells |
| - | in-vitro, | Cerv, | NA |
| 1977- | CUR, | Synthesis and evaluation of curcumin analogues as potential thioredoxin reductase inhibitors |
| - | in-vitro, | BC, | MCF-7 | - | in-vitro, | Cerv, | HeLa | - | in-vitro, | Lung, | A549 |
| 1978- | CUR, | Curcumin targeting the thioredoxin system elevates oxidative stress in HeLa cells |
| - | in-vitro, | Cerv, | HeLa |
| 1980- | CUR, | Rad, | Thioredoxin reductase-1 (TxnRd1) mediates curcumin-induced radiosensitization of squamous carcinoma cells |
| - | in-vitro, | Cerv, | HeLa | - | in-vitro, | Laryn, | FaDu |
| 2304- | CUR, | Curcumin decreases Warburg effect in cancer cells by down-regulating pyruvate kinase M2 via mTOR-HIF1α inhibition |
| - | in-vitro, | Lung, | H1299 | - | in-vitro, | BC, | MCF-7 | - | in-vitro, | Cerv, | HeLa | - | in-vitro, | Pca, | PC3 | - | in-vitro, | Nor, | HEK293 |
| 477- | CUR, | Curcumin induces G2/M arrest and triggers autophagy, ROS generation and cell senescence in cervical cancer cells |
| - | in-vitro, | Cerv, | SiHa |
| 478- | CUR, | Curcumin decreases epithelial‑mesenchymal transition by a Pirin‑dependent mechanism in cervical cancer cells |
| - | in-vitro, | Cerv, | SiHa |
| 1608- | EA, | Ellagic Acid from Hull Blackberries: Extraction, Purification, and Potential Anticancer Activity |
| - | in-vitro, | Cerv, | HeLa | - | in-vitro, | Liver, | HepG2 | - | in-vitro, | BC, | MCF-7 | - | in-vitro, | Lung, | A549 | - | in-vitro, | Nor, | HUVECs |
| 1610- | EA, | Anticancer Effect of Pomegranate Peel Polyphenols against Cervical Cancer |
| - | Review, | Cerv, | NA |
| 693- | EGCG, | CAP, | Phen, | Metabolite modulation of HeLa cell response to ENOX2 inhibitors EGCG and phenoxodiol |
| - | in-vitro, | Cerv, | HeLa |
| 3202- | EGCG, | Epigallocatechin-3-gallate enhances ER stress-induced cancer cell apoptosis by directly targeting PARP16 activity |
| - | in-vitro, | Cerv, | HeLa | - | in-vitro, | HCC, | QGY-7703 |
| 3233- | EGCG, | Epigallocatechin gallate inhibits HeLa cells by modulation of epigenetics and signaling pathways |
| - | in-vitro, | Cerv, | HeLa |
| 3235- | EGCG, | (-)-Epigallocatechin-3-gallate reverses the expression of various tumor-suppressor genes by inhibiting DNA methyltransferases and histone deacetylases in human cervical cancer cells |
| - | in-vivo, | Cerv, | HeLa |
| 3214- | EGCG, | EGCG-induced selective death of cancer cells through autophagy-dependent regulation of the p62-mediated antioxidant survival pathway |
| - | in-vitro, | Nor, | MRC-5 | - | in-vitro, | Cerv, | HeLa | - | in-vitro, | Nor, | HEK293 | - | in-vitro, | BC, | MDA-MB-231 | - | in-vitro, | CRC, | HCT116 |
| 3218- | EGCG, | Comparative efficacy of epigallocatechin-3-gallate against H2O2-induced ROS in cervical cancer biopsies and HeLa cell lines |
| - | in-vitro, | Cerv, | HeLa |
| 1514- | EGCG, | Preferential inhibition by (-)-epigallocatechin-3-gallate of the cell surface NADH oxidase and growth of transformed cells in culture |
| - | in-vitro, | Cerv, | HeLa | - | in-vitro, | Nor, | MCF10 |
| 1515- | EGCG, | Phen, | Reciprocal Relationship Between Cytosolic NADH and ENOX2 Inhibition Triggers Sphingolipid-Induced Apoptosis in HeLa Cells |
| - | in-vitro, | Cerv, | HeLa | - | in-vitro, | Nor, | MCF10 | - | in-vitro, | BC, | BT20 |
| 1975- | EGCG, | Molecular bases of thioredoxin and thioredoxin reductase-mediated prooxidant actions of (-)-epigallocatechin-3-gallate |
| - | in-vitro, | Cerv, | HeLa |
| 1323- | EMD, | Anticancer action of naturally occurring emodin for the controlling of cervical cancer |
| - | Review, | Cerv, | NA |
| 1245- | EMD, | Emodin Exhibits Strong Cytotoxic Effect in Cervical Cancer Cells by Activating Intrinsic Pathway of Apoptosis |
| - | in-vitro, | Cerv, | HeLa |
| 3460- | EP, | Picosecond pulsed electric fields induce apoptosis in HeLa cells via the endoplasmic reticulum stress and caspase-dependent signaling pathways |
| - | in-vitro, | Cerv, | HeLa |
| 2455- | erastin, | Discovery of the Inhibitor Targeting the SLC7A11/xCT Axis through In Silico and In Vitro Experiments |
| - | in-vitro, | Cerv, | HeLa |
| 1624- | GA, | Anticancer Effect of Pomegranate Peel Polyphenols against Cervical Cancer |
| - | in-vitro, | Cerv, | NA |
| 987- | GA, | Targeting Aerobic Glycolysis: Gallic Acid as Promising Anticancer Drug |
| - | in-vitro, | GBM, | AMGM | - | in-vitro, | Cerv, | HeLa | - | in-vitro, | BC, | MCF-7 |
| 1091- | GA, | Gallic acid reduces cell viability, proliferation, invasion and angiogenesis in human cervical cancer cells |
| - | in-vitro, | Cerv, | HeLa | - | in-vitro, | Cerv, | HTB-35 |
| 806- | GAR, | Garcinol exerts anti-cancer effect in human cervical cancer cells through upregulation of T-cadherin |
| - | vitro+vivo, | Pca, | HeLa | - | vitro+vivo, | Cerv, | SiHa |
| 2997- | GEN, | Genistein Inhibition of Topoisomerase IIα Expression Participated by Sp1 and Sp3 in HeLa Cell |
| - | in-vitro, | Cerv, | HeLa |
| 2925- | LT, | Luteolin Induces Carcinoma Cell Apoptosis through Binding Hsp90 to Suppress Constitutive Activation of STAT3 |
| - | in-vitro, | Cerv, | HeLa | - | in-vitro, | Nor, | HEK293 | - | in-vitro, | BC, | MCF-7 |
| 2927- | LT, | Luteolin Causes 5′CpG Demethylation of the Promoters of TSGs and Modulates the Aberrant Histone Modifications, Restoring the Expression of TSGs in Human Cancer Cells |
| - | in-vitro, | Cerv, | HeLa |
| 4803- | Lyco, | Enhanced cytotoxic and apoptosis inducing activity of lycopene oxidation products in different cancer cell lines |
| - | in-vitro, | Pca, | PC3 | - | in-vitro, | BC, | MCF-7 | - | in-vitro, | Melanoma, | A431 | - | in-vitro, | Liver, | HepG2 | - | in-vitro, | Cerv, | HeLa | - | in-vitro, | Lung, | A549 |
| - | in-vitro, | Pca, | PC3 | - | in-vitro, | Lung, | A549 | - | in-vitro, | Cerv, | HeLa | - | in-vitro, | BC, | MCF-7 | - | in-vitro, | Liver, | HepG2 |
| 4535- | MAG, | 5-FU, | Magnolol and 5-fluorouracil synergy inhibition of metastasis of cervical cancer cells by targeting PI3K/AKT/mTOR and EMT pathways |
| - | in-vitro, | Cerv, | NA |
| 2377- | MET, | Metformin Inhibits TGF-β1-Induced Epithelial-to-Mesenchymal Transition via PKM2 Relative-mTOR/p70s6k Signaling Pathway in Cervical Carcinoma Cells |
| - | in-vitro, | Cerv, | HeLa | - | in-vitro, | Cerv, | SiHa |
| 2256- | MF, | HPT, | Effects of exposure to repetitive pulsed magnetic stimulation on cell proliferation and expression of heat shock protein 70 in normal and malignant cells |
| - | in-vitro, | BC, | MCF-7 | - | in-vitro, | Cerv, | HeLa | - | in-vitro, | Nor, | HBL-100 |
| 3459- | MF, | EFFECT OF PULSED ELECTROMAGNETIC FIELDS ON ENDOPLASMIC RETICULUM STRESS |
| - | in-vitro, | Cerv, | HeLa |
| 3470- | MF, | Pulsed electromagnetic fields inhibit IL-37 to alleviate CD8+ T cell dysfunction and suppress cervical cancer progression |
| - | in-vitro, | Cerv, | HeLa |
| - | in-vitro, | AML, | THP1 | - | in-vitro, | NA, | PC12 | - | in-vivo, | Cerv, | HeLa |
| 531- | MF, | 6-mT 0-120-Hz magnetic fields differentially affect cellular ATP levels |
| - | in-vitro, | Cerv, | HeLa | - | in-vitro, | CRC, | HCT116 | - | in-vitro, | BC, | MCF-7 | - | in-vitro, | Lung, | A549 | - | in-vitro, | Nor, | RPE-1 | - | in-vitro, | Nor, | GP-293 |
| 3496- | MFrot, | GoldNP, | MF, | Enhancement of chemotherapy effects by non-lethal magneto-mechanical actuation of gold-coated magnetic nanoparticles |
| - | in-vitro, | Cerv, | HeLa |
| 1015- | NarG, | Naringin induces endoplasmic reticulum stress-mediated apoptosis, inhibits β-catenin pathway and arrests cell cycle in cervical cancer cells |
| - | in-vitro, | Cerv, | SiHa | - | in-vitro, | Cerv, | HeLa | - | in-vitro, | Cerv, | C33A |
| 1993- | Part, | Parthenolide induces apoptosis and autophagy through the suppression of PI3K/Akt signaling pathway in cervical cancer |
| - | in-vitro, | Cerv, | HeLa |
| 1984- | Part, | Targeting Thioredoxin Reductase by Parthenolide Contributes to Inducing Apoptosis of HeLa Cells |
| - | in-vitro, | Cerv, | HeLa |
| 1983- | Part, | Targeting thioredoxin reductase by micheliolide contributes to radiosensitizing and inducing apoptosis of HeLa cells |
| - | in-vitro, | Cerv, | HeLa |
| 2057- | PB, | Trichomonas vaginalis induces apoptosis via ROS and ER stress response through ER–mitochondria crosstalk in SiHa cells |
| - | in-vitro, | Cerv, | SiHa |
| 4960- | PEITC, | Phenethyl isothiocyanate upregulates death receptors 4 and 5 and inhibits proliferation in human cancer stem-like cells |
| - | in-vivo, | Cerv, | HeLa |
| 4957- | PEITC, | Phenethyl Isothiocyanate (PEITC) from Cruciferous Vegetables Targets Human Cancer Stem-Like Cells |
| - | vitro+vivo, | Cerv, | HeLa |
| 4949- | PEITC, | Phenethyl Isothiocyanate Exposure Promotes Oxidative Stress and Suppresses Sp1 Transcription Factor in Cancer Stem Cells |
| - | in-vitro, | Cerv, | HeLa |
| 1949- | PL, | Design, synthesis, and biological evaluation of a novel indoleamine 2,3-dioxigenase 1 (IDO1) and thioredoxin reductase (TrxR) dual inhibitor |
| - | in-vitro, | CRC, | HCT116 | - | in-vitro, | Cerv, | HeLa |
| 2969- | PL, | Piperlongumine induces autophagy by targeting p38 signaling |
| - | in-vitro, | OS, | U2OS | - | in-vitro, | Cerv, | HeLa |
| 4968- | PSO, | Psoralidin: emerging biological activities of therapeutic benefits and its potential utility in cervical cancer |
| - | in-vitro, | Cerv, | NA |
| 4969- | PSO, | The Coumarin Psoralidin Enhances Anticancer Effect of Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand (TRAIL) |
| - | in-vitro, | Cerv, | HeLa |
| 5033- | PTS, | Involvement of the Nrf2 Pathway in the Regulation of Pterostilbene-Induced Apoptosis in HeLa Cells via ER Stress |
| - | in-vitro, | Cerv, | HeLa |
| 4692- | PTS, | Pterostilbene Suppresses both Cancer Cells and Cancer Stem-Like Cells in Cervical Cancer with Superior Bioavailability to Resveratrol |
| - | in-vitro, | Cerv, | HeLa |
| 3355- | QC, | Quercetin exhibits cytotoxicity in cancer cells by inducing two-ended DNA double-strand breaks |
| - | in-vitro, | Cerv, | HeLa |
| 3359- | QC, | Quercetin modifies 5′CpG promoter methylation and reactivates various tumor suppressor genes by modulating epigenetic marks in human cervical cancer cells |
| - | in-vitro, | Cerv, | HeLa |
| 3381- | QC, | Quercetin induces cell death in cervical cancer by reducing O-GlcNAcylation of adenosine monophosphate-activated protein kinase |
| - | in-vitro, | Cerv, | HeLa |
| 3362- | QC, | The effect of quercetin on cervical cancer cells as determined by inducing tumor endoplasmic reticulum stress and apoptosis and its mechanism of action |
| - | in-vitro, | Cerv, | HeLa |
| 36- | QC, | Quercetin induces G2 phase arrest and apoptosis with the activation of p53 in an E6 expression-independent manner in HPV-positive human cervical cancer-derived cells |
| - | in-vitro, | Cerv, | HeLa | - | in-vitro, | Cerv, | SiHa |
| 884- | RES, | PTS, | Resveratrol and Pterostilbene Exhibit Anticancer Properties Involving the Downregulation of HPV Oncoprotein E6 in Cervical Cancer Cells |
| - | in-vitro, | Cerv, | HeLa |
| 2328- | RES, | Resveratrol Inhibits Cancer Cell Metabolism by Down Regulating Pyruvate Kinase M2 via Inhibition of Mammalian Target of Rapamycin |
| - | in-vitro, | Cerv, | HeLa | - | in-vitro, | Liver, | HepG2 | - | in-vitro, | BC, | MCF-7 |
| 2330- | RES, | Resveratrol Induces Cancer Cell Apoptosis through MiR-326/PKM2-Mediated ER Stress and Mitochondrial Fission |
| - | in-vitro, | CRC, | DLD1 | - | in-vitro, | Cerv, | HeLa | - | in-vitro, | BC, | MCF-7 |
| 2986- | RES, | Effect of the natural compound trans‑resveratrol on human MCM4 gene transcription |
| - | in-vitro, | Cerv, | HeLa | - | in-vitro, | AML, | HL-60 |
| 3085- | RES, | Resveratrol interrupts Wnt/β-catenin signalling in cervical cancer by activating ten-eleven translocation 5-methylcytosine dioxygenase 1 |
| - | in-vitro, | Cerv, | NA |
| 4669- | RES, | Inhibition of RAD51 by siRNA and Resveratrol Sensitizes Cancer Stem Cells Derived from HeLa Cell Cultures to Apoptosis |
| - | in-vitro, | Cerv, | NA |
| 1403- | SDT, | BBR, | From 2D to 3D In Vitro World: Sonodynamically-Induced Prooxidant Proapoptotic Effects of C60-Berberine Nanocomplex on Cancer Cells |
| - | in-vitro, | Cerv, | HeLa | - | in-vitro, | Lung, | LLC1 |
| 4752- | Se, | CUR, | Chemo, | Curcumin-Modified Selenium Nanoparticles Improve S180 Tumour Therapy in Mice by Regulating the Gut Microbiota and Chemotherapy |
| - | in-vitro, | Cerv, | HeLa | - | in-vitro, | sarcoma, | S180 |
| 1455- | SFN, | Sulforaphane Activates a lysosome-dependent transcriptional program to mitigate oxidative stress |
| - | in-vitro, | Cerv, | HeLa | - | in-vitro, | Nor, | 1321N1 |
| 1475- | SFN, | Form, | Combination of Formononetin and Sulforaphane Natural Drug Repress the Proliferation of Cervical Cancer Cells via Impeding PI3K/AKT/mTOR Pathway |
| - | in-vitro, | Cerv, | HeLa |
| 2181- | SK, | Shikonin and its analogs inhibit cancer cell glycolysis by targeting tumor pyruvate kinase-M2 |
| - | in-vitro, | BC, | MCF-7 | - | in-vitro, | Lung, | A549 | - | in-vitro, | Cerv, | HeLa |
| 324- | SNP, | CPT, | Silver Nanoparticles Potentiates Cytotoxicity and Apoptotic Potential of Camptothecin in Human Cervical Cancer Cells |
| - | in-vitro, | Cerv, | HeLa |
| 326- | SNP, | TSA, | Modulating chromatin structure and DNA accessibility by deacetylase inhibition enhances the anti-cancer activity of silver nanoparticles |
| - | in-vitro, | Cerv, | HeLa |
| 394- | SNP, | Anticancer activity of Moringa oleifera mediated silver nanoparticles on human cervical carcinoma cells by apoptosis induction |
| - | in-vitro, | Cerv, | HeLa |
| 1907- | SNP, | GoldNP, | Cu, | In vitro antitumour activity of water soluble Cu(I), Ag(I) and Au(I) complexes supported by hydrophilic alkyl phosphine ligands |
| - | in-vitro, | Lung, | A549 | - | in-vitro, | BC, | MCF-7 | - | in-vitro, | Melanoma, | A375 | - | in-vitro, | Colon, | HCT15 | - | in-vitro, | Cerv, | HeLa |
| 2836- | SNP, | Gluc, | Glucose capped silver nanoparticles induce cell cycle arrest in HeLa cells |
| - | in-vitro, | Cerv, | HeLa |
| 4421- | SNP, | Effect of Biologically Synthesized Silver Nanoparticles on Human Cancer Cells |
| - | in-vitro, | Cerv, | NA |
| 4554- | SNP, | Involvement of telomerase activity inhibition and telomere dysfunction in silver nanoparticles anticancer effects |
| - | in-vitro, | Cerv, | HeLa |
| 4422- | SNP, | Bioengineering of Piper longum L. extract mediated silver nanoparticles and their potential biomedical applications |
| - | in-vitro, | Cerv, | HeLa |
| 4439- | SNP, | Anticancer Potential of Green Synthesized Silver Nanoparticles Using Extract of Nepeta deflersiana against Human Cervical Cancer Cells (HeLA) |
| - | in-vitro, | Cerv, | HeLa |
| 4372- | SNP, | Negligible particle-specific toxicity mechanism of silver nanoparticles: the role of Ag+ ion release in the cytosol |
| - | in-vitro, | Cerv, | HeLa | - | in-vitro, | Lung, | A549 |
| 4403- | SNP, | Silver Nanoparticles Decorated UiO-66-NH2 Metal-Organic Framework for Combination Therapy in Cancer Treatment |
| - | in-vitro, | GBM, | U251 | - | in-vitro, | GBM, | U87MG | - | in-vitro, | GBM, | GL26 | - | in-vitro, | Cerv, | HeLa | - | in-vitro, | CRC, | RKO |
| 4393- | SNP, | Nanotoxic Effects of Silver Nanoparticles on Normal HEK-293 Cells in Comparison to Cancerous HeLa Cell Line |
| - | in-vitro, | Cerv, | HeLa | - | in-vitro, | Nor, | HEK293 |
| 4388- | SNP, | Differential Cytotoxic Potential of Silver Nanoparticles in Human Ovarian Cancer Cells and Ovarian Cancer Stem Cells |
| - | in-vitro, | Cerv, | NA |
| 2097- | TQ, | Crude extract of Nigella sativa inhibits proliferation and induces apoptosis in human cervical carcinoma HeLa cells |
| - | in-vitro, | Cerv, | HeLa |
| 2104- | TQ, | The Potential Role of Nigella sativa Seed Oil as Epigenetic Therapy of Cancer |
| - | in-vitro, | BC, | MCF-7 | - | in-vitro, | Cerv, | HeLa |
| 5017- | UA, | Ursolic acid disturbs ROS homeostasis and regulates survival-associated gene expression to induce apoptosis in intestinal cancer cells |
| - | in-vitro, | Cerv, | INT-407 | - | in-vitro, | CRC, | HCT116 |
| 4618- | VitD3, | Vitamin D sensitizes cervical cancer to radiation-induced apoptosis by inhibiting autophagy through degradation of Ambra1 |
| - | in-vivo, | Cerv, | NA |
| 1838- | VitK3, | PDT, | Photodynamic Effects of Vitamin K3 on Cervical Carcinoma Cells Activating Mitochondrial Apoptosis Pathways |
| - | in-vitro, | Cerv, | NA |
| 1826- | VitK3, | PRX1 knockdown potentiates vitamin K3 toxicity in cancer cells: a potential new therapeutic perspective for an old drug |
| - | in-vitro, | Cerv, | HeLa | - | in-vitro, | Lung, | A549 |
Query results interpretion may depend on "conditions" listed in the research papers. Such Conditions may include : -low or high Dose -format for product, such as nano of lipid formations -different cell line effects -synergies with other products -if effect was for normal or cancerous cells
Filter Conditions: Pro/AntiFlg:% IllCat:% CanType:29 Cells:% prod#:% Target#:% State#:% Dir#:%
wNotes=0 sortOrder:rid,rpid