Database Query Results : , ,

Colon, Colon Cancer: Click to Expand ⟱
Colon cancer can start anywhere in the colon, (5 feet long) and absorbs water from stool. Rectal cancer starts in the rectum, which is the last 12 centimeters.


Scientific Papers found: Click to Expand⟱
1161- ACNs,  immuno,    Bilberry anthocyanin extracts enhance anti-PD-L1 efficiency by modulating gut microbiota
- in-vivo, Colon, MC38
GutMicro↑,
304- ALA,    alpha-Lipoic acid induces apoptosis in human colon cancer cells by increasing mitochondrial respiration with a concomitant O2-*-generation
- in-vitro, Colon, HT-29
mt-ROS↑, Apoptosis↑, Casp3↑, DNAdam↑, Bcl-xL↓, Dose↝,
1350- And,  Cisplatin,    Synergistic antitumor effect of Andrographolide and cisplatin through ROS-mediated ER stress and STAT3 inhibition in colon cancer
- in-vitro, Colon, NA
ChemoSen↑, ER Stress↑, STAT3↓, ROS↑,
1353- And,    Andrographolide Induces Apoptosis and Cell Cycle Arrest through Inhibition of Aberrant Hedgehog Signaling Pathway in Colon Cancer Cells
- in-vitro, Colon, HCT116
ChemoSen↑, TumCCA↑, CDK1↓, CycB/CCNB1↓, HH↓, Smo↓, Gli1↓,
1095- Api,    Apigenin inhibits epithelial-mesenchymal transition of human colon cancer cells through NF-κB/Snail signaling pathway
- Analysis, Colon, NA
Snail↓, EMT↓, NF-kB↓,
173- Api,    Apigenin-induced apoptosis is enhanced by inhibition of autophagy formation in HCT116 human colon cancer cells
- in-vitro, Colon, HCT116
CycB/CCNB1↓, cDC2↓, CDC25↓, P53↑, P21↑, cl‑PARP↑, proCasp8↓, proCasp9↓, proCasp3↓,
1548- Api,    A comprehensive view on the apigenin impact on colorectal cancer: Focusing on cellular and molecular mechanisms
- Review, Colon, NA
*BioAv↓, *Half-Life∅, selectivity↑, *toxicity↓, Wnt/(β-catenin)↓, P53↑, P21↑, PI3K↓, Akt↓, mTOR↓, TumCCA↑, TumCI↓, TumCMig↓, STAT3↓, PKM2↓, EMT↓, cl‑PARP↑, Casp3↑, Bax:Bcl2↑, VEGF↓, Hif1a↓, Dose∅, GLUT1↓, GlucoseCon↓,
2314- Api,    Apigenin Restrains Colon Cancer Cell Proliferation via Targeted Blocking of Pyruvate Kinase M2-Dependent Glycolysis
- in-vitro, Colon, HCT116 - in-vitro, Colon, HT29 - in-vitro, Colon, DLD1
Glycolysis↓, PKM2:PKM1↓, β-catenin/ZEB1↓, cMyc↓,
563- ART/DHA,    Artesunate down-regulates immunosuppression from colorectal cancer Colon26 and RKO cells in vitro by decreasing transforming growth factor β1 and interleukin-10
- in-vitro, Colon, colon26 - in-vitro, CRC, RKO
TGF-β↓, IL10↓,
1368- Ash,  Cisplatin,    Withania somnifera Root Extract Enhances Chemotherapy through ‘Priming’
- in-vitro, Colon, HT-29 - in-vitro, BC, MDA-MB-231
tumCV↓, *toxicity↓, ROS↑, mitResp↓, ChemoSen↑,
4805- ASTX,    Astaxanthin promotes apoptosis by suppressing growth signaling pathways in HT-29 colorectal cancer cells
- in-vitro, Colon, HT29
TumCP↓, Casp3↑, EGFR↓, HER2/EBBR2↓, ERK↓, Apoptosis↑,
2023- BBR,    Berberine Induces Caspase-Independent Cell Death in Colon Tumor Cells through Activation of Apoptosis-Inducing Factor
- in-vitro, Colon, NA - in-vitro, Nor, YAMC
TumCD↑, *toxicity↓, selectivity↑, ROS↑, *ROS∅, MMP↓, *MMP∅, PARP↑, BioAv↝,
2712- BBR,    Suppression of colon cancer growth by berberine mediated by the intestinal microbiota and the suppression of DNA methyltransferases (DNMTs)
- in-vitro, Colon, HT29 - in-vivo, NA, NA
TumCG↓, GutMicro↑, other↝, IL10↓, cMyc↓, DNMT1↓, DNMTs↓,
2755- BetA,    Cytotoxic Potential of Betulinic Acid Fatty Esters and Their Liposomal Formulations: Targeting Breast, Colon, and Lung Cancer Cell Lines
- in-vitro, Colon, HT29 - in-vitro, BC, MCF-7 - in-vitro, Lung, H460
eff↑, Casp3↑, Casp7↑, NF-kB↓,
723- Bor,    Boric acid suppresses cell proliferation by TNF signaling pathway mediated apoptosis in SW-480 human colon cancer line
- in-vitro, Colon, SW480
Apoptosis↑, TNF-α↝,
763- Bor,    Investigation of The Apoptotic and Antiproliferative Effects of Boron on CCL-233 Human Colon Cancer Cells
- in-vitro, Colon, CCl233
TumCP↓, PARP↓, VEGF↓,
2307- CUR,    Cell-Type Specific Metabolic Response of Cancer Cells to Curcumin
- in-vitro, Colon, HT29 - in-vitro, Laryn, FaDu
PKM2↓, Warburg↓, mTOR↓, Hif1a↓, Glycolysis↓,
123- CUR,    Synthesis of novel 4-Boc-piperidone chalcones and evaluation of their cytotoxic activity against highly-metastatic cancer cells
- in-vitro, Colon, LoVo - in-vitro, Colon, COLO205 - in-vitro, Pca, PC3 - in-vitro, Pca, 22Rv1
NF-kB↓,
1861- dietFMD,  Chemo,    Fasting induces anti-Warburg effect that increases respiration but reduces ATP-synthesis to promote apoptosis in colon cancer models
- in-vitro, Colon, CT26 - in-vivo, NA, NA
selectivity↑, ChemoSen↑, BG↓, AminoA↓, Warburg↓, OCR↑, ATP↓, ROS↑, Apoptosis↑, GlucoseCon↓, PI3K↓, PTEN↑, GLUT1↓, GLUT2↓, HK2↓, PFK1↓, PKA↓, ATP:AMP↓, Glycolysis↓, lactateProd↓,
2154- dietP,  Ex,    American Cancer Society (ACS) Nutrition and Physical Activity Guidelines after colon cancer diagnosis and disease-free (DFS), recurrence-free (RFS), and overall survival (OS) in CALGB 89803 (Alliance)
- Trial, Colon, NA
OS↑,
1606- EA,    Ellagic acid inhibits proliferation and induced apoptosis via the Akt signaling pathway in HCT-15 colon adenocarcinoma cells
- in-vitro, Colon, HCT15
TumCP↓, cycD1/CCND1↓, Apoptosis↑, PI3K↓, Akt↓, ROS↑, Casp3↑, Cyt‑c↑, Bcl-2↓, TumCCA↑, Dose∅, ALP↓, LDH↓, PCNA↓, P53↑, Bax:Bcl2↑,
640- EGCG,    Epigallocatechin Gallate (EGCG) Is the Most Effective Cancer Chemopreventive Polyphenol in Green Tea
- in-vitro, CRC, HCT116 - in-vitro, Colon, SW480
TumCCA↑, Apoptosis↑,
3208- EGCG,    Induction of Endoplasmic Reticulum Stress Pathway by Green Tea Epigallocatechin-3-Gallate (EGCG) in Colorectal Cancer Cells: Activation of PERK/p-eIF2α/ATF4 and IRE1α
- in-vitro, Colon, HT29 - in-vitro, Nor, 3T3
TumCD↓, ER Stress↑, GRP78/BiP↑, PERK↑, eIF2α↑, ATF4↑, IRE1↑, Apoptosis↑, Casp3↑, Casp7↑, Wnt↓, β-catenin/ZEB1↓, *toxicity∅, UPR↑,
3236- EGCG,  BA,    Molecular mechanisms for inhibition of colon cancer cells by combined epigenetic-modulating epigallocatechin gallate and sodium butyrate
- in-vitro, Colon, RKO - in-vitro, Colon, HCT116 - in-vitro, Colon, HT29
Apoptosis↑, TumCCA?, HDAC1↓, DNMT1↓, survivin↓, HDAC↓, P21↑, NF-kB↑, γH2AX↑, ac‑H3↑, DNAdam↑,
3216- EGCG,    Epigallocatechin-3-gallate suppresses hemin-aggravated colon carcinogenesis through Nrf2-inhibited mitochondrial reactive oxygen species accumulation
- NA, Colon, Caco-2
NRF2↑, TumCP↓, mt-ROS↓, Keap1↓,
1655- FA,    Ferulic acid inhibiting colon cancer cells at different Duke’s stages
- in-vitro, Colon, SW480 - in-vitro, Colon, Caco-2 - in-vitro, Colon, HCT116
TumCP↓, TumCMig↓, TumCCA↑, Apoptosis↑, ATM↑, Chk2↑, ATR↑, CHK1↑, CK2↓, cycA1/CCNA1↑, CDK4↓, CDK6↓, cycD1/CCND1↓, cycE/CCNE↓, P53↑, P21↑,
2856- FIS,    N -acetyl- L -cysteine enhances fisetin-induced cytotoxicity via induction of ROS-independent apoptosis in human colonic cancer cells
- in-vitro, Colon, COLO205
eff↑, ROS↑, tumCV↓, Casp3↑, Bcl-2↓, MMP↓, eff↑,
2859- FIS,    The Natural Flavonoid Fisetin Inhibits Cellular Proliferation of Hepatic, Colorectal, and Pancreatic Cancer Cells through Modulation of Multiple Signaling Pathways
- in-vitro, Liver, HepG2 - NA, Colon, Caco-2
TumCG↓, other↝, Casp3↑, Casp7↑, PGE2↓, GSTs↓, Wnt↓, EGFR↓, NF-kB↓, COX2↓, P53↑, P21↑, P450↓,
1292- Ge,  EGCG,    Antiproliferative and Apoptotic Effects Triggered by Grape Seed Extract (GSE) versus Epigallocatechin and Procyanidins on Colon Cancer Cell Lines
- in-vitro, Colon, Caco-2 - in-vitro, CRC, HCT8
TumCG↓, Apoptosis↑,
1116- GI,    6-Shogaol Inhibits the Cell Migration of Colon Cancer by Suppressing the EMT Process Through the IKKβ/NF-κB/Snail Pathway
- in-vitro, Colon, Caco-2 - in-vitro, CRC, HCT116
TumCG↓, Apoptosis↑, TumCMig↓, MMP2↓, N-cadherin↓, IKKα↓, p‑NF-kB↓, Snail↓, VEGF↓,
4508- GLA,  aLinA,    α-Linolenic and γ-linolenic acids exercise differential antitumor effects on HT-29 human colorectal cancer cells
- in-vitro, Colon, HT29
Apoptosis↑, *Inflam↓, AntiCan↑, lipid-P↑, COX2↝, MKP1↝,
1904- GoldNP,  SNP,    Unveiling the Potential of Innovative Gold(I) and Silver(I) Selenourea Complexes as Anticancer Agents Targeting TrxR and Cellular Redox Homeostasis
- in-vitro, Lung, H157 - in-vitro, BC, MCF-7 - in-vitro, Colon, HCT15 - in-vitro, Melanoma, A375
TrxR↓, selectivity↑, eff↑, eff↝, ROS↑, MMP↓, Apoptosis↑, eff↑,
852- Gra,    Silver Nanoparticles from Annona muricata Peel and Leaf Extracts as a Potential Potent, Biocompatible and Low Cost Antitumor Tool
- in-vitro, BC, MCF-7 - in-vitro, Colon, HCT116 - in-vitro, Melanoma, A375
tumCV↓,
1637- HCA,  OLST,    Orlistat and Hydroxycitrate Ameliorate Colon Cancer in Rats: The Impact of Inflammatory Mediators
- in-vivo, Colon, NA
TumVol↓, OS↑, *IL6↓, *NF-kB↓, *eff↑, *Casp3↓, *TNF-α↓, *Catalase↑, *NO↓, *ROS↓, *Inflam↓, *Apoptosis↓,
2896- HNK,    Honokiol inhibits hypoxia-inducible factor-1 pathway
- in-vivo, Colon, CT26
Hif1a↓, RadioS↑,
2081- HNK,    Honokiol induces ferroptosis in colon cancer cells by regulating GPX4 activity
- in-vitro, Colon, RKO - in-vitro, Colon, HCT116 - in-vitro, Colon, SW48 - in-vitro, Colon, HT-29 - in-vitro, Colon, LS174T - in-vitro, Colon, HCT8 - in-vitro, Colon, SW480 - in-vivo, NA, NA
tumCV↓, ROS↑, Iron↑, GPx4↓, mtDam↑, Ferroptosis↑, TumVol↓, TumW↓,
33- InA,    Inoscavin A, a pyrone compound isolated from a Sanghuangporus vaninii extract, inhibits colon cancer cell growth and induces cell apoptosis via the hedgehog signaling pathway
- vitro+vivo, Colon, NA
HH↓, Smo↓,
2177- itraC,    Itraconazole improves survival outcomes in patients with colon cancer by inducing autophagic cell death and inhibiting transketolase expression
- Study, Colon, NA - in-vitro, CRC, COLO205 - in-vitro, CRC, HCT116
OS↑, tumCV↓, Casp3↑, TumCCA↑, HH↓, TumAuto↑, LC3B↑, p62↑, TKT↓,
1122- LF,  MTX,    Lactoferrin Reverses Methotrexate Driven Epithelial Barrier Defect by Inhibiting TGF-β Mediated Epithelial to Mesenchymal Transition
- in-vivo, Colon, Caco-2
TGF-β↓, EMT↓,
2915- LT,    Luteolin promotes apoptotic cell death via upregulation of Nrf2 expression by DNA demethylase and the interaction of Nrf2 with p53 in human colon cancer cells
- in-vitro, Colon, HT29 - in-vitro, CRC, SNU-407 - in-vitro, Nor, FHC
DNMTs↓, TET1↑, NRF2↑, HDAC↓, tumCV↓, BAX↑, Casp9↑, Casp3↑, Bcl-2↓, ROS↓, GSS↑, Catalase↑, HO-1↑, DNMT1↓, DNMT3A↓, TET1↑, TET3↑, TET2↓, P53↑, P21↑,
3278- Lyco,    Anti-inflammatory effect of lycopene in SW480 human colorectal cancer cells
- in-vitro, Colon, SW480
TNF-α↓, IL1β↓, IL6↓, iNOS↓, COX2↓, PGE2↓, NO↓, NF-kB↓, JNK↓, Inflam↓, MPO↓,
4781- Lyco,  5-FU,  Chemo,  Cisplatin,    Antioxidant and anti-inflammatory activities of lycopene against 5-fluorouracil-induced cytotoxicity in Caco2 cells
- in-vitro, Colon, Caco-2
chemoP↑, Inflam↓, COX2↓, IL1β↓, IL6↓, TNF-α↓, ROS↑, ChemoSen↑, SOD↓,
502- MF,    Electromagnetic field investigation on different cancer cell lines
- in-vitro, BC, MDA-MB-231 - in-vitro, Colon, SW480 - in-vitro, CRC, HCT116
TumCG↓, Apoptosis↑,
2429- PB,    Impact of butyrate on PKM2 and HSP90β expression in human colon tissues of different transformation stages: a comparison of gene and protein data
- in-vitro, Colon, NA
PKM2↓, *HSP90↑, HSP90∅,
4928- PEITC,    Dietary phytochemical PEITC restricts tumor development via modulation of epigenetic writers and erasers
- vitro+vivo, Colon, SW-620
Risk↓, HDAC↓, TumW↓, TumCG↓, AP-1↓, cAMP↓, NF-kB↓, BMI1↓, SUZ12↓, EZH2↓, selectivity↑,
64- QC,    Quercetin enhances TRAIL-mediated apoptosis in colon cancer cells by inducing the accumulation of death receptors in lipid rafts
- in-vitro, Colon, HT-29 - in-vitro, Colon, SW-620 - in-vitro, Colon, Caco-2
Cyt‑c↑, BAX↑, Casp3↑,
46- QC,    Quercetin, but Not Its Glycosidated Conjugate Rutin, Inhibits Azoxymethane-Induced Colorectal Carcinogenesis in F344 Rats
- in-vitro, Colon, F344
β-catenin/ZEB1↓,
45- QC,    Quercetin Inhibit Human SW480 Colon Cancer Growth in Association with Inhibition of Cyclin D1 and Survivin Expression through Wnt/β-Catenin Signaling Pathway
- in-vitro, Colon, CX-1 - in-vitro, Colon, SW480 - in-vitro, Colon, HT-29 - in-vitro, Colon, HCT116
cycD1/CCND1↓, survivin↓, Wnt/(β-catenin)↓,
104- RES,  QC,    Resveratrol and Quercetin in Combination Have Anticancer Activity in Colon Cancer Cells and Repress Oncogenic microRNA-27a
- in-vitro, Colon, HT-29
Casp3↑, PARP↑, survivin↓, miR-27a-3p↓, Sp1/3/4↓, ZBTB10↑,
2981- RES,    Resveratrol suppresses IGF-1 induced human colon cancer cell proliferation and elevates apoptosis via suppression of IGF-1R/Wnt and activation of p53 signaling pathways
- in-vitro, Colon, HT-29 - in-vitro, Colon, SW48
TumCCA↑, p27↑, cycD1/CCND1↓, TumCP↓, IGF-1R↓, Akt↓, Wnt↓, P53↑, Apoptosis↑, Sp1/3/4↓, cl‑PARP↑, β-catenin/ZEB1↓, MDM2↓,
1048- RosA,  Ger,    Rosmarinic acid in combination with ginsenoside Rg1 suppresses colon cancer metastasis via co-inhition of COX-2 and PD1/PD-L1 signaling axis
- in-vivo, Colon, MC38
TumCMig↓, TumCI↓, PD-1↓, COX2↓, PD-L1↓,
4501- Se,    Mechanisms of the Cytotoxic Effect of Selenium Nanoparticles in Different Human Cancer Cell Lines
- in-vitro, GBM, A172 - in-vitro, Colon, Caco-2 - in-vitro, Pca, DU145 - in-vitro, BC, MCF-7 - in-vitro, Nor, L929
*BioAv↑, selectivity↑, AntiCan↑, Apoptosis↑, CHOP↑, GADD34↑, BIM↑, PUMA↑, Ca+2↝,
1474- SFN,    Sulforaphane induces p53‑deficient SW480 cell apoptosis via the ROS‑MAPK signaling pathway
- in-vitro, Colon, SW480
TumCG↓, Apoptosis↑, MMP↓, Bax:Bcl2↑, Casp3↑, Casp7↑, Casp9↑, ROS↑, e-ERK↑, p38↑, P53∅, eff↓, ChemoSen↑,
1507- SFN,    Sulforaphane retards the growth of human PC-3 xenografts and inhibits HDAC activity in human subjects
- in-vivo, Colon, NA - Human, Nor, NA
TumCG↓, HDAC↓, *BioAv↑, Dose∅, Half-Life∅,
3299- SIL,    Silymarin Effect on Mitophagy Pathway in the Human Colon Cancer HT-29 Cells
- in-vitro, Colon, HT29
tumCV↓, MMP↓, ROS↑, selectivity↑,
1050- SK,    Shikonin improves the effectiveness of PD-1 blockade in colorectal cancer by enhancing immunogenicity via Hsp70 upregulation
- in-vitro, Colon, CT26
HSP70/HSPA5↑, ROS↑, PKM2↓,
1281- SK,    Enhancement of NK cells proliferation and function by Shikonin
- in-vivo, Colon, Caco-2
Perforin↑, GranB↑, p‑ERK↑, p‑Akt↑, NK cell↑, eff↝,
334- SNP,    Silver-Based Nanoparticles Induce Apoptosis in Human Colon Cancer Cells Mediated Through P53
- in-vitro, Colon, HCT116
Bax:Bcl2↑, P53↑, P21↑, Casp3↑, Casp8↑, Casp9↑, Akt↓, NF-kB↓, DNAdam↑,
396- SNP,    Systemic Evaluation of Mechanism of Cytotoxicity in Human Colon Cancer HCT-116 Cells of Silver Nanoparticles Synthesized Using Marine Algae Ulva lactuca Extract
- in-vitro, Colon, HCT116
P53↑, BAX↑, P21↑, Bcl-2↓,
387- SNP,    Silver nanoparticles induce mitochondria-dependent apoptosis and late non-canonical autophagy in HT-29 colon cancer cells
- in-vitro, Colon, HT-29
Cyt‑c↑, P53↑, BAX↑, Casp3↑, Casp9↑, Casp12↑, Beclin-1↑, CHOP↑, LC3s↑, XBP-1↑,
373- SNP,    Cytotoxic Potential and Molecular Pathway Analysis of Silver Nanoparticles in Human Colon Cancer Cells HCT116
- in-vitro, Colon, HCT116
LDH↓, ROS↑, MDA↑, ATP↓, GSH↓, MMP↓,
1907- SNP,  GoldNP,  Cu,    In vitro antitumour activity of water soluble Cu(I), Ag(I) and Au(I) complexes supported by hydrophilic alkyl phosphine ligands
- in-vitro, Lung, A549 - in-vitro, BC, MCF-7 - in-vitro, Melanoma, A375 - in-vitro, Colon, HCT15 - in-vitro, Cerv, HeLa
TrxR↓, eff↓, eff↓, other∅,
4430- SNP,    Evaluation of the Genotoxic and Oxidative Damage Potential of Silver Nanoparticles in Human NCM460 and HCT116 Cells
- in-vitro, Colon, HCT116 - in-vitro, Nor, NCM460
*Bacteria↓, ROS↑, p‑p38↑, BAX↑, Bcl-2↓, BAX↑, P21↑, TumCD↑, toxicity↝,
4559- SNP,    Anticancer activity of biogenerated silver nanoparticles: an integrated proteomic investigation
- in-vitro, BC, SkBr3 - in-vitro, CRC, HT-29 - in-vitro, CRC, HCT116 - in-vitro, Colon, Caco-2
MMP2↓, MMP9↓, ROS↑, TumAuto↑, Apoptosis↑, ER Stress↑,
4398- SNP,    Induction of apoptosis in cancer cells at low silver nanoparticle concentrations using chitosan nanocarrier
- in-vitro, Colon, HT29
Apoptosis↑, MMP↓, Casp3↑, ROS↑, eff↑,
4410- SNP,    Green-synthesized silver nanoparticles: a sustainable nanoplatform for targeted colon cancer therapy
- Review, Colon, NA
AntiCan↑, ROS↑, mtDam↑, tumCV↓, selectivity↑,
2098- TQ,    Anticancer activity of Nigella sativa (black seed) and its relationship with the thermal processing and quinone composition of the seed
- in-vitro, Colon, MC38 - in-vitro, lymphoma, L428
NF-kB↓, eff↑, eff↓,
4848- Uro,  OXA,    Urolithin A gains in antiproliferative capacity by reducing the glycolytic potential via the p53/TIGAR axis in colon cancer cells
- in-vitro, Colon, HCT116
TumCG↓, ChemoSen↑, P53↝, P21↑,
4845- Uro,    The gut microbiota metabolite urolithin A, but not other relevant urolithins, induces p53-dependent cellular senescence in human colon cancer cells
- in-vitro, Colon, HCT116
TumCCA↑, P53↑, P21↑,
628- VitC,  Mg,    Enhanced Anticancer Effect of Adding Magnesium to Vitamin C Therapy: Inhibition of Hormetic Response by SVCT-2 Activation
- in-vivo, Colon, CT26 - in-vitro, NA, MCF-7 - in-vitro, NA, SkBr3
AntiCan↑, SVCT-2↝, TumCD↑, ROS↑, P21↑, proCasp3↑, TumVol↓, DNAdam↑, NAD↓,
300- VitC,  ALA,    Combination of High-Dose Parenteral Ascorbate (Vitamin C) and Alpha-Lipoic Acid Failed to Enhance Tumor-Inhibitory Effect But Increased Toxicity in Preclinical Cancer Models
- in-vitro, BC, MDA-MB-231 - in-vitro, Colon, HCT116 - in-vitro, Ovarian, PANC1 - in-vitro, Pca, PC3
TumCG∅,
3138- VitC,    The Hypoxia-inducible Factor Renders Cancer Cells More Sensitive to Vitamin C-induced Toxicity
- in-vitro, RCC, RCC4 - in-vitro, CRC, HCT116 - in-vitro, BC, MDA-MB-435 - in-vitro, Ovarian, SKOV3 - in-vitro, Colon, SW48 - in-vitro, GBM, U251
eff↑, Warburg↓, BioAv↑, ROS↑, DNAdam↑, ATP↓, eff↑, necrosis↑, PARP↑,
3136- VitC,    Vitamin C uncouples the Warburg metabolic switch in KRAS mutant colon cancer
- in-vitro, Colon, SW48 - in-vitro, Colon, LoVo
ERK↓, p‑PKM2↓, GLUT1↓, Warburg↓, TumCD↑, eff↑, ROS↓, cMyc↓,

* indicates research on normal cells as opposed to diseased cells
Total Research Paper Matches: 73

Pathway results for Effect on Cancer / Diseased Cells:


Redox & Oxidative Stress

Catalase↑, 1,   Ferroptosis↑, 1,   GPx4↓, 1,   GSH↓, 1,   GSS↑, 1,   GSTs↓, 1,   HO-1↑, 1,   Iron↑, 1,   Keap1↓, 1,   lipid-P↑, 1,   MDA↑, 1,   MPO↓, 1,   NRF2↑, 2,   ROS↓, 2,   ROS↑, 19,   mt-ROS↓, 1,   mt-ROS↑, 1,   SOD↓, 1,   TKT↓, 1,   TrxR↓, 2,  

Mitochondria & Bioenergetics

ATP↓, 3,   CDC25↓, 1,   mitResp↓, 1,   MMP↓, 7,   mtDam↑, 2,   OCR↑, 1,  

Core Metabolism/Glycolysis

AminoA↓, 1,   ATP:AMP↓, 1,   cAMP↓, 1,   cMyc↓, 3,   GlucoseCon↓, 2,   GLUT2↓, 1,   Glycolysis↓, 3,   HK2↓, 1,   lactateProd↓, 1,   LDH↓, 2,   NAD↓, 1,   PFK1↓, 1,   PKM2↓, 4,   p‑PKM2↓, 1,   PKM2:PKM1↓, 1,   Warburg↓, 4,  

Cell Death

Akt↓, 4,   p‑Akt↑, 1,   Apoptosis↑, 19,   BAX↑, 6,   Bax:Bcl2↑, 4,   Bcl-2↓, 5,   Bcl-xL↓, 1,   BIM↑, 1,   Casp12↑, 1,   Casp3↑, 16,   proCasp3↓, 1,   proCasp3↑, 1,   Casp7↑, 4,   Casp8↑, 1,   proCasp8↓, 1,   Casp9↑, 4,   proCasp9↓, 1,   Chk2↑, 1,   CK2↓, 1,   Cyt‑c↑, 3,   Ferroptosis↑, 1,   GADD34↑, 1,   GranB↑, 1,   iNOS↓, 1,   JNK↓, 1,   MDM2↓, 1,   MKP1↝, 1,   necrosis↑, 1,   p27↑, 1,   p38↑, 1,   p‑p38↑, 1,   Perforin↑, 1,   PUMA↑, 1,   survivin↓, 3,   TumCD↓, 1,   TumCD↑, 4,  

Kinase & Signal Transduction

HER2/EBBR2↓, 1,   Sp1/3/4↓, 2,  

Transcription & Epigenetics

EZH2↓, 1,   ac‑H3↑, 1,   miR-27a-3p↓, 1,   other↝, 2,   other∅, 1,   TET3↑, 1,   tumCV↓, 8,  

Protein Folding & ER Stress

CHOP↑, 2,   eIF2α↑, 1,   ER Stress↑, 3,   GRP78/BiP↑, 1,   HSP70/HSPA5↑, 1,   HSP90∅, 1,   IRE1↑, 1,   PERK↑, 1,   UPR↑, 1,   XBP-1↑, 1,  

Autophagy & Lysosomes

Beclin-1↑, 1,   LC3B↑, 1,   LC3s↑, 1,   p62↑, 1,   TumAuto↑, 2,  

DNA Damage & Repair

ATM↑, 1,   ATR↑, 1,   CHK1↑, 1,   DNAdam↑, 5,   DNMT1↓, 3,   DNMT3A↓, 1,   DNMTs↓, 2,   P53↑, 11,   P53↝, 1,   P53∅, 1,   PARP↓, 1,   PARP↑, 3,   cl‑PARP↑, 3,   PCNA↓, 1,   γH2AX↑, 1,  

Cell Cycle & Senescence

CDK1↓, 1,   CDK4↓, 1,   cycA1/CCNA1↑, 1,   CycB/CCNB1↓, 2,   cycD1/CCND1↓, 4,   cycE/CCNE↓, 1,   P21↑, 12,   TumCCA?, 1,   TumCCA↑, 8,  

Proliferation, Differentiation & Cell State

BMI1↓, 1,   cDC2↓, 1,   EMT↓, 3,   ERK↓, 2,   p‑ERK↑, 1,   e-ERK↑, 1,   Gli1↓, 1,   HDAC↓, 4,   HDAC1↓, 1,   HH↓, 3,   IGF-1R↓, 1,   mTOR↓, 2,   PI3K↓, 3,   PTEN↑, 1,   Smo↓, 2,   STAT3↓, 2,   SUZ12↓, 1,   TumCG↓, 9,   TumCG∅, 1,   Wnt↓, 3,   Wnt/(β-catenin)↓, 2,  

Migration

AP-1↓, 1,   Ca+2↝, 1,   MMP2↓, 2,   MMP9↓, 1,   N-cadherin↓, 1,   PKA↓, 1,   Snail↓, 2,   TET1↑, 2,   TGF-β↓, 2,   TumCI↓, 2,   TumCMig↓, 4,   TumCP↓, 6,   β-catenin/ZEB1↓, 4,  

Angiogenesis & Vasculature

ATF4↑, 1,   EGFR↓, 2,   Hif1a↓, 3,   NO↓, 1,   VEGF↓, 3,   ZBTB10↑, 1,  

Barriers & Transport

GLUT1↓, 3,   SVCT-2↝, 1,  

Immune & Inflammatory Signaling

COX2↓, 4,   COX2↝, 1,   IKKα↓, 1,   IL10↓, 2,   IL1β↓, 2,   IL6↓, 2,   Inflam↓, 2,   NF-kB↓, 8,   NF-kB↑, 1,   p‑NF-kB↓, 1,   NK cell↑, 1,   PD-1↓, 1,   PD-L1↓, 1,   PGE2↓, 2,   TNF-α↓, 2,   TNF-α↝, 1,  

Hormonal & Nuclear Receptors

CDK6↓, 1,  

Drug Metabolism & Resistance

BioAv↑, 1,   BioAv↝, 1,   ChemoSen↑, 7,   Dose↝, 1,   Dose∅, 3,   eff↓, 4,   eff↑, 10,   eff↝, 2,   Half-Life∅, 1,   P450↓, 1,   RadioS↑, 1,   selectivity↑, 8,   TET2↓, 1,  

Clinical Biomarkers

ALP↓, 1,   BG↓, 1,   EGFR↓, 2,   EZH2↓, 1,   GutMicro↑, 2,   HER2/EBBR2↓, 1,   IL6↓, 2,   LDH↓, 2,   PD-L1↓, 1,   SUZ12↓, 1,  

Functional Outcomes

AntiCan↑, 4,   chemoP↑, 1,   OS↑, 3,   Risk↓, 1,   toxicity↝, 1,   TumVol↓, 3,   TumW↓, 2,  
Total Targets: 215

Pathway results for Effect on Normal Cells:


Redox & Oxidative Stress

Catalase↑, 1,   ROS↓, 1,   ROS∅, 1,  

Mitochondria & Bioenergetics

MMP∅, 1,  

Cell Death

Apoptosis↓, 1,   Casp3↓, 1,  

Protein Folding & ER Stress

HSP90↑, 1,  

Angiogenesis & Vasculature

NO↓, 1,  

Immune & Inflammatory Signaling

IL6↓, 1,   Inflam↓, 2,   NF-kB↓, 1,   TNF-α↓, 1,  

Drug Metabolism & Resistance

BioAv↓, 1,   BioAv↑, 2,   eff↑, 1,   Half-Life∅, 1,  

Clinical Biomarkers

IL6↓, 1,  

Functional Outcomes

toxicity↓, 3,   toxicity∅, 1,  

Infection & Microbiome

Bacteria↓, 1,  
Total Targets: 20

Query results interpretion may depend on "conditions" listed in the research papers.
Such Conditions may include : 
  -low or high Dose
  -format for product, such as nano of lipid formations
  -different cell line effects
  -synergies with other products 
  -if effect was for normal or cancerous cells
Filter Conditions: Pro/AntiFlg:%  IllCat:%  CanType:31  Cells:%  prod#:%  Target#:%  State#:%  Dir#:%
wNotes=0 sortOrder:rid,rpid

 

Home Page