| Melanoma is a rare form of skin cancer. It is more likely to invade nearby tissues and spread to other parts of the body than other types of skin cancer. |
| 2646- | AL, | Anti-Cancer Potential of Homemade Fresh Garlic Extract Is Related to Increased Endoplasmic Reticulum Stress |
| - | in-vitro, | Pca, | DU145 | - | in-vitro, | Melanoma, | RPMI-8226 |
| 290- | ALA, | HCA, | A combination of alpha lipoic acid and calcium hydroxycitrate is efficient against mouse cancer models: preliminary results |
| - | vitro+vivo, | Melanoma, | B16-F10 |
| 291- | ALA, | HCA, | MET, | Dicl, | Metabolic therapies inhibit tumor growth in vivo and in silico |
| - | in-vivo, | Melanoma, | B16-F10 | - | in-vivo, | Lung, | LL/2 (LLC1) | - | in-vivo, | Bladder, | MBT-2 |
| 1024- | Api, | CUR, | Apigenin suppresses PD-L1 expression in melanoma and host dendritic cells to elicit synergistic therapeutic effects |
| - | vitro+vivo, | Melanoma, | A375 | - | in-vitro, | Melanoma, | A2058 | - | in-vitro, | Melanoma, | RPMI-7951 |
| 206- | Api, | Inhibition of glutamine utilization sensitizes lung cancer cells to apigenin-induced apoptosis resulting from metabolic and oxidative stress |
| - | in-vitro, | Lung, | H1299 | - | in-vitro, | Lung, | H460 | - | in-vitro, | Lung, | A549 | - | in-vitro, | CRC, | HCT116 | - | in-vitro, | Melanoma, | A375 | - | in-vitro, | Lung, | H2030 | - | in-vitro, | CRC, | SW480 |
| 242- | Api, | Apigenin inhibits proliferation and invasion, and induces apoptosis and cell cycle arrest in human melanoma cells |
| - | in-vitro, | Melanoma, | A375 | - | in-vitro, | Melanoma, | C8161 |
| 243- | Api, | Apigenin Attenuates Melanoma Cell Migration by Inducing Anoikis through Integrin and Focal Adhesion Kinase Inhibition |
| - | in-vitro, | Melanoma, | A375 | - | in-vitro, | Melanoma, | A2058 |
| 244- | Api, | Inhibition of the STAT3 signaling pathway contributes to apigenin-mediated anti-metastatic effect in melanoma |
| - | in-vivo, | Melanoma, | B16-F10 | - | in-vivo, | Melanoma, | A375 | - | in-vivo, | Melanoma, | G361 |
| 2322- | ART/DHA, | Dihydroartemisinin Regulates Self-Renewal of Human Melanoma-Initiating Cells by Targeting PKM2/LDHARelated Glycolysis |
| - | in-vitro, | Melanoma, | NA |
| 1369- | Ash, | Withaferin A inhibits cell proliferation of U266B1 and IM-9 human myeloma cells by inducing intrinsic apoptosis |
| - | in-vitro, | Melanoma, | U266 |
| 4811- | ASTX, | Astaxanthin reduces MMP expressions, suppresses cancer cell migrations, and triggers apoptotic caspases of in vitro and in vivo models in melanoma |
| - | vitro+vivo, | Melanoma, | A375 | - | vitro+vivo, | Melanoma, | A2058 |
| 4988- | ATV, | Dipy, | Repurposing of the Cardiovascular Drug Statin for the Treatment of Cancers: Efficacy of Statin–Dipyridamole Combination Treatment in Melanoma Cell Lines |
| - | in-vivo, | Melanoma, | NA |
| 4985- | ATV, | Dipy, | Repurposing of the Cardiovascular Drug Statin for the Treatment of Cancers: Efficacy of Statin-Dipyridamole Combination Treatment in Melanoma Cell Lines |
| - | in-vivo, | Melanoma, | SK-MEL-28 | - | in-vitro, | BC, | MDA-MB-435 |
| 1529- | Ba, | Studies on the Inhibitory Mechanisms of Baicalein in B16F10 Melanoma Cell Proliferation |
| - | in-vitro, | Melanoma, | B16-F10 |
| 2598- | Ba, | Baicalein inhibits melanogenesis through activation of the ERK signaling pathway |
| - | in-vitro, | Melanoma, | B16-F10 |
| 2612- | Ba, | MF, | The effect of a static magnetic field and baicalin or baicalein interactions on amelanotic melanoma cell cultures (C32) |
| - | in-vitro, | Melanoma, | NA |
| 2291- | Ba, | BA, | Baicalein and Baicalin Promote Melanoma Apoptosis and Senescence via Metabolic Inhibition |
| - | in-vitro, | Melanoma, | SK-MEL-28 | - | in-vitro, | Melanoma, | A375 |
| 1400- | BBR, | Set9, NF-κB, and microRNA-21 mediate berberine-induced apoptosis of human multiple myeloma cells |
| - | in-vitro, | Melanoma, | U266 |
| 1382- | BBR, | Berberine increases the expression of cytokines and proteins linked to apoptosis in human melanoma cells |
| - | in-vitro, | Melanoma, | SK-MEL-28 |
| 1376- | BBR, | immuno, | Berberine sensitizes immune checkpoint blockade therapy in melanoma by NQO1 inhibition and ROS activation |
| - | in-vivo, | Melanoma, | NA |
| 2681- | BBR, | PDT, | Berberine-photodynamic induced apoptosis by activating endoplasmic reticulum stress-autophagy pathway involving CHOP in human malignant melanoma cells |
| - | in-vitro, | Melanoma, | NA |
| 1102- | BBR, | Berberine suppressed epithelial mesenchymal transition through cross-talk regulation of PI3K/AKT and RARα/RARβ in melanoma cells |
| - | in-vitro, | Melanoma, | B16-BL6 |
| 2717- | BetA, | Betulinic Acid Induces ROS-Dependent Apoptosis and S-Phase Arrest by Inhibiting the NF-κB Pathway in Human Multiple Myeloma |
| - | in-vitro, | Melanoma, | U266 | - | in-vivo, | Melanoma, | NA | - | in-vitro, | Melanoma, | RPMI-8226 |
| 1423- | Bos, | Acetyl-11-keto-β-Boswellic Acid Suppresses Invasion of Pancreatic Cancer Cells Through The Downregulation of CXCR4 Chemokine Receptor Expression |
| - | in-vitro, | Melanoma, | U266 | - | in-vitro, | BC, | MDA-MB-231 | - | in-vitro, | BC, | SkBr3 | - | in-vitro, | PC, | PANC1 |
| 1653- | Caff, | Higher Caffeinated Coffee Intake Is Associated with Reduced Malignant Melanoma Risk: A Meta-Analysis Study |
| - | Review, | Melanoma, | NA |
| 1205- | Caff, | immuno, | Caffeine-enhanced anti-tumor activity of anti-PD1 monoclonal antibody |
| - | in-vivo, | Melanoma, | B16-F10 |
| 1055- | Cin, | Cinnamon extract induces tumor cell death through inhibition of NFκB and AP1 |
| - | vitro+vivo, | Melanoma, | NA | - | vitro+vivo, | CRC, | NA | - | vitro+vivo, | lymphoma, | NA |
| 1574- | Citrate, | Citrate Suppresses Tumor Growth in Multiple Models through Inhibition of Glycolysis, the Tricarboxylic Acid Cycle and the IGF-1R Pathway |
| - | in-vitro, | Lung, | A549 | - | in-vitro, | Melanoma, | WM983B | - | in-vivo, | NA, | NA |
| 1809- | CUR, | Oxy, | Long-term stabilisation of myeloma with curcumin |
| - | Case Report, | Melanoma, | NA |
| 407- | CUR, | Curcumin inhibited growth of human melanoma A375 cells via inciting oxidative stress |
| - | in-vitro, | Melanoma, | A375 |
| 484- | CUR, | PDT, | Low concentrations of curcumin induce growth arrest and apoptosis in skin keratinocytes only in combination with UVA or visible light |
| - | in-vitro, | Melanoma, | NA |
| 485- | CUR, | PDT, | Red Light Combined with Blue Light Irradiation Regulates Proliferation and Apoptosis in Skin Keratinocytes in Combination with Low Concentrations of Curcumin |
| - | in-vitro, | Melanoma, | NA |
| 1879- | DCA, | Long-term stabilization of metastatic melanoma with sodium dichloroacetate |
| - | Case Report, | Melanoma, | NA |
| 1859- | dietFMD, | Chemo, | Fasting-Mimicking Diet Reduces HO-1 to Promote T Cell-Mediated Tumor Cytotoxicity |
| - | in-vitro, | BC, | 4T1 | - | in-vivo, | Melanoma, | B16-BL6 |
| - | vitro+vivo, | Melanoma, | NA | - | Case Report, | Melanoma, | NA |
| 5010- | DSF, | Cu, | Rad, | Disulfiram/Copper Combined with Irradiation Induces Immunogenic Cell Death in Melanoma |
| - | in-vivo, | Melanoma, | B16-F10 |
| 2495- | Fenb, | Benzimidazoles Downregulate Mdm2 and MdmX and Activate p53 in MdmX Overexpressing Tumor Cells |
| - | in-vitro, | Melanoma, | A375 |
| 2849- | FIS, | Activation of reactive oxygen species/AMP activated protein kinase signaling mediates fisetin-induced apoptosis in multiple myeloma U266 cells |
| - | in-vitro, | Melanoma, | U266 |
| 947- | GA, | Gallic acid, a phenolic compound, exerts anti-angiogenic effects via the PTEN/AKT/HIF-1α/VEGF signaling pathway in ovarian cancer cells |
| - | in-vitro, | Ovarian, | OVCAR-3 | - | in-vitro, | Melanoma, | A2780S | - | in-vitro, | Nor, | IOSE364 | - | Human, | NA, | NA |
| 1956- | GamB, | Gambogic Acid Inhibits Malignant Melanoma Cell Proliferation Through Mitochondrial p66shc/ROS-p53/Bax-Mediated Apoptosis |
| - | in-vitro, | Melanoma, | A375 |
| 1961- | GamB, | Effects of gambogic acid on the activation of caspase-3 and downregulation of SIRT1 in RPMI-8226 multiple myeloma cells via the accumulation of ROS |
| - | in-vitro, | Melanoma, | RPMI-8226 |
| 829- | GAR, | The Role of T-Cadherin (CDH13) in Treatment Options with Garcinol in Melanoma |
| - | vitro+vivo, | Melanoma, | NA |
| 1187- | Gb, | Ginkgolic Acid C 17:1, Derived from Ginkgo biloba Leaves, Suppresses Constitutive and Inducible STAT3 Activation through Induction of PTEN and SHP-1 Tyrosine Phosphatase |
| - | in-vitro, | Melanoma, | U251 | - | in-vitro, | Melanoma, | MM.1S |
| 1240- | Ge, | PACs, | Grape Seed Proanthocyanidins Inhibit Melanoma Cell Invasiveness by Reduction of PGE2 Synthesis and Reversal of Epithelial-to-Mesenchymal Transition |
| - | in-vitro, | Melanoma, | A375 | - | in-vitro, | Melanoma, | Hs294T |
| 1904- | GoldNP, | SNP, | Unveiling the Potential of Innovative Gold(I) and Silver(I) Selenourea Complexes as Anticancer Agents Targeting TrxR and Cellular Redox Homeostasis |
| - | in-vitro, | Lung, | H157 | - | in-vitro, | BC, | MCF-7 | - | in-vitro, | Colon, | HCT15 | - | in-vitro, | Melanoma, | A375 |
| 852- | Gra, | Silver Nanoparticles from Annona muricata Peel and Leaf Extracts as a Potential Potent, Biocompatible and Low Cost Antitumor Tool |
| - | in-vitro, | BC, | MCF-7 | - | in-vitro, | Colon, | HCT116 | - | in-vitro, | Melanoma, | A375 |
| 1439- | HCQ, | Acidic extracellular pH neutralizes the autophagy-inhibiting activity of chloroquine |
| - | in-vitro, | Melanoma, | NA | - | in-vitro, | CRC, | HCT116 |
| 4644- | HT, | The Hydroxytyrosol Induces the Death for Apoptosis of Human Melanoma Cells |
| - | in-vitro, | Melanoma, | NA |
| 1060- | LT, | BTZ, | Luteolin inhibits the TGF-β signaling pathway to overcome bortezomib resistance in multiple myeloma |
| - | vitro+vivo, | Melanoma, | NA |
| 2918- | LT, | Luteolin inhibits melanoma growth in vitro and in vivo via regulating ECM and oncogenic pathways but not ROS |
| - | in-vitro, | Melanoma, | A375 | - | in-vivo, | Melanoma, | NA | - | in-vitro, | Melanoma, | SK-MEL-28 |
| 4803- | Lyco, | Enhanced cytotoxic and apoptosis inducing activity of lycopene oxidation products in different cancer cell lines |
| - | in-vitro, | Pca, | PC3 | - | in-vitro, | BC, | MCF-7 | - | in-vitro, | Melanoma, | A431 | - | in-vitro, | Liver, | HepG2 | - | in-vitro, | Cerv, | HeLa | - | in-vitro, | Lung, | A549 |
| 2547- | M-Blu, | SDT, | The effect of dual-frequency ultrasound waves on B16F10 melanoma cells: Sonodynamic therapy using nanoliposomes containing methylene blue |
| - | in-vitro, | Melanoma, | B16-BL6 |
| 1198- | MAG, | Mitochondria-targeted magnolol inhibits OXPHOS, proliferation, and tumor growth via modulation of energetics and autophagy in melanoma cells |
| - | in-vivo, | Melanoma, | NA |
| 4537- | MAG, | Effects of magnolol on UVB-induced skin cancer development in mice and its possible mechanism of action |
| - | in-vivo, | Melanoma, | NA | - | in-vitro, | Melanoma, | A431 |
| 1314- | MAG, | Magnolol induces apoptosis via activation of both mitochondrial and death receptor pathways in A375-S2 cells |
| - | in-vitro, | Melanoma, | A375 |
| 526- | MF, | Inhibition of Cancer Cell Growth by Exposure to a Specific Time-Varying Electromagnetic Field Involves T-Type Calcium Channels |
| - | in-vitro, | BC, | MDA-MB-231 | - | in-vitro, | BC, | MCF-7 | - | in-vitro, | Pca, | HeLa | - | vitro+vivo, | Melanoma, | B16-BL6 | - | in-vitro, | Nor, | HEK293 |
| 538- | MF, | The extremely low frequency electromagnetic stimulation selective for cancer cells elicits growth arrest through a metabolic shift |
| - | in-vitro, | BC, | MDA-MB-231 | - | in-vitro, | Melanoma, | MSTO-211H |
| 220- | MFrot, | MF, | Effect of low frequency magnetic fields on melanoma: tumor inhibition and immune modulation |
| - | in-vitro, | Melanoma, | B16-F10 |
| 1994- | Part, | Parthenolide Inhibits Tumor Cell Growth and Metastasis in Melanoma A2058 Cells |
| - | in-vitro, | Melanoma, | A2058 | - | in-vitro, | Nor, | L929 |
| 1675- | PBG, | Portuguese Propolis Antitumoral Activity in Melanoma Involves ROS Production and Induction of Apoptosis |
| - | in-vitro, | Melanoma, | A375 | - | in-vitro, | Melanoma, | WM983B |
| 5032- | PTS, | Pterostilbene Decreases the Antioxidant Defenses of Aggressive Cancer Cells In Vivo: A Physiological Glucocorticoids- and Nrf2-Dependent Mechanism |
| - | in-vivo, | Melanoma, | NA |
| 3375- | QC, | Quercetin Mediated TET1 Expression Through MicroRNA-17 Induced Cell Apoptosis in Melanoma Cells |
| - | in-vitro, | Melanoma, | B16-BL6 |
| 2329- | RES, | Resveratrol induces apoptosis in human melanoma cell through negatively regulating Erk/PKM2/Bcl-2 axis |
| - | in-vitro, | Melanoma, | A375 |
| 3054- | RES, | Resveratrol induced reactive oxygen species and endoplasmic reticulum stress-mediated apoptosis, and cell cycle arrest in the A375SM malignant melanoma cell line |
| - | in-vitro, | Melanoma, | A375 |
| 2982- | RES, | The flavonoid resveratrol suppresses growth of human malignant pleural mesothelioma cells through direct inhibition of specificity protein 1 |
| - | in-vitro, | Melanoma, | MSTO-211H |
| 2991- | RES, | Chemo, | Synergistic anti-cancer effects of resveratrol and chemotherapeutic agent clofarabine against human malignant mesothelioma MSTO-211H cells |
| - | in-vitro, | Melanoma, | MSTO-211H | - | in-vitro, | Nor, | MeT5A |
| 3008- | RosA, | Rosmarinic acid decreases viability, inhibits migration and modulates expression of apoptosis-related CASP8/CASP3/NLRP3 genes in human metastatic melanoma cells |
| - | in-vitro, | Melanoma, | SK-MEL-28 |
| 1705- | Se, | Serum Selenium Level and 10-Year Survival after Melanoma |
| - | Study, | Melanoma, | NA |
| 4484- | Se, | Chit, | PEG, | Anti-cancer potential of selenium-chitosan-polyethylene glycol-carvacrol nanocomposites in multiple myeloma U266 cells |
| - | in-vitro, | Melanoma, | U266 |
| 1432- | SFN, | Evaluation of biodistribution of sulforaphane after administration of oral broccoli sprout extract in melanoma patients with multiple atypical nevi |
| - | Human, | Melanoma, | NA |
| 2229- | SK, | Shikonin induces apoptosis and prosurvival autophagy in human melanoma A375 cells via ROS-mediated ER stress and p38 pathways |
| - | in-vitro, | Melanoma, | A375 |
| 3043- | SK, | Shikonin Induces Apoptosis by Inhibiting Phosphorylation of IGF-1 Receptor in Myeloma Cells. |
| - | in-vitro, | Melanoma, | RPMI-8226 |
| 1284- | SK, | Shikonin induces ferroptosis in multiple myeloma via GOT1-mediated ferritinophagy |
| - | in-vitro, | Melanoma, | RPMI-8226 | - | in-vitro, | Melanoma, | U266 |
| 2191- | SK, | Shikonin Suppresses Skin Carcinogenesis via Inhibiting Cell Proliferation |
| - | in-vitro, | Melanoma, | NA |
| 2189- | SK, | PKM2 inhibitor shikonin suppresses TPA-induced mitochondrial malfunction and proliferation of skin epidermal JB6 cells |
| - | in-vitro, | Melanoma, | NA |
| 2185- | SK, | Shikonin Inhibits Tumor Growth in Mice by Suppressing Pyruvate Kinase M2-mediated Aerobic Glycolysis |
| - | in-vitro, | Lung, | LLC1 | - | in-vitro, | Melanoma, | B16-BL6 | - | in-vivo, | NA, | NA |
| 339- | SNP, | Cancer cell specific cytotoxic potential of the silver nanoparticles synthesized using the endophytic fungus, Penicillium citrinum CGJ-C2 |
| - | in-vitro, | BC, | MCF-7 | - | in-vitro, | Melanoma, | A431 | - | in-vitro, | HCC, | HepG2 |
| 346- | SNP, | RSQ, | Investigating Silver Nanoparticles and Resiquimod as a Local Melanoma Treatment |
| - | in-vivo, | Melanoma, | SK-MEL-28 | - | in-vivo, | Melanoma, | WM35 |
| 1907- | SNP, | GoldNP, | Cu, | In vitro antitumour activity of water soluble Cu(I), Ag(I) and Au(I) complexes supported by hydrophilic alkyl phosphine ligands |
| - | in-vitro, | Lung, | A549 | - | in-vitro, | BC, | MCF-7 | - | in-vitro, | Melanoma, | A375 | - | in-vitro, | Colon, | HCT15 | - | in-vitro, | Cerv, | HeLa |
| 2539- | SNP, | SDT, | Combined effect of silver nanoparticles and therapeutical ultrasound on ovarian carcinoma cells A2780 |
| - | in-vitro, | Melanoma, | A2780S |
| 4556- | SNP, | Biofilm Impeding AgNPs Target Skin Carcinoma by Inducing Mitochondrial Membrane Depolarization Mediated through ROS Production |
| - | in-vitro, | Melanoma, | A431 |
| 4563- | SNP, | Rad, | Silver nanoparticles enhance neutron radiation sensitivity in cancer cells: An in vitro study |
| - | in-vitro, | BC, | MCF-7 | - | in-vitro, | Ovarian, | SKOV3 | - | in-vitro, | GBM, | U87MG | - | in-vitro, | Melanoma, | A431 |
| 4412- | SNP, | Biosynthesis and characterization of silver nanoparticles from Asplenium dalhousiae and their potential biological properties |
| - | in-vitro, | CRC, | HCT116 | - | in-vitro, | Melanoma, | A2780S |
| 3418- | TQ, | Thymoquinone suppresses metastasis of melanoma cells by inhibition of NLRP3 inflammasome |
| - | in-vitro, | Melanoma, | A375 | - | in-vivo, | NA, | NA |
| 3412- | TQ, | Thymoquinone induces oxidative stress-mediated apoptosis through downregulation of Jak2/STAT3 signaling pathway in human melanoma cells |
| - | in-vitro, | Melanoma, | SK-MEL-28 | - | in-vivo, | NA, | NA |
| 2120- | TQ, | Thymoquinone induces apoptosis of human epidermoid carcinoma A431 cells through ROS-mediated suppression of STAT3 |
| - | in-vitro, | Melanoma, | A431 |
| 1020- | UA, | Root Bark of Morus alba L. and Its Bioactive Ingredient, Ursolic Acid, Suppress the Proliferation of Multiple Myeloma Cells by Inhibiting Wnt/β-Catenin Pathway |
| - | in-vitro, | Melanoma, | RPMI-8226 |
| 1219- | VitC, | Ascorbic acid and ascorbate-2-phosphate decrease HIF activity and malignant properties of human melanoma cells |
| - | in-vitro, | Melanoma, | NA |
| 1840- | VitK2, | The mechanisms of vitamin K2-induced apoptosis of myeloma cells |
| - | in-vitro, | Melanoma, | NA |
| 1834- | VitK3, | PDT, | Effects of Vitamin K3 Combined with UVB on the Proliferation and Apoptosis of Cutaneous Squamous Cell Carcinoma A431 Cells |
| - | in-vitro, | Melanoma, | A431 |
| 1760- | WBV, | Molecular jackhammers eradicate cancer cells by vibronic-driven action |
| - | in-vitro, | Melanoma, | NA |
| 1761- | WBV, | Low Intensity Vibration Mitigates Tumor Progression and Protect Bone Quantity and Quality in a Murine Model of Myeloma |
| - | in-vivo, | Melanoma, | NA |
Query results interpretion may depend on "conditions" listed in the research papers. Such Conditions may include : -low or high Dose -format for product, such as nano of lipid formations -different cell line effects -synergies with other products -if effect was for normal or cancerous cells
Filter Conditions: Pro/AntiFlg:% IllCat:% CanType:39 Cells:% prod#:% Target#:% State#:% Dir#:%
wNotes=0 sortOrder:rid,rpid