Database Query Results : , ,

BC, Breast Cancer: Click to Expand ⟱
Breast Cancer

Scientific Papers found: Click to Expand⟱
253- AL,    Allicin inhibits invasion and migration of breast cancer cells through the suppression of VCAM-1: Regulation of association between p65 and ER-α
- in-vitro, BC, MDA-MB-231
TumCMig↓, ERK↓, VCAM-1↓, NF-kB↓,
256- AL,  doxoR,    Allicin Overcomes Doxorubicin Resistance of Breast Cancer Cells by Targeting the Nrf2 Pathway
- in-vitro, BC, MCF-7 - in-vitro, BC, MDA-MB-231
NRF2↓, HO-1↓, p‑Akt↓,
255- AL,    Allicin induces cell cycle arrest and apoptosis of breast cancer cells in vitro via modulating the p53 pathway
- in-vitro, BC, MCF-7 - in-vitro, BC, MDA-MB-231
Apoptosis↑, P53↑, Casp3↑, P53↑, TPM4↓,
2000- AL,    Exploring the ROS-mediated anti-cancer potential in human triple-negative breast cancer by garlic bulb extract: A source of therapeutically active compounds
- in-vitro, BC, MDA-MB-231 - in-vitro, BC, MCF-7 - in-vitro, Nor, NA
selectivity↑, TumCG?, *toxicity∅, ROS↑, MMP↓, TumCCA↑, P53↑, Bcl-2↓, p‑Akt↓, p‑p38↓, *ROS∅,
298- ALA,  Rad,    Synergistic Tumoricidal Effects of Alpha-Lipoic Acid and Radiotherapy on Human Breast Cancer Cells via HMGB1
- in-vitro, BC, MDA-MB-231
Apoptosis↑, P53↑, p38↑, NF-kB↑, TumCCA↑,
297- ALA,    Insights on the Use of α-Lipoic Acid for Therapeutic Purposes
- Review, BC, SkBr3 - Review, neuroblastoma, SK-N-SH - Review, AD, NA
PDH↑, TumCG↓, ROS↑, AMPK↑, EGR4↓, Half-Life↓, BioAv↝, *GSH↑, *IronCh↑, *ROS↓, *antiOx↑, *neuroP↑, *Ach↑, *lipid-P↓, *IL1β↓, *IL6↓, TumCP↓, FDG↓, Apoptosis↑, AMPK↑, mTOR↓, EGFR↓, TumCI↓, TumCMig↓, *memory↑, *BioAv↑, *BioAv↝, *other↓, *other↝, *Half-Life↓, *BioAv↑, *ChAT↑, *GlucoseCon↑,
301- ALA,  PacT,  doxoR,    Role of alpha-lipoic acid in counteracting paclitaxel- and doxorubicin-induced toxicities: a randomized controlled trial in breast cancer patients
- Human, BC, NA
BNP↓, TNF-α↓, MDA↓, NeuroT↓,
279- ALA,    Lipoic acid-induced oxidative stress abrogates IGF-1R maturation by inhibiting the CREB/furin axis in breast cancer cell lines
- in-vitro, BC, MCF-7 - in-vitro, BC, MDA-MB-231
Furin↓, IGF-1R↓, ROS↑, CREB↓, Furin↓, IGF-1R↓,
262- ALA,    Lipoic acid decreases breast cancer cell proliferation by inhibiting IGF-1R via furin downregulation
- in-vitro, BC, MCF-7 - in-vitro, BC, MDA-MB-231
TumCP↓, Akt↓, ERK↓, IGF-1R↓, Furin↓, Ki-67↓, AMPK↑, mTOR↓,
261- ALA,    The natural antioxidant alpha-lipoic acid induces p27(Kip1)-dependent cell cycle arrest and apoptosis in MCF-7 human breast cancer cells
- in-vitro, BC, MCF-7
ROS↓, Akt↓, p27↑, Bax:Bcl2↑,
260- ALA,    The effects of alpha-lipoic acid on breast of female albino rats exposed to malathion: Histopathological and immunohistochemical study
- in-vivo, BC, NA
PCNA↓, P53↓, Apoptosis↑, BAX↑,
258- ALA,    Effects of α-lipoic acid on cell proliferation and apoptosis in MDA-MB-231 human breast cells
- in-vitro, BC, MDA-MB-231
TumCG↓, p‑Akt↓, Akt↓, HER2/EBBR2↓, Bcl-2↓, BAX↑, Casp3↑,
296- ALA,    Lipoic acid inhibits cell proliferation of tumor cells in vitro and in vivo
- vitro+vivo, neuroblastoma, SK-N-SH - vitro+vivo, BC, SkBr3
TumCG↓, Casp3↑,
283- ALA,    alpha-Lipoic acid reduces matrix metalloproteinase activity in MDA-MB-231 human breast cancer cells
- in-vitro, BC, MDA-MB-231
MMP2↓, MMP9↓, TumMeta↓,
3434- ALA,    Alpha lipoic acid modulates metabolic reprogramming in breast cancer stem cells enriched 3D spheroids by targeting phosphoinositide 3-kinase: In silico and in vitro insights
- in-vitro, BC, MCF-7 - in-vitro, BC, MDA-MB-231
tumCV↓, PI3K↓, p‑Akt↓, p‑P70S6K↓, mTOR↓, ATP↓, GlucoseCon↓, ROS↑, PKM2↓, LDHA↓, Glycolysis↓, ChemoSen↑,
3436- ALA,    Alpha lipoic acid modulates metabolic reprogramming in breast cancer stem cells enriched 3D spheroids by targeting phosphoinositide 3-kinase: In silico and in vitro insights Author links open overlay panel
- in-vitro, BC, MCF-7
ChemoSen↑, PI3K↓, Akt↓, ATP↓, GlucoseCon↓, ROS↑, PKM2↓, Glycolysis↓, CSCs↓, IGF-1R↓, Furin↓, RadioS↑,
3454- ALA,    Lipoic acid blocks autophagic flux and impairs cellular bioenergetics in breast cancer and reduces stemness
- in-vitro, BC, MCF-7 - in-vitro, BC, MDA-MB-231
TumCG↑, Glycolysis↓, ROS↑, CSCs↓, selectivity↑, LC3B-II↑, MMP↓, mitResp↓, ATP↓, OCR↓, NAD↓, p‑AMPK↑, GlucoseCon↓, lactateProd↓, HK2↓, PFK↓, LDHA↓, eff↓, mTOR↓, ECAR↓, ALDH↓, CD44↓, CD24↓,
1252- aLinA,    α-Linolenic acid induces apoptosis, inhibits the invasion and metastasis, and arrests cell cycle in human breast cancer cells by inhibiting fatty acid synthase
- in-vitro, BC, NA
FASN↓, Apoptosis↑, TumCI↓, TumMeta↓, TumCCA↑,
1123- aLinA,    Linoleic acid induces an EMT-like process in mammary epithelial cells MCF10A
- in-vitro, BC, NA - in-vitro, NA, MCF10
TumCP↑, E-cadherin↓, Snail↑, Twist↑, ZEB2↑, FAK↑, NF-kB↑, MMP2↓, MMP9↓, *EMT↑, TumCI↑,
1440- AMQ,    Lysosomotropism depends on glucose: a chloroquine resistance mechanism
- in-vitro, BC, 4T1
eff↑, Apoptosis↓, Necroptosis↑, eff↓, ChemoSen↑, eff↓,
1007- And,    In vitro and in silico evaluation of Andrographis paniculata ethanolic crude extracts on fatty acid synthase expression on breast cancer cells
- in-vitro, BC, MCF-7 - in-vitro, BC, EMT6
tumCV↓, i-FASN↓,
1078- And,    Andrographolide inhibits breast cancer through suppressing COX-2 expression and angiogenesis via inactivation of p300 signaling and VEGF pathway
- in-vitro, BC, MDA-MB-231 - in-vitro, Nor, HUVECs - in-vivo, BC, MCF-7 - in-vitro, BC, T47D - in-vitro, BC, BT549 - in-vitro, BC, MDA-MB-361
TumCP↓, COX2↓, *angioG↓, Cyt‑c↑, CREB2↓, cFos↓, NF-kB↓, HATs↓, cl‑Casp3↑, cl‑Casp9↑, Bax:Bcl2↑, Apoptosis↑, *toxicity↓,
1279- And,    Andrographolide Exhibits Anticancer Activity against Breast Cancer Cells (MCF-7 and MDA-MB-231 Cells) through Suppressing Cell Proliferation and Inducing Cell Apoptosis via Inactivation of ER-α Receptor and PI3K/AKT/mTOR Signaling
- in-vitro, BC, MDA-MB-231 - in-vitro, BC, MCF-7
Apoptosis↑, Bcl-2↓, BAX↑, ERα/ESR1↓, PI3K↓, mTOR↓,
1348- And,    Andrographolide Inhibits ER-Positive Breast Cancer Growth and Enhances Fulvestrant Efficacy via ROS-FOXM1-ER-α Axis
- in-vitro, BC, MCF-7 - in-vitro, BC, T47D - in-vivo, NA, NA
ERα/ESR1↓, TumCG↓, ROS↑, FOXM1↓, eff↑,
578- Api,  Cisplatin,    Apigenin enhances the cisplatin cytotoxic effect through p53-modulated apoptosis
- in-vitro, Lung, A549 - in-vitro, BC, MCF-7 - in-vitro, CRC, HCT116 - in-vitro, Pca, HeLa - in-vitro, Lung, H1299
p‑P53↑,
180- Api,    Induction of caspase-dependent apoptosis by apigenin by inhibiting STAT3 signaling in HER2-overexpressing MDA-MB-453 breast cancer cells
- in-vitro, BC, MDA-MB-231
cl‑Casp8↑, cl‑Casp3↑, cl‑PARP↑, BAX∅, Bcl-2∅, Bcl-xL∅, p‑STAT3↓, P53↑, P21↑, p‑JAK2↓, VEGF↓,
179- Api,    Apigenin induces caspase-dependent apoptosis by inhibiting signal transducer and activator of transcription 3 signaling in HER2-overexpressing SKBR3 breast cancer cells
- in-vitro, BC, NA
cl‑Casp8↑, cl‑Casp3↑, STAT3↓, VEGF↓,
178- Api,    Autophagy inhibition enhances apigenin-induced apoptosis in human breast cancer cells
- in-vivo, BC, MDA-MB-231 - in-vitro, BC, T47D
Casp3↑, cl‑PARP↑, Bcl-2↓, Bcl-xL↓, BAX↑,
177- Api,    Inhibition of MDA-MB-231 breast cancer cell proliferation and tumor growth by apigenin through induction of G2/M arrest and histone H3 acetylation-mediated p21WAF1/CIP1 expression
- in-vitro, BC, MDA-MB-231
Cyc↓, CycB/CCNB1↓, CDK1↓, P21↑, PCNA↝, HDAC↓,
176- Api,    Induction of caspase-dependent extrinsic apoptosis by apigenin through inhibition of signal transducer and activator of transcription 3 (STAT3) signalling in HER2-overexpressing BT-474 breast cancer cells
- in-vitro, BC, BT474
cl‑Casp8↑, cl‑Casp3↑, p‑JAK1↓, p‑JAK2↓, p‑STAT3↓, P53↑, VEGF↓, Hif1a↓, MMP9↓,
1999- Api,  doxoR,    Apigenin ameliorates doxorubicin-induced renal injury via inhibition of oxidative stress and inflammation
- in-vitro, Nor, NRK52E - in-vitro, Nor, MPC5 - in-vitro, BC, 4T1 - in-vivo, NA, NA
neuroP↑, ChemoSen∅, RenoP↑, selectivity↑, chemoP↑, ROS↑, *ROS∅, *antiOx↑, *toxicity↓,
1559- Api,    Dually Active Apigenin-Loaded Nanostructured Lipid Carriers for Cancer Treatment
- in-vitro, Lung, A549 - in-vitro, BC, MCF-7 - in-vitro, BC, MDA-MB-231
Dose↓, selectivity↑,
2593- Api,    Apigenin promotes apoptosis of 4T1 cells through PI3K/AKT/Nrf2 pathway and improves tumor immune microenvironment in vivo
- in-vivo, BC, 4T1
TumCP↓, TumCMig↓, TumCI↓, Apoptosis↑, MMP↑, ROS↑, p‑PI3K↓, PI3K↓, Akt↓, NRF2↓, AntiTum↑, OS↑,
2641- Api,    Apigenin inhibits HGF-promoted invasive growth and metastasis involving blocking PI3K/Akt pathway and beta 4 integrin function in MDA-MB-231 breast cancer cells
- in-vitro, BC, MDA-MB-231
TumCMig↓, TumCI↓, ITGB4↓,
3388- ART/DHA,    Keap1 Cystenine 151 as a Potential Target for Artemisitene-Induced Nrf2 Activation
- in-vitro, Lung, A549 - in-vitro, Nor, GP-293 - in-vitro, BC, MDA-MB-231
NRF2↑, ROS∅,
976- ART/DHA,    Artemisinin selectively decreases functional levels of estrogen receptor-alpha and ablates estrogen-induced proliferation in human breast cancer cells
- in-vitro, BC, MCF-7
ERα/ESR1↓,
1335- AS,    Extract from Astragalus membranaceus inhibit breast cancer cells proliferation via PI3K/AKT/mTOR signaling pathway
- in-vitro, BC, MCF-7 - in-vitro, BC, MDA-MB-231 - in-vitro, BC, SkBr3
p‑PI3K↓, p‑GS3Kβ↓, p‑Akt↓, p‑mTOR↓,
1338- AS,    The Modulatory Properties of Astragalus membranaceus Treatment on Triple-Negative Breast Cancer: An Integrated Pharmacological Method
- in-vitro, BC, NA
TumCI↓, Apoptosis↑, Symptoms↓, PIK3CA↓, Akt↓, Bcl-2↓,
1333- AS,    Astragalus polysaccharide inhibits breast cancer cell migration and invasion by regulating epithelial-mesenchymal transition via the Wnt/β-catenin signaling pathway
- in-vitro, BC, NA
TumCMig↓, TumCI↓, Ki-67↓, TumCP↓, Snail↓, Vim↓, E-cadherin↑, Wnt↓, β-catenin/ZEB1↓,
1000- AS,  5-FU,    Characterization and anti-tumor bioactivity of astragalus polysaccharides by immunomodulation
- vitro+vivo, BC, 4T1
TumCG↓, TumCCA↑, Apoptosis↑, *IL2↑, *TNF-α↑, *IFN-γ↑,
1367- Ash,    An anti-cancerous protein fraction from Withania somnifera induces ROS-dependent mitochondria-mediated apoptosis in human MDA-MB-231 breast cancer cells
- in-vitro, BC, MDA-MB-231
Apoptosis↑, ROS↑, Bax:Bcl2↑, MMP↓, Casp3↑, TumCCA↑,
1366- Ash,    Selective Killing of Cancer Cells by Ashwagandha Leaf Extract and Its Component Withanone Involves ROS Signaling
- in-vitro, BC, MCF-7
ROS↑, P53↑,
1360- Ash,  immuno,    Withaferin A Increases the Effectiveness of Immune Checkpoint Blocker for the Treatment of Non-Small Cell Lung Cancer
- in-vitro, Lung, H1650 - in-vitro, Lung, A549 - in-vitro, CRC, HCT116 - in-vitro, BC, MDA-MB-231 - in-vivo, NA, NA
PD-L1↑, eff↓, ROS↑, ER Stress↑, Apoptosis↑, BAX↑, Bak↑, BAD↑, Bcl-2↓, XIAP↓, survivin↓, cl‑PARP↑, CHOP↑, p‑eIF2α↑, ICD↑, eff↑,
1359- Ash,    Withaferin A Induces ROS-Mediated Paraptosis in Human Breast Cancer Cell-Lines MCF-7 and MDA-MB-231
- in-vitro, BC, MCF-7 - in-vitro, BC, MDA-MB-231
MMP↓, Alix/AIP‑1↓, ROS↑, Paraptosis↑, ER Stress↝,
1368- Ash,  Cisplatin,    Withania somnifera Root Extract Enhances Chemotherapy through ‘Priming’
- in-vitro, Colon, HT-29 - in-vitro, BC, MDA-MB-231
tumCV↓, *toxicity↓, ROS↑, mitResp↓, ChemoSen↑,
1355- Ash,    Withaferin A-Induced Apoptosis in Human Breast Cancer Cells Is Mediated by Reactive Oxygen Species
- in-vitro, BC, MDA-MB-231 - in-vitro, BC, MCF-7 - in-vitro, Nor, HMEC
eff↑, mt-ROS↑, mitResp↓, OXPHOS↓, compIII↑, BAX↑, Bak↑, other↓, ATP∅, *ROS∅,
1433- Ash,  SFN,    A Novel Combination of Withaferin A and Sulforaphane Inhibits Epigenetic Machinery, Cellular Viability and Induces Apoptosis of Breast Cancer Cells
- in-vitro, BC, MCF-7 - in-vitro, BC, MDA-MB-231
eff↑, Bcl-2↓, BAX↑, tumCV↓, DNMT1↓, DNMT3A↓, HDAC↓,
1174- Ash,    Withaferin A Suppresses Estrogen Receptor-α Expression in Human Breast Cancer Cells
- in-vitro, BC, MCF-7 - in-vivo, BC, MDA-MB-231 - in-vitro, BC, T47D
p‑P53↑, Apoptosis↑, ERα/ESR1↓,
1172- Ash,    Withaferin A Inhibits Fatty Acid Synthesis in Rat Mammary Tumors
- in-vitro, BC, MCF-7 - in-vitro, BC, MDA-MB-231 - in-vivo, NA, NA
FASN↓, ACLY↓, ACC1↓, CPT1A↓, SREBP1↓,
1142- Ash,    Ashwagandha-Induced Programmed Cell Death in the Treatment of Breast Cancer
- Review, BC, MCF-7 - NA, BC, MDA-MB-231 - NA, Nor, HMEC
Apoptosis↑, ROS↑, DNAdam↑, OXPHOS↓, *ROS∅, Bcl-2↓, XIAP↓, survivin↓, DR5↑, IKKα↓, NF-kB↓, selectivity↑, *ROS∅, eff↓, Paraptosis↑,
2388- Ash,    Withaferin A decreases glycolytic reprogramming in breast cancer
- in-vitro, BC, MDA-MB-231 - in-vitro, BC, MDA-MB-468 - in-vitro, BC, MCF-7 - in-vitro, BC, MDA-MB-453
GlucoseCon↓, lactateProd↓, ATP↓, Glycolysis↓, GLUT1↓, HK2↓, PKM2↓, cMyc↓, Warburg↓, cMyc↓,
3175- Ash,  SFN,    Withaferin A and sulforaphane regulate breast cancer cell cycle progression through epigenetic mechanisms
- in-vitro, BC, MDA-MB-231 - in-vitro, BC, MCF-7
DNMTs↓, HDAC↓, eff↑,
3171- Ash,    Unlocking the epigenetic code: new insights into triple-negative breast cancer
- Review, BC, NA
DNMTs↓,
4821- ASTX,    Astaxanthin Reduces Stemness Markers in BT20 and T47D Breast Cancer Stem Cells by Inhibiting Expression of Pontin and Mutant p53
- in-vitro, BC, SkBr3 - in-vitro, BC, BT20 - in-vitro, BC, T47D
Apoptosis↑, CSCs↓, OCT4↓, Nanog↓, TumCP↓,
4810- ASTX,    Effects of Astaxanthin on the Proliferation and Migration of Breast Cancer Cells In Vitro
- in-vitro, BC, MDA-MB-231 - in-vitro, Nor, MCF10
TumCP↓, TumCMig↓, selectivity↑, *BDNF↑, *ROS↓, *TNF-α↓, *IL6↓, *IFN-γ↓, *NF-kB↓, BAX⇅, Bcl-2↓, *antiOx↑, radioP↑, ChemoSen↑,
4819- ASTX,    Astaxanthin Induces Apoptosis in MCF-7 Cells through a p53-Dependent Pathway
- in-vitro, BC, MCF-7
antiOx↑, AntiTum↑, TumCD↑, P53↑, P21↑, Apoptosis↑, Dose↝, Casp3↑,
4818- ASTX,  MEL,    Effect of astaxanthin and melatonin on cell viability and DNA damage in human breast cancer cell lines
- in-vitro, BC, MDA-MB-231 - in-vitro, BC, T47D - in-vitro, Nor, MCF10
TumCD↑, DNAdam↑, *antiOx↑, *AntiTum↑, Inflam↓, tumCV↓, Bcl-2↓, Apoptosis↓, selectivity↑, eff↑, Dose↓,
4985- ATV,  Dipy,    Repurposing of the Cardiovascular Drug Statin for the Treatment of Cancers: Efficacy of Statin-Dipyridamole Combination Treatment in Melanoma Cell Lines
- in-vivo, Melanoma, SK-MEL-28 - in-vitro, BC, MDA-MB-435
HMG-CoA↓, SREBP2↓, eff↑, HMGCR⇅, ChemoSen↑,
4978- ATV,  Rad,    Atorvastatin Sensitizes Breast and Lung Cancer Cells to Ionizing Radiation
- in-vitro, BC, A549
Apoptosis↑, RadioS↑, TumCP↓, ROS↑,
1302- AV,    Quantitative measurement of Bax and Bcl2 genes and protein expression in MCF7 cell-line when treated by Aloe Vera extract
- in-vitro, BC, MCF-7
BAX↑, Bcl-2↓,
1053- Ba,  docx,    Baicalin, a Potent Inhibitor of NF-κB Signaling Pathway, Enhances Chemosensitivity of Breast Cancer Cells to Docetaxel and Inhibits Tumor Growth and Metastasis Both In Vitro and In Vivo
- in-vivo, BC, 4T1
TumCP↓, Apoptosis↑, ROS↑, Bax:Bcl2↑, NF-kB↓, ChemoSen↑, survivin↓,
2050- BA,    The Role of Sodium Phenylbutyrate in Modifying the Methylome of Breast Cancer Cells
- in-vitro, BC, MCF-7
eff↑, HDAC↓, TumCG↓,
2599- Ba,    Baicalein induces apoptosis and autophagy of breast cancer cells via inhibiting PI3K/AKT pathway in vivo and vitro
- in-vitro, BC, MCF-7 - in-vitro, BC, MDA-MB-231 - in-vivo, NA, NA
TumCP↓, Apoptosis↑, p‑Akt↓, p‑mTOR↓, NF-kB↓, p‑IKKα↓, IKKα↑, PI3K↓, MMP↓, TumAuto↑, TumVol↓, TumW↓,
2619- Ba,    Tumor cell membrane-coated continuous electrochemical sensor for GLUT1 inhibitor screening
- in-vitro, HCC, HepG2 - in-vitro, GBM, U87MG - in-vitro, BC, MGC803 - in-vitro, Lung, A549
GLUT1↓, TumCP↓,
2622- Ba,  Cisplatin,  Rad,    Natural Baicalein-Rich Fraction as Radiosensitizer in Combination with Bismuth Oxide Nanoparticles and Cisplatin for Clinical Radiotherapy
- in-vitro, BC, MDA-MB-231 - in-vitro, BC, MCF-7
RadioS↑,
2478- Ba,    The role of Ca2+ in baicalein-induced apoptosis in human breast MDA-MB-231 cancer cells through mitochondria- and caspase-3-dependent pathway
- in-vitro, BC, MDA-MB-231
Bcl-2↓, BAX↓, Cyt‑c↑, Casp3↑, Ca+2↓,
1386- BBR,    Berberine-induced apoptosis in human breast cancer cells is mediated by reactive oxygen species generation and mitochondrial-related apoptotic pathway
- in-vitro, BC, MCF-7 - in-vitro, BC, MDA-MB-231
tumCV↓, ROS↑, JNK↑, MMP↓, Bcl-2↓, BAX↑, Cyt‑c↑, AIF↝,
1385- BBR,  5-FU,    Low-Dose Berberine Attenuates the Anti-Breast Cancer Activity of Chemotherapeutic Agents via Induction of Autophagy and Antioxidation
- in-vitro, BC, MCF-7 - in-vitro, BC, MDA-MB-231
eff↓, ROS↑, TumCP↑, NRF2↑, ChemoSen↓,
1389- BBR,  Lap,    Berberine reverses lapatinib resistance of HER2-positive breast cancer cells by increasing the level of ROS
- in-vitro, BC, BT474 - in-vitro, BC, AU-565
ChemoSen↑, Apoptosis↑, ROS↑, NRF2↓,
2698- BBR,    A gene expression signature-based approach reveals the mechanisms of action of the Chinese herbal medicine berberine
- Analysis, BC, MDA-MB-231
HDAC↓, Akt↓, mTOR↓, ER Stress↑, TumAuto↑, AMPK↑, mTOR∅, HDAC∅, ac‑α-tubulin↑,
2707- BBR,    Berberine exerts its antineoplastic effects by reversing the Warburg effect via downregulation of the Akt/mTOR/GLUT1 signaling pathway
- in-vitro, Liver, HepG2 - in-vitro, BC, MCF-7
GLUT1↓, Akt↓, mTOR↓, ATP↓, GlucoseCon↓, TumCP↓, Warburg↓, selectivity↑, TumCCA↑, Glycolysis↓,
2711- BBR,    Berberine inhibits the progression of breast cancer by regulating METTL3-mediated m6A modification of FGF7 mRNA
- in-vitro, BC, MCF-7 - in-vitro, BC, MDA-MB-231 - in-vivo, NA, NA
TumCP↓, TumCI↓, TumCMig↓, Apoptosis↑, FGF↓, IGFBP3↑,
2715- BBR,  Rad,    Berberine Can Amplify Cytotoxic Effect of Radiotherapy by Targeting Cancer Stem Cells
- in-vitro, BC, MCF-7
tumCV↓, OCT4↓, SOX2↓, RadioS↑, CSCs↓,
2694- BBR,    Berberine down-regulates IL-8 expression through inhibition of the EGFR/MEK/ERK pathway in triple-negative breast cancer cells
- in-vitro, BC, NA
IL8↓, TumCI↓, EGFR↓, MEK↓, ERK↓, TGF-β1↓, VEGF↓,
2695- BBR,    The effects of Berberis vulgaris consumption on plasma levels of IGF-1, IGFBPs, PPAR-γ and the expression of angiogenic genes in women with benign breast disease: a randomized controlled clinical trial
- Trial, BC, NA
IGF-1↓, PPARγ↓, VEGF↓, Hif1a↓, angioG↓,
1473- BCA,  SFN,    An Insight on Synergistic Anti-cancer Efficacy of Biochanin A and Sulforaphane Combination Against Breast Cancer
- in-vitro, BC, MCF-7
eff↑, ROS↑, other↑, ERK↓, Apoptosis↑,
943- BetA,    Betulinic acid suppresses breast cancer aerobic glycolysis via caveolin-1/NF-κB/c-Myc pathway
- in-vitro, BC, MCF-7 - in-vitro, BC, MDA-MB-231 - in-vivo, NA, NA
Glycolysis↓, lactateProd↓, GlucoseCon↓, ECAR↓, cMyc↓, LDHA↓, p‑PDK1↓, PDK1↓, Cav1↑, *Glycolysis↑, selectivity↑, OCR↓, OXPHOS↓,
2751- BetA,    Betulinic acid inhibits proliferation and triggers apoptosis in human breast cancer cells by modulating ER (α/β) and p53
- in-vitro, BC, MDA-MB-231 - in-vitro, BC, MCF-7
tumCV↓, ER-α36↓,
2742- BetA,    Betulinic acid impairs metastasis and reduces immunosuppressive cells in breast cancer models
- in-vitro, BC, MDA-MB-231 - in-vivo, BC, 4T1 - in-vitro, BC, MCF-7
tumCV↓, TumCMig↓, TumCI↓, STAT3↑, FAK↓, MMPs↓, MMP2↓, MMP9↓, TIMP2↑,
2755- BetA,    Cytotoxic Potential of Betulinic Acid Fatty Esters and Their Liposomal Formulations: Targeting Breast, Colon, and Lung Cancer Cell Lines
- in-vitro, Colon, HT29 - in-vitro, BC, MCF-7 - in-vitro, Lung, H460
eff↑, Casp3↑, Casp7↑, NF-kB↓,
2723- BetA,    Betulinic acid and oleanolic acid modulate CD81 expression and induce apoptosis in triple-negative breast cancer cells through ROS generation
- in-vitro, BC, MDA-MB-231
Apoptosis↑, tumCV↓, ROS↑,
2727- BetA,    Betulinic acid in the treatment of breast cancer: Application and mechanism progress
- Review, BC, NA
mt-ROS↑, Sp1/3/4↓, TumMeta↓, GlucoseCon↓, NF-kB↓, ChemoSen↑, chemoP↑, m-Apoptosis↑, TOP1↓,
2738- BetA,    Betulinic Acid Suppresses Breast Cancer Metastasis by Targeting GRP78-Mediated Glycolysis and ER Stress Apoptotic Pathway
- in-vitro, BC, MDA-MB-231 - in-vitro, BC, BT549 - in-vivo, NA, NA
TumCI↓, TumCMig↓, Glycolysis↓, lactateProd↓, GRP78/BiP↑, ER Stress↑, PERK↑, p‑eIF2α↑, β-catenin/ZEB1↓, cMyc↓, ROS↑, angioG↓, Sp1/3/4↓, DNAdam↑, TOP1↓, TumMeta↓, MMP2↓, MMP9↓, N-cadherin↓, Vim↓, E-cadherin↑, EMT↓, LDHA↓, p‑PDK1↓, PDK1↓, ECAR↓, OCR↓, Hif1a↓, STAT3↓,
2732- BetA,  Chemo,    Betulinic acid chemosensitizes breast cancer by triggering ER stress-mediated apoptosis by directly targeting GRP78
- in-vitro, BC, MCF-7 - in-vitro, BC, MDA-MB-231 - in-vitro, Nor, MCF10
ChemoSen↑, selectivity↑, GRP78/BiP↑, ER Stress↑, PERK↑, Ca+2↑, Cyt‑c↑, BAX↑, Bcl-2↓,
2502- Bical,    Complete Response of Metastatic Androgen Receptor–Positive Breast Cancer to Bicalutamide: Case Report and Review of the Literature
- Case Report, BC, NA
Dose↝, Remission↑,
724- Bor,    Does Boric Acid Inhibit Cell Proliferation on MCF-7 and MDA-MB-231 Cells in Monolayer and Spheroid Cultures by Using Apoptosis Pathways?
- in-vitro, BC, MDA-MB-231 - in-vitro, BC, MCF-7
Apoptosis↑, Casp3↝, Casp8↝, Casp9↝,
735- Bor,    Boric Acid Alters the Expression of DNA Double Break Repair Genes in MCF-7-Derived Breast Cancer Stem Cells
- in-vitro, BC, NA
BRCA1↑, BRCA2↑, ATM↓,
756- Bor,    Evaluation of Boric Acid Treatment on microRNA‐127‐5p and Metastasis Genes Orchestration of Breast Cancer Stem Cells
- in-vitro, BC, MCF-7
COL1A1↓, Vim↓, miR-127-5p↑, Zeb1↑, CDH1↑, ITGB1↑, ITGA5↑, LAMA5↑, Snail↑,
762- Bor,    Mechanism of boric acid cytotoxicity in breast cancer cell lines
- in-vitro, BC, MCF-7 - in-vitro, BC, ZR-75-1
TumCG↓,
768- Bor,    In vitro and in vivo antitumour effects of phenylboronic acid against mouse mammary adenocarcinoma 4T1 and squamous carcinoma SCCVII cells
- in-vitro, BC, 4T1
TumCP↓,
736- Bor,    Evaluation of Boric Acid Treatment on microRNA-127-5p and Metastasis Genes Orchestration of Breast Cancer Stem Cells
- in-vitro, BC, MCF-7
miR-126↑, COL1A1↓, Vim↓, Zeb1↑, CDH1↑, ITGB1↑, ITGA5↑, LAMA5↑, Snail↑, miR-127-5p↑,
741- Bor,    Boron Derivatives Inhibit the Proliferation of Breast Cancer Cells and Affect Tumor-Specific T Cell Activity In Vitro by Distinct Mechanisms
- in-vitro, BC, MCF-7 - in-vitro, BC, MDA-MB-231
MOB1↓, PD-L1↑, p‑YAP/TEAD↝, IFN-γ↓, sFasL↑, Perforin↓, GranA↓, GranB↓, GNLY↓, PD-1↑,
748- Bor,    A Study on the Anticarcinogenic Effects of Calcium Fructoborate
- in-vitro, BC, MDA-MB-231
p‑ATM↑, p‑P53↑, Casp9↑, PARP↓, VEGF↓, Casp3↑,
1248- Bos,    The anti-proliferative effects of a frankincense extract in a window of opportunity phase ia clinical trial for patients with breast cancer
- Trial, BC, NA
TumCP↓,
1423- Bos,    Acetyl-11-keto-β-Boswellic Acid Suppresses Invasion of Pancreatic Cancer Cells Through The Downregulation of CXCR4 Chemokine Receptor Expression
- in-vitro, Melanoma, U266 - in-vitro, BC, MDA-MB-231 - in-vitro, BC, SkBr3 - in-vitro, PC, PANC1
CXCR4↓, TumCI↓, HER2/EBBR2↓, NF-kB↓,
1424- Bos,    Boswellia sacra essential oil induces tumor cell-specific apoptosis and suppresses tumor aggressiveness in cultured human breast cancer cells
- in-vitro, BC, T47D - in-vitro, BC, MCF-7 - in-vitro, BC, MDA-MB-231
tumCV↓, Apoptosis↑, cl‑Casp8↑, cl‑Casp9↑, cl‑PARP↑,
1447- Bos,    Boswellia carterii n-hexane extract suppresses breast cancer growth via induction of ferroptosis by downregulated GPX4 and upregulated transferrin
- in-vitro, BC, MDA-MB-231 - in-vitro, BC, MCF-7 - in-vivo, BC, 4T1 - in-vitro, Nor, MCF10
tumCV↓, AntiCan↑, *toxicity↓, Ferroptosis↑, i-Iron↑, GPx4↓, ROS↑, lipid-P↑, Tf↑, TumCG↓,
2024- Bos,    Antiproliferative and cell cycle arrest potentials of 3-O-acetyl-11-keto-β-boswellic acid against MCF-7 cells in vitro
- in-vitro, BC, MCF-7 - in-vitro, Nor, MCF10
MMP↓, Cyt‑c↑, ROS↑, Casp8↑, Casp9↑, AntiTum↑, selectivity↑, TumCCA↑,
2774- Bos,    Boswellia ovalifoliolata abrogates ROS mediated NF-κB activation, causes apoptosis and chemosensitization in Triple Negative Breast Cancer cells
- in-vitro, BC, MDA-MB-231 - in-vitro, BC, MDA-MB-453
ChemoSen↑, Casp3↑, ROS↓, NF-kB↓,
1230- CA,  Caff,    Caffeine and Caffeic Acid Inhibit Growth and Modify Estrogen Receptor and Insulin-like Growth Factor I Receptor Levels in Human Breast Cancer
- in-vitro, BC, MCF-7 - in-vitro, BC, MDA-MB-231 - Human, NA, NA
TumVol↓, TumCG↓, ER(estro)↓, cycD1/CCND1↓, IGF-1R↓, p‑Akt↓,
1101- CA,  Tras,    Cooperative antitumor activities of carnosic acid and Trastuzumab in ERBB2+ breast cancer cells
- in-vitro, BC, NA
ChemoSen↑, HER2/EBBR2↓, PI3K↓, Akt↓, mTOR↓, p62↑,
1262- CAP,    Capsaicin Inhibits Proliferation and Induces Apoptosis in Breast Cancer by Down-Regulating FBI-1-Mediated NF-κB Pathway
- vitro+vivo, BC, NA
FBI-1↓, Ki-67↓, Bcl-2↓, survivin↓, BAX↑, Casp3↑, TumCP↓, Apoptosis↑,
1287- CAR,    Carvacrol induces apoptosis in human breast cancer cells via Bcl-2/CytC signaling pathway
- in-vitro, BC, HCC1937
TumCP↓, TumCCA↑, Apoptosis↑, BAX↑, Cyt‑c↑, Casp3↑, Bcl-2↓,
1081- CBDA,    Down-regulation of cyclooxygenase-2 (COX-2) by cannabidiolic acid in human breast cancer cells
- in-vitro, BC, MDA-MB-231
COX2↓, Id1↓, SHARP↑,
1105- CEL,    Celecoxib inhibits the epithelial-to-mesenchymal transition in bladder cancer via the miRNA-145/TGFBR2/Smad3 axis
- in-vitro, BC, NA
COX2↓, TumCP↓, TumCMig↓, TumCI↓, EMT↓, miR-145↑, TGF-β↓, SMAD3↓,
1106- CGA,    Chlorogenic Acid Inhibits Epithelial-Mesenchymal Transition and Invasion of Breast Cancer by Down-Regulating LRP6
- vitro+vivo, BC, MCF-7
E-cadherin↑, ZO-1↑, Zeb1↓, N-cadherin↓, Vim↓, Snail↓, Slug↓, MMP2↓, MMP9↓, TumCMig↓, TumCI↓, LRP6↓, p‑LRP6↓, β-catenin/ZEB1↓, TumVol↓, TumW↓,
2175- Chemo,  VitB12,  FA,    Systemic Chemotherapy Interferes in Homocysteine Metabolism in Breast Cancer Patients
- Study, BC, NA
other↓, other↝, homoC↓, eff↝, other↝,
4478- Chit,    Chitosan promotes ROS-mediated apoptosis and S phase cell cycle arrest in triple-negative breast cancer cells: evidence for intercalative interaction with genomic DNA
- in-vitro, BC, MDA-MB-231 - in-vitro, BC, MCF-7 - in-vitro, BC, T47D
TumCP↓, selectivity↑, MMP↓, ROS↑, TumCCA↑, Apoptosis↑, Casp3↑,
1107- CHr,    Chrysin inhibits metastatic potential of human triple-negative breast cancer cells by modulating matrix metalloproteinase-10, epithelial to mesenchymal transition, and PI3K/Akt signaling pathway
- in-vitro, BC, NA
TumCP↓, Apoptosis↑, MMP-10↓, E-cadherin↑, Vim↓, Snail↓, Slug↓, EMT↓,
2797- CHr,    A flavonoid chrysin suppresses hypoxic survival and metastatic growth of mouse breast cancer cells
- in-vivo, BC, NA - in-vitro, BC, 4T1
tumCV↓, p‑STAT3↓, VEGF↓, Weight∅, angioG↓,
2798- CHr,    Chrysin: a histone deacetylase 8 inhibitor with anticancer activity and a suitable candidate for the standardization of Chinese propolis
- in-vitro, BC, MDA-MB-231 - in-vivo, NA, NA
HDAC↓, HDAC8↓, TumCG↓, Diff↑,
1274- Cin,    Cinnamon bark extract suppresses metastatic dissemination of cancer cells through inhibition of glycolytic metabolism
- vitro+vivo, BC, MDA-MB-231
TumCI↓, G6PD↓, HK2↓, Glycolysis↓,
952- Cin,    Cinnamon Extract Reduces VEGF Expression Via Suppressing HIF-1α Gene Expression and Inhibits Tumor Growth in Mice
- in-vitro, BC, MDA-MB-231 - in-vitro, GBM, U251 - in-vivo, Ovarian, SKOV3
VEGF↓, Hif1a↓, p‑STAT3↓, p‑Akt↓, angioG↓, TumCG↓, TumW↓, ascitic↓,
4772- CoQ10,    The anti-tumor activities of coenzyme Q0 through ROS-mediated autophagic cell death in human triple-negative breast cells
- in-vitro, BC, MDA-MB-468 - in-vitro, BC, MDA-MB-231
TumCP↓, Apoptosis↑, Casp3↑, cl‑PARP↑, LC3II↑, eff↓, TumCG↓, Bax:Bcl2↑, Beclin-1↑, TumAuto↑, ROS↑,
4770- CoQ10,  VitK2,    Cancer cell stiffening via CoQ10 and UBIAD1 regulates ECM signaling and ferroptosis in breast cancer
- in-vitro, BC, MDA-MB-231
other↑, *antiOx↑, Risk↓, other↑, TumMeta↓, ECM/TCF↓, Akt2↓, Ferroptosis↑, eff↑,
4763- CoQ10,  Chemo,  doxoR,    Effect of Coenzyme Q10 on Doxorubicin Cytotoxicity in Breast Cancer Cell Cultures
- in-vitro, BC, MDA-MB-231 - in-vitro, BC, BT549
ChemoSen∅, antiNeop∅, *cardioP↑, Dose↝, selectivity↑, TumCG∅, TumCG∅, Apoptosis∅,
1602- Cu,    A simultaneously GSH-depleted bimetallic Cu(ii) complex for enhanced chemodynamic cancer therapy†
- in-vitro, BC, MCF-7 - in-vitro, BC, 4T1 - in-vitro, Lung, A549 - in-vitro, Liver, HepG2
eff↑, GSH↓, H2O2↑, ROS↑, *BioAv↑, selectivity↑, TumCCA↑, Apoptosis↑, Fenton↑, *toxicity?,
1603- Cu,  BP,  SDT,    Glutathione Depletion-Induced ROS/NO Generation for Cascade Breast Cancer Therapy and Enhanced Anti-Tumor Immune Response
- in-vitro, BC, 4T1 - in-vivo, NA, NA
GSH↓, Fenton↑, ROS↑, NO↑, sonoS↑, eff↑, NO↑, *toxicity∅, eff?,
1642- Cu,  HCAs,    Copper-assisted anticancer activity of hydroxycinnamic acid terpyridine conjugates on triple-negative breast cancer
- in-vitro, BC, 4T1 - in-vitro, Nor, L929
tumCV↓, selectivity↑,
1639- Cu,  HCAs,    Green synthesis of copper oxide nanoparticles using sinapic acid: an underpinning step towards antiangiogenic therapy for breast cancer
- in-vitro, BC, MCF-7 - in-vitro, BC, MDA-MB-231
angioG↓, tumCV↓, Dose↓, ROS↑,
1977- CUR,    Synthesis and evaluation of curcumin analogues as potential thioredoxin reductase inhibitors
- in-vitro, BC, MCF-7 - in-vitro, Cerv, HeLa - in-vitro, Lung, A549
TrxR↓, Dose↝, eff↑,
2305- CUR,    Mitochondrial targeting nano-curcumin for attenuation on PKM2 and FASN
- in-vitro, BC, MCF-7
BioAv↑, PKM2↓, FASN↓, Glycolysis↓,
2304- CUR,    Curcumin decreases Warburg effect in cancer cells by down-regulating pyruvate kinase M2 via mTOR-HIF1α inhibition
- in-vitro, Lung, H1299 - in-vitro, BC, MCF-7 - in-vitro, Cerv, HeLa - in-vitro, Pca, PC3 - in-vitro, Nor, HEK293
Glycolysis↓, GlucoseCon↓, lactateProd↓, PKM2↓, mTOR↓, Hif1a↓, selectivity↑, Dose↝, tumCV↓,
4656- CUR,  EGCG,    Curcumin and epigallocatechin gallate inhibit the cancer stem cell phenotype via down-regulation of STAT3-NFκB signaling
- in-vitro, BC, MDA-MB-231 - in-vitro, BC, MCF-7
CSCs↓, CD44↓, p‑STAT3↓, NF-kB↓, TumCI↓,
4655- CUR,    Inhibition of Cancer Stem-like Cells by Curcumin and Other Polyphenol Derivatives in MDA-MB-231 TNBC Cells
- in-vitro, BC, NA
CSCs↓, *BioAv↓,
4652- CUR,    Anticancer effect of curcumin on breast cancer and stem cells
- Review, BC, NA
TumCP↓, TumMeta↓, TumCCA↑, Apoptosis↑, CSCs↓, NF-kB↓, Telomerase↓, Cyt‑c↑, Casp9↑, Casp3↑, E-cadherin↑,
872- CUR,  RES,    New Insights into Curcumin- and Resveratrol-Mediated Anti-Cancer Effects
- in-vitro, BC, TUBO - in-vitro, BC, SALTO
TumCP↓, tumCV↓, p62↓, p62↑, TumAuto↑, TumAuto↓, ROS↑, ROS↓, CHOP↑,
933- CUR,  EP,    Effective electrochemotherapy with curcumin in MDA-MB-231-human, triple negative breast cancer cells: A global proteomics study
- in-vitro, BC, NA
Apoptosis↑, ALDOA↓, ENO2↓, LDHA↓, LDHB↓, PFKP↓, PGK1↓, PGM1↓, PGAM1↓, OXPHOS↑, TCA↑,
13- CUR,    Role of curcumin in regulating p53 in breast cancer: an overview of the mechanism of action
- Review, BC, NA
P53↑, DR5↑, JNK↑, NRF2↑, PPARγ↑, HER2/EBBR2↓, IR↓, ER(estro)↓, Fas↑, PDGF↓, TGF-β↓, FGF↓, EGFR↓, JAK↓, PAK↓, MAPK↓, ATPase↓, COX2↓, MMPs↓, IL1↓, IL2↓, IL5↓, IL6↓, IL8↓, IL12↓, IL18↓, NF-kB↓, NOTCH1↓, STAT1↓, STAT4↓, STAT5↓, STAT3↓,
161- CUR,  MeSA,    Enhanced apoptotic effects by the combination of curcumin and methylseleninic acid: potential role of Mcl-1 and FAK
- in-vitro, BC, MDA-MB-231 - in-vitro, Pca, DU145
Mcl-1↑, Mcl-1↓, MPT↑, AIF↑,
424- CUR,    Curcumin inhibits autocrine growth hormone-mediated invasion and metastasis by targeting NF-κB signaling and polyamine metabolism in breast cancer cells
- in-vitro, BC, MCF-7 - in-vitro, BC, MDA-MB-231
Src↓, p‑STAT1↓, p‑Akt↓, p‑p44↓, p‑p42↓, RAS↓, Raf↓, Vim↓, β-catenin/ZEB1↓, P53↓, Bcl-2↓, Mcl-1↓, PIAS-3↑, SOCS-3↑, SOCS1↑, ROS↑, NF-kB↓, PAO↑, SSAT↑, P21↑, Bak↑,
425- CUR,    Curcumin inhibits proliferation and promotes apoptosis of breast cancer cells
- in-vitro, BC, T47D - in-vitro, BC, MCF-7 - in-vitro, BC, MDA-MB-231 - in-vitro, BC, MDA-MB-468
CDC25↓, cDC2↓, P21↑, p‑Akt↓, p‑mTOR↓, Bcl-2↓, BAX↑, Casp3↑,
426- CUR,    Use of cancer chemopreventive phytochemicals as antineoplastic agents
- in-vitro, BC, MDA-MB-231 - in-vitro, BC, CAL51
Bcl-2↓, ROS↑, BAX↑, RAD51↑, γH2AX↑,
423- CUR,    Inhibition of TLR4/TRIF/IRF3 Signaling Pathway by Curcumin in Breast Cancer Cells
- in-vitro, BC, MCF-7 - in-vitro, BC, MDA-MB-231
TLR4↓, IRF3↓, IFN-γ↓, TRIF↓,
422- CUR,    Curcumin induces re-expression of BRCA1 and suppression of γ synuclein by modulating DNA promoter methylation in breast cancer cell lines
- in-vitro, BC, HCC-38 - in-vitro, BC, T47D
BRCA1↑, TET1↑, DNMT3A↑, DNMT1↓, SNCG↓, miR-29b↓, miR-29b↑,
420- CUR,    Anti-metastasis activity of curcumin against breast cancer via the inhibition of stem cell-like properties and EMT
- in-vitro, BC, MCF-7 - in-vitro, BC, MDA-MB-231
Vim↓, Fibronectin↓, β-catenin/ZEB1↓, E-cadherin↓, CD44↑, CD24↓, OCT4↓, Nanog↓, SOX2↓,
417- CUR,    Curcumin inhibits the growth of triple‐negative breast cancer cells by silencing EZH2 and restoring DLC1 expression
- vitro+vivo, BC, MCF-7 - vitro+vivo, BC, MDA-MB-231 - vitro+vivo, BC, MDA-MB-468
EZH2↓, DLC1↑, cycA1/CCNA1↓, CDK1↓, Bcl-2↓, Casp9↑, DLC1↑,
415- CUR,    Curcumin inhibits proteasome activity in triple-negative breast cancer cells through regulating p300/miR-142-3p/PSMB5 axis
- vitro+vivo, BC, MDA-MB-231
PSMB5↓, CT-I↓, miR-142-3p↑, EP300↓,
414- CUR,    Transcriptome Investigation and In Vitro Verification of Curcumin-Induced HO-1 as a Feature of Ferroptosis in Breast Cancer Cells
- in-vitro, BC, MCF-7 - in-vitro, BC, MDA-MB-231
Ferroptosis↑, Iron↑, ROS↑, lipid-P↑, MDA↑, GSH↓, HO-1↑, NRF2↑, GPx↓, ROS↑, Iron↑, GPx4↓, HSP70/HSPA5↑, ATFs↑, CHOP↑, MDA↑, FTL↑, FTH1↑, BACH1↑, REL↑, USF1↑, NFE2L2↑,
413- CUR,    Curcumin attenuates lncRNA H19-induced epithelial-mesenchymal transition in tamoxifen-resistant breast cancer cells
- in-vitro, BC, MCF-7
N-cadherin↓, E-cadherin↑, H19↓,
412- CUR,    Curcumin and Its New Derivatives: Correlation between Cytotoxicity against Breast Cancer Cell Lines, Degradation of PTP1B Phosphatase and ROS Generation
- in-vitro, BC, MCF-7 - in-vitro, BC, MDA-MB-231
ROS↑, PTP1B↓,
411- CUR,    Curcumin inhibits the invasion and metastasis of triple negative breast cancer via Hedgehog/Gli1 signaling pathway
- in-vitro, BC, MDA-MB-231
HH↓, EMT↓, Gli1↓,
409- CUR,    Curcumin Inhibits Glyoxalase 1—A Possible Link to Its Anti-Inflammatory and Anti-Tumor Activity
- in-vitro, Pca, PC3 - in-vitro, BC, MDA-MB-231
GLO-I↓, GSH↓, ATP↓,
408- CUR,    Cytotoxic, chemosensitizing and radiosensitizing effects of curcumin based on thioredoxin system inhibition in breast cancer cells: 2D vs. 3D cell culture system
- in-vitro, BC, MCF-7
Trx1↓,
406- CUR,    Effect of curcumin on normal and tumor cells: Role of glutathione and bcl-2
- in-vitro, BC, MCF-7 - in-vitro, Hepat, HepG2
GSH↓, Apoptosis↑, Bcl-2↓, cMyc↓,
1864- DCA,  MET,    Dichloroacetate Enhances Apoptotic Cell Death via Oxidative Damage and Attenuates Lactate Production in Metformin-Treated Breast Cancer Cells
- in-vitro, BC, MCF-7 - in-vitro, BC, T47D - in-vitro, Nor, MCF10
PDKs↓, eff↑, ROS↑, PDK1↓, lactateProd↓, p‑PDH↑, Dose∅, OCR↑, DNA-PK↑, γH2AX↑, cl‑PARP↑, selectivity↑, *toxicity∅,
1865- DCA,    Reversal of the glycolytic phenotype by dichloroacetate inhibits metastatic breast cancer cell growth in vitro and in vivo
- in-vivo, BC, NA - in-vitro, BC, MCF-7 - in-vitro, BC, T47D
TumCG↓, TumCP↓, AntiCan↑,
1867- DCA,  Chemo,    Sensitization of breast cancer cells to paclitaxel by dichloroacetate through inhibiting autophagy
- in-vivo, BC, NA - in-vitro, BC, NA
TumCG↓, eff↑, OS↑, PDKs↓, PDH↑,
1443- Deg,    Deguelin Action Involves c-Met and EGFR Signaling Pathways in Triple Negative Breast Cancer Cells
- vitro+vivo, BC, MDA-MB-231 - in-vitro, BC, MDA-MB-435 - in-vitro, BC, BT549
EGFR↓, Akt↓, p‑ERK↓, NF-kB↓, p‑STAT3↓, survivin↓, Myc↓, TumCG↓, cMET↓,
1446- Deg,    Efficacy and mechanism of action of Deguelin in suppressing metastasis of 4T1 cells
- in-vitro, BC, 4T1
cMET↓, p‑ERK↓, p‑Akt↓, TumCMig↓, TumCG↓, Weight∅, *toxicity∅, Hif1a↓, TumMeta↓,
4455- DFE,    Ajwa Date (Phoenix dactylifera L.) Extract Inhibits Human Breast Adenocarcinoma (MCF7) Cells In Vitro by Inducing Apoptosis and Cell Cycle Arrest
- in-vitro, BC, MCF-7 - in-vitro, Nor, 3T3
TumCCA↑, P53↑, BAX↑, Casp3↑, MMP↓, Fas↑, FasL↑, Bcl-2↓, Apoptosis↑, TumCP↓, TUNEL↑, eff↑, selectivity↑,
1183- DHA,    Docosahexaenoic acid inhibited the Wnt/β-catenin pathway and suppressed breast cancer cells in vitro and in vivo
- in-vitro, BC, 4T1 - in-vitro, BC, MCF-7 - in-vivo, BC, NA
TumCG↓, TumCCA↑, β-catenin/ZEB1↓, TCF↓, LEF1↓, cMyc↓, cycD1/CCND1↓, Wnt/(β-catenin)↓, TumMeta↓,
1109- DHA,    DHA inhibits Gremlin-1-induced epithelial-to-mesenchymal transition via ERK suppression in human breast cancer cells
- in-vitro, BC, NA
GREM1↓, TumCMig↓, p‑ERK↓, EMT↓,
951- DHA,    Docosahexaenoic Acid Attenuates Breast Cancer Cell Metabolism and the Warburg Phenotype by Targeting Bioenergetic Function
- in-vitro, BC, BT474 - in-vitro, BC, MDA-MB-231 - in-vitro, Nor, MCF10
Hif1a↓, GLUT1↓, LDH↓, GlucoseCon↓, lactateProd↓, ATP↓, p‑AMPK↑, ECAR↓, OCR↓, *toxicity↓,
2152- dietFMD,    Prolonged Nightly Fasting and Breast Cancer Prognosis
- Analysis, BC, NA
eff↑, Dose↓, Risk↓,
1848- dietFMD,  Chemo,    Fasting mimicking diet as an adjunct to neoadjuvant chemotherapy for breast cancer in the multicentre randomized phase 2 DIRECT trial
- Trial, BC, NA
ChemoSideEff↓, ChemoSen↑, eff↑,
1857- dietFMD,    Fasting cycles retard growth of tumors and sensitize a range of cancer cell types to chemotherapy
- in-vitro, BC, 4T1 - in-vivo, NA, NA
TumCG↓, ChemoSen↑, OS↑,
1859- dietFMD,  Chemo,    Fasting-Mimicking Diet Reduces HO-1 to Promote T Cell-Mediated Tumor Cytotoxicity
- in-vitro, BC, 4T1 - in-vivo, Melanoma, B16-BL6
CLP↑, CD8+↑, TumCG↓, HO-1↓, TILs↑,
1860- dietFMD,  Chemo,    Fasting-mimicking diet blocks triple-negative breast cancer and cancer stem cell escape
- in-vitro, BC, SUM159 - in-vitro, BC, 4T1
PI3K↑, Akt↑, mTOR↑, CDK4↑, CDK6↑, hyperG↓, TumCG↓, TumVol↓, Casp3↑, BG↓, eff↑, eff∅, PKA↓, KLF5↓, p‑GSK‐3β↑, Nanog↓, OCT4↓, KLF2↓, eff↑, ROS↑, BIM↑, ASK1↑, PI3K↑, Akt↑, mTOR↑, CDK1↓, CDK4↑, CDK6↑, eff↑,
2352- dietFMD,    Glucose restriction reverses the Warburg effect and modulates PKM2 and mTOR expression in breast cancer cell lines
- in-vitro, BC, MDA-MB-231 - in-vitro, BC, MCF-7
Warburg↓, mTOR↓, PKM2↓,
2159- dietP,    Postdiagnostic Fruit and Vegetable Consumption and Breast Cancer Survival: Prospective Analyses in the Nurses' Health Studies
- Human, BC, NA
Risk↑, Risk∅, OS↑, OS↓,
2162- dietP,    Effect of low-fat diet on breast cancer survival: a meta-analysis
- Analysis, BC, NA
Risk↓, OS↑,
1608- EA,    Ellagic Acid from Hull Blackberries: Extraction, Purification, and Potential Anticancer Activity
- in-vitro, Cerv, HeLa - in-vitro, Liver, HepG2 - in-vitro, BC, MCF-7 - in-vitro, Lung, A549 - in-vitro, Nor, HUVECs
eff↑, Dose∅, *BioAv↑, selectivity↑, TumCP↓, Casp↑, PTEN↑, TSC1↑, mTOR⇅, Akt↓, PDK1↓, E6↓, E7↓, DNAdam↑, ROS↑, *BioAv↓, *BioEnh↑, *Half-Life∅,
1618- EA,    A comprehensive review on Ellagic acid in breast cancer treatment: From cellular effects to molecular mechanisms of action
- Review, BC, NA
TumCCA↑, TumCMig↓, TumCI↓, TumMeta↓, Apoptosis↑, TGF-β↓, SMAD3↓, CDK6↓, PI3K↓, Akt↓, angioG↓, VEGFR2↓, MAPK↓, NEDD9↓, NF-kB↓, eff↑, eff↑, RadioS↑, ChemoSen↑, DNAdam↑, eff↑, *toxicity∅, *toxicity∅,
1056- EGCG,    EGCG, a major green tea catechin suppresses breast tumor angiogenesis and growth via inhibiting the activation of HIF-1α and NFκB, and VEGF expression
- vitro+vivo, BC, E0771
TumW↓, VEGF↓, Weight∅, Hif1a↓, NF-kB↓,
936- EGCG,    Bioactivity-Guided Identification and Cell Signaling Technology to Delineate the Lactate Dehydrogenase A Inhibition Effects of Spatholobus suberectus on Breast Cancer
- in-vitro, BC, MCF-7 - in-vitro, BC, MDA-MB-231
LDHA↓,
660- EGCG,  FA,    Epigallocatechin-3-gallate Delivered in Nanoparticles Increases Cytotoxicity in Three Breast Carcinoma Cell Lines
- in-vitro, BC, MDA-MB-231 - in-vitro, BC, MCF-7 - in-vitro, Nor, MCF10
Apoptosis↑, *toxicity↓, *eff↓,
694- EGCG,    Matcha green tea (MGT) inhibits the propagation of cancer stem cells (CSCs), by targeting mitochondrial metabolism, glycolysis and multiple cell signalling pathways
- in-vitro, BC, MCF-7
Glycolysis↓, GAPDH↓, ROS↑, OCR↓, ECAR↓, mTOR↓, OXPHOS↓,
687- EGCG,    Estrogen receptor-α36 is involved in epigallocatechin-3-gallate induced growth inhibition of ER-negative breast cancer stem/progenitor cells
- in-vitro, BC, MDA-MB-231 - in-vitro, BC, MDA-MB-468
ER-α36↓,
681- EGCG,    Suppressing glucose metabolism with epigallocatechin-3-gallate (EGCG) reduces breast cancer cell growth in preclinical models
- vitro+vivo, BC, NA
Casp3↑, Casp8↑, Casp9↑, TumAuto↑, Beclin-1↝, ATG5↝, GlucoseCon↓, lactateProd↓, ATP↝, HK2↓, LDHA↓, Hif1a↓, GLUT1↓, TumVol↓, VEGF↓,
668- EGCG,    The Potential Role of Epigallocatechin-3-Gallate (EGCG) in Breast Cancer Treatment
- Review, BC, MCF-7 - Review, BC, MDA-MB-231
HER2/EBBR2↓, EGFR↓, mtDam↑, ROS↑, PI3K/Akt↓, P53↑, P21↑, Casp3↑, Casp9↑, BAX↑, PTEN↑, Bcl-2↓, hTERT/TERT↓, STAT3↓, TumCCA↑, Hif1a↓,
3214- EGCG,    EGCG-induced selective death of cancer cells through autophagy-dependent regulation of the p62-mediated antioxidant survival pathway
- in-vitro, Nor, MRC-5 - in-vitro, Cerv, HeLa - in-vitro, Nor, HEK293 - in-vitro, BC, MDA-MB-231 - in-vitro, CRC, HCT116
mTOR↓, AMPK↑, selectivity↑, ROS↑, selectivity↑, HO-1↓, *NRF2↑, NRF2↓, *HO-1↑,
1515- EGCG,  Phen,    Reciprocal Relationship Between Cytosolic NADH and ENOX2 Inhibition Triggers Sphingolipid-Induced Apoptosis in HeLa Cells
- in-vitro, Cerv, HeLa - in-vitro, Nor, MCF10 - in-vitro, BC, BT20
selectivity↑, ENOX2↓, NADH↑, SK↓, eff↑, aSmase↑,
1246- EMD,    Emodin reduces Breast Cancer Lung Metastasis by suppressing Macrophage-induced Breast Cancer Cell Epithelial-mesenchymal transition and Cancer Stem Cell formation
- in-vivo, BC, NA
TGF-β↓, EMT↓, CSCs↓,
1038- F,  immuno,    Fucoidan enhances the anti-tumor effect of anti-PD-1 immunotherapy by regulating gut microbiota.
- in-vivo, BC, NA
GutMicro↑, T-Cell↑, Treg lymp↓,
1112- FA,    Ferulic acid exerts antitumor activity and inhibits metastasis in breast cancer cells by regulating epithelial to mesenchymal transition
- in-vitro, BC, MDA-MB-231 - in-vivo, BC, NA
tumCV↓, Apoptosis↑, AntiTum↑, TumMeta↓, EMT↓, TumVol↓, TumW↓,
949- FIS,  ATAGJ,  Cisplatin,    Ai-Tong-An-Gao-Ji and Fisetin Inhibit Tumor Cell Growth in Rat CIBP Models by Inhibiting the AKT/HIF-1α Signaling Pathway
- in-vivo, BC, Walker256 - in-vitro, BC, Walker256
Akt↓, Hif1a↓, p‑Akt↓,
2850- FIS,    Fisetin regulates TPA-induced breast Cancer cell invasion by suppressing matrix metalloproteinase-9 activation via the PKC/ROS/MAPK pathways
- in-vitro, BC, MCF-7
TumCI↓, PKCδ↓, ROS↓, ERK↑, p38↓, NF-kB↓, MMP9↓,
2851- FIS,    Apoptosis induction in breast cancer cell lines by the dietary flavonoid fisetin
- in-vitro, BC, MDA-MB-468 - in-vitro, BC, MDA-MB-231 - in-vitro, BC, MCF-7 - in-vitro, BC, T47D - in-vitro, BC, SkBr3 - in-vitro, Nor, NA
tumCV↓, selectivity↑, TumCCA↑, Apoptosis↑, ROS∅,
2858- FIS,    Fisetin inhibits cell migration via inducing HO-1 and reducing MMPs expression in breast cancer cell lines
- in-vitro, BC, 4T1
HO-1↑, NRF2↑, MMP2↓, MMP9↓,
2826- FIS,    Fisetin induces apoptosis in breast cancer MDA-MB-453 cells through degradation of HER2/neu and via the PI3K/Akt pathway
- in-vitro, BC, MDA-MB-453
Apoptosis↑, p‑ENO1↓, DNAdam↑, PI3K↑, p‑Akt↑, HER2/EBBR2↓,
2833- FIS,  SNP,    Glucose-capped fisetin silver nanoparticles induced cytotoxicity and ferroptosis in breast cancer cells: A molecular perspective
- in-vitro, BC, MDA-MB-231
MMP↓, ROS↑, NRF2↑, NOX↑, selectivity↑,
4027- FulvicA,    Mummy Induces Apoptosis Through Inhibiting of Epithelial-Mesenchymal Transition (EMT) in Human Breast Cancer Cells
- in-vitro, BC, MDA-MB-231 - in-vitro, BC, MCF-7 - in-vitro, Nor, MCF10
tumCV↓, selectivity↑, TGF-β↓, Twist↓, NOTCH1↓, CTNNB1↓, Src↓, E-cadherin↑, EMT↓, TumMeta↓, BioAv↑,
1300- GA,  PacT,  carbop,    Gallic acid potentiates the apoptotic effect of paclitaxel and carboplatin via overexpression of Bax and P53 on the MCF-7 human breast cancer cell line
- in-vitro, BC, MCF-7
TumCCA↑, Apoptosis↑, P53↑, BAX↑, Casp3↑, Bcl-2↓,
987- GA,    Targeting Aerobic Glycolysis: Gallic Acid as Promising Anticancer Drug
- in-vitro, GBM, AMGM - in-vitro, Cerv, HeLa - in-vitro, BC, MCF-7
LDH↓, TumCG↓,
935- Gallo,    Galloflavin, a new lactate dehydrogenase inhibitor, induces the death of human breast cancer cells with different glycolytic attitude by affecting distinct signaling pathways
- in-vitro, BC, MCF-7 - in-vitro, BC, MDA-MB-231
LDH↓, ROS↑,
1972- GamB,  doxoR,    Gambogic acid sensitizes resistant breast cancer cells to doxorubicin through inhibiting P-glycoprotein and suppressing survivin expression
- in-vitro, BC, NA
eff↑, P-gp↓, ROS↑, survivin↓, p38↑,
1971- GamB,    Gambogic acid triggers vacuolization-associated cell death in cancer cells via disruption of thiol proteostasis
- in-vitro, Nor, MCF10 - in-vitro, BC, MDA-MB-435 - in-vitro, BC, MDA-MB-468 - in-vivo, NA, NA
Paraptosis↑, ER Stress↑, MMP↓, eff↓, selectivity↑, p‑ERK↑, p‑JNK↑, eff↓,
1969- GamB,    Gambogic acid promotes apoptosis and resistance to metastatic potential in MDA-MB-231 human breast carcinoma cells
- in-vitro, BC, MDA-MB-231 - in-vivo, NA, NA
AntiTum↑, TumCI↓, Apoptosis↑, ROS↑, Cyt‑c↑, Akt↓, mTOR↓, TumCG↓, TumMeta↓,
823- GAR,    Garcinol Potentiates TRAIL-Induced Apoptosis through Modulation of Death Receptors and Antiapoptotic Proteins
- in-vitro, BC, MCF-7 - in-vitro, Nor, MCF10 - in-vitro, CRC, HCT116
Casp3↑, Casp9↑, Casp8↑, DR5↑, survivin↓, Bcl-2↓, XIAP↓, cFLIP↓, BAX↑, Cyt‑c↑, ROS↑, GSH↓, *eff↓,
814- GAR,  PacT,    Garcinol sensitizes breast cancer cells to Taxol through the suppression of caspase-3/iPLA2 and NF-κB/Twist1 signaling pathways in a mouse 4T1 breast tumor model
- in-vivo, BC, NA
Apoptosis↑, TumCCA↑, EMT↓, TumCI↓,
797- GAR,  CUR,    Differential effects of garcinol and curcumin on histone and p53 modifications in tumour cells
- in-vitro, BC, MCF-7 - in-vitro, OS, U2OS - in-vitro, OS, SaOS2
TumCP↓, H3K18↓, DNAdam↑,
798- GAR,    Garcinol, an acetyltransferase inhibitor, suppresses proliferation of breast cancer cell line MCF-7 promoted by 17β-estradiol
- in-vitro, BC, MCF-7
TumCP↓, TumCCA↑, Apoptosis↑, ac‑H3↑, ac‑H4∅, NF-kB↓, ac‑p65↑, cycD1/CCND1↓, Bcl-2↓, Bcl-xL↓,
799- GAR,    Apoptosis-inducing effect of garcinol is mediated by NF-kappaB signaling in breast cancer cells
- in-vitro, BC, MCF-7 - in-vitro, BC, MDA-MB-231 - in-vitro, NMSC, MCF10
TumCG↓, Apoptosis↑, NF-kB↓,
800- GAR,    Garcinol Regulates EMT and Wnt Signaling Pathways In Vitro and In Vivo, Leading to Anticancer Activity against Breast Cancer Cells
- in-vitro, BC, MDA-MB-231 - in-vitro, BC, BT549 - in-vivo, NA, NA
EMT↓, MET↑, E-cadherin↑, Vim↓, Zeb1↓, ZEB2↑, miR-200c↑, Let-7↑, p‑β-catenin/ZEB1↓, NF-kB↓,
1435- GEN,  SFN,    The Effects of Combinatorial Genistein and Sulforaphane in Breast Tumor Inhibition: Role in Epigenetic Regulation
- in-vitro, BC, MDA-MB-231 - in-vitro, BC, MCF-7
DNMTs↓, HDAC↓, eff↑, TumCCA↑, HMTs↓, HDAC2↓, HDAC3↓, KLF4↓, hTERT/TERT↓,
28- GEN,    Genistein decreases the breast cancer stem-like cell population through Hedgehog pathway
- in-vivo, BC, MCF-7
HH↓, Smo↓, Gli1↓,
4507- GLA,    Effect of γ-Linolenic Acid on the Transcriptional Activity of the Her-2/neu (erbB-2) Oncogene
- in-vitro, BC, BT474 - in-vitro, BC, SkBr3 - in-vitro, BC, MDA-MB-453 - in-vitro, Ovarian, SKOV3 - in-vitro, GC, NCI-N87
HER2/EBBR2↓,
4506- GLA,    A basal level of γ-linolenic acid depletes Ca2+ stores and induces endoplasmic reticulum and oxidative stresses to cause death of breast cancer BT-474 cells
- in-vitro, BC, BT474
Apoptosis↓, Ca+2↑, MMP↓, p‑eIF2α↑, CHOP↑, ER Stress↑, ROS↑,
4420- GoldNP,  Rad,    Computational modeling and experimental synthesis of BSA-coated bimetallic theranostic MnO₂-Au@curcumin nanoplatform for synergistic radiochemotherapy of breast cancer
- in-vitro, BC, 4T1
RadioS↑,
1904- GoldNP,  SNP,    Unveiling the Potential of Innovative Gold(I) and Silver(I) Selenourea Complexes as Anticancer Agents Targeting TrxR and Cellular Redox Homeostasis
- in-vitro, Lung, H157 - in-vitro, BC, MCF-7 - in-vitro, Colon, HCT15 - in-vitro, Melanoma, A375
TrxR↓, selectivity↑, eff↑, eff↝, ROS↑, MMP↓, Apoptosis↑, eff↑,
851- Gra,    Antiproliferation Activity and Apoptotic Mechanism of Soursop (Annona muricata L.) Leaves Extract and Fractions on MCF7 Breast Cancer Cells
- in-vitro, BC, MCF-7 - in-vitro, Nor, CV1
Bcl-2↓, Casp9↑, Casp3↑, other↑, *toxicity↓,
844- Gra,    Annona muricata Leaf Extract Triggered Intrinsic Apoptotic Pathway to Attenuate Cancerous Features of Triple Negative Breast Cancer MDA-MB-231 Cells
- in-vitro, BC, MDA-MB-231 - in-vitro, BC, MCF-7
tumCV↓, TumCI↓, ROS↑,
837- Gra,    Quantitative assessment of the relative antineoplastic potential of the n-butanolic leaf extract of Annona muricata Linn. in normal and immortalized human cell lines
- in-vitro, BC, MDA-MB-435 - in-vitro, Nor, WRL68 - in-vitro, Nor, HaCaT
*toxicity↓,
833- Gra,    Cytotoxic Effect of Annona muricata leaf extracts on tumor cell lines in vitro
- in-vitro, BC, MDA-MB-231 - in-vitro, Lung, A549
Apoptosis↑,
852- Gra,    Silver Nanoparticles from Annona muricata Peel and Leaf Extracts as a Potential Potent, Biocompatible and Low Cost Antitumor Tool
- in-vitro, BC, MCF-7 - in-vitro, Colon, HCT116 - in-vitro, Melanoma, A375
tumCV↓,
855- Gra,    Antiproliferative activity of ionic liquid-graviola fruit extract against human breast cancer (MCF-7) cell lines using flow cytometry techniques
- in-vitro, BC, MCF-7
TumCG↓, TumCP↓, TumCCA↑, Apoptosis↑,
856- Gra,    https://pubmed.ncbi.nlm.nih.gov/33048613/
- in-vitro, BC, MCF-7
TumCCA↑, ROS↑, Casp↑,
1234- Gra,    Graviola attenuates DMBA-induced breast cancer possibly through augmenting apoptosis and antioxidant pathway and downregulating estrogen receptors
- in-vivo, BC, NA
Apoptosis↑, BAX↑, P53↑, Casp3↑, ER-α36↓, lipid-P↓,
2521- H2,    Oxyhydrogen Gas: A Promising Therapeutic Approach for Lung, Breast and Colorectal Cancer
- Review, CRC, NA - Review, Lung, NA - Review, BC, NA
Inflam↑, ROS↓, ChemoSen↑, p‑PI3K↓, p‑Akt↓, QoL↑, GutMicro↑, chemoP↑, radioP↑, *NRF2↑, *Catalase↑, *GPx↑, *HO-1↑, *SOD↑, *TNF-α↓, *IL4↓, *IL6↓, ChemoSen↑, Appetite↑, cognitive↑, Pain↓, Sleep↑, other?,
2518- H2,    Hydrogen Therapy Reverses Cancer-Associated Fibroblasts Phenotypes and Remodels Stromal Microenvironment to Stimulate Systematic Anti-Tumor Immunity
- in-vitro, BC, 4T1 - in-vitro, Nor, 3T3
TumCD↑, CD4+↑, ROS↓,
1629- HCA,  Tam,    Hydroxycitric acid reverses tamoxifen resistance through inhibition of ATP citrate lyase
- in-vitro, BC, MCF-7
ACLY↓, eff↓, tumCV↓, eff↑, Casp3↑, BAX↑, Bcl-2↓,
293- HCA,  Tam,    Hydroxycitric acid potentiates the cytotoxic effect of tamoxifen in MCF-7 breast cancer cells through inhibition of ATP citrate lyase
- in-vitro, BC, MCF-7
TumCG↓, Apoptosis↑, ACLY↓, ACC-α↓, Fas↓,
1154- HNK,  MET,    Honokiol inhibits the growth of hormone-resistant breast cancer cells: its promising effect in combination with metformin
- in-vitro, BC, MCF-7 - in-vitro, BC, SkBr3 - in-vitro, BC, MDA-MB-231
cl‑PARP↑, Bcl-2↓, ERα/ESR1↓,
1119- HNK,    Honokiol inhibits epithelial—mesenchymal transition in breast cancer cells by targeting signal transducer and activator of transcription 3/Zeb1/E‐cadherin axis
- vitro+vivo, BC, NA
EMT↓, MSCmark↓, EM↑, STAT3↓, Zeb1↓, E-cadherin↑,
960- HNK,    Honokiol Inhibits HIF-1α-Mediated Glycolysis to Halt Breast Cancer Growth
- vitro+vivo, BC, MCF-7 - vitro+vivo, BC, MDA-MB-231
OCR↑, ECAR↓, GlucoseCon↓, lactateProd↓, ATP↓, Glycolysis↓, Hif1a↓, GLUT1↓, HK2↓, PDK1↓, Apoptosis↑, LDHA↓,
2888- HNK,    Honokiol mediated inhibition of PI3K/mTOR pathway: A potential strategy to overcome immunoresistance in glioma, breast and prostate carcinoma without impacting T cell function
- in-vitro, Var, PC3 - in-vitro, BC, BT549
PI3K↓, mTOR↓, Inflam↓,
2898- HNK,    Honokiol Suppression of Human Epidermal Growth Factor Receptor 2 (HER2)-Positive Gastric Cancer Cell Biological Activity and Its Mechanism
- in-vitro, GC, AGS - in-vitro, GC, NCI-N87 - in-vitro, BC, MGC803 - in-vitro, GC, SGC-7901
TumCP↓, Apoptosis↑, TumCI↓, TumCMig↓, HER2/EBBR2↓, TumCCA↑, PI3K↓, Akt↓, MMP9↓, P21↑,
2880- HNK,    Honokiol inhibits breast cancer cell metastasis by blocking EMT through modulation of Snail/Slug protein translation
- in-vitro, BC, MCF-7 - in-vitro, BC, MDA-MB-231 - in-vitro, BC, 4T1 - in-vivo, NA, NA
tumCV↓, E-cadherin↑, Snail↓, Slug↓, Vim↓, TumMeta↓, p‑eIF2α↑,
4632- HT,    Hydroxytyrosol inhibits cancer stem cells and the metastatic capacity of triple-negative breast cancer cell lines by the simultaneous targeting of epithelial-to-mesenchymal transition, Wnt/β-catenin and TGFβ signaling pathways
- in-vitro, BC, MDA-MB-231 - in-vitro, BC, BT549 - in-vitro, BC, SUM159
CSCs↓, TumCMig↓, TumCI↓, β-catenin/ZEB1↓, Wnt↓, p‑LRP6↓, LRP6↓, cycD1/CCND1↓, EMT↓, Slug↓, Zeb1↓, Snail↓, Vim↓, SMAD2↓, SMAD3↓, TGF-β↓,
4633- HT,    Unlocking the effective alliance of β-lapachone and hydroxytyrosol against triple-negative breast cancer cells
- in-vitro, BC, NA
AntiCan↑, CSCs↓, antiOx↑, NQO1↑, TumCCA↑, ER Stress↑, Apoptosis↑, UPR↑,
4635- HT,    Hydroxytyrosol, a Component of Olive Oil for Breast Cancer Prevention in Women at High Risk of Cancer
- Trial, BC, NA
*Wnt↓, *NOTCH↓, *ROS↓, TumCP↓, CSCs↓,
4636- HT,    Hydroxytyrosol inhibits cancer stem cells and the metastatic capacity of triple-negative breast cancer cell lines by the simultaneous targeting of epithelial-to-mesenchymal transition, Wnt/ß-catenin and TGFß signaling
- in-vitro, BC, SUM159 - in-vitro, BC, MDA-MB-231 - in-vitro, BC, HS587T - in-vitro, BC, BT549
Wnt↓, β-catenin/ZEB1↓, LRP6↓, cycD1/CCND1↓, EMT↓, Slug↓, Zeb1↓, Snail↓, Vim↓, TGF-β↓, CSCs↓, TumCMig↓, chemoP↑,
1926- JG,    Mechanism of juglone-induced apoptosis of MCF-7 cells by the mitochondrial pathway
- in-vitro, BC, MCF-7
TumCG↓, ROS↑, MMP↓, i-Ca+2↑, BAX↑, Bcl-2↓, Cyt‑c↑, Casp3?,
1243- LA,    Lactobacilli Modulate Hypoxia-Inducible Factor (HIF)-1 Regulatory Pathway in Triple Negative Breast Cancer Cell Line
- in-vitro, BC, MDA-MB-231
Hif1a↓, HSP90↓, GLUT1↓, VHL↓, SHARP↑,
1306- LE,    Modulations of the Bcl-2/Bax family were involved in the chemopreventive effects of licorice root (Glycyrrhiza uralensis Fisch) in MCF-7 human breast cancer cell
- in-vitro, BC, MCF-7
Bcl-2↓, BAX↑, Apoptosis↑, TumCCA↑,
1788- LE,    Activation of rapid signaling pathways and the subsequent transcriptional regulation for the proliferation of breast cancer MCF-7 cells by the treatment with an extract of Glycyrrhiza glabra root
- in-vitro, BC, MCF-7
TumCG↑,
1125- LT,    Luteolin suppresses epithelial-mesenchymal transition and migration of triple-negative breast cancer cells by inhibiting YAP/TAZ activity
- in-vitro, BC, NA
YAP/TEAD↓, TAZ↓, MSCmark↓, EM↑, TumCMig↓,
979- LT,    Luteolin Regulation of Estrogen Signaling and Cell Cycle Pathway Genes in MCF-7 Human Breast Cancer Cells
- in-vitro, BC, MCF-7
TumCP↓,
1064- LT,  Cisplatin,    Inhibition of cell survival, invasion, tumor growth and histone deacetylase activity by the dietary flavonoid luteolin in human epithelioid cancer cells
- vitro+vivo, Lung, LNM35 - in-vitro, CRC, HT-29 - in-vitro, Liver, HepG2 - in-vitro, BC, MCF-7 - in-vitro, BC, MDA-MB-231
Casp3↑, Casp7↑, HDAC↓,
986- LT,  doxoR,    Luteolin as a glycolysis inhibitor offers superior efficacy and lesser toxicity of doxorubicin in breast cancer cells
- in-vitro, BC, 4T1 - in-vitro, BC, MCF-7
SOD↓, Catalase↓, Glycolysis↓,
973- LT,    Luteolin impairs hypoxia adaptation and progression in human breast and colon cancer cells
- in-vitro, CRC, HCT116 - in-vitro, BC, MDA-MB-231
Apoptosis↑, necrosis↑, TumAuto↑, HIF-1↓,
1534- LT,  Api,  EGCG,  RES,    Plant polyphenol induced cell death in human cancer cells involves mobilization of intracellular copper ions and reactive oxygen species generation: a mechanism for cancer chemopreventive action
- in-vitro, Nor, MCF10 - in-vitro, BC, MDA-MB-231 - in-vitro, BC, MDA-MB-468 - in-vitro, PC, Bxpc-3
TumCP↓, Apoptosis↑, eff↓, *toxicity↑, Dose?, eff↓, eff↓,
2925- LT,    Luteolin Induces Carcinoma Cell Apoptosis through Binding Hsp90 to Suppress Constitutive Activation of STAT3
- in-vitro, Cerv, HeLa - in-vitro, Nor, HEK293 - in-vitro, BC, MCF-7
HSP90↓, p‑STAT3↓, Apoptosis↑, selectivity↑,
2913- LT,    Luteolin induces apoptosis by impairing mitochondrial function and targeting the intrinsic apoptosis pathway in gastric cancer cells
- in-vitro, GC, HGC27 - in-vitro, BC, MCF-7 - in-vitro, GC, MKN45
TumCP↓, MMP↓, Apoptosis↑, ROS↑, SOD↓, ATP↓, Bax:Bcl2↑, TumCCA↑,
2910- LT,  FA,    Folic acid-modified ROS-responsive nanoparticles encapsulating luteolin for targeted breast cancer treatment
- in-vitro, BC, 4T1 - in-vivo, NA, NA
BioAv↓, BioAv↑, eff↑, tumCV↓, e-H2O2↓, i-H2O2∅,
2589- LT,  Chemo,    Luteolin Inhibits Breast Cancer Stemness and Enhances Chemosensitivity through the Nrf2-Mediated Pathway
- in-vitro, BC, MDA-MB-231
NRF2↓, HO-1↓, ChemoSen↑, CSCs↓, SIRT1↓,
4803- Lyco,    Enhanced cytotoxic and apoptosis inducing activity of lycopene oxidation products in different cancer cell lines
- in-vitro, Pca, PC3 - in-vitro, BC, MCF-7 - in-vitro, Melanoma, A431 - in-vitro, Liver, HepG2 - in-vitro, Cerv, HeLa - in-vitro, Lung, A549
tumCV↓, GSH↓, MDA↑, ROS↑, Apoptosis↑,
4796- Lyco,    The Anti-proliferation Effects of Lycopene on Breast Cancer Cells
- in-vitro, BC, MCF-7 - in-vitro, Nor, MCF10
TumCG↓, selectivity↑, *BioAv↑, *antiOx↑, *ROS↓, Risk↓, *cardioP↑,
4795- Lyco,    Updates on the Anticancer Profile of Lycopene and its Probable Mechanism against Breast and Gynecological Cancer
- Review, BC, NA
TumCG↓, TumCCA↑, Apoptosis↑, P53↝, BAX↝, cycD1/CCND1↓, ERK↓, Akt↓, STAT3↓, NRF2↝, NF-kB↓, ITGB1↓, ITGA5↓, FAK↓, MMP9↓, EMT↓,
4786- Lyco,    Anti-proliferative and apoptosis-inducing activity of lycopene against three subtypes of human breast cancer cell lines
- in-vitro, BC, MDA-MB-468 - in-vitro, BC, MCF-7 - in-vitro, BC, SkBr3
TumCP↓, TumCCA↑, cl‑PARP↑, ERK↑, cycD1/CCND1↓, P21↓, p‑Akt↓, mTOR↓, BAX↑, AntiCan↑, Risk↓,
1721- Lyco,  RES,  VitC,    Lycopene, resveratrol, vitamin C and FeSO4 increase damage produced by pro-oxidant carcinogen 4-nitroquinoline-1-oxide in Drosophila melanogaster: Xenobiotic metabolism implications.
- in-vitro, Pca, PC3 - in-vitro, Lung, A549 - in-vitro, Cerv, HeLa - in-vitro, BC, MCF-7 - in-vitro, Liver, HepG2
ROS↑,
1779- MEL,    Therapeutic Potential of Melatonin Counteracting Chemotherapy-Induced Toxicity in Breast Cancer Patients: A Systematic Review
- Review, BC, NA
QoL↑, OS↑, Dose∅, antiOx↑, ROS↑, SOD↑, Catalase↑, GPx↑, Risk↓, NK cell↑, IL1β↓, IL6↓, TNF-α↓, radioP↑, chemoP↑, TumVol↓, TumMeta↓, angioG↓, ChemoSen↑, eff↑,
2456- MET,    Direct inhibition of hexokinase activity by metformin at least partially impairs glucose metabolism and tumor growth in experimental breast cancer
- in-vitro, BC, MDA-MB-231 - in-vivo, NA, NA
GlucoseCon↓, TumCG↓, HK2↓, p‑AMPK↑, TXNIP↓, *toxicity↓,
2379- MET,    Down‐regulation of PKM2 enhances anticancer efficiency of THP on bladder cancer
- in-vitro, Bladder, T24 - in-vitro, BC, UMUC3
PKM2↓, p‑STAT3↓, TumCG↓, eff↑, chemoP↑, AMPK↑,
2374- MET,    Metformin Induces Apoptosis and Downregulates Pyruvate Kinase M2 in Breast Cancer Cells Only When Grown in Nutrient-Poor Conditions
- in-vitro, BC, MCF-7 - in-vitro, BC, SkBr3 - in-vitro, BC, MDA-MB-231
eff↑, Apoptosis↑, Glycolysis↓, PKM2↓, mTOR↓, PARP↓,
2256- MF,  HPT,    Effects of exposure to repetitive pulsed magnetic stimulation on cell proliferation and expression of heat shock protein 70 in normal and malignant cells
- in-vitro, BC, MCF-7 - in-vitro, Cerv, HeLa - in-vitro, Nor, HBL-100
HSP70/HSPA5↑, HSP70/HSPA5∅,
4425- MF,  doxoR,    Brief Magnetic Field Exposure Stimulates Doxorubicin Uptake into Breast Cancer Cells in Association with TRPC1 Expression: A Precision Oncology Methodology to Enhance Chemotherapeutic Outcome
- in-vitro, BC, 4T1 - in-vitro, BC, MCF-7
ChemoSen↑, TRPC1↑, Dose↓, selectivity↑,
4353- MF,  Chemo,    Pulsed Electromagnetic Field Enhances Doxorubicin-induced Reduction in the Viability of MCF-7 Breast Cancer Cells
- in-vitro, BC, MCF-7
TumCCA↑, Apoptosis↑, eff↑, TumCCA↑, Casp↝, p‑CDK2↓, cycE/CCNE↓, Fas↑, BAX↑, survivin↓, Mcl-1↓, cl‑PARP↑, cl‑Casp7↑, cl‑Casp8↑, cl‑Casp9↑,
4354- MF,  doxoR,    Modulated TRPC1 Expression Predicts Sensitivity of Breast Cancer to Doxorubicin and Magnetic Field Therapy: Segue Towards a Precision Medicine Approach
- in-vivo, BC, MDA-MB-231 - in-vivo, BC, MCF-7
selectivity↑, Apoptosis↑, TumCI↓, tumCV↓, TumVol↓, eff↓, eff↑, ROS↑, Ca+2↑, TumCMig↓,
3478- MF,    One Month of Brief Weekly Magnetic Field Therapy Enhances the Anticancer Potential of Female Human Sera: Randomized Double-Blind Pilot Study
- Trial, BC, NA - in-vitro, BC, MCF-7 - in-vitro, Nor, C2C12
TumCP↓, TumCMig↓, TumCI↓, *toxicity∅, TGF-β↓, Twist↓, Slug↓, β-catenin/ZEB1↓, Vim↓, p‑SMAD2↓, p‑SMAD3↓, angioG↓, VEGF↓, selectivity↑, LIF↑,
496- MF,    Low-Frequency Magnetic Fields (LF-MFs) Inhibit Proliferation by Triggering Apoptosis and Altering Cell Cycle Distribution in Breast Cancer Cells
- in-vitro, BC, MCF-7 - in-vitro, BC, ZR-75-1 - in-vitro, BC, T47D - in-vitro, BC, MDA-MB-231
ROS↑, PI3K↓, Akt↓, GSK‐3β↑, Apoptosis↑, cl‑PARP↑, cl‑Casp3↑, BAX↑, Bcl-2↓, CycB/CCNB1↓, TumCCA↑, p‑Akt↓, p‑Akt↓,
501- MF,    Low Intensity and Frequency Pulsed Electromagnetic Fields Selectively Impair Breast Cancer Cell Viability
- in-vitro, BC, MCF-7 - in-vitro, Nor, MCF10
Apoptosis↑, *toxicity↓, ChemoSen↑, chemoP↑, selectivity↑, DNAdam↑,
502- MF,    Electromagnetic field investigation on different cancer cell lines
- in-vitro, BC, MDA-MB-231 - in-vitro, Colon, SW480 - in-vitro, CRC, HCT116
TumCG↓, Apoptosis↑,
526- MF,    Inhibition of Cancer Cell Growth by Exposure to a Specific Time-Varying Electromagnetic Field Involves T-Type Calcium Channels
- in-vitro, BC, MDA-MB-231 - in-vitro, BC, MCF-7 - in-vitro, Pca, HeLa - vitro+vivo, Melanoma, B16-BL6 - in-vitro, Nor, HEK293
TumCG↓, Ca+2↑, selectivity↑, *Ca+2∅, ROS↑, HSP70/HSPA5↑, AntiCan↑,
538- MF,    The extremely low frequency electromagnetic stimulation selective for cancer cells elicits growth arrest through a metabolic shift
- in-vitro, BC, MDA-MB-231 - in-vitro, Melanoma, MSTO-211H
TumCG↓, Ca+2↑, COX2↓, ATP↑, MMP↑, ROS↑, OXPHOS↑, mitResp↑,
534- MF,    Effect of extremely low frequency electromagnetic field parameters on the proliferation of human breast cancer
- in-vitro, BC, MCF-7 - in-vitro, BC, MDA-MB-231 - in-vivo, Nor, MCF10
Ca+2↑, Apoptosis↑, eff↝, eff↑, selectivity↑, eff↝, eff↝,
533- MF,    Effects of extremely low-frequency magnetic fields on human MDA-MB-231 breast cancer cells: proteomic characterization
- in-vitro, BC, MDA-MB-231 - in-vitro, Nor, MCF10
TumCD↑, necrosis↑, mt-ROS↑, other↑, *STAT3↓, STAT3↑,
532- MF,    A 50 Hz magnetic field influences the viability of breast cancer cells 96 h after exposure
- in-vitro, BC, MDA-MB-231 - in-vitro, BC, MCF-7 - in-vitro, Nor, MCF10
TumCP↓, MMP↓, ROS↑, eff↝, selectivity↑,
531- MF,    6-mT 0-120-Hz magnetic fields differentially affect cellular ATP levels
- in-vitro, Cerv, HeLa - in-vitro, CRC, HCT116 - in-vitro, BC, MCF-7 - in-vitro, Lung, A549 - in-vitro, Nor, RPE-1 - in-vitro, Nor, GP-293
ATP⇅,
508- MF,  doxoR,    Synergistic cytotoxic effects of an extremely low-frequency electromagnetic field with doxorubicin on MCF-7 cell line
- in-vitro, BC, MCF-7
ROS↑, Apoptosis↑, TumCCA↑,
512- MF,    Pulsed Electromagnetic Fields (PEMFs) Trigger Cell Death and Senescence in Cancer Cells
- in-vitro, BC, MCF-7 - in-vitro, BC, MDA-MB-231 - in-vitro, Nor, FF95
TumCP↓, *toxicity↓, ChemoSen↑, RadioS↑, selectivity↑, Ca+2↑,
513- MF,    Exposure to a specific time-varying electromagnetic field inhibits cell proliferation via cAMP and ERK signaling in cancer cells
- in-vitro, BC, MDA-MB-231 - in-vitro, BC, MDA-MB-468 - in-vitro, BC, MCF-7 - in-vivo, Pca, HeLa
TumCG↓, p‑ERK↑, cAMP⇅,
200- MFrot,  MF,    Moderate intensity low frequency rotating magnetic field inhibits breast cancer growth in mice
- in-vivo, BC, MDA-MB-231 - in-vivo, BC, MCF-7
ALAT↓, TumVol↓,
201- MFrot,  MF,    Gradient Rotating Magnetic Fields Impairing F-Actin-Related Gene CCDC150 to Inhibit Triple-Negative Breast Cancer Metastasis by Inactivating TGF-β1/SMAD3 Signaling Pathway
- in-vitro, BC, MDA-MB-231 - in-vitro, BC, BT549 - in-vitro, BC, MDA-MB-468
CCDC150↓, TGF-β↓, SMAD3↓,
205- MFrot,  MF,    Intermittent F-actin Perturbations by Magnetic Fields Inhibit Breast Cancer Metastasis
- vitro+vivo, BC, MDA-MB-231
OS↑, F-actin↓, TumCI↓, TumCMig↓, Rho↓, selectivity↑,
595- MFrot,  VitC,  MF,    The Effect of Alternating Magnetic Field Exposure and Vitamin C on Cancer Cells
- in-vitro, PC, MIA PaCa-2 - in-vitro, CRC, SW-620 - in-vitro, NA, HT1080 - in-vitro, Pca, PC3 - in-vitro, OS, U2OS - in-vitro, BC, MCF-7 - in-vitro, Nor, CCD-18Co
TumCD↑, eff↑, *TumCG∅,
3491- MFrot,  MF,    Magnetically controlled cyclic microscale deformation of in vitro cancer invasion models
- in-vitro, BC, MDA-MB-231
Ca+2↑, ATF3↑, FOSB↑,
3495- MFrot,  MF,    Synthesis of urchin-like nickel nanoparticles with enhanced rotating magnetic field-induced cell necrosis and tumor inhibition
- in-vivo, BC, NA
TumCG↓,
773- Mg,    Methyl Jasmonate-induced Increase in Intracellular Magnesium Promotes Apoptosis in Breast Cancer Cells
- in-vitro, BC, MCF-7
TRPM7↓, ROS↑, ER Stress↑, MAPK↑, ATP↓,
1203- MSM,    Methylsulfonylmethane Suppresses Breast Cancer Growth by Down-Regulating STAT3 and STAT5b Pathways
- vitro+vivo, BC, MDA-MB-231
tumCV↓, STAT3↓, STAT5↓, IGF-1↓, Hif1a↓, VEGF↓, Brk/PTK6↓, IGF-1R↓,
116- Myrrh,    The Role of Myrrh Metabolites in Cancer, Inflammation, and Wound Healing: Prospects for a Multi-Targeted Drug Therapy
- in-vitro, AML, HL-60 - in-vitro, AML, K562 - in-vitro, BC, KAIMRC1
ROS↑,
2938- NAD,    NAD+ supplementation limits triple-negative breast cancer metastasis via SIRT1-P66Shc signaling
- in-vivo, BC, NA
TumMeta↓, SIRT1↑,
1797- NarG,    Naringin inhibits growth potential of human triple-negative breast cancer cells by targeting β-catenin signaling pathway
- in-vitro, BC, MDA-MB-231
TumCG↓, β-catenin/ZEB1↓, AntiTum↑, Apoptosis↑, TumCCA↑, P21↑, survivin↓,
968- OA,    Oroxylin A inhibits glycolysis-dependent proliferation of human breast cancer via promoting SIRT3-mediated SOD2 transcription and HIF1α destabilization
- vitro+vivo, BC, MDA-MB-231 - in-vitro, BC, MBT-2
Hif1a↓, SIRT3↑, SOD2↑, GlucoseCon↓, Glycolysis↓, TumCG↓,
1130- OA,    Oroxylin A Suppresses the Cell Proliferation, Migration, and EMT via NF-κB Signaling Pathway in Human Breast Cancer Cells
- in-vitro, BC, MDA-MB-231
TumCP↓, TumCI↓, TumCMig↓, E-cadherin↑, N-cadherin↓, Vim↓, NF-kB↓,
4629- OLE,    Oleuropein exhibits anticancer effects by inducing apoptosis and inhibiting cell motility in MCF7 and MDA-MB231 breast cancer cells
- in-vitro, BC, MDA-MB-231 - NA, NA, MCF-7
TumCG↓, Apoptosis↑,
4630- OLE,    Targeting resistant breast cancer stem cells in a three-dimensional culture model with oleuropein encapsulated in methacrylated alginate microparticles
- in-vitro, BC, NA
Bcl-2↓, BAX↑, Casp3↑, Casp9↑, Vim↓, Slug↓, E-cadherin↑, CSCs↓, P21↑, survivin↝, OCT4↑, Nanog↑, SOX4↑,
2452- PA,    Targeting Pyruvate Kinase M2 and Hexokinase II, Pachymic Acid Impairs Glucose Metabolism and Induces Mitochondrial Apoptosis
- in-vitro, BC, SkBr3
HK2↓, GlucoseCon↓, lactateProd↓, mtDam↑, ATP↓, ROS↑, PKM2↑,
959- PACs,    Grape seed extract inhibits VEGF expression via reducing HIF-1α protein expression
- in-vitro, GBM, U251 - in-vitro, BC, MDA-MB-231
Hif1a↓, p‑Akt↓, p‑S6K↓, p‑S6↓, VEGF↓,
1992- Part,    Parthenolide induces ROS-dependent cell death in human gastric cancer cell
- in-vitro, BC, MGC803
TumCCA↑, Casp↑, Apoptosis↑, Necroptosis↑, RIP1↓, RIP3↑, MLKL↑, ROS↑, eff↓,
2046- PB,    Sodium butyrate promotes apoptosis in breast cancer cells through reactive oxygen species (ROS) formation and mitochondrial impairment
- in-vitro, BC, MCF-7 - in-vitro, BC, MDA-MB-468 - in-vitro, Nor, MCF10
Apoptosis↑, i-ROS?, Casp↑, MMP?, selectivity↑, *ROS∅, HDAC↓, DNArepair↓, Casp3↑, Casp8↑, *toxicity↓, TumCCA↑,
2381- PBG,    Chinese Poplar Propolis Inhibits MDA-MB-231 Cell Proliferation in an Inflammatory Microenvironment by Targeting Enzymes of the Glycolytic Pathway
- in-vitro, BC, MDA-MB-231
TumCP↓, TumCMig↓, TumCI↓, angioG↓, TNF-α↓, IL1β↓, IL6↓, NLRP3↓, Glycolysis↓, HK2↓, PFK↓, PKM2↓, LDHA↓, ROS↑, MMP↓,
2430- PBG,    The cytotoxic effects of propolis on breast cancer cells involve PI3K/Akt and ERK1/2 pathways, mitochondrial membrane potential, and reactive oxygen species generation
- in-vitro, BC, MDA-MB-231
TumCP↓, TP53↓, Casp3↓, BAX↓, P21↓, ROS↑, eff↓, MMP↓, LDH↑, ATP↓, Ca+2↑,
1669- PBG,  Chemo,    Antioxidant and anti-inflammatory effects of oral propolis in patients with breast cancer treated with chemotherapy: a Randomized controlled trial
- Trial, BC, NA
antiOx↑, Inflam↓,
1672- PBG,    The Potential Use of Propolis as an Adjunctive Therapy in Breast Cancers
- Review, BC, NA
ChemoSen↓, RadioS↑, Inflam↓, AntiCan↑, Dose∅, mtDam↑, Apoptosis?, OCR↓, ATP↓, ROS↑, ROS↑, LDH↓, TP53↓, Casp3↓, BAX↓, P21↓, ROS↑, eNOS↑, iNOS↑, eff↑, hTERT/TERT↓, cycD1/CCND1↓, eff↑, eff↑, eff↑, eff↑, STAT3↓, TIMP1↓, IL4↓, IL10↓, OS↑, Dose∅, ER Stress↑, ROS↑, NF-kB↓, p65↓, MMP↓, TumAuto↑, LC3II↑, p62↓, TLR4↓, mtDam↑, LDH↓, ROS↑, Glycolysis↓, HK2↓, PFK↓, PKM2↓, LDH↓, IL10↓, HDAC8↓, eff↑, eff↑, P21↑,
1684- PBG,    Antitumor Activity of Chinese Propolis in Human Breast Cancer MCF-7 and MDA-MB-231 Cells
- in-vitro, BC, MCF-7 - in-vitro, BC, MDA-MB-231 - in-vitro, Nor, HUVECs
Apoptosis?, ANXA7↑, ROS↑, NF-kB↓, MMP↓, selectivity↑,
1685- PBG,    Antitumor Activity of Chinese Propolis in Human Breast Cancer MCF-7 and MDA-MB-231 Cells
- in-vitro, BC, MCF-7
ANXA7↑, ROS↑, NF-kB↓, MMP↓, selectivity↑, Dose⇅, ROS⇅,
1686- PBG,    Different propolis samples, phenolic content, and breast cancer cell lines: Variable cytotoxicity ranging from ineffective to potent
- in-vitro, BC, MCF-7 - in-vitro, BC, SkBr3 - in-vitro, BC, MDA-MB-231
TumCP↓,
1231- PBG,    Caffeic acid phenethyl ester inhibits MDA-MB-231 cell proliferation in inflammatory microenvironment by suppressing glycolysis and lipid metabolism
- in-vitro, BC, MDA-MB-231
TumCP↓, TumCMig↓, TumCI↓, MMP↓, TLR4↓, TNF-α↓, NF-kB↓, IL1β↓, IL6↓, IRAK4↓, GLUT1↓, GLUT3↓, HK2↓, PFK↓, PKM2↓, LDHA↓, ACC↓, FASN↓, eff↓,
4929- PEITC,  PacT,    Phenethyl isothiocyanate and paclitaxel synergistically enhanced apoptosis and alpha-tubulin hyperacetylation in breast cancer cells
- in-vitro, BC, MCF-7 - in-vitro, BC, MDA-MB-231
ChemoSen↑, Apoptosis↑, TumCCA↑, eff↑, CDK1↓, Bcl-2↓, BAX↑, cl‑PARP↑, SAL↑,
4932- PEITC,    Pharmacokinetics and Pharmacodynamics of Phenethyl Isothiocyanate: Implications in Breast Cancer Prevention
- Review, BC, NA
TumCCA↑, ROS↑, GSH↓, ERα/ESR1↓, TumMeta↓, angioG↓,
4934- PEITC,    Differential induction of apoptosis in human breast cancer cell lines by phenethyl isothiocyanate, a glutathione depleting agent
- in-vitro, BC, MCF-7 - in-vitro, BC, MDA-MB-231
GSH↓, ROS↑, chemoPv↑, Apoptosis↑, Casp9↑, Casp3↑, eff↓, TumCG↓, TumCCA↑, BAX↑, Nrf1↑, GSH↓, GSSG↓, GSH/GSSG↓,
4936- PEITC,    PEITC treatment suppresses myeloid derived tumor suppressor cells to inhibit breast tumor growth
- in-vivo, BC, MDA-MB-231
TumCG↓, CD34↓, CD11b↓, CSCs↓, ALC∅, CD4+↓, NF-kB↓, STAT3↓, Hif1a↓,
4962- PEITC,  Ba,  PSO,    Targeting Breast Cancer Stem Cells
- Review, BC, NA
CSCs↓,
4941- PEITC,    PEITC: A resounding molecule averts metastasis in breast cancer cells in vitro by regulating PKCδ/Aurora A interplay
- in-vitro, BC, MCF-7 - in-vitro, BC, MDA-MB-231
PKCδ↑, Apoptosis↓, selectivity↑, tumCV↓, p‑NRF2↑, cl‑PARP1↑, TumCMig↓, ROS↓, Hif1a↓,
1059- PI,    Piperine Inhibits TGF-β Signaling Pathways and Disrupts EMT-Related Events in Human Lung Adenocarcinoma Cells
- in-vitro, Lung, A549 - in-vitro, BC, MDA-MB-231 - in-vitro, Liver, HepG2
EMT↓, p‑ERK↓, p‑SMAD2↓,
1131- PI,    Piperlongumine‑loaded nanoparticles inhibit the growth, migration and invasion and epithelial‑to‑mesenchymal transition of triple‑negative breast cancer cells
- in-vitro, BC, MDA-MB-231 - in-vitro, BC, BT549
TumCG↓, tumCV↓, TumCMig↓, TumCI↓, MMP2↓, Slug↓, N-cadherin↓, β-catenin/ZEB1↓, SMAD3↓, E-cadherin↑, EMT↓,
1163- PI,    The Effect of Piperine on MMP-9, VEGF, and E-cadherin Expression in Breast Cancer MCF-7 Cell Line
- in-vitro, BC, MC38
tumCV↓, VEGF↓, MMP9↓, E-cadherin↓,
992- PL,    Piperlongumine based nanomedicine impairs glycolytic metabolism in triple negative breast cancer stem cells through modulation of GAPDH & FBP1
- in-vivo, BC, NA
EPR↓, Glycolysis↓, GAPDH↓, GSTP1/GSTπ↝, FBPase↑,
1950- PL,    Increased Expression of FosB through Reactive Oxygen Species Accumulation Functions as Pro-Apoptotic Protein in Piperlongumine Treated MCF7 Breast Cancer Cells
- in-vitro, BC, MCF-7 - in-vitro, Lung, A549
selectivity↑, ROS↑, SETBP1↓, cl‑Casp9↑, eff↓, FOSB↑,
1942- PL,    Piperlongumine inhibits antioxidant enzymes, increases ROS levels, induces DNA damage and G2/M cell cycle arrest in breast cell lines
- in-vitro, BC, MCF-7
ROS↑, SOD1↑, Trx1↓, Catalase↓, PrxII↓, ROS↑, GADD45A↑, P21↑, DNAdam↑, TumCCA↑,
2957- PL,    Piperlongumine Induces Cell Cycle Arrest via Reactive Oxygen Species Accumulation and IKKβ Suppression in Human Breast Cancer Cells
- in-vitro, BC, MCF-7
TumCP↓, TumCMig↓, TumCCA↑, ROS↑, H2O2↑, GSH↓, IKKα↓, NF-kB↓, P21↑, eff↓,
2955- PL,    Heme Oxygenase-1 Determines the Differential Response of Breast Cancer and Normal Cells to Piperlongumine
- in-vitro, BC, MCF-7 - in-vitro, Nor, MCF10
ROS?, *ROS∅, other⇅, HO-1↑, *HO-1↑, NRF2↑, Keap1↓, cl‑PARP↑, selectivity↑, GSH↓, GSSG↑,
2943- PL,    Piperlongumine Inhibits Thioredoxin Reductase 1 by Targeting Selenocysteine Residues and Sensitizes Cancer Cells to Erastin
- in-vitro, CRC, HCT116 - in-vitro, Lung, A549 - in-vitro, BC, MCF-7
TrxR1?, TumCD↑, ROS↑, GSH↓, eff↑,
2941- PL,    Selective killing of cancer cells by a small molecule targeting the stress response to ROS
- in-vivo, BC, MDA-MB-231 - in-vitro, OS, U2OS - in-vitro, BC, MDA-MB-453
ROS↑, Apoptosis↑, selectivity↑, *ROS∅, GSH↓, GSSG↑, H2O2↑, NO↑, Half-Life?,
2940- PL,    Piperlongumine Induces Reactive Oxygen Species (ROS)-dependent Downregulation of Specificity Protein Transcription Factors
- in-vitro, PC, PANC1 - in-vitro, Lung, A549 - in-vitro, Kidney, 786-O - in-vitro, BC, SkBr3
ROS↑, TumCP↓, Apoptosis↑, eff↓, Sp1/3/4↓, cycD1/CCND1↓, survivin↓, cMyc↓, EGFR↓, cMET↓,
2973- PL,    The Natural Alkaloid Piperlongumine Inhibits Metastatic Activity and Epithelial-to-Mesenchymal Transition of Triple-Negative Mammary Carcinoma Cells
- in-vitro, BC, MDA-MB-231 - in-vitro, BC, 4T1
MMP2↓, MMP9↓, IL6↓, E-cadherin↑, ROS↑, EMT↓, Zeb1↓, Slug↓, TumMeta↓, selectivity↑, MMP2↓, GSH↓,
4700- PTS,    Pterostilbene, a bioactive component of blueberries, suppresses the generation of breast cancer stem cells within tumor microenvironment and metastasis via modulating NF-κB/microRNA 448 circuit
- in-vitro, BC, MDA-MB-231 - in-vitro, BC, MCF-7
CSCs↓, NF-kB↓, Twist↓, Vim↓, E-cadherin↑,
4699- PTS,    Pterostilbene inhibits triple-negative breast cancer metastasis via inducing microRNA-205 expression and negatively modulates epithelial-to-mesenchymal transition
- in-vitro, BC, MDA-MB-231 - in-vitro, BC, HS587T - in-vivo, BC, MDA-MB-231
TumCMig↓, TumCI↓, E-cadherin↑, Snail↓, Slug↓, Vim↓, Zeb1↑, miR-205↑, Src↓, TumCG↓, FAK↓, EMT↓,
4698- PTS,    Pterostilbene, a bioactive component of blueberries, suppresses the generation of breast cancer stem cells within tumor microenvironment and metastasis via modulating NF ‐κ B /microRNA 448 circuit
- in-vitro, BC, MCF-7 - in-vitro, BC, MDA-MB-231
CSCs↓, NF-kB↓, Twist↓, Vim↓, E-cadherin↑, miR-448↑,
2409- PTS,    Pterostilbene Induces Pyroptosis in Breast Cancer Cells through Pyruvate Kinase 2/Caspase-8/Gasdermin C Signaling Pathway
- in-vitro, BC, EMT6 - in-vitro, BC, 4T1 - in-vitro, Nor, HC11
Pyro↑, Glycolysis↓, *toxicity∅, selectivity↑, GSDMC↑, PKM2↓, PKM1↑, GlucoseCon↓, lactateProd↓, ATP↓, TumCG↓,
1236- PTS,    Pterostilbene inhibits the metastasis of TNBC via suppression of β-catenin-mediated epithelial to mesenchymal transition and stemness
- in-vitro, BC, MCF-7 - in-vitro, BC, MDA-MB-231 - in-vitro, BC, MDA-MB-468
TumMeta↓, EMT↓, E-cadherin↑, Zeb1↓, Snail↓, β-catenin/ZEB1↓, CD44↓, MMPs↓, CSCs↓,
3376- QC,    Inhibiting CDK6 Activity by Quercetin Is an Attractive Strategy for Cancer Therapy
- in-vitro, BC, MCF-7 - in-vitro, Lung, A549
CDK6↓, tumCV↓, Apoptosis↑, ROS↓, eff↑,
2303- QC,  doxoR,    Quercetin greatly improved therapeutic index of doxorubicin against 4T1 breast cancer by its opposing effects on HIF-1α in tumor and normal cells
- in-vitro, BC, 4T1 - in-vivo, NA, NA
cardioP↑, hepatoP↑, TumCG↓, OS↑, ChemoSen↑, chemoP↑, Hif1a↓, *Hif1a↑, selectivity↑, TumVol↓, OS↑,
2341- QC,    Quercetin suppresses the mobility of breast cancer by suppressing glycolysis through Akt-mTOR pathway mediated autophagy induction
- in-vitro, BC, MCF-7 - in-vitro, BC, MDA-MB-231 - in-vivo, NA, NA
MMP2↓, MMP9↓, VEGF↓, Glycolysis↓, lactateProd↓, PKM2↓, GLUT1↓, LDHA↓, TumAuto↑, Akt↓, mTOR↓, TumMeta↓, MMP3↓, eff↓, GlucoseCon↓, lactateProd↓, TumAuto↑, LC3B-II↑,
980- QC,    Dietary Quercetin Exacerbates the Development of Estrogen-Induced Breast Tumors in Female ACI Rats
- in-vivo, BC, NA
COMT↓, ROS∅,
1201- QC,    Quercetin: a silent retarder of fatty acid oxidation in breast cancer metastasis through steering of mitochondrial CPT1
- in-vivo, BC, NA
mitResp↓, Glycolysis↓, ATP↓, ROS↑, GSH↓, TumMeta↓, Apoptosis↑, FAO↓,
52- QC,    Effect of Quercetin on Cell Cycle and Cyclin Expression in Ovarian Carcinoma and Osteosarcoma Cell Lines
- in-vitro, BC, MCF-7
Bcl-2↓, BAX↑, PI3K/Akt↓,
53- QC,    Quercetin regulates β-catenin signaling and reduces the migration of triple negative breast cancer
- in-vitro, BC, NA
E-cadherin↑, Vim↓, cycD1/CCND1↓, cMyc↓, EMT↓,
54- QC,    Quercetin‑3‑methyl ether suppresses human breast cancer stem cell formation by inhibiting the Notch1 and PI3K/Akt signaling pathways
- in-vitro, BC, MCF-7
EMT↓, E-cadherin↑, Vim↓, MMP2↓, NOTCH1↓, PI3K/Akt↓, PI3k/Akt/mTOR↓, p‑Akt↓, EZH2↓,
65- QC,    Hsp27 participates in the maintenance of breast cancer stem cells through regulation of epithelial-mesenchymal transition and nuclear factor-κB
- in-vitro, BC, NA
HSP27↓, EMT↓, NF-kB↓, Snail↓, Vim↓, E-cadherin↑,
59- QC,    Quercetin Inhibits Breast Cancer Stem Cells via Downregulation of Aldehyde Dehydrogenase 1A1 (ALDH1A1), Chemokine Receptor Type 4 (CXCR4), Mucin 1 (MUC1), and Epithelial Cell Adhesion Molecule (EpCAM)
- in-vitro, BC, MDA-MB-231
ALDH1A1↓, CXCR4↓, MUC1↓, EpCAM↓,
62- QC,  GoldNP,    Gold nanoparticles-conjugated quercetin induces apoptosis via inhibition of EGFR/PI3K/Akt-mediated pathway in breast cancer cell lines (MCF-7 and MDA-MB-231)
- in-vitro, BC, MCF-7 - in-vitro, BC, MDA-MB-231
EGFR↓, PI3k/Akt/mTOR↓, GSK‐3β↓,
913- QC,    Effects of low dose quercetin: Cancer cell-specific inhibition of cell cycle progression
- in-vitro, BC, SkBr3 - in-vitro, BC, MDA-MB-435
TumCP↓, TumCCA↑, DNAdam↑, Chk2↑, CycB/CCNB1↓, CDK1↓, tumCV↓, p‑RB1↓, P21↑,
103- RES,  CUR,  QC,    The effect of resveratrol, curcumin and quercetin combination on immuno-suppression of tumor microenvironment for breast tumor-bearing mice
- vitro+vivo, BC, 4T1
ROS↑, MMP↓, Bcl-2↓, BAX↑, Casp9↑, T-Cell↑, TGF-β↓,
871- RES,  CUR,  QC,    The effect of resveratrol, curcumin and quercetin combination on immuno-suppression of tumor microenvironment for breast tumor-bearing mice
- in-vitro, BC, 4T1 - in-vivo, BC, 4T1
T-Cell↑, Neut↓, Macrophages↓, ROS↑, MMP↓, other↓, AntiTum↑, TumVol↓,
880- RES,    Forkhead Proteins Are Critical for Bone Morphogenetic Protein-2 Regulation and Anti-tumor Activity of Resveratrol
- in-vitro, BC, MDA-MB-231
other↓, TumW↓, FOXO↑, BMP2↑,
881- RES,    Resveratrol inhibits Src and Stat3 signaling and induces the apoptosis of malignant cells containing activated Stat3 protein
- in-vitro, BC, MDA-MB-231 - in-vitro, PC, PANC1 - in-vitro, Pca, DU145
TumCCA↑, cycD1/CCND1↓, Bcl-xL↓, Mcl-1↓, other↓,
2328- RES,    Resveratrol Inhibits Cancer Cell Metabolism by Down Regulating Pyruvate Kinase M2 via Inhibition of Mammalian Target of Rapamycin
- in-vitro, Cerv, HeLa - in-vitro, Liver, HepG2 - in-vitro, BC, MCF-7
PKM2↓, mTOR↓, GlucoseCon↓, lactateProd↓,
2330- RES,    Resveratrol Induces Cancer Cell Apoptosis through MiR-326/PKM2-Mediated ER Stress and Mitochondrial Fission
- in-vitro, CRC, DLD1 - in-vitro, Cerv, HeLa - in-vitro, BC, MCF-7
TumCP↓, Apoptosis↑, PKM2↓, ER Stress↑,
3074- RES,    Possible therapeutic targets for NLRP3 inflammasome-induced breast cancer
- Review, BC, NA
NLRP3↓, SIRT1↑,
3067- RES,    Proteomic Profiling Reveals That Resveratrol Inhibits HSP27 Expression and Sensitizes Breast Cancer Cells to Doxorubicin Therapy
- in-vitro, BC, MCF-7
Apoptosis↑, MMP↓, Cyt‑c↑, Casp3↑, Casp9↑, HSP27↓,
3064- RES,    Resveratrol Suppresses Cancer Cell Glucose Uptake by Targeting Reactive Oxygen Species–Mediated Hypoxia-Inducible Factor-1α Activation
- in-vitro, CRC, HT-29 - in-vitro, BC, T47D - in-vitro, Lung, LLC1
FDG↓, ROS↓, Hif1a↓, GLUT1↓, lactateProd↓,
3095- RES,    Resveratrol suppresses migration, invasion and stemness of human breast cancer cells by interfering with tumor-stromal cross-talk
- in-vitro, BC, NA
TumCP↓, TumCMig↓, TumCI↓, cycD1/CCND1↓, cMyc↓, MMP2↓, MMP9↓, SOX2↓, Akt↓, STAT3↓, α-SMA↓,
3094- RES,    Resveratrol suppresses growth of cancer stem-like cells by inhibiting fatty acid synthase
- in-vitro, BC, MCF-7 - in-vitro, BC, MDA-MB-231
CSCs↓, tumCV↓, FASN↑, BNIP3↑, *cardioP↑, *antiOx↑, NF-kB↓, COX2↓, MMP9↓, IGF-1↓, ERK↓, lipid-P↓, CD24↓,
3093- RES,    Pro-Oxidant Effect of Resveratrol on Human Breast Cancer MCF-7 Cells is Associated with CK2 Inhibition
- in-vitro, BC, MCF-7
ROS↑, CK2↓,
3092- RES,    Resveratrol in breast cancer treatment: from cellular effects to molecular mechanisms of action
- Review, BC, MDA-MB-231 - Review, BC, MCF-7
TumCP↓, tumCV↓, TumCI↓, TumMeta↓, *antiOx↑, *cardioP↑, *Inflam↓, *neuroP↑, *Keap1↓, *NRF2↑, *ROS↓, p62↓, IL1β↓, CRP↓, VEGF↓, Bcl-2↓, MMP2↓, MMP9↓, FOXO4↓, POLD1↓, CK2↓, MMP↓, ROS↑, Apoptosis↑, TumCCA↑, Beclin-1↓, Ki-67↓, ATP↓, GlutMet↓, PFK↓, TGF-β↓, SMAD2↓, SMAD3↓, Vim?, Snail↓, Slug↓, E-cadherin↑, EMT↓, Zeb1↓, Fibronectin↓, IGF-1↓, PI3K↓, Akt↓, HO-1↑, eff↑, PD-1↓, CD8+↑, Th1 response↑, CSCs↓, RadioS↑, SIRT1↑, Hif1a↓, mTOR↓,
3088- RES,    Notch signaling mediated repressive effects of resveratrol in inducing caspasedependent apoptosis in MCF-7 breast cancer cells
- in-vitro, BC, MCF-7
NOTCH1↓, BAX↑, CDK4↝, Casp3↑, P21↑,
3084- RES,    Resveratrol inhibits the proliferation of estrogen receptor-positive breast cancer cells by suppressing EZH2 through the modulation of ERK1/2 signaling
- in-vitro, BC, MCF-7 - in-vitro, BC, T47D
TumCP↓, EZH2↓, p‑ERK↓,
3083- RES,    Resveratrol suppresses breast cancer cell invasion by inactivating a RhoA/YAP signaling axis
- in-vitro, BC, MDA-MB-231 - in-vitro, BC, MDA-MB-468
YAP/TEAD↓, Rho↓, FAK↓, MMP9↓, ChemoSen↑, RAS↓, ROCK1↓, TumCI↓, TumMeta↓,
106- RosA,    Rutin, a Quercetin Glycoside, Restores Chemosensitivity in Human Breast Cancer Cells
- in-vivo, BC, MCF-7

1747- RosA,    Molecular Pathways of Rosmarinic Acid Anticancer Activity in Triple-Negative Breast Cancer Cells: A Literature Review
- Review, BC, MDA-MB-231 - Review, BC, MDA-MB-468
TumCCA↑, TNF-α↑, GADD45A↑, BNIP3↑, survivin↓, Bcl-2↓, BAX↑, HH↓, eff↑, ChemoSen↑, RadioS↑, TumCP↓, TumCMig↓, Apoptosis↑, RenoP↑, CardioT↓,
3034- RosA,  RES,  Ba,    The effect of dietary polyphenols on the epigenetic regulation of gene expression in MCF7 breast cancer cells
- in-vitro, BC, MCF-7
DNMTs↓, eff↑, eff↝,
1132- RT,    Rutin Promotes Proliferation and Orchestrates Epithelial–Mesenchymal Transition and Angiogenesis in MCF-7 and MDA-MB-231 Breast Cancer Cells
- in-vitro, BC, MDA-MB-231 - in-vitro, BC, MCF-7
Vim↑, N-cadherin↑, E-cadherin↓, TumCP↑, TumCMig↑, tumCV↑, MKI67↑,
1251- RT,  OLST,    Rutin and orlistat produce antitumor effects via antioxidant and apoptotic actions
- in-vitro, BC, MCF-7 - in-vitro, PC, PANC1 - in-vivo, NA, NA
TumVol↓, *CEA↓, *FASN↓, *ROS↓, *MDA↓, *GSH↑, Apoptosis↑,
2040- SAHA,    The histone deacetylase inhibitor SAHA arrests cancer cell growth, up-regulates thioredoxin-binding protein-2, and down-regulates thioredoxin
- in-vitro, Pca, LNCaP - in-vitro, CRC, T24 - in-vitro, BC, MCF-7
HDAC↓, TumCG↓, Diff↑, Apoptosis↑, TXNIP↑,
4900- Sal,    Anticancer Mechanisms of Salinomycin in Breast Cancer and Its Clinical Applications
- Review, BC, NA
CSCs↓, Apoptosis↑, TumAuto↑, necrosis↑, TumCP↓, TumCI↓, TumCMig↓, TumCG↓, TumMeta↓, eff↑, Bcl-2↓, cMyc↓, Snail↓, ALDH↓, Myc↓, AR↓, ROS↑, NF-kB↓, PTCH1↓, Smo↓, Gli1↓, GLI2↓, Wnt↓, mTOR↓, GSK‐3β↓, cycD1/CCND1↓, survivin↓, P21↑, p27↑, CHOP↑, Ca+2↑, DNAdam↑, Hif1a↓, VEGF↓, angioG↓, MMP↓, ATP↓, p‑P53↑, γH2AX↑, ChemoSen↑,
4906- Sal,    A Concise Review of Prodigious Salinomycin and Its Derivatives Effective in Treatment of Breast Cancer: (2012–2022)
- Review, BC, NA
CSCs↓, Casp3↑, cl‑PARP↝, Apoptosis↑, ROS↑, ABC↓, OXPHOS↓, Glycolysis↓, eff↑, TumAuto↑, DNAdam↑, Wnt↓, Ferritin↓, Iron↑,
5004- Sal,    Targeting Telomerase Enhances Cytotoxicity of Salinomycin in Cancer Cells
- in-vitro, BC, MCF-7 - in-vitro, BC, MDA-MB-231
eff↑, AntiCan↑, CSCs↑, Wnt↓, β-catenin/ZEB1↓, Diff↑, ROS↑, toxicity↝, selectivity↝, eff↑,
4995- Sal,    Salinomycin possesses anti-tumor activity and inhibits breast cancer stem-like cells via an apoptosis-independent pathway
- vitro+vivo, BC, MDA-MB-231
ALDH↓, Nanog↓, OCT4↓, SOX2↓, CSCs↓, tumCV↓, cycD1/CCND1↓, P21↑, TumCG↓, CD44↓, Apoptosis∅,
4997- Sal,    Salinomycin Treatment Specifically Inhibits Cell Proliferation of Cancer Stem Cells Revealed by Longitudinal Single Cell Tracking in Combination with Fluorescence Microscopy
- in-vitro, BC, NA
CD24↓, TumCP↓, CSCs↓,
5000- Sal,    Salinomycin kills cancer stem cells by sequestering iron in lysosomes
- vitro+vivo, BC, NA
CSCsMark↓, eff↑, Ferroptosis↑, ROS↑,
323- Sal,  SNP,    Combination of salinomycin and silver nanoparticles enhances apoptosis and autophagy in human ovarian cancer cells: an effective anticancer therapy
- in-vitro, BC, MDA-MB-231 - in-vitro, Ovarian, A2780S
TumCD↑, LDH↓, MDA↑, SOD↓, ROS↑, GSH↓, Catalase↓, MMP↓, P53↑, P21↑, BAX↑, Bcl-2↓, Casp3↑, Casp9↑, Apoptosis↑, TumAuto↑,
1210- SANG,    Sanguinarine combats hypoxia-induced activation of EphB4 and HIF-1α pathways in breast cancer
- in-vitro, BC, NA
EphB4↓, Hif1a↓, STAT3↓, MAPK↓, ERK↓,
1090- SANG,    Sanguinarine inhibits invasiveness and the MMP-9 and COX-2 expression in TPA-induced breast cancer cells by inducing HO-1 expression.
- in-vitro, BC, MCF-7
MMP9↓, COX2↓, PGE2↓, NF-kB↓, AP-1↓, p‑Akt↓, p‑ERK↓, HO-1↑,
1689- Se,    Selenium and breast cancer - An update of clinical and epidemiological data
- Analysis, BC, NA
OS↑, eff↑, Dose∅, *toxicity↝, eff↑,
1693- Se,    Prediagnostic selenium status, selenoprotein gene variants and association with breast cancer risk in a European cohort study
- Analysis, BC, NA
Risk↓, other∅,
1707- Se,    A Diet Lacking Selenium, but Not Zinc, Copper or Manganese, Induces Anticancer Activity in Mice with Metastatic Cancers
- in-vivo, Ovarian, NA - in-vivo, BC, NA
OS↓,
4501- Se,    Mechanisms of the Cytotoxic Effect of Selenium Nanoparticles in Different Human Cancer Cell Lines
- in-vitro, GBM, A172 - in-vitro, Colon, Caco-2 - in-vitro, Pca, DU145 - in-vitro, BC, MCF-7 - in-vitro, Nor, L929
*BioAv↑, selectivity↑, AntiCan↑, Apoptosis↑, CHOP↑, GADD34↑, BIM↑, PUMA↑, Ca+2↝,
4470- Se,  Chit,    Synthesis and cytotoxic activities of selenium nanoparticles incorporated nano-chitosan
- in-vitro, CRC, HCT116 - in-vitro, Liver, HepG2 - in-vitro, BC, MCF-7
Dose↝, AntiCan↑, eff↑,
4473- Se,    Anti-cancerous effect and biological evaluation of green synthesized Selenium nanoparticles on MCF-7 breast cancer and HUVEC cell lines
- in-vitro, BC, MCF-7 - in-vitro, Nor, HUVECs
AntiCan↑, selectivity↓, *Bacteria↓, *antiOx↑, *toxicity↓, ROS↑, tumCV↓,
984- Sel,    Effects of selenite on estrogen receptor-alpha expression and activity in MCF-7 breast cancer cells
- in-vitro, BC, MCF-7
ERα/ESR1↓, PR↑, pS2/TFF1↑, Catalase↑,
1014- SFN,    Sulforaphane Modulates Cell Migration and Expression of β-Catenin and Epithelial Mesenchymal Transition Markers in Breast Cancer Cells
- in-vitro, BC, MDA-MB-231
Zeb1↓, Apoptosis↑, Fibronectin↓, CLDN1↓, β-catenin/ZEB1↓, EMT↓,
111- SFN,    Sulforaphene Interferes with Human Breast Cancer Cell Migration and Invasion through Inhibition of Hedgehog Signaling
- in-vitro, BC, SUM159
HH↓, Gli1↓, MMP2↓, MMP9↓,
3188- SFN,    Sulforaphane inhibited tumor necrosis factor-α induced migration and invasion in estrogen receptor negative human breast cancer cells
- in-vitro, BC, NA
TNF-α↓, TumCI↓, TumMeta↓, MMPs↓, MMP2↓, MMP9↓, MMP13↓,
2445- SFN,    Sulforaphane-Induced Cell Cycle Arrest and Senescence are accompanied by DNA Hypomethylation and Changes in microRNA Profile in Breast Cancer Cells
- in-vitro, BC, MCF-7 - in-vitro, BC, MDA-MB-231 - in-vitro, BC, SkBr3
TumCCA↑, P21↑, p27↑, NO↑, Akt↓, ATP↓, AMPK↑, TumAuto↑, DNMT1↓, HK2↓, PKM2↓, HDAC3↓, HDAC4↓, HDAC8↓,
1732- SFN,    Sulforaphane, a Dietary Component of Broccoli/Broccoli Sprouts, Inhibits Breast Cancer Stem Cells
- in-vitro, BC, MCF-7 - in-vitro, BC, SUM159 - in-vivo, NA, NA
TumCD↑, CSCs↓, Wnt↓, β-catenin/ZEB1↓, *BioAv↑, angioG↓, VEGF↓, Hif1a↓, MMP2↓, MMP9↓, Casp3↑, *Half-Life∅,
1736- SFN,    Antitumor and antimetastatic effects of dietary sulforaphane in a triple-negative breast cancer models
- in-vitro, BC, NA - in-vivo, BC, NA
TumCG↓, selectivity↓,
1494- SFN,  doxoR,    Sulforaphane potentiates anticancer effects of doxorubicin and attenuates its cardiotoxicity in a breast cancer model
- in-vivo, BC, NA - in-vitro, BC, MCF-7 - in-vitro, Nor, MCF10
CardioT↓, *GSH↑, *ROS↓, *NRF2↑, NRF2∅, HDAC↓, DNMTs↓, Casp3↑, ER-α36↓, Remission↑, eff↑, ROS↑, selectivity?,
1430- SFN,    Sulforaphane bioavailability and chemopreventive activity in women scheduled for breast biopsy
- Trial, BC, NA
*HDAC3↓, HDAC↓, *toxicity↓,
1499- SFN,    Sulforaphane suppresses metastasis of triple-negative breast cancer cells by targeting the RAF/MEK/ERK pathway
- in-vitro, BC, NA
TumCMig↓, TumCI↓, FAK↓, p‑MEK↓, p‑ERK↓,
1436- SFN,  PacT,  docx,    Sulforaphane enhances the anticancer activity of taxanes against triple negative breast cancer by killing cancer stem cells
- in-vivo, BC, SUM159
NF-kB↓, ChemoSen↑, IL6↓, IL8↑,
1461- SFN,    Targets and mechanisms of sulforaphane derivatives obtained from cruciferous plants with special focus on breast cancer - contradictory effects and future perspectives
- Review, BC, NA
TumCP↓, Apoptosis↑, TumCCA↑, antiOx↑,
1470- SFN,  Rad,    Sulforaphane induces ROS mediated induction of NKG2D ligands in human cancer cell lines and enhances susceptibility to NK cell mediated lysis
- in-vitro, BC, MCF-7 - in-vitro, BC, MDA-MB-231 - in-vitro, Lung, A549 - in-vitro, lymphoma, U937
eff↓, ROS↑, NKG2D↑,
3305- SIL,    Silymarin inhibits proliferation of human breast cancer cells via regulation of the MAPK signaling pathway and induction of apoptosis
- in-vitro, BC, MDA-MB-231 - in-vitro, BC, MCF-7 - in-vivo, NA, NA
TumCP↓, tumCV↓, BAX↑, cl‑PARP↑, Casp9↑, p‑JNK↑, Bcl-2↓, p‑p38↓, p‑ERK↓, *toxicity∅, Dose↝, *hepatoP↑, Inflam↓, AntiCan↑,
3298- SIL,    Silibinin, a natural flavonoid, induces autophagy via ROS-dependent mitochondrial dysfunction and loss of ATP involving BNIP3 in human MCF7 breast cancer cells
- in-vitro, BC, MCF-7
LC3II↑, Beclin-1↑, Bcl-2↓, ROS↑, MMP↓, ATP↓, eff↓, BNIP3?, TumAuto↑, eff↑,
3292- SIL,  Fe,    Anti-tumor activity of silymarin nanoliposomes in combination with iron: In vitro and in vivo study
- in-vitro, BC, 4T1 - in-vivo, BC, 4T1
*antiOx↑, ROS↑, OS↑, Weight↑, TumVol↓, eff↑, Fenton↑,
1276- SIL,    Silibinin inhibits TPA-induced cell migration and MMP-9 expression in thyroid and breast cancer cells
- in-vitro, BC, NA - in-vitro, Thyroid, NA
TumCMig↓, MMP9↓, p‑MEK↓, p‑ERK↓,
2306- SIL,  CUR,  RES,  EA,    Identification of Natural Compounds as Inhibitors of Pyruvate Kinase M2 for Cancer Treatment
- in-vitro, BC, MDA-MB-231
PKM2↓, Dose↝, Dose↝,
977- SK,    A novel antiestrogen agent Shikonin inhibits estrogen-dependent gene transcription in human breast cancer cells
- in-vitro, BC, T47D - in-vitro, BC, MDA-MB-231 - in-vitro, BC, MCF-7 - in-vitro, Nor, HMEC
TumCG↓, ERα/ESR1↓, selectivity↑, *toxicity↓,
3048- SK,    Shikonin inhibits triple-negative breast cancer-cell metastasis by reversing the epithelial-to-mesenchymal transition via glycogen synthase kinase 3β-regulated suppression of β-catenin signaling
- in-vitro, BC, MDA-MB-231 - in-vitro, BC, 4T1 - in-vitro, Nor, MCF12A - in-vivo, NA, NA
tumCV↓, selectivity↑, EMT↓, TumCMig↓, TumCI↓, E-cadherin↑, N-cadherin↓, Vim↓, Snail↓, β-catenin/ZEB1↓, GSK‐3β↑,
2007- SK,    Shikonin Directly Targets Mitochondria and Causes Mitochondrial Dysfunction in Cancer Cells
- in-vitro, lymphoma, U937 - in-vitro, BC, MCF-7 - in-vitro, BC, SkBr3 - in-vitro, CRC, HCT116 - in-vitro, OS, U2OS - NA, Nor, RPE-1
tumCV↓, selectivity↑, Dose↝, other↑, MMP↓, ROS↑, DNAdam↑, Ca+2↑, Casp9↑, Cyt‑c↑, *toxicity↓,
2187- SK,  VitK3,    Shikonin, vitamin K3 and vitamin K5 inhibit multiple glycolytic enzymes in MCF-7 cells
- in-vitro, BC, MCF-7
Glycolysis↓, PKM2↓,
2181- SK,    Shikonin and its analogs inhibit cancer cell glycolysis by targeting tumor pyruvate kinase-M2
- in-vitro, BC, MCF-7 - in-vitro, Lung, A549 - in-vitro, Cerv, HeLa
Glycolysis↓, lactateProd↓, GlucoseCon↓, PKM2↓, LDH∅,
2210- SK,    Shikonin inhibits the cell viability, adhesion, invasion and migration of the human gastric cancer cell line MGC-803 via the Toll-like receptor 2/nuclear factor-kappa B pathway
- in-vitro, BC, MGC803
TumCA↓, TumCI↓, TumCMig↓, MMP2↓, MMP7↓, TLR2↓, p65↓, NF-kB↓, eff↑, ROS↑,
1291- SM,    Tanshinone IIA inhibits human breast cancer cells through increased Bax to Bcl-xL ratios
- in-vitro, BC, MDA-MB-231
TumCP↓, TumCCA↑, BAX↑, Bcl-2↓,
1068- SM,    Danshen Improves Survival of Patients With Breast Cancer and Dihydroisotanshinone I Induces Ferroptosis and Apoptosis of Breast Cancer Cells
- in-vitro, BC, MCF-7 - in-vitro, BC, MDA-MB-231 - in-vivo, BC, NA - Human, BC, NA
TumCG↓, Ferroptosis↑, GPx4↓, TumVol↓, OS↑, GSH/GSSG↓,
1191- SM,    Salvia miltiorrhiza extract inhibits TPA‑induced MMP‑9 expression and invasion through the MAPK/AP‑1 signaling pathw
- in-vitro, BC, MCF-7
Inflam↓, MMP9↓, TumCI↓, AP-1↓, lipidLev↓,
336- SNP,  PDT,    Photodynamic ability of silver nanoparticles in inducing cytotoxic effects in breast and lung cancer cell lines
- in-vitro, BC, MCF-7
Apoptosis↑,
339- SNP,    Cancer cell specific cytotoxic potential of the silver nanoparticles synthesized using the endophytic fungus, Penicillium citrinum CGJ-C2
- in-vitro, BC, MCF-7 - in-vitro, Melanoma, A431 - in-vitro, HCC, HepG2
TumCD↑,
348- SNP,    Induction of p53 mediated mitochondrial apoptosis and cell cycle arrest in human breast cancer cells by plant mediated synthesis of silver nanoparticles from Bergenia ligulata (Whole plant)
- in-vitro, BC, MCF-7
Apoptosis↑, ROS↑, MMP↓, P53↑, BAX↑, cl‑Casp3↑,
349- SNP,    Insight into the molecular mechanism, cytotoxic, and anticancer activities of phyto-reduced silver nanoparticles in MCF-7 breast cancer cell lines
- in-vitro, BC, MCF-7
Apoptosis↑, ROS↑, CellMemb↑,
350- SNP,    Cytotoxic and Apoptotic Effects of Green Synthesized Silver Nanoparticles via Reactive Oxygen Species-Mediated Mitochondrial Pathway in Human Breast Cancer Cells
- in-vitro, BC, MCF-7
ROS↑, MMP↓, P53↑, BAX↑, Casp3↑, Casp9↑, Bcl-2↓,
351- SNP,    Study of antitumor activity in breast cell lines using silver nanoparticles produced by yeast
- in-vitro, BC, MCF-7 - in-vitro, BC, T47D
Casp9↑, Casp3↑, Casp7↑, Bcl-2↓,
352- SNP,    Synthesis of silver nanoparticles (Ag NPs) for anticancer activities (MCF 7 breast and A549 lung cell lines) of the crude extract of Syzygium aromaticum
- in-vitro, BC, MCF-7
TumCD↑,
353- SNP,    The mechanism of cell death induced by silver nanoparticles is distinct from silver cations
- in-vitro, BC, SUM159
lipid-P↑, H2O2↑, ROS↑, Apoptosis↑,
356- SNP,  MF,    Anticancer and antibacterial potentials induced post short-term exposure to electromagnetic field and silver nanoparticles and related pathological and genetic alterations: in vitro study
- in-vitro, BC, MCF-7 - in-vitro, Bladder, HTB-22
Apoptosis↑, P53↑, iNOS↑, NF-kB↑, Bcl-2↓, ROS↑, SOD↑, TumCCA↑, eff↑, Catalase↑, other↑,
316- SNP,    Endoplasmic reticulum stress: major player in size-dependent inhibition of P-glycoprotein by silver nanoparticles in multidrug-resistant breast cancer cells
- in-vitro, BC, MCF-7
GRP78/BiP↑, ER Stress↑, ROS↑, mtDam↑,
386- SNP,  Tam,    Synergistic anticancer effects and reduced genotoxicity of silver nanoparticles and tamoxifen in breast cancer cells
- in-vitro, BC, MCF-7 - in-vitro, BC, MDA-MB-231
P53↑, BAX↑, Bcl-2↓, Casp3↑, DNAdam↑, TumCCA↑,
382- SNP,    Investigation the apoptotic effect of silver nanoparticles (Ag-NPs) on MDA-MB 231 breast cancer epithelial cells via signaling pathways
- in-vitro, BC, MDA-MB-231
Apoptosis↑, BAX↑, Bcl-2↓, P53↑, PTEN↑, hTERT/TERT↓, p‑ERK↓, cycD1/CCND1↓,
402- SNP,  MF,    Anticancer and antibacterial potentials induced post short-term exposure to electromagnetic field and silver nanoparticles and related pathological and genetic alterations: in vitro study
- in-vitro, BC, MCF-7
P53↑, iNOS↑, NF-kB↑, Bcl-2↓, miR-125b↓, ROS↑, SOD↑,
390- SNP,    Anti-cancerous effect of albumin coated silver nanoparticles on MDA-MB 231 human breast cancer cell line
- in-vitro, BC, MDA-MB-231 - in-vivo, BC, NA
ROS↑, TumVol↓,
389- SNP,  Citrate,    Silver Citrate Nanoparticles Inhibit PMA-Induced TNFα Expression via Deactivation of NF-κB Activity in Human Cancer Cell-Lines, MCF-7
- in-vitro, BC, MCF-7
TNF-α↓, NF-kB↓,
388- SNP,    Apoptotic efficacy of multifaceted biosynthesized silver nanoparticles on human adenocarcinoma cells
- in-vitro, BC, MCF-7
ROS↑, Casp3↑, BAX↑, P53↑,
378- SNP,    Antitumor efficacy of silver nanoparticles reduced with β-D-glucose as neoadjuvant therapy to prevent tumor relapse in a mouse model of breast cancer
- ex-vivo, BC, 4T1
TumVol↓, TumMeta↓, Ki-67↓,
360- SNP,  Moringa,    Cytotoxic and Genotoxic Evaluation of Biosynthesized Silver Nanoparticles Using Moringa oleifera on MCF-7 and HUVEC Cell Lines
- in-vitro, BC, MCF-7 - in-vitro, BC, HUVECs
DNAdam↑,
366- SNP,    Silver nanoparticles inhibit the function of hypoxia-inducible factor-1 and target genes: insight into the cytotoxicity and antiangiogenesis
- in-vitro, BC, MCF-7
HIF-1↓, Hif1a↓, VEGF↓, GLUT1↓,
374- SNP,    Silver nanoparticles selectively treat triple‐negative breast cancer cells without affecting non‐malignant breast epithelial cells in vitro and in vivo
- in-vitro, BC, MCF-7 - in-vitro, BC, MDA-MB-231 - in-vivo, NA, NA
ER Stress↑, DNAdam↑, ROS↑, Apoptosis↑, GSH/GSSG↓, NADPH/NADP+↓, TumCG↓, UPR↑,
376- SNP,    Antitumor activity of colloidal silver on MCF-7 human breast cancer cells
- in-vitro, BC, MCF-7
Apoptosis↑, LDH↓, SOD↑, DNAdam↑,
377- SNP,    Anticancer Action of Silver Nanoparticles in SKBR3 Breast Cancer Cells through Promotion of Oxidative Stress and Apoptosis
- in-vitro, BC, SkBr3
ROS↑, Apoptosis↑, Bax:Bcl2↑, VEGF↑, Akt↓, PI3K↓, TAC↓, TOS↑, OSI↑, MDA↑, Casp3↑, Casp7↑,
1907- SNP,  GoldNP,  Cu,    In vitro antitumour activity of water soluble Cu(I), Ag(I) and Au(I) complexes supported by hydrophilic alkyl phosphine ligands
- in-vitro, Lung, A549 - in-vitro, BC, MCF-7 - in-vitro, Melanoma, A375 - in-vitro, Colon, HCT15 - in-vitro, Cerv, HeLa
TrxR↓, eff↓, eff↓, other∅,
1594- SNP,  Citrate,    Silver Citrate Nanoparticles Inhibit PMA-Induced TNFα Expression via Deactivation of NF-κB Activity in Human Cancer Cell-Lines, MCF-7
- in-vitro, BC, MCF-7
TNF-α↓, NF-kB↓, antiOx↑, TumCP↓,
4548- SNP,  Chit,    Synergistic combination of antioxidants, silver nanoparticles and chitosan in a nanoparticle based formulation: Characterization and cytotoxic effect on MCF-7 breast cancer cell lines
- in-vitro, BC, MCF-7
AntiCan↑, EPR↑, pH↝,
4541- SNP,  RosA,    Eco-friendly synthesis of silver nanoparticles: multifaceted antioxidant, antidiabetic, anticancer, and antimicrobial activities
- in-vitro, Nor, WI38 - in-vitro, BC, MDA-MB-231 - in-vitro, PC, PANC1
*antiOx↑, TumCD↓, selectivity↑,
4431- SNP,  doxoR,    Oxidative Stress-Induced Silver Nano-Carriers for Chemotherapy
- in-vitro, BC, 4T1 - in-vivo, BC, 4T1 - in-vitro, Nor, 3T3
AntiCan↑, ROS↑, TumVol↓, EPR↑, selectivity↑, ChemoSen↑,
4563- SNP,  Rad,    Silver nanoparticles enhance neutron radiation sensitivity in cancer cells: An in vitro study
- in-vitro, BC, MCF-7 - in-vitro, Ovarian, SKOV3 - in-vitro, GBM, U87MG - in-vitro, Melanoma, A431
RadioS↑, ROS↑, TumCCA↑, Apoptosis↑, ER Stress↑,
4559- SNP,    Anticancer activity of biogenerated silver nanoparticles: an integrated proteomic investigation
- in-vitro, BC, SkBr3 - in-vitro, CRC, HT-29 - in-vitro, CRC, HCT116 - in-vitro, Colon, Caco-2
MMP2↓, MMP9↓, ROS↑, TumAuto↑, Apoptosis↑, ER Stress↑,
4593- SNP,  Chit,    Chitosan-coated silver nanoparticles promoted antibacterial, antibiofilm, wound-healing of murine macrophages and antiproliferation of human breast cancer MCF 7 cells
- in-vitro, BC, MCF-7
*Bacteria↓, *Wound Healing↑, TumCG↓,
4374- SNP,    Enhancing antitumor activity of silver nanoparticles by modification with cell-penetrating peptides
- in-vitro, BC, MCF-7
eff↑, TumCD↑,
4402- SNP,    Enhancement of Triple-Negative Breast Cancer-Specific Induction of Cell Death by Silver Nanoparticles by Combined Treatment with Proteotoxic Stress Response Inhibitors
- in-vitro, BC, BT549 - in-vitro, BC, MDA-MB-231 - in-vitro, Nor, MCF10
TumCD↑, selectivity↑, *toxicity↝, Dose↝, OS↑,
4401- SNP,  Rad,    Metformin-loaded chitosan nanoparticles augment silver nanoparticle-induced radiosensitization in breast cancer cells during radiation therapy
- in-vitro, BC, NA
RadioS↑, DNAdam↑,
4400- SNP,  Rad,    Differential cytotoxic and radiosensitizing effects of silver nanoparticles on triple-negative breast cancer and non-triple-negative breast cells
- in-vitro, BC, MCF-7 - in-vitro, Nor, MCF10 - in-vitro, BC, MDA-MB-231 - in-vitro, BC, BT549 - in-vivo, BC, MDA-MB-231
ROS↑, DNAdam↑, selectivity↑, TumCG↓, RadioS↑, Dose↝, selectivity↑, other↝, eff↓, eff↑, γH2AX↑, Dose↓, eff↑,
4417- SNP,    Caffeine-boosted silver nanoparticles target breast cancer cells by triggering oxidative stress, inflammation, and apoptotic pathways
- in-vitro, BC, MDA-MB-231
ROS↑, MDA↑, COX2↑, IL1β↑, TNF-α↑, GSH↓, Cyt‑c↑, Casp3↑, BAX↑, Bcl-2↓, LDH↓, cycD1/CCND1↓, CDK2↓, TumCCA↑, mt-Apoptosis↑,
4416- SNP,    Efficacy of curcumin-synthesized silver nanoparticles on MCF-7 breast cancer cells
- in-vitro, BC, MCF-7
TumCMig↓, Apoptosis↑, BAX↑, P53↑, Bcl-2↓,
4415- SNP,  SDT,  CUR,    Examining the Impact of Sonodynamic Therapy With Ultrasound Wave in the Presence of Curcumin-Coated Silver Nanoparticles on the Apoptosis of MCF7 Breast Cancer Cells
- in-vitro, BC, MCF-7
tumCV↓, BAX↑, Casp3↑, Bcl-2↓, eff↑, ROS↑, sonoS↑, eff↑, MMP↓, Cyt‑c↑,
4413- SNP,  Anzaroot,    Green synthesis of silver nanoparticles from plant Astragalus fasciculifolius Bioss and evaluating cytotoxic effects on MCF7 human breast cancer cells
- in-vitro, BC, MCF-7
chemoP↑, TumCG↓, eff↑, CellMemb↑, selectivity↑, ROS↑, P53↑,
4409- SNP,    Plant-based synthesis of gold and silver nanoparticles using Artocarpus heterophyllus aqueous leaf extract and its anticancer activities
- in-vitro, BC, MCF-7
tumCV↓, TumCCA↑, cycD1/CCND1↓, COX2↓, HER2/EBBR2↓,
4408- SNP,    Chitosan-coated silver nanoparticles synthesized using Moringa oleifera flower extract: A potential therapeutic approach against triple-negative breast cancer
- in-vitro, BC, MDA-MB-231
tumCV↓,
4407- SNP,    Green Synthesis and Characterization of Silver Nanoparticles from Eclipta alba and Its Activity Against Triple-Negative Breast Cancer Cell Line (MDA-MB-231)
- in-vitro, BC, MDA-MB-231
antiOx↑, TumCG↓,
4406- SNP,    Silver nanoparticles achieve cytotoxicity against breast cancer by regulating long-chain noncoding RNA XLOC_006390-mediated pathway
- in-vitro, BC, MCF-7 - in-vitro, BC, T47D - in-vitro, BC, MDA-MB-231
TumCD↑, other↓, P53↑, TumCCA↑, Apoptosis↑, ChemoSen↑, tumCV↓, γH2AX↑, SOX4↓,
4364- SNP,    Selective cytotoxicity of green synthesized silver nanoparticles against the MCF-7 tumor cell line and their enhanced antioxidant and antimicrobial properties
- in-vitro, BC, MCF-7
TumCD↑, selectivity↑, *antiOx↑, *Inflam↓, AntiTum↑, ROS↑,
4896- Sper,  immuno,    Spermidine potentiates anti-tumor immune responses and immunotherapy sensitivity in breast cancer
- vitro+vivo, BC, NA
eff↑, AntiTum↑,
1052- TQ,    Thymoquinone Anticancer Effects Through the Upregulation of NRF2 and the Downregulation of PD-L1 in MDA-MB-231 Triple-Negative Breast Cancer Cells
- in-vitro, BC, MDA-MB-231
NRF2↑, PD-L1↓, Apoptosis↑,
3417- TQ,    Antiproliferative Effects of Thymoquinone in MCF-7 Breast and HepG2 Liver Cancer Cells: Possible Role of Ceramide and ER Stress
- in-vitro, BC, MCF-7 - in-vitro, Liver, HepG2
TumCP↓, NF-kB↓, cl‑Casp3↑, GRP78/BiP↑, ER Stress↑, Apoptosis↑,
3419- TQ,    Thymoquinone, a Novel Multi-Strike Inhibitor of Pro-Tumorigenic Breast Cancer (BC) Markers: CALR, NLRP3 Pathway and sPD-L1 in PBMCs of HR+ and TNBC Patients
- in-vitro, BC, NA
*NLRP3↓, *IL1β↓, *Casp1?,
3421- TQ,    Insights into the molecular interactions of thymoquinone with histone deacetylase: evaluation of the therapeutic intervention potential against breast cancer
- Analysis, Nor, NA - in-vivo, Nor, NA - in-vitro, BC, MCF-7 - in-vitro, Nor, HaCaT
HDAC↓, P21↑, Maspin↑, BAX↑, B2M↓, TumCCA↑, selectivity↑, *toxicity↓, TumCMig↓, TumCP↓,
3426- TQ,    Thymoquinone-Induced Reactivation of Tumor Suppressor Genes in Cancer Cells Involves Epigenetic Mechanisms
- in-vitro, BC, MDA-MB-468 - in-vitro, AML, JK
UHRF1↓, DNMT1↓, DNMT3A↓, DNMTs↓, HDAC1↓, HDAC4↓, HDAC↓, DLC1↑, PPARγ↑, FOXO↑, TET2↑, CYP1B1↑, G9a↓,
3399- TQ,    Anticancer Effects of Thymoquinone through the Antioxidant Activity, Upregulation of Nrf2, and Downregulation of PD-L1 in Triple-Negative Breast Cancer Cells
- in-vitro, BC, MDA-MB-231 - NA, BC, MDA-MB-468
ROS↓, H2O2↓, Catalase↑, SOD↑, GSH↑, NQO1↑, GCLM↑, NRF2↑, PD-L1↓, GSSG↑, GPx1⇅, GPx4↓,
1308- TQ,    Thymoquinone induces apoptosis via targeting the Bax/BAD and Bcl-2 pathway in breast cancer cells
- in-vitro, BC, MCF-7
tumCV↓, TumCP↓, BAX↑, P53⇅, Apoptosis↑,
2129- TQ,  doxoR,    Thymoquinone up-regulates PTEN expression and induces apoptosis in doxorubicin-resistant human breast cancer cells
- in-vitro, BC, MCF-7
ChemoSen↑, PTEN↑, p‑Akt↓, TumCCA↑, P53↑, P21↑, Apoptosis↑, MMP↓, Casp↑, cl‑PARP↑, Bax:Bcl2↑, eff↓, DNAdam↓, p‑γH2AX↑, ROS↑,
2121- TQ,    Thymoquinone Inhibits Tumor Growth and Induces Apoptosis in a Breast Cancer Xenograft Mouse Model: The Role of p38 MAPK and ROS
- in-vitro, BC, MCF-7 - in-vitro, BC, MDA-MB-231
p‑p38↑, ROS↑, TumCP↓, eff↑, XIAP↓, survivin↓, Bcl-xL↓, Bcl-2↓, Ki-67↓, *Catalase↑, *SOD↑, *GSH↑, hepatoP↑, p‑MAPK↑, JNK↓, eff↓,
2104- TQ,    The Potential Role of Nigella sativa Seed Oil as Epigenetic Therapy of Cancer
- in-vitro, BC, MCF-7 - in-vitro, Cerv, HeLa
TumCP↓, Apoptosis↑, UHRF1↓, DNMT1↓, HDAC1↓, eff↝,
2091- TQ,    Determination of anti-cancer effects of Nigella sativa seed oil on MCF7 breast and AGS gastric cancer cells
- in-vitro, BC, MCF-7 - in-vitro, GC, AGS
Dose↝, Casp3↑, Bcl-2↓, MMP2↓, MMP9↓, HSP70/HSPA5↓,
2110- TQ,    Nigella sativa seed oil suppresses cell proliferation and induces ROS dependent mitochondrial apoptosis through p53 pathway in hepatocellular carcinoma cells
- in-vitro, HCC, HepG2 - in-vitro, BC, MCF-7 - in-vitro, Lung, A549 - in-vitro, Nor, HEK293
P53↑, lipid-P↑, GSH↓, ROS↑, MMP↓, BAX↑, Casp3↑, Casp9↑, Bcl-2↓, tumCV↓, selectivity↑,
2112- TQ,    Crude flavonoid extract of the medicinal herb Nigella sativa inhibits proliferation and induces apoptosis in breastcancer cells
- in-vitro, BC, MCF-7
Apoptosis↑, DNAdam↑, ROS↑, GSH↓, MMP↓, Casp3↑, Casp7↑, Casp9↑, Bax:Bcl2↑, P53↑, P21↑, cycD1/CCND1↓, GSSG↑, GSH/GSSG↓,
1928- TQ,    Thymoquinone Crosstalks with DR5 to Sensitize TRAIL Resistance and Stimulate ROS-Mediated Cancer Apoptosis
- in-vitro, BC, MCF-7 - in-vitro, BC, MDA-MB-231
TumCP↓, DR4↑, DR5↑, Casp8↑, FADD↑, Bcl-2↓, ROS↑, NO↑, MDA↑,
4565- TQ,    Thymoquinone in the clinical treatment of cancer: Fact or fiction?
- Review, BC, NA
Dose↝, TumCCA↑, P21↑, cycD1/CCND1↓, TumCI↑, TumMeta↓, Bcl-2↓, Bcl-xL↓, survivin↓, PTEN↑, Akt↓, P53↑, NF-kB↓, cardioP↑, Dose↝,
4538- TQ,    Thymoquinone Anticancer Effects Through the Upregulation of NRF2 and the Downregulation of PD‐L1 in MDA‐MB‐231 Triple‐Negative Breast Cancer Cells
- in-vitro, BC, MDA-MB-231 - in-vitro, BC, MDA-MB-468
antiOx↑, H2O2↓, Catalase↑, SOD↑, GSH↑, PRNP↑, NQO1↑, GCLM↑, NRF2↑, PD-L1↓, chemoPv↑, ROS↓,
2350- UA,    Ursolic acid-mediated changes in glycolytic pathway promote cytotoxic autophagy and apoptosis in phenotypically different breast cancer cells
- in-vitro, BC, MCF-7 - in-vitro, BC, MDA-MB-231
Akt↓, Glycolysis↓, HK2↓, PKM2↓, ATP↓, lactateProd↓, AMPK↑, TumAuto↑, Apoptosis↑, ERK↓, MMP↓, NO↑, ROS↑, DNAdam↑,
942- UA,    Ursolic Acid Inhibits Breast Cancer Metastasis by Suppressing Glycolytic Metabolism via Activating SP1/Caveolin-1 Signaling
- vitro+vivo, BC, MCF-7 - in-vitro, BC, MDA-MB-231
Cav1↑, Glycolysis↓, cMyc↓, LDHA↓, Nrf1↓, PGC-1α↓, Sp1/3/4↑, TumCG↓,
1310- UA,    Ursolic acid triggers apoptosis and Bcl-2 downregulation in MCF-7 breast cancer cells
- in-vitro, BC, MCF-7
GR↝, AP-1↝, cl‑PARP↑, Bcl-2↓,
4842- Uro,    Urolithin A inhibits breast cancer progression via activating TFEB-mediated mitophagy in tumor macrophages
- vitro+vivo, BC, MDA-MB-231 - in-vitro, BC, BT549 - in-vitro, BC, MCF-7 - in-vitro, BC, 4T1
Inflam↓, IL6↓, TNF-α↓, eff↑, STAT3↓, TumCP↓, TumCMig↓,
4840- Uro,    Urolithin A: A promising selective estrogen receptor modulator and 27-hydroxycholesterol attenuator in breast cancer
- vitro+vivo, BC, NA
MMP↓, TumCP↓, Apoptosis↑, tumCV↓, ER-α36↝, *toxicity↓,
630- VitC,    Metabolomic alterations in human cancer cells by vitamin C-induced oxidative stress
- in-vitro, BC, MCF-7 - in-vitro, BC, HT-29
TCA↑, ATP↓, NAD↓, H2O2↑, GSH/GSSG↓,
610- VitC,    Pharmacologic ascorbic acid concentrations selectively kill cancer cells: Action as a pro-drug to deliver hydrogen peroxide to tissues
- in-vitro, lymphoma, JPL119 - in-vitro, BC, MCF-7 - in-vitro, BC, MDA-MB-231 - in-vitro, BC, HS587T - in-vitro, Nor, NA
Apoptosis↑, necrosis↑, H2O2↑, *toxicity↓,
300- VitC,  ALA,    Combination of High-Dose Parenteral Ascorbate (Vitamin C) and Alpha-Lipoic Acid Failed to Enhance Tumor-Inhibitory Effect But Increased Toxicity in Preclinical Cancer Models
- in-vitro, BC, MDA-MB-231 - in-vitro, Colon, HCT116 - in-vitro, Ovarian, PANC1 - in-vitro, Pca, PC3
TumCG∅,
1217- VitC,    High-dose vitamin C suppresses the invasion and metastasis of breast cancer cells via inhibiting epithelial-mesenchymal transition
- in-vitro, BC, Bcap37 - in-vitro, BC, MDA-MB-231 - in-vivo, NA, NA
TumCMig↓, E-cadherin↑, Vim↓, EMT↓,
3115- VitC,    The NF-κB Transcriptional Network Is a High-Dose Vitamin C-Targetable Vulnerability in Breast Cancer
- in-vitro, BC, NA
NF-kB↓, Hif1a↓, P53↑,
3108- VitC,  QC,    The role of quercetin and vitamin C in Nrf2-dependent oxidative stress production in breast cancer cells
- in-vitro, BC, MDA-MB-231 - in-vitro, Lung, A549
NRF2↓, HO-1↓, ROS↑, NRF2⇅,
3142- VitC,    Vitamin C promotes apoptosis in breast cancer cells by increasing TRAIL expression
- in-vitro, BC, MDA-MB-231 - in-vitro, BC, MCF-7 - in-vitro, Nor, MCF12A
TET2↑, Apoptosis↑, TRAIL↑, BAX↑, Casp↑, Cyt‑c↑, HK2↓, PDK1↓, BNIP3↓,
3138- VitC,    The Hypoxia-inducible Factor Renders Cancer Cells More Sensitive to Vitamin C-induced Toxicity
- in-vitro, RCC, RCC4 - in-vitro, CRC, HCT116 - in-vitro, BC, MDA-MB-435 - in-vitro, Ovarian, SKOV3 - in-vitro, Colon, SW48 - in-vitro, GBM, U251
eff↑, Warburg↓, BioAv↑, ROS↑, DNAdam↑, ATP↓, eff↑, necrosis↑, PARP↑,
1313- VitD3,  MEL,    The effects of melatonin and vitamin D3 on the gene expression of BCl-2 and BAX in MCF-7 breast cancer cell line
- in-vitro, BC, MCF-7
BAX↑, Bcl-2↓, Bax:Bcl2↑, eff↑,
2366- VitD3,    Vitamin D3 decreases glycolysis and invasiveness, and increases cellular stiffness in breast cancer cells
- in-vitro, BC, MCF-7
Glycolysis↓, tumCV↓, Apoptosis↑, mTOR↓, AMPK↑, EMT↓, E-cadherin↑, F-actin↑, Vim↓,
2284- VitK2,    Menadione-induced DNA damage in a human tumor cell line
- in-vitro, BC, MCF-7
DNAdam↑, ROS↑,
2280- VitK2,    Vitamin K2 induces non-apoptotic cell death along with autophagosome formation in breast cancer cell lines
- in-vitro, BC, MDA-MB-231 - in-vitro, BC, MDA-MB-468 - in-vitro, AML, HL-60
ROS↑, p62↓, eff↓,
1833- VitK2,    Divergent effects of vitamins K1 and K2 on triple negative breast cancer cells
- in-vitro, BC, HS587T - in-vitro, BC, MDA-MB-231 - in-vitro, BC, SUM159
TumCP↓, other↑,
1758- WBV,    Whole-body vibration in breast cancer survivors: a pilot study exploring its effects on muscle activity and subjectively perceived exertion
- Human, BC, NA
eff↑,
1753- WBV,  Ex,    Physical Exercise with or without Whole-Body Vibration in Breast Cancer Patients Suffering from Aromatase Inhibitor—Induced Musculoskeletal Symptoms: A Pilot Randomized Clinical Study
- Trial, BC, NA
Pain↓, Strength↑, QoL↑, Dose∅,
1751- WBV,    Yoda1 Enhanced Low-Magnitude High-Frequency Vibration on Osteocytes in Regulation of MDA-MB-231 Breast Cancer Cell Migration
- in-vitro, BC, MDA-MB-231 - in-vitro, AML, RAW264.7
BMD↑, YAP/TEAD↑, TumCG↓, Strength↑, TumCI↓, Fas↑, Ca+2↑,
2414- β‐Ele,    Beta‐elemene inhibits breast cancer metastasis through blocking pyruvate kinase M2 dimerization and nuclear translocation
- in-vitro, BC, MDA-MB-231 - in-vitro, BC, MCF-7 - in-vivo, NA, NA
TumCMig↓, TumCI↓, TumMeta↓, Glycolysis↓, GlucoseCon↓, lactateProd↓, PKM2↓, EGFR↓, GLUT1↓, LDHA↓, ECAR↓, OCR↓,

* indicates research on normal cells as opposed to diseased cells
Total Research Paper Matches: 471

Pathway results for Effect on Cancer / Diseased Cells:


NA, unassigned

chemoPv↑, 2,  

Redox & Oxidative Stress

antiOx↑, 8,   ATF3↑, 1,   Catalase↓, 3,   Catalase↑, 5,   ENOX2↓, 1,   Fenton↑, 3,   Ferroptosis↑, 5,   GCLM↑, 2,   GPx↓, 1,   GPx↑, 1,   GPx1⇅, 1,   GPx4↓, 4,   GSH↓, 20,   GSH↑, 2,   GSH/GSSG↓, 5,   GSSG↓, 1,   GSSG↑, 4,   GSTP1/GSTπ↝, 1,   H2O2↓, 2,   H2O2↑, 6,   e-H2O2↓, 1,   i-H2O2∅, 1,   HO-1↓, 5,   HO-1↑, 5,   hyperG↓, 1,   ICD↑, 1,   Iron↑, 3,   i-Iron↑, 1,   Keap1↓, 1,   lipid-P↓, 2,   lipid-P↑, 4,   MDA↓, 1,   MDA↑, 7,   NADH↑, 1,   NADPH/NADP+↓, 1,   NFE2L2↑, 1,   NQO1↑, 3,   Nrf1↓, 1,   Nrf1↑, 1,   NRF2↓, 6,   NRF2↑, 10,   NRF2⇅, 1,   NRF2↝, 1,   NRF2∅, 1,   p‑NRF2↑, 1,   OSI↑, 1,   OXPHOS↓, 5,   OXPHOS↑, 2,   PAO↑, 1,   PrxII↓, 1,   ROS?, 1,   ROS↓, 11,   ROS↑, 131,   ROS⇅, 1,   ROS∅, 3,   i-ROS?, 1,   mt-ROS↑, 3,   SIRT3↑, 1,   SOD↓, 3,   SOD↑, 6,   SOD1↑, 1,   SOD2↑, 1,   TAC↓, 1,   TOS↑, 1,   Trx1↓, 2,   TrxR↓, 3,   TrxR1?, 1,  

Metal & Cofactor Biology

Ferritin↓, 1,   FTH1↑, 1,   FTL↑, 1,   KLF5↓, 1,   Tf↑, 1,  

Mitochondria & Bioenergetics

AIF↑, 1,   AIF↝, 1,   ATP↓, 22,   ATP↑, 1,   ATP⇅, 1,   ATP↝, 1,   ATP∅, 1,   CDC25↓, 1,   compIII↑, 1,   MEK↓, 1,   p‑MEK↓, 2,   mitResp↓, 4,   mitResp↑, 1,   MMP?, 1,   MMP↓, 38,   MMP↑, 2,   MPT↑, 1,   mtDam↑, 5,   OCR↓, 7,   OCR↑, 2,   p‑p42↓, 1,   PGC-1α↓, 1,   Raf↓, 1,   XIAP↓, 4,  

Core Metabolism/Glycolysis

ACC↓, 1,   ACC-α↓, 1,   ACC1↓, 1,   ACLY↓, 3,   ALAT↓, 1,   ALDOA↓, 1,   AMPK↑, 9,   p‑AMPK↑, 3,   ANXA7↑, 2,   cAMP⇅, 1,   Cav1↑, 2,   cMyc↓, 11,   CPT1A↓, 1,   CREB↓, 1,   ECAR↓, 7,   p‑ENO1↓, 1,   ENO2↓, 1,   FAO↓, 1,   FASN↓, 4,   FASN↑, 1,   i-FASN↓, 1,   FBI-1↓, 1,   FBPase↑, 1,   FDG↓, 2,   G6PD↓, 1,   GAPDH↓, 2,   GLO-I↓, 1,   GlucoseCon↓, 19,   GlutMet↓, 1,   Glycolysis↓, 28,   p‑GS3Kβ↓, 1,   HK2↓, 13,   HMG-CoA↓, 1,   homoC↓, 1,   IR↓, 1,   lactateProd↓, 18,   LDH↓, 9,   LDH↑, 1,   LDH∅, 1,   LDHA↓, 13,   LDHB↓, 1,   lipidLev↓, 1,   NAD↓, 2,   PDH↑, 2,   p‑PDH↑, 1,   PDK1↓, 6,   p‑PDK1↓, 2,   PDKs↓, 2,   PFK↓, 5,   PFKP↓, 1,   PGAM1↓, 1,   PGK1↓, 1,   PGM1↓, 1,   PI3K/Akt↓, 3,   PI3k/Akt/mTOR↓, 2,   PIK3CA↓, 1,   PKM1↑, 1,   PKM2↓, 21,   PKM2↑, 1,   POLD1↓, 1,   PPARγ↓, 1,   PPARγ↑, 2,   PSMB5↓, 1,   p‑S6↓, 1,   p‑S6K↓, 1,   SHARP↑, 2,   SIRT1↓, 1,   SIRT1↑, 3,   SREBP1↓, 1,   SREBP2↓, 1,   SSAT↑, 1,   TCA↑, 2,   Warburg↓, 4,  

Cell Death

Akt↓, 24,   Akt↑, 2,   p‑Akt↓, 20,   p‑Akt↑, 1,   Apoptosis?, 2,   Apoptosis↓, 4,   Apoptosis↑, 114,   Apoptosis∅, 2,   m-Apoptosis↑, 1,   mt-Apoptosis↑, 1,   ASK1↑, 1,   aSmase↑, 1,   BAD↑, 1,   Bak↑, 3,   BAX↓, 3,   BAX↑, 48,   BAX⇅, 1,   BAX↝, 1,   BAX∅, 1,   Bax:Bcl2↑, 10,   Bcl-2↓, 59,   Bcl-2∅, 1,   Bcl-xL↓, 5,   Bcl-xL∅, 1,   BIM↑, 2,   BMP2↑, 1,   Casp↑, 6,   Casp↝, 1,   Casp3?, 1,   Casp3↓, 2,   Casp3↑, 45,   Casp3↝, 1,   cl‑Casp3↑, 7,   Casp7↑, 5,   cl‑Casp7↑, 1,   Casp8↑, 5,   Casp8↝, 1,   cl‑Casp8↑, 5,   Casp9↑, 19,   Casp9↝, 1,   cl‑Casp9↑, 4,   cFLIP↓, 1,   Chk2↑, 1,   CK2↓, 2,   Cyt‑c↑, 15,   DR4↑, 1,   DR5↑, 4,   FADD↑, 1,   Fas↓, 1,   Fas↑, 4,   FasL↑, 1,   Ferroptosis↑, 5,   GADD34↑, 1,   GranA↓, 1,   GranB↓, 1,   GSDMC↑, 1,   hTERT/TERT↓, 4,   iNOS↑, 3,   JNK↓, 1,   JNK↑, 2,   p‑JNK↑, 2,   MAPK↓, 3,   MAPK↑, 1,   p‑MAPK↑, 1,   Mcl-1↓, 4,   Mcl-1↑, 1,   miR-127-5p↑, 2,   MLKL↑, 1,   Myc↓, 2,   Necroptosis↑, 2,   necrosis↑, 5,   p27↑, 3,   p38↓, 1,   p38↑, 2,   p‑p38↓, 2,   p‑p38↑, 1,   Paraptosis↑, 3,   Perforin↓, 1,   pS2/TFF1↑, 1,   PUMA↑, 1,   Pyro↑, 1,   RIP1↓, 1,   sFasL↑, 1,   SK↓, 1,   survivin↓, 14,   survivin↝, 1,   Telomerase↓, 1,   TRAIL↑, 1,   TumCD↓, 1,   TumCD↑, 14,   TUNEL↑, 1,   YAP/TEAD↓, 2,   YAP/TEAD↑, 1,   p‑YAP/TEAD↝, 1,  

Kinase & Signal Transduction

H3K18↓, 1,   HER2/EBBR2↓, 9,   PAK↓, 1,   Sp1/3/4↓, 3,   Sp1/3/4↑, 1,  

Transcription & Epigenetics

EZH2↓, 3,   H19↓, 1,   ac‑H3↑, 1,   ac‑H4∅, 1,   HATs↓, 1,   miR-145↑, 1,   miR-205↑, 1,   other?, 1,   other↓, 6,   other↑, 8,   other⇅, 1,   other↝, 3,   other∅, 2,   SETBP1↓, 1,   sonoS↑, 2,   tumCV↓, 48,   tumCV↑, 1,   USF1↑, 1,  

Protein Folding & ER Stress

ATFs↑, 1,   CHOP↑, 6,   p‑eIF2α↑, 4,   ER Stress↑, 15,   ER Stress↝, 1,   GRP78/BiP↑, 4,   HSP27↓, 2,   HSP70/HSPA5↓, 1,   HSP70/HSPA5↑, 3,   HSP70/HSPA5∅, 1,   HSP90↓, 2,   PERK↑, 2,   UPR↑, 2,  

Autophagy & Lysosomes

ATG5↝, 1,   Beclin-1↓, 1,   Beclin-1↑, 2,   Beclin-1↝, 1,   BNIP3?, 1,   BNIP3↓, 1,   BNIP3↑, 2,   LC3B-II↑, 2,   LC3II↑, 3,   p62↓, 4,   p62↑, 2,   TumAuto↓, 1,   TumAuto↑, 16,  

DNA Damage & Repair

ATM↓, 1,   p‑ATM↑, 1,   BRCA1↑, 2,   BRCA2↑, 1,   CYP1B1↑, 1,   DNA-PK↑, 1,   DNAdam↓, 1,   DNAdam↑, 23,   DNArepair↓, 1,   DNMT1↓, 5,   DNMT3A↓, 2,   DNMT3A↑, 1,   DNMTs↓, 6,   G9a↓, 1,   GADD45A↑, 2,   P53↓, 2,   P53↑, 29,   P53⇅, 1,   P53↝, 1,   p‑P53↑, 4,   PARP↓, 2,   PARP↑, 1,   cl‑PARP↑, 15,   cl‑PARP↝, 1,   cl‑PARP1↑, 1,   PCNA↓, 1,   PCNA↝, 1,   RAD51↑, 1,   TP53↓, 2,   UHRF1↓, 2,   γH2AX↑, 5,   p‑γH2AX↑, 1,  

Cell Cycle & Senescence

CDK1↓, 5,   CDK2↓, 1,   p‑CDK2↓, 1,   CDK4↑, 2,   CDK4↝, 1,   Cyc↓, 1,   cycA1/CCNA1↓, 1,   CycB/CCNB1↓, 3,   cycD1/CCND1↓, 19,   cycE/CCNE↓, 1,   P21↓, 3,   P21↑, 22,   p‑RB1↓, 1,   TumCCA↑, 56,  

Proliferation, Differentiation & Cell State

ALDH↓, 3,   ALDH1A1↓, 1,   CD24↓, 4,   CD34↓, 1,   CD44↓, 4,   CD44↑, 1,   cDC2↓, 1,   cFos↓, 1,   cMET↓, 3,   CREB2↓, 1,   CSCs↓, 26,   CSCs↑, 1,   CSCsMark↓, 1,   CTNNB1↓, 1,   Diff↑, 3,   EMT↓, 27,   EP300↓, 1,   EpCAM↓, 1,   ERK↓, 8,   ERK↑, 2,   p‑ERK↓, 10,   p‑ERK↑, 2,   FGF↓, 2,   FOXM1↓, 1,   FOXO↑, 2,   FOXO4↓, 1,   Gli1↓, 4,   GREM1↓, 1,   GSK‐3β↓, 2,   GSK‐3β↑, 2,   p‑GSK‐3β↑, 1,   HDAC↓, 14,   HDAC∅, 1,   HDAC1↓, 2,   HDAC2↓, 1,   HDAC3↓, 2,   HDAC4↓, 2,   HDAC8↓, 3,   HH↓, 4,   HMGCR⇅, 1,   HMTs↓, 1,   Id1↓, 1,   IGF-1↓, 4,   IGF-1R↓, 6,   IGFBP3↑, 1,   KLF4↓, 1,   Let-7↑, 1,   LRP6↓, 3,   p‑LRP6↓, 2,   miR-125b↓, 1,   miR-142-3p↑, 1,   miR-448↑, 1,   MSCmark↓, 2,   mTOR↓, 21,   mTOR↑, 2,   mTOR⇅, 1,   mTOR∅, 1,   p‑mTOR↓, 3,   Nanog↓, 4,   Nanog↑, 1,   NOTCH1↓, 4,   OCT4↓, 5,   OCT4↑, 1,   p‑P70S6K↓, 1,   PI3K↓, 12,   PI3K↑, 3,   p‑PI3K↓, 3,   PIAS-3↑, 1,   PR↑, 1,   PTCH1↓, 1,   PTEN↑, 5,   RAS↓, 2,   SAL↑, 1,   Smo↓, 2,   SOX2↓, 4,   Src↓, 3,   STAT1↓, 1,   p‑STAT1↓, 1,   STAT3↓, 12,   STAT3↑, 2,   p‑STAT3↓, 8,   STAT4↓, 1,   STAT5↓, 2,   TAZ↓, 1,   TCF↓, 1,   TOP1↓, 2,   TPM4↓, 1,   TRPM7↓, 1,   TumCG?, 1,   TumCG↓, 57,   TumCG↑, 2,   TumCG∅, 3,   Wnt↓, 7,   Wnt/(β-catenin)↓, 1,  

Migration

Akt2↓, 1,   Alix/AIP‑1↓, 1,   AP-1↓, 2,   AP-1↝, 1,   ATPase↓, 1,   BACH1↑, 1,   Brk/PTK6↓, 1,   Ca+2↓, 1,   Ca+2↑, 12,   Ca+2↝, 1,   i-Ca+2↑, 1,   CCDC150↓, 1,   CD11b↓, 1,   CDH1↑, 2,   CLDN1↓, 1,   COL1A1↓, 2,   DLC1↑, 3,   E-cadherin↓, 4,   E-cadherin↑, 25,   EM↑, 2,   EphB4↓, 1,   ER-α36↓, 4,   ER-α36↝, 1,   F-actin↓, 1,   F-actin↑, 1,   FAK↓, 5,   FAK↑, 1,   Fibronectin↓, 3,   FOSB↑, 2,   Furin↓, 4,   GLI2↓, 1,   ITGA5↓, 1,   ITGA5↑, 2,   ITGB1↓, 1,   ITGB1↑, 2,   ITGB4↓, 1,   Ki-67↓, 6,   KLF2↓, 1,   LAMA5↑, 2,   LEF1↓, 1,   MET↑, 1,   miR-200c↑, 1,   miR-29b↓, 1,   miR-29b↑, 1,   MMP-10↓, 1,   MMP13↓, 1,   MMP2↓, 19,   MMP3↓, 1,   MMP7↓, 1,   MMP9↓, 25,   MMPs↓, 4,   MOB1↓, 1,   MUC1↓, 1,   N-cadherin↓, 6,   N-cadherin↑, 1,   NEDD9↓, 1,   NeuroT↓, 1,   p‑p44↓, 1,   PDGF↓, 1,   PKA↓, 1,   PKCδ↓, 1,   PKCδ↑, 1,   PRNP↑, 1,   PTP1B↓, 1,   Rho↓, 2,   RIP3↑, 1,   ROCK1↓, 1,   Slug↓, 11,   SMAD2↓, 2,   p‑SMAD2↓, 2,   SMAD3↓, 6,   p‑SMAD3↓, 1,   Snail↓, 12,   Snail↑, 3,   SOX4↓, 1,   SOX4↑, 1,   TET1↑, 1,   TGF-β↓, 11,   TGF-β1↓, 1,   TIMP1↓, 1,   TIMP2↑, 1,   Treg lymp↓, 1,   TRPC1↑, 1,   TSC1↑, 1,   TumCA↓, 1,   TumCI↓, 41,   TumCI↑, 2,   TumCMig↓, 40,   TumCMig↑, 1,   TumCP↓, 66,   TumCP↑, 3,   TumMeta↓, 27,   Twist↓, 4,   Twist↑, 1,   TXNIP↓, 1,   TXNIP↑, 1,   VCAM-1↓, 1,   Vim?, 1,   Vim↓, 24,   Vim↑, 1,   Zeb1↓, 9,   Zeb1↑, 3,   ZEB2↑, 2,   ZO-1↑, 1,   α-SMA↓, 1,   ac‑α-tubulin↑, 1,   β-catenin/ZEB1↓, 16,   p‑β-catenin/ZEB1↓, 1,  

Angiogenesis & Vasculature

angioG↓, 12,   ECM/TCF↓, 1,   EGFR↓, 8,   EGR4↓, 1,   eNOS↑, 1,   EPR↓, 1,   EPR↑, 2,   HIF-1↓, 2,   Hif1a↓, 26,   miR-126↑, 1,   NO↑, 6,   REL↑, 1,   VEGF↓, 19,   VEGF↑, 1,   VEGFR2↓, 1,   VHL↓, 1,  

Barriers & Transport

CellMemb↑, 2,   GLUT1↓, 12,   GLUT3↓, 1,   P-gp↓, 1,  

Immune & Inflammatory Signaling

B2M↓, 1,   CD4+↓, 1,   CD4+↑, 1,   CLP↑, 1,   COX2↓, 8,   COX2↑, 1,   CRP↓, 1,   CXCR4↓, 2,   GNLY↓, 1,   IFN-γ↓, 2,   IKKα↓, 2,   IKKα↑, 1,   p‑IKKα↓, 1,   IL1↓, 1,   IL10↓, 2,   IL12↓, 1,   IL18↓, 1,   IL1β↓, 4,   IL1β↑, 1,   IL2↓, 1,   IL4↓, 1,   IL5↓, 1,   IL6↓, 7,   IL8↓, 2,   IL8↑, 1,   Inflam↓, 7,   Inflam↑, 1,   IRAK4↓, 1,   JAK↓, 1,   p‑JAK1↓, 1,   p‑JAK2↓, 2,   LIF↑, 1,   Macrophages↓, 1,   Neut↓, 1,   NF-kB↓, 41,   NF-kB↑, 4,   NK cell↑, 1,   p65↓, 2,   ac‑p65↑, 1,   PD-1↓, 1,   PD-1↑, 1,   PD-L1↓, 3,   PD-L1↑, 2,   PGE2↓, 1,   SOCS-3↑, 1,   SOCS1↑, 1,   T-Cell↑, 3,   Th1 response↑, 1,   TILs↑, 1,   TLR2↓, 1,   TLR4↓, 3,   TNF-α↓, 8,   TNF-α↑, 2,   TRIF↓, 1,  

Cellular Microenvironment

NOX↑, 1,   pH↝, 1,  

Protein Aggregation

NLRP3↓, 2,   SNCG↓, 1,  

Hormonal & Nuclear Receptors

AR↓, 1,   BNP↓, 1,   CDK6↓, 2,   CDK6↑, 2,   COMT↓, 1,   ER(estro)↓, 2,   ERα/ESR1↓, 8,   GR↝, 1,  

Drug Metabolism & Resistance

ABC↓, 1,   BioAv↓, 1,   BioAv↑, 4,   BioAv↝, 1,   ChemoSen↓, 2,   ChemoSen↑, 31,   ChemoSen∅, 2,   CT-I↓, 1,   Dose?, 1,   Dose↓, 6,   Dose⇅, 1,   Dose↝, 15,   Dose∅, 7,   eff?, 1,   eff↓, 30,   eff↑, 80,   eff↝, 8,   eff∅, 1,   Half-Life?, 1,   Half-Life↓, 1,   RadioS↑, 13,   selectivity?, 1,   selectivity↓, 2,   selectivity↑, 61,   selectivity↝, 1,   TET2↑, 2,  

Clinical Biomarkers

ALAT↓, 1,   ALC∅, 1,   AR↓, 1,   ascitic↓, 1,   B2M↓, 1,   BG↓, 1,   BMD↑, 1,   BRCA1↑, 2,   CRP↓, 1,   E6↓, 1,   E7↓, 1,   EGFR↓, 8,   ERα/ESR1↓, 8,   EZH2↓, 3,   Ferritin↓, 1,   FOXM1↓, 1,   GutMicro↑, 2,   HER2/EBBR2↓, 9,   hTERT/TERT↓, 4,   IL6↓, 7,   Ki-67↓, 6,   LDH↓, 9,   LDH↑, 1,   LDH∅, 1,   Maspin↑, 1,   Myc↓, 2,   PD-L1↓, 3,   PD-L1↑, 2,   TP53↓, 2,  

Functional Outcomes

AntiCan↑, 13,   antiNeop∅, 1,   AntiTum↑, 9,   Appetite↑, 1,   cardioP↑, 2,   CardioT↓, 2,   chemoP↑, 9,   ChemoSideEff↓, 1,   cognitive↑, 1,   hepatoP↑, 2,   MKI67↑, 1,   neuroP↑, 1,   NKG2D↑, 1,   OS↓, 2,   OS↑, 14,   Pain↓, 2,   QoL↑, 3,   radioP↑, 3,   Remission↑, 2,   RenoP↑, 2,   Risk↓, 7,   Risk↑, 1,   Risk∅, 1,   Sleep↑, 1,   Strength↑, 2,   Symptoms↓, 1,   toxicity↝, 1,   TumVol↓, 17,   TumW↓, 6,   Weight↑, 1,   Weight∅, 3,  

Infection & Microbiome

CD8+↑, 2,   IRF3↓, 1,  
Total Targets: 735

Pathway results for Effect on Normal Cells:


Redox & Oxidative Stress

antiOx↑, 12,   Catalase↑, 2,   GPx↑, 1,   GSH↑, 4,   HO-1↑, 3,   Keap1↓, 1,   lipid-P↓, 1,   MDA↓, 1,   NRF2↑, 4,   ROS↓, 7,   ROS∅, 8,   SOD↑, 2,  

Metal & Cofactor Biology

IronCh↑, 1,  

Core Metabolism/Glycolysis

FASN↓, 1,   GlucoseCon↑, 1,   Glycolysis↑, 1,  

Cell Death

Casp1?, 1,  

Transcription & Epigenetics

Ach↑, 1,   other↓, 1,   other↝, 1,  

Proliferation, Differentiation & Cell State

EMT↑, 1,   HDAC3↓, 1,   NOTCH↓, 1,   STAT3↓, 1,   TumCG∅, 1,   Wnt↓, 1,  

Migration

Ca+2∅, 1,   CEA↓, 1,  

Angiogenesis & Vasculature

angioG↓, 1,   Hif1a↑, 1,  

Immune & Inflammatory Signaling

IFN-γ↓, 1,   IFN-γ↑, 1,   IL1β↓, 2,   IL2↑, 1,   IL4↓, 1,   IL6↓, 3,   Inflam↓, 2,   NF-kB↓, 1,   TNF-α↓, 2,   TNF-α↑, 1,  

Synaptic & Neurotransmission

BDNF↑, 1,   ChAT↑, 1,  

Protein Aggregation

NLRP3↓, 1,  

Drug Metabolism & Resistance

BioAv↓, 2,   BioAv↑, 7,   BioAv↝, 1,   BioEnh↑, 1,   eff↓, 2,   Half-Life↓, 1,   Half-Life∅, 2,  

Clinical Biomarkers

CEA↓, 1,   IL6↓, 3,  

Functional Outcomes

AntiTum↑, 1,   cardioP↑, 4,   hepatoP↑, 1,   memory↑, 1,   neuroP↑, 2,   toxicity?, 1,   toxicity↓, 19,   toxicity↑, 1,   toxicity↝, 2,   toxicity∅, 9,   Wound Healing↑, 1,  

Infection & Microbiome

Bacteria↓, 2,  
Total Targets: 64

Query results interpretion may depend on "conditions" listed in the research papers.
Such Conditions may include : 
  -low or high Dose
  -format for product, such as nano of lipid formations
  -different cell line effects
  -synergies with other products 
  -if effect was for normal or cancerous cells
Filter Conditions: Pro/AntiFlg:%  IllCat:%  CanType:4  Cells:%  prod#:%  Target#:%  State#:%  Dir#:%
wNotes=0 sortOrder:rid,rpid

 

Home Page