| Osteosarcoma is a type of cancer that starts in the bones. It is the most common type of bone cancer, and it usually affects children and young adults, although it can occur at any age. Osteosarcoma typically develops in the long bones of the body, such as the arms and legs, but it can also occur in other bones, including the pelvis and jaw. |
| 1290- | AL, | Effect of allicin on the expression of Bcl-2 and Bax protein in LM-8 cells |
| - | in-vitro, | OS, | LM8 |
| 2648- | AL, | Allicin Inhibits Osteosarcoma Growth by Promoting Oxidative Stress and Autophagy via the Inactivation of the lncRNA MALAT1-miR-376a-Wnt/β-Catenin Signaling Pathway |
| - | in-vitro, | OS, | SaOS2 | - | in-vivo, | OS, | NA |
| 418- | Api, | Apigenin inhibits the proliferation and invasion of osteosarcoma cells by suppressing the Wnt/β-catenin signaling pathway |
| - | vitro+vivo, | OS, | U2OS | - | vitro+vivo, | OS, | MG63 |
| 2576- | ART/DHA, | AL, | The Synergistic Anticancer Effect of Artesunate Combined with Allicin in Osteosarcoma Cell Line in Vitro and in Vivo |
| - | in-vitro, | OS, | MG63 | - | in-vivo, | NA, | NA |
| 1372- | Ash, | Withaferin-A Induces Apoptosis in Osteosarcoma U2OS Cell Line via Generation of ROS and Disruption of Mitochondrial Membrane Potential |
| - | in-vitro, | OS, | U2OS |
| 1523- | Ba, | Baicalein induces human osteosarcoma cell line MG-63 apoptosis via ROS-induced BNIP3 expression |
| - | in-vitro, | OS, | MG63 | - | in-vitro, | Nor, | hFOB1.19 |
| 1528- | Ba, | Inhibiting reactive oxygen species-dependent autophagy enhanced baicalein-induced apoptosis in oral squamous cell carcinoma |
| - | in-vitro, | OS, | CAL27 |
| 2692- | BBR, | Berberine affects osteosarcoma via downregulating the caspase-1/IL-1β signaling axis |
| - | in-vitro, | OS, | MG63 | - | in-vitro, | OS, | SaOS2 | - | in-vivo, | NA, | NA |
| 2012- | CAP, | Capsaicin induces cytotoxicity in human osteosarcoma MG63 cells through TRPV1-dependent and -independent pathways |
| - | NA, | OS, | MG63 |
| 1410- | CUR, | Curcumin induces ferroptosis and apoptosis in osteosarcoma cells by regulating Nrf2/GPX4 signaling pathway |
| - | vitro+vivo, | OS, | MG63 |
| 2844- | FIS, | Fisetin, a dietary flavonoid induces apoptosis via modulating the MAPK and PI3K/Akt signalling pathways in human osteosarcoma (U-2 OS) cells |
| - | in-vitro, | OS, | U2OS |
| 4022- | FulvicA, | Chemo, | Shilajit potentiates the effect of chemotherapeutic drugs and mitigates metastasis induced liver and kidney damages in osteosarcoma rats |
| - | in-vivo, | OS, | NA |
| 797- | GAR, | CUR, | Differential effects of garcinol and curcumin on histone and p53 modifications in tumour cells |
| - | in-vitro, | BC, | MCF-7 | - | in-vitro, | OS, | U2OS | - | in-vitro, | OS, | SaOS2 |
| 2073- | HNK, | Honokiol induces apoptosis and autophagy via the ROS/ERK1/2 signaling pathway in human osteosarcoma cells in vitro and in vivo |
| - | in-vitro, | OS, | U2OS | - | in-vivo, | NA, | NA |
| 3481- | MF, | No effects of pulsed electromagnetic fields on expression of cell adhesion molecules (integrin, CD44) and matrix metalloproteinase-2/9 in osteosarcoma cell lines |
| - | in-vitro, | OS, | MG63 | - | in-vitro, | OS, | SaOS2 |
| 506- | MF, | doxoR, | Pulsed Electromagnetic Field Stimulation Promotes Anti-cell Proliferative Activity in Doxorubicin-treated Mouse Osteosarcoma Cells |
| - | in-vitro, | OS, | LM8 |
| 595- | MFrot, | VitC, | MF, | The Effect of Alternating Magnetic Field Exposure and Vitamin C on Cancer Cells |
| - | in-vitro, | PC, | MIA PaCa-2 | - | in-vitro, | CRC, | SW-620 | - | in-vitro, | NA, | HT1080 | - | in-vitro, | Pca, | PC3 | - | in-vitro, | OS, | U2OS | - | in-vitro, | BC, | MCF-7 | - | in-vitro, | Nor, | CCD-18Co |
| 4974- | Nimb, | Nimbolide Induces ROS-Regulated Apoptosis and Inhibits Cell Migration in Osteosarcoma |
| - | in-vitro, | OS, | NA |
| 2048- | PB, | Sodium Phenylbutyrate Inhibits Tumor Growth and the Epithelial-Mesenchymal Transition of Oral Squamous Cell Carcinoma In Vitro and In Vivo |
| - | in-vitro, | OS, | CAL27 | - | in-vitro, | Oral, | HSC3 | - | in-vitro, | OS, | SCC4 | - | in-vivo, | NA, | NA |
| 4927- | PEITC, | Targeting ferroptosis in osteosarcoma |
| - | Review, | OS, | NA |
| 4925- | PEITC, | PEITC triggers multiple forms of cell death by GSH-iron-ROS regulation in K7M2 murine osteosarcoma cells |
| - | in-vitro, | OS, | NA |
| 2941- | PL, | Selective killing of cancer cells by a small molecule targeting the stress response to ROS |
| - | in-vivo, | BC, | MDA-MB-231 | - | in-vitro, | OS, | U2OS | - | in-vitro, | BC, | MDA-MB-453 |
| 2969- | PL, | Piperlongumine induces autophagy by targeting p38 signaling |
| - | in-vitro, | OS, | U2OS | - | in-vitro, | Cerv, | HeLa |
| 2971- | PL, | Piperlongumine attenuates IL-1β-induced inflammatory response in chondrocytes |
| - | NA, | OS, | NA |
| 2006- | Plum, | Plumbagin induces apoptosis in human osteosarcoma through ROS generation, endoplasmic reticulum stress and mitochondrial apoptosis pathway |
| - | in-vitro, | OS, | MG63 | - | in-vitro, | Nor, | hFOB1.19 |
| 2340- | QC, | Oral Squamous Cell Carcinoma Cells with Acquired Resistance to Erlotinib Are Sensitive to Anti-Cancer Effect of Quercetin via Pyruvate Kinase M2 (PKM2) |
| - | in-vitro, | OS, | NA |
| 924- | RES, | Resveratrol sequentially induces replication and oxidative stresses to drive p53-CXCR2 mediated cellular senescence in cancer cells |
| - | in-vitro, | OS, | U2OS | - | in-vitro, | Lung, | A549 |
| 3090- | RES, | The Effects of Resveratrol Targeting MicroRNA-4325P/PDGF-B to Regulate Tumor Angiogenesis in Osteosarcoma Microenvironment |
| - | in-vitro, | OS, | MG63 |
| 1208- | SANG, | Sanguinarine induces apoptosis in osteosarcoma by attenuating the binding of STAT3 to the single-stranded DNA-binding protein 1 (SSBP1) promoter region |
| - | in-vitro, | OS, | NA |
| 4483- | Se, | Chit, | Anti-cancer potential of chitosan-starch selenium Nanocomposite: Targeting osteoblastoma and insights of molecular docking |
| - | in-vitro, | OS, | NA |
| 1483- | SFN, | Targeting p62 by sulforaphane promotes autolysosomal degradation of SLC7A11, inducing ferroptosis for osteosarcoma treatment |
| - | in-vitro, | OS, | 143B | - | in-vitro, | Nor, | HEK293 | - | in-vivo, | OS, | NA |
| 1477- | SFN, | Sulforaphane Induces Oxidative Stress and Death by p53-Independent Mechanism: Implication of Impaired Glutathione Recycling |
| - | in-vitro, | OS, | MG63 |
| 2222- | SK, | The anti-tumor effect of shikonin on osteosarcoma by inducing RIP1 and RIP3 dependent necroptosis |
| - | in-vitro, | OS, | U2OS | - | in-vitro, | OS, | 143B | - | in-vivo, | NA, | NA |
| 1312- | SK, | Shikonin induces apoptosis through reactive oxygen species/extracellular signal-regulated kinase pathway in osteosarcoma cells |
| - | in-vitro, | OS, | 143B |
| 2007- | SK, | Shikonin Directly Targets Mitochondria and Causes Mitochondrial Dysfunction in Cancer Cells |
| - | in-vitro, | lymphoma, | U937 | - | in-vitro, | BC, | MCF-7 | - | in-vitro, | BC, | SkBr3 | - | in-vitro, | CRC, | HCT116 | - | in-vitro, | OS, | U2OS | - | NA, | Nor, | RPE-1 |
| 2198- | SK, | Shikonin suppresses proliferation of osteosarcoma cells by inducing ferroptosis through promoting Nrf2 ubiquitination and inhibiting the xCT/GPX4 regulatory axis |
| - | in-vitro, | OS, | MG63 | - | in-vitro, | OS, | 143B |
| 2195- | SK, | Shikonin induces ferroptosis in osteosarcomas through the mitochondrial ROS-regulated HIF-1α/HO-1 axis |
| - | in-vitro, | OS, | NA |
| - | in-vitro, | OS, | MG63 |
| 4405- | SNP, | Silver nanoparticles defeat p53-positive and p53-negative osteosarcoma cells by triggering mitochondrial stress and apoptosis |
| - | in-vitro, | OS, | NA |
| 1935- | TQ, | Potential anticancer properties and mechanisms of thymoquinone in osteosarcoma and bone metastasis |
| - | Review, | OS, | NA |
| 4851- | Uro, | Urolithin A suppressed osteosarcoma cell migration and invasion via targeting MMPs and AKT1 |
| - | in-vitro, | OS, | MG63 |
| 3143- | VitC, | ATO, | Vitamin C enhances the sensitivity of osteosarcoma to arsenic trioxide via inhibiting aerobic glycolysis |
| - | in-vitro, | OS, | NA |
Query results interpretion may depend on "conditions" listed in the research papers. Such Conditions may include : -low or high Dose -format for product, such as nano of lipid formations -different cell line effects -synergies with other products -if effect was for normal or cancerous cells
Filter Conditions: Pro/AntiFlg:% IllCat:% CanType:46 Cells:% prod#:% Target#:% State#:% Dir#:%
wNotes=0 sortOrder:rid,rpid