Database Query Results : , ,

Oral, Oral: Click to Expand ⟱
Oral

Scientific Papers found: Click to Expand⟱
1365- Ash,    Withaferin A Induces Oxidative Stress-Mediated Apoptosis and DNA Damage in Oral Cancer Cells
- in-vitro, Oral, Ca9-22 - in-vitro, Oral, CAL27
ROS↑, *toxicity↓, Apoptosis↑, TumCCA↑, MMP↓, p‑γH2AX↑, DNAdam↑, eff↓,
1519- Ba,    Baicalein inhibits KB oral cancer cells by inducing apoptosis via modulation of ROS
- in-vitro, Oral, KB
Apoptosis↑, Dose∅, ROS↑,
2691- BBR,    Berberine induces FasL-related apoptosis through p38 activation in KB human oral cancer cells
- in-vitro, Oral, KB
tumCV↓, DNAdam↑, Casp3↑, Casp7↑, FasL↑, Casp8↑, Casp9↑, PARP↑, BAX↑, BAD↑, APAF1↑, MMP2↓, MMP9↓, p‑p38↑, ERK↑, MAPK↑,
2733- BetA,    Betulinic Acid Inhibits Cell Proliferation in Human Oral Squamous Cell Carcinoma via Modulating ROS-Regulated p53 Signaling
- in-vitro, Oral, KB - in-vivo, NA, NA
TumCP↓, TumVol↓, mt-Apoptosis↑, Casp3↑, Casp9↑, BAX↑, Bcl-2↑, OCR↓, TumCCA↑, ROS↑, eff↓, P53↑, STAT3↓, cycD1/CCND1↑,
2976- CUR,    Curcumin suppresses the proliferation of oral squamous cell carcinoma through a specificity protein 1/nuclear factor‑κB‑dependent pathway
- in-vitro, Oral, HSC3 - in-vitro, HNSCC, CAL33
tumCV↓, Sp1/3/4↓, p65↓, HSF1↓, NF-kB↓,
473- CUR,    Curcumin inhibits epithelial-mesenchymal transition in oral cancer cells via c-Met blockade
- in-vitro, Oral, HSC4 - in-vitro, Oral, Ca9-22
Vim↓, p‑cMET↓, p‑ERK↓, pro‑MMP9↓, E-cadherin↑,
1872- DCA,    Dichloroacetate, a selective mitochondria-targeting drug for oral squamous cell carcinoma: a metabolic perspective of treatment
- in-vitro, Oral, HSC2 - in-vitro, Oral, HSC3
PDKs↓, ROS↑, OCR↑, other↑,
5007- DSF,  Cu,    Nrf2/HO-1 Alleviates Disulfiram/Copper-Induced Ferroptosis in Oral Squamous Cell Carcinoma
- vitro+vivo, Oral, NA
AntiTum↑, TumCP↓, Ferroptosis↑, Iron↑, lipid-P↑, NRF2↓, HO-1↓,
4023- FulvicA,    Shilajit (Mumio) Elicits Apoptosis and Suppresses Cell Migration in Oral Cancer Cells through Targeting Urokinase-type Plasminogen Activator and Its Receptor and Chemokine Signaling Pathways
- in-vitro, Oral, NA
tumCV↓, selectivity↑, Apoptosis↑, uPA↓, TumCMig↓, Dose↝, CXCc↓,
4659- HNK,    Honokiol Eliminates Human Oral Cancer Stem-Like Cells Accompanied with Suppression of Wnt/β-Catenin Signaling and Apoptosis Induction
- in-vitro, Oral, NA
cl‑Casp3↑, survivin↓, Bcl-2↓, CD44↓, Wnt↓, β-catenin/ZEB1↑, EMT↓, Slug↓, Snail↓, CSCs↓, Apoptosis↑,
1126- Lyco,    Lycopene Inhibits Epithelial–Mesenchymal Transition and Promotes Apoptosis in Oral Cancer via PI3K/AKT/m-TOR Signal Pathway
- vitro+vivo, Oral, NA
TumCP↓, TumCMig↓, TumCI↓, Apoptosis↑, EMT↓, PI3K↓, Akt↓, mTOR↓, E-cadherin↓, BAX↑, N-cadherin↓, p‑PI3K↓, p‑Akt↓, p‑mTOR↓, Bcl-2↓,
4530- MAG,    Magnolol inhibits cancer stemness and IL-6/Stat3 signaling in oral carcinomas
- in-vitro, Oral, NA
CSCs↓, ChemoSen↑,
1170- MushCha,    Chaga mushroom extract suppresses oral cancer cell growth via inhibition of energy metabolism
- in-vitro, Oral, HSC4
tumCV↓, TumCP↓, TumCCA↑, STAT3↓, Glycolysis↓, MMP↓, TumAuto↑, p38↑, NF-kB↑,
4975- Nimb,    Nimbolide Induces Cell Apoptosis via Mediating ER Stress-Regulated Apoptotic Signaling in Human Oral Squamous Cell Carcinoma
- in-vitro, Oral, NA
Apoptosis↑, ROS↑, Ca+2↑, ER Stress↑, Casp↑, MMP↓, tumCV↓,
4627- OLE,    Oleuropein regulates ubiquitination-mediated Mcl-1 turnover and exhibits antitumor activity
- in-vitro, Oral, NA
tumCV↓, Mcl-1↓, TumCG↓, toxicity∅, RadioS↑, AntiTum↑,
2048- PB,    Sodium Phenylbutyrate Inhibits Tumor Growth and the Epithelial-Mesenchymal Transition of Oral Squamous Cell Carcinoma In Vitro and In Vivo
- in-vitro, OS, CAL27 - in-vitro, Oral, HSC3 - in-vitro, OS, SCC4 - in-vivo, NA, NA
*NH3↓, *HDAC↓, *ER Stress↓, Apoptosis?, Bcl-2↓, cl‑Casp3↑, TGF-β↑, N-cadherin↓, E-cadherin↑, TumVol↓, eff↑,
4924- PEITC,    Nutri-PEITC Jelly Significantly Improves Progression-Free Survival and Quality of Life in Patients with Advanced Oral and Oropharyngeal Cancer: A Blinded Randomized Placebo-Controlled Trial
- Trial, Oral, NA
QoL↑, P53↑, OS↑, Cyt‑c↝, other↝, ROS↑, selectivity↑, P21↑, TumCCA↑, Dose↝, BioAv↑, Weight↑, chemoP↑,
4940- PEITC,    Phenethyl Isothiocyanate (PEITC) Inhibits the Growth of Human Oral Squamous Carcinoma HSC-3 Cells through G 0/G 1 Phase Arrest and Mitochondria-Mediated Apoptotic Cell Death
- in-vitro, Oral, HSC3
TumCCA↑, Apoptosis↑, BAX↑, BID↑, Bcl-2↓, MMP↓, Cyt‑c↑, AIF↑, tumCV↓, ROS↑, Ca+2↑, CDC25↓, CDK6↓, cycD1/CCND1↓, CDK2↓, cycE/CCNE↓, P53↑, p27↑, P21↑, Casp9↑, Casp3↑, GRP78/BiP↑,
4963- PEITC,    Sensory Acceptable Equivalent Doses of β - Phenylethyl isothiocyanate (PEITC) Induce Cell Cycle Arrest and Retard Growth of p53 Mutated Oral Cancer In Vitro and In Vivo
- vitro+vivo, Oral, CAL27 - vitro+vivo, Oral, FaDu - vitro+vivo, Oral, SCC4 - vitro+vivo, Oral, SCC9
Dose↝, selectivity↑, TumCG↓, OS↑, ROS↑, P53↑, P21↑, TumCCA↑, Ki-67↓,
4948- PEITC,    Sensory acceptable equivalent doses of β-phenylethyl isothiocyanate (PEITC) induce cell cycle arrest and retard the growth of p53 mutated oral cancer in vitro and in vivo
- vitro+vivo, Oral, CAL27 - vitro+vivo, Oral, FaDu - vitro+vivo, Oral, SCC4 - vitro+vivo, Oral, SCC9
TumCD↑, TumCG↓, OS↑, ROS↑, P53↑, P21↑, TumCCA↑, Ki-67↓,
4947- PEITC,    Phenethyl Isothiocyanate (PEITC) Inhibits the Growth of Human Oral Squamous Carcinoma HSC-3 Cells through G0/G1   Phase Arrest and Mitochondria-Mediated Apoptotic Cell Death
- in-vitro, Oral, HSC3
AntiCan↑, chemoPv↑, TumCG↓, Apoptosis↑, TumCCA↑, P53↑, P21↑, BAX↑, BID↑, Bcl-2↓, MMP↓, Cyt‑c↑, AIF↑, ROS↑, Ca+2↑,
4944- PEITC,    Phenethyl isothiocyanate induces DNA damage-associated G2/M arrest and subsequent apoptosis in oral cancer cells with varying p53 mutations
- in-vitro, Oral, NA
TumCG↓, TumCCA↑, Apoptosis↑, ROS↑, NO↑, GSH↓, MMP↓, DNAdam↑, ATM↑, Chk2↑, P53↑, eff↓,
4942- PEITC,    Phenethyl Isothiocyanate (PEITC) Inhibits the Growth of Human Oral Squamous Carcinoma HSC-3 Cells through G(0)/G(1) Phase Arrest and Mitochondria-Mediated Apoptotic Cell Death
- in-vitro, Oral, HSC3
chemoPv↑, TumCG↓, TumCCA↑, Apoptosis↑, BAX↑, BID↑, Bcl-2↓, MMP↓, Cyt‑c↑, AIF↑, ROS↑, Ca+2↑,
2958- PL,    Natural product piperlongumine inhibits proliferation of oral squamous carcinoma cells by inducing ferroptosis and inhibiting intracellular antioxidant capacity
- in-vitro, Oral, HSC3
TumCP↓, lipid-P↑, ROS↑, DNMT1↑, FTH1↓, GPx4↓, eff↓, GSH↓, Ferroptosis↑, MDA↓,
3353- QC,    Quercetin triggers cell apoptosis-associated ROS-mediated cell death and induces S and G2/M-phase cell cycle arrest in KON oral cancer cells
- in-vitro, Oral, KON - in-vitro, Nor, MRC-5
tumCV↓, selectivity↑, TumCCA↑, TumCMig↓, TumCI↓, Apoptosis↑, TumMeta↓, Bcl-2↓, BAX↑, TIMP1↑, MMP2↓, MMP9↓, *Inflam↓, *neuroP↑, *cardioP↑, p38↓, MAPK↓, Twist↓, P21↓, cycD1/CCND1↓, Casp3↑, Casp9↑, p‑Akt↓, p‑ERK↓, CD44↓, CD24↓, ChemoSen↑, MMP↓, Cyt‑c↑, AIF↑, ROS↑, Ca+2↑, Hif1a↓, VEGF↓,
3374- QC,    Therapeutic effects of quercetin in oral cancer therapy: a systematic review of preclinical evidence focused on oxidative damage, apoptosis and anti-metastasis
- Review, Oral, NA - Review, AD, NA
α-SMA↓, α-SMA↑, TumCP↓, tumCV↓, TumVol↓, TumCI↓, TumMeta↓, TumCMig↓, ROS↑, Apoptosis↑, BioAv↓, *neuroP↑, *antiOx↑, *Inflam↓, *Aβ↓, *cardioP↑, MMP↓, Cyt‑c↑, MMP2↓, MMP9↓, EMT↓, MMPs↓, Twist↓, Slug↓, Ca+2↑, AIF↑, Endon↑, P-gp↓, LDH↑, HK2↓, PKA↓, Glycolysis↓, GlucoseCon↓, lactateProd↓, GRP78/BiP↑, Casp12↑, CHOP↑,
3037- RosA,    Unraveling rosmarinic acid anticancer mechanisms in oral cancer malignant transformation
- in-vitro, Oral, SCC9 - in-vitro, Oral, HSC3
survivin↓, AntiCan↑, Vim↓, Snail↓, SOX9↓, EMT↓, MMP2↓, MMP9↓, P-gp↓, TumCG↓, ROS↑, MMP↓, GSH↓, P-gp↓, ATP↓,
2166- SFN,    Sulforaphane targets cancer stemness and tumor initiating properties in oral squamous cell carcinomas via miR-200c induction
- in-vitro, Oral, NA - in-vivo, NA, NA
CSCs↓, selectivity↑, TumCMig↓, TumCI↓,
3296- SIL,    Silibinin induces oral cancer cell apoptosis and reactive oxygen species generation by activating the JNK/c-Jun pathway
- in-vitro, Oral, Ca9-22 - in-vivo, Oral, YD10B
TumCP↓, TumCCA↑, ROS↑, SOD1↓, SOD2↓, *JNK↑, toxicity?, TumCMig↓, TumCI↓, N-cadherin↓, Vim↓, E-cadherin↑, EMT↓, P53↑, cl‑Casp3↑, cl‑PARP↑, BAX↑, Bcl-2↓, SOD↓,
4437- SNP,    Green Fabrication of silver nanoparticles by leaf extract of Byttneria Herbacea Roxb and their promising therapeutic applications and its interesting insightful observations in oral cancer
- in-vitro, Oral, NA
TumCP↓,
1821- VitK3,    Menadione (Vitamin K3) induces apoptosis of human oral cancer cells and reduces their metastatic potential by modulating the expression of epithelial to mesenchymal transition markers and inhibiting migration
- in-vitro, Oral, NA - in-vitro, Nor, HEK293 - in-vitro, Nor, HaCaT
selectivity↑, TumCD↓, BAX↑, P53↑, Bcl-2↓, p65↓, E-cadherin↑, EMT↓, Vim↓, Fibronectin↓, TumCG↓, TumCMig↓,
1913- Xyl,    Partial Substitution of Glucose with Xylitol Prolongs Survival and Suppresses Cell Proliferation and Glycolysis of Mice Bearing Orthotopic Xenograft of Oral Cancer
- in-vivo, Oral, NA
TumVol↓, OS↑, PFK↓, toxicity↓, Dose∅, Ki-67↓,

* indicates research on normal cells as opposed to diseased cells
Total Research Paper Matches: 32

Pathway results for Effect on Cancer / Diseased Cells:


NA, unassigned

chemoPv↑, 2,  

Redox & Oxidative Stress

Ferroptosis↑, 2,   GPx4↓, 1,   GSH↓, 3,   HO-1↓, 1,   Iron↑, 1,   lipid-P↑, 2,   MDA↓, 1,   NRF2↓, 1,   ROS↑, 17,   SOD↓, 1,   SOD1↓, 1,   SOD2↓, 1,  

Metal & Cofactor Biology

FTH1↓, 1,  

Mitochondria & Bioenergetics

AIF↑, 5,   ATP↓, 1,   CDC25↓, 1,   MMP↓, 10,   OCR↓, 1,   OCR↑, 1,  

Core Metabolism/Glycolysis

GlucoseCon↓, 1,   Glycolysis↓, 2,   HK2↓, 1,   lactateProd↓, 1,   LDH↑, 1,   PDKs↓, 1,   PFK↓, 1,  

Cell Death

Akt↓, 1,   p‑Akt↓, 2,   APAF1↑, 1,   Apoptosis?, 1,   Apoptosis↑, 12,   mt-Apoptosis↑, 1,   BAD↑, 1,   BAX↑, 9,   Bcl-2↓, 9,   Bcl-2↑, 1,   BID↑, 3,   Casp↑, 1,   Casp12↑, 1,   Casp3↑, 4,   cl‑Casp3↑, 3,   Casp7↑, 1,   Casp8↑, 1,   Casp9↑, 4,   Chk2↑, 1,   Cyt‑c↑, 5,   Cyt‑c↝, 1,   Endon↑, 1,   FasL↑, 1,   Ferroptosis↑, 2,   MAPK↓, 1,   MAPK↑, 1,   Mcl-1↓, 1,   p27↑, 1,   p38↓, 1,   p38↑, 1,   p‑p38↑, 1,   survivin↓, 2,   TumCD↓, 1,   TumCD↑, 1,  

Kinase & Signal Transduction

SOX9↓, 1,   Sp1/3/4↓, 1,  

Transcription & Epigenetics

other↑, 1,   other↝, 1,   tumCV↓, 9,  

Protein Folding & ER Stress

CHOP↑, 1,   ER Stress↑, 1,   GRP78/BiP↑, 2,   HSF1↓, 1,  

Autophagy & Lysosomes

TumAuto↑, 1,  

DNA Damage & Repair

ATM↑, 1,   DNAdam↑, 3,   DNMT1↑, 1,   P53↑, 9,   PARP↑, 1,   cl‑PARP↑, 1,   p‑γH2AX↑, 1,  

Cell Cycle & Senescence

CDK2↓, 1,   cycD1/CCND1↓, 2,   cycD1/CCND1↑, 1,   cycE/CCNE↓, 1,   P21↓, 1,   P21↑, 5,   TumCCA↑, 12,  

Proliferation, Differentiation & Cell State

CD24↓, 1,   CD44↓, 2,   p‑cMET↓, 1,   CSCs↓, 3,   EMT↓, 6,   ERK↑, 1,   p‑ERK↓, 2,   mTOR↓, 1,   p‑mTOR↓, 1,   PI3K↓, 1,   p‑PI3K↓, 1,   STAT3↓, 2,   TumCG↓, 8,   Wnt↓, 1,  

Migration

Ca+2↑, 6,   E-cadherin↓, 1,   E-cadherin↑, 4,   Fibronectin↓, 1,   Ki-67↓, 3,   MMP2↓, 4,   MMP9↓, 4,   pro‑MMP9↓, 1,   MMPs↓, 1,   N-cadherin↓, 3,   PKA↓, 1,   Slug↓, 2,   Snail↓, 2,   TGF-β↑, 1,   TIMP1↑, 1,   TumCI↓, 5,   TumCMig↓, 7,   TumCP↓, 8,   TumMeta↓, 2,   Twist↓, 2,   uPA↓, 1,   Vim↓, 4,   α-SMA↓, 1,   α-SMA↑, 1,   β-catenin/ZEB1↑, 1,  

Angiogenesis & Vasculature

Hif1a↓, 1,   NO↑, 1,   VEGF↓, 1,  

Barriers & Transport

P-gp↓, 3,  

Immune & Inflammatory Signaling

CXCc↓, 1,   NF-kB↓, 1,   NF-kB↑, 1,   p65↓, 2,  

Hormonal & Nuclear Receptors

CDK6↓, 1,  

Drug Metabolism & Resistance

BioAv↓, 1,   BioAv↑, 1,   ChemoSen↑, 2,   Dose↝, 3,   Dose∅, 2,   eff↓, 4,   eff↑, 1,   RadioS↑, 1,   selectivity↑, 6,  

Clinical Biomarkers

Ki-67↓, 3,   LDH↑, 1,  

Functional Outcomes

AntiCan↑, 2,   AntiTum↑, 2,   chemoP↑, 1,   OS↑, 4,   QoL↑, 1,   toxicity?, 1,   toxicity↓, 1,   toxicity∅, 1,   TumVol↓, 4,   Weight↑, 1,  
Total Targets: 154

Pathway results for Effect on Normal Cells:


Redox & Oxidative Stress

antiOx↑, 1,  

Core Metabolism/Glycolysis

NH3↓, 1,  

Cell Death

JNK↑, 1,  

Protein Folding & ER Stress

ER Stress↓, 1,  

Proliferation, Differentiation & Cell State

HDAC↓, 1,  

Immune & Inflammatory Signaling

Inflam↓, 2,  

Protein Aggregation

Aβ↓, 1,  

Functional Outcomes

cardioP↑, 2,   neuroP↑, 2,   toxicity↓, 1,  
Total Targets: 10

Query results interpretion may depend on "conditions" listed in the research papers.
Such Conditions may include : 
  -low or high Dose
  -format for product, such as nano of lipid formations
  -different cell line effects
  -synergies with other products 
  -if effect was for normal or cancerous cells
Filter Conditions: Pro/AntiFlg:%  IllCat:%  CanType:47  Cells:%  prod#:%  Target#:%  State#:%  Dir#:%
wNotes=0 sortOrder:rid,rpid

 

Home Page