Database Query Results : , ,

Nor, Normal Healthy: Click to Expand ⟱
Normal Healthy

Scientific Papers found: Click to Expand⟱
4442-   Anticancer and Hepatoprotective Role of Selenium Nanoparticles against
- in-vivo, Liver, HepG2 - NA, Nor, NA
*hepatoP↑, AntiCan↑,
4113-   Post-exposure Effects of PEMF on ROS levels in H2O2-treated Glioblastoma Cell Line
- in-vitro, Nor, U87MG
*ROS↓, *SOD2↑,
2326- 2DG,    Caloric Restriction Mimetic 2-Deoxyglucose Alleviated Inflammatory Lung Injury via Suppressing Nuclear Pyruvate Kinase M2–Signal Transducer and Activator of Transcription 3 Pathway
- in-vivo, Nor, NA
PKM2↓, Inflam↓, TNF-α↓, IL6↓, OS↑,
3538- 5-HTP,    Oral Administration of 5-Hydroxytryptophan Restores Gut Microbiota Dysbiosis in a Mouse Model of Depression
- in-vivo, Nor, NA
*GutMicro↑, *BBB↑, *5HT↑, *Weight↓,
232- AL,    A Single Meal Containing Raw, Crushed Garlic Influences Expression of Immunity- and Cancer-Related Genes in Whole Blood of Humans
- Human, Nor, NA
*AhR↑, *ARNT↑, *Hif1a↑, *Jun↑, *NFAT↑, *NFAM1↑, *REL↑, *OSM↑, *NFAT↑, *CXCc↑, *IL2↑, *IL6↑, *LIF↑,
1069- AL,    Allicin promotes autophagy and ferroptosis in esophageal squamous cell carcinoma by activating AMPK/mTOR signaling
- vitro+vivo, ESCC, TE1 - vitro+vivo, ESCC, KYSE-510 - in-vitro, Nor, Het-1A
TumCP↓, LC3‑Ⅱ/LC3‑Ⅰ↑, p62↓, p‑AMPK↑, mTOR↓, TumAuto↑, NCOA4↑, MDA↑, Iron↑, TumW↓, TumVol↓, ATG5↑, ATG7↑, TfR1/CD71↓, FTH1↓, ROS↑, Iron↑, Ferroptosis↑, *toxicity↓,
1916- AL,    Allicin Bioavailability and Bioequivalence from Garlic Supplements and Garlic Foods
- Review, Nor, NA
*BioAv↝, *eff↓, *BioAv↝, *BioAv↝, *eff↑, *Half-Life∅, *eff↑, *eff↑, *Dose∅, *eff↑,
2000- AL,    Exploring the ROS-mediated anti-cancer potential in human triple-negative breast cancer by garlic bulb extract: A source of therapeutically active compounds
- in-vitro, BC, MDA-MB-231 - in-vitro, BC, MCF-7 - in-vitro, Nor, NA
selectivity↑, TumCG?, *toxicity∅, ROS↑, MMP↓, TumCCA↑, P53↑, Bcl-2↓, p‑Akt↓, p‑p38↓, *ROS∅,
2463- AL,    Garlic as an antithrombotic and antiplatelet aggregation agent
- Review, Nor, NA
AntiAg↑, other↑,
2462- AL,    Comparison of antiplatelet activity of garlic tablets with cardio-protective dose of aspirin in healthy volunteers: a randomized clinical trial
- Trial, Nor, NA
AntiAg∅,
2770- AL,    Allicin protects against renal ischemia–reperfusion injury by attenuating oxidative stress and apoptosis
- in-vivo, Nor, NA - in-vitro, Nor, NRK52E
*antiOx↑, *RenoP↑, *MDA↓, *SOD↑,
2559- AL,    Effect of the Garlic Pill in comparison with Plavix on Platelet Aggregation and Bleeding Time
- Human, Nor, NA
AntiAg↑, COX2↓, cardioP↑,
2560- AL,    Effect of garlic on platelet aggregation in humans: a study in healthy subjects and patients with coronary artery disease
- ex-vivo, Nor, NA
*AntiAg↑, BioAv↝, Dose↝,
2669- AL,  Rad,    Inhibition of ICAM-1 expression by garlic component, allicin, in gamma-irradiated human vascular endothelial cells via downregulation of the JNK signaling pathway
- in-vitro, Nor, HUVECs
*ICAM-1↓, *AP-1↓, *p‑cJun↓, *radioP↑, JNK↓,
2662- AL,    Allicin inhibits tubular epithelial-myofibroblast transdifferentiation under high glucose conditions in vitro
- in-vitro, Nor, HK-2
*α-SMA↓, *Vim↓, *COL1↓, *E-cadherin↑, *TGF-β1↓, *p‑ERK↓, *EMT↓,
2661- AL,    Allicin alleviates traumatic brain injury-induced neuroinflammation by enhancing PKC-δ-mediated mitophagy
- in-vivo, Nor, NA
*TNF-α↓, *IL1β↓, *IL6↓, *ROS↓, *NLRP3↓, *TLR4↓, *PKCδ↑, neuroP↑,
3442- ALA,    α‑lipoic acid modulates prostate cancer cell growth and bone cell differentiation
- in-vitro, Pca, 22Rv1 - in-vitro, Pca, C4-2B - in-vitro, Nor, 3T3
tumCV↓, TumCMig↓, TumCI↓, ROS↑, Hif1a↑, JNK↑, Casp↑, TumCCA↑, Apoptosis↑, selectivity↑,
3446- ALA,  CUR,    The Potential Protective Effect of Curcumin and α-Lipoic Acid on N-(4-Hydroxyphenyl) Acetamide-induced Hepatotoxicity Through Downregulation of α-SMA and Collagen III Expression
- in-vivo, Nor, NA
*hepatoP↑, *α-SMA↓, *COL3A1↓, *ROS↓, *GSH↑, *ALAT↓, *AST↓, *ALP↓, *MDA↓,
3451- ALA,    Alpha-lipoic acid ameliorates H2O2-induced human vein endothelial cells injury via suppression of inflammation and oxidative stress
- in-vitro, Nor, HUVECs
*LDH↓, *NOX4↓, *NF-kB↓, *iNOS↓, *VCAM-1↓, *ICAM-1↓, *ROS↓, *cardioP↑,
3455- ALA,    Alpha-lipoic acid inhibits proliferation and migration of human vascular endothelial cells through downregulating HSPA12B/VEGF signaling axis
- in-vitro, Nor, HUVECs
*cMyc↓, *VEGF↓, *eNOS↓, angioG↓,
3283- ALA,    Alpha-lipoic acid inhibits TNF-alpha-induced NF-kappaB activation and adhesion molecule expression in human aortic endothelial cells
- in-vitro, Nor, NA
*TNF-α↓, *NF-kB↓, *antiOx↑, *IronCh↑, *GSSG↓, *VCAM-1↓, *E-sel↓, *ICAM-1↓, *MCP1↓, *NF-kB↓, IKKα↓,
1235- ALA,  Cisplatin,    α-Lipoic acid prevents against cisplatin cytotoxicity via activation of the NRF2/HO-1 antioxidant pathway
- in-vitro, Nor, HEI-OC1 - ex-vivo, NA, NA
ROS↑, HO-1↓, *toxicity↓, chemoP↑, *ROS↓, *HO-1↑, *SOD1↑, *NRF2↑,
4512- aLinA,  GLA,    Evening primrose oil: a comprehensive review of its bioactives, extraction, analysis, oil quality, therapeutic merits, and safety
- in-vivo, Nor, NA
*other↝,
1078- And,    Andrographolide inhibits breast cancer through suppressing COX-2 expression and angiogenesis via inactivation of p300 signaling and VEGF pathway
- in-vitro, BC, MDA-MB-231 - in-vitro, Nor, HUVECs - in-vivo, BC, MCF-7 - in-vitro, BC, T47D - in-vitro, BC, BT549 - in-vitro, BC, MDA-MB-361
TumCP↓, COX2↓, *angioG↓, Cyt‑c↑, CREB2↓, cFos↓, NF-kB↓, HATs↓, cl‑Casp3↑, cl‑Casp9↑, Bax:Bcl2↑, Apoptosis↑, *toxicity↓,
1347- And,    Suppression of rat neutrophil reactive oxygen species production and adhesion by the diterpenoid lactone andrographolide
- in-vitro, Nor, NA
*ROS↓,
1146- AP,    Potential use of nanoformulated ascorbyl palmitate as a promising anticancer agent: First comparative assessment between nano and free forms
- in-vivo, Nor, NA
TumCCA↑, Apoptosis↑, IL6↓, STAT3↓, angioG↓, TumMeta↓, VEGF↓, MMP9↓, SOD↑, Catalase↑, GSH↓, MDA↓, NO↓, *BioAv↑,
1152- Api,    Does Oral Apigenin Have Real Potential for a Therapeutic Effect in the Context of Human Gastrointestinal and Other Cancers?
- Analysis, Nor, NA
*BioAv↓, Half-Life∅, *BioAv↓, Dose∅, eff↑, CYP1A2↓, CYP2C9↓, CYP3A4↓,
1999- Api,  doxoR,    Apigenin ameliorates doxorubicin-induced renal injury via inhibition of oxidative stress and inflammation
- in-vitro, Nor, NRK52E - in-vitro, Nor, MPC5 - in-vitro, BC, 4T1 - in-vivo, NA, NA
neuroP↑, ChemoSen∅, RenoP↑, selectivity↑, chemoP↑, ROS↑, *ROS∅, *antiOx↑, *toxicity↓,
1538- Api,    Enhancing oral bioavailability using preparations of apigenin-loaded W/O/W emulsions: In vitro and in vivo evaluations
- in-vivo, Nor, NA
*BioAv↑,
1544- Api,    The flavone apigenin blocks nuclear translocation of sterol regulatory element-binding protein-2 in the hepatic cells WRL-68
- in-vitro, Nor, WRL68
*SREBF2↓, *HMGCR↓, *Dose∅, *BioAv?,
1565- Api,    Apigenin-7-glucoside induces apoptosis and ROS accumulation in lung cancer cells, and inhibits PI3K/Akt/mTOR pathway
- in-vitro, Lung, A549 - in-vitro, Nor, BEAS-2B - in-vitro, Lung, H1975
TumCP↓, Apoptosis↑, TumCMig↓, TumCI↓, Cyt‑c↑, MDA↑, GSH↓, ROS↑, PI3K↓, Akt↓, mTOR↓,
1557- Api,    Preparation of apigenin nanocrystals using supercritical antisolvent process for dissolution and bioavailability enhancement
- in-vitro, Nor, NA
*BioAv↑,
1561- Api,    Apigenin Reactivates Nrf2 Anti-oxidative Stress Signaling in Mouse Skin Epidermal JB6 P + Cells Through Epigenetics Modifications
- in-vivo, Nor, JB6
*NRF2↑, *DNMT1↓, *DNMT3A↓, *HDAC↓, *AntiCan↑,
1563- Api,  MET,    Metformin-induced ROS upregulation as amplified by apigenin causes profound anticancer activity while sparing normal cells
- in-vitro, Nor, HDFa - in-vitro, PC, AsPC-1 - in-vitro, PC, MIA PaCa-2 - in-vitro, Pca, DU145 - in-vitro, Pca, LNCaP - in-vivo, NA, NA
selectivity↑, selectivity↑, selectivity↓, ROS↑, eff↑, tumCV↓, MMP↓, Dose∅, eff↓, DNAdam↑, Apoptosis↑, TumAuto↑, Necroptosis↑, p‑P53↑, BIM↑, BAX↑, p‑PARP↑, Casp3↑, Casp8↑, Casp9↑, Cyt‑c↑, Bcl-2↓, AIF↑, p62↑, LC3B↑, MLKL↑, p‑MLKL↓, RIP3↑, p‑RIP3↑, TumCG↑, TumW↓,
2317- Api,    Apigenin intervenes in liver fibrosis by regulating PKM2-HIF-1α mediated oxidative stress
- in-vivo, Nor, NA
*hepatoP↑, *PKM2↓, *Hif1a↓, *MDA↓, *Catalase↓, *GSH↑, *SOD↑, *GPx↑, *TAC↑, *α-SMA↓, *Vim↓, *ROS↓,
2318- Api,    Apigenin as a multifaceted antifibrotic agent: Therapeutic potential across organ systems
- Review, Nor, NA
*ROS↓, *PKM2↓, *Hif1a↓, *TGF-β↓, *AMPK↑, *Inflam↓, *PI3K↓, *Akt↑, *NRF2↑, *NF-kB↓,
3392- ART/DHA,    Artemisinin inhibits inflammatory response via regulating NF-κB and MAPK signaling pathways
- in-vitro, Nor, Hep3B - in-vivo, NA, NA
*Inflam↓, *NF-kB↓, *ROS↓, *p‑p38↓, *p‑ERK↓,
3386- ART/DHA,    Effects of Caffeine-Artemisinin Combination on Liver Function and Oxidative Stress in Selected Organs in 7,12-Dimethylbenzanthracene-Treated Rats
- in-vivo, Nor, NA
*MDA↑, *SOD↓, *GSH∅, *Catalase↓,
3388- ART/DHA,    Keap1 Cystenine 151 as a Potential Target for Artemisitene-Induced Nrf2 Activation
- in-vitro, Lung, A549 - in-vitro, Nor, GP-293 - in-vitro, BC, MDA-MB-231
NRF2↑, ROS∅,
2570- ART/DHA,    Discovery, mechanisms of action and combination therapy of artemisinin
- Review, Nor, NA
*BioAv↓, *Half-Life↓, *toxicity↓, *ROS↑, GSH↓, selectivity↑,
2569- ART/DHA,    A semiphysiological pharmacokinetic model for artemisinin in healthy subjects incorporating autoinduction of metabolism and saturable first-pass hepatic extraction
- Human, Nor, NA
*Half-Life↝, BioAv↝, *Half-Life↓, BioAv↑, *Dose↝,
1074- ART/DHA,    Artemisinin attenuates lipopolysaccharide-stimulated proinflammatory responses by inhibiting NF-κB pathway in microglia cells
- in-vitro, Nor, BV2
*TNF-α↓, *IL6↓, *MCP1↓, *NO↓, *iNOS↓, *IκB↑,
1075- ART/DHA,    Artemisinin derivatives inactivate cancer-associated fibroblasts through suppressing TGF-β signaling in breast cancer
- in-vitro, Nor, L929
*TGF-β↓,
1147- ART/DHA,    Inhibitory effects of artesunate on angiogenesis and on expressions of vascular endothelial growth factor and VEGF receptor KDR/flk-1
- vitro+vivo, Ovarian, HO-8910 - vitro+vivo, Nor, HUVECs
angioG↓, TumCG↓, VEGF↓, KDR/FLK-1↓, *toxicity↓,
4991- ART/DHA,  doxoR,    Dihydroartemisinin alleviates doxorubicin-induced cardiotoxicity and ferroptosis by activating Nrf2 and regulating autophagy
- in-vivo, Nor, H9c2
*cardioP↑, *ROS↓, *Ferroptosis↓, *NRF2↑, Keap1↓,
1097- AS,    Astragalus Inhibits Epithelial-to-Mesenchymal Transition of Peritoneal Mesothelial Cells by Down-Regulating β-Catenin
- in-vitro, Nor, HMrSV5 - in-vivo, NA, NA
*EMT↓, *E-cadherin↑, *α-SMA↓, *Vim↓, *β-catenin/ZEB1↓, *Smad7↑,
1355- Ash,    Withaferin A-Induced Apoptosis in Human Breast Cancer Cells Is Mediated by Reactive Oxygen Species
- in-vitro, BC, MDA-MB-231 - in-vitro, BC, MCF-7 - in-vitro, Nor, HMEC
eff↑, mt-ROS↑, mitResp↓, OXPHOS↓, compIII↑, BAX↑, Bak↑, other↓, ATP∅, *ROS∅,
2003- Ash,    Withaferin A Induces Cell Death Selectively in Androgen-Independent Prostate Cancer Cells but Not in Normal Fibroblast Cells
- in-vitro, Pca, PC3 - in-vitro, Pca, DU145 - in-vitro, Nor, TIG-1 - in-vitro, PC, LNCaP
TumCD↑, selectivity↑, cFos↑, ROS↑, *ROS∅, HSP70/HSPA5↑, Apoptosis↑, ER Stress↑, TumCCA↑,
1178- Ash,    Withaferin A suppresses the expression of vascular endothelial growth factor in Ehrlich ascites tumor cells via Sp1 transcription factor
- in-vitro, Nor, HUVECs - in-vivo, NA, NA
*VEGF↓, *angioG↓, *ascitic↓, *Sp1/3/4↓,
1173- Ash,    Withaferin A inhibits proliferation of human endometrial cancer cells via transforming growth factor-β (TGF-β) signalling
- in-vitro, EC, K1 - in-vitro, Nor, THESCs
TumCP↓, *toxicity↓, Apoptosis↑, TumCCA↑, TumCMig↓, TumCI↓, p‑SMAD2↓, TGF-β↓, *toxicity↓,
1142- Ash,    Ashwagandha-Induced Programmed Cell Death in the Treatment of Breast Cancer
- Review, BC, MCF-7 - NA, BC, MDA-MB-231 - NA, Nor, HMEC
Apoptosis↑, ROS↑, DNAdam↑, OXPHOS↓, *ROS∅, Bcl-2↓, XIAP↓, survivin↓, DR5↑, IKKα↓, NF-kB↓, selectivity↑, *ROS∅, eff↓, Paraptosis↑,
3178- Ash,    Withaferin A Inhibits Neutrophil Adhesion, Migration, and Respiratory Burst and Promotes Timely Neutrophil Apoptosis
- Review, Nor, NA
ITGB1↓,
3165- Ash,    Inhibitory effect of withaferin A on Helicobacter pylori‑induced IL‑8 production and NF‑κB activation in gastric epithelial cells
- in-vitro, Nor, NA
*IL8↓, *Inflam↓,
3170- Ash,    Withaferin A protects against hyperuricemia induced kidney injury and its possible mechanisms
- in-vitro, Nor, NRK52E - in-vivo, NA, NA
*RenoP↑, *hepatoP↑, *creat↓, *BUN↓, *uricA↓, *Apoptosis↓, *α-SMA↓,
3172- Ash,    Implications of Withaferin A for the metastatic potential and drug resistance in hepatocellular carcinoma cells via Nrf2-mediated EMT and ferroptosis
- in-vitro, HCC, HepG2 - in-vitro, Nor, HL7702
Keap1↑, NRF2↓, EMT↓, TumCP↓, TumCI↓, selectivity↑, *toxicity↓, ROS↑, MDA↑, GSH↓, Ferroptosis↑,
4810- ASTX,    Effects of Astaxanthin on the Proliferation and Migration of Breast Cancer Cells In Vitro
- in-vitro, BC, MDA-MB-231 - in-vitro, Nor, MCF10
TumCP↓, TumCMig↓, selectivity↑, *BDNF↑, *ROS↓, *TNF-α↓, *IL6↓, *IFN-γ↓, *NF-kB↓, BAX⇅, Bcl-2↓, *antiOx↑, radioP↑, ChemoSen↑,
4818- ASTX,  MEL,    Effect of astaxanthin and melatonin on cell viability and DNA damage in human breast cancer cell lines
- in-vitro, BC, MDA-MB-231 - in-vitro, BC, T47D - in-vitro, Nor, MCF10
TumCD↑, DNAdam↑, *antiOx↑, *AntiTum↑, Inflam↓, tumCV↓, Bcl-2↓, Apoptosis↓, selectivity↑, eff↑, Dose↓,
4824- ASTX,  Rad,    Astaxanthin protects the radiation-induced lung injury in C57BL/6 female mice
- in-vivo, Nor, NA
*radioP↑, Inflam↓,
4825- ASTX,    In vivo protective efficacy of astaxanthin against ionizing radiation-induced DNA damage
- in-vivo, Nor, NA
*DNAdam↓, *radioP↑,
4979- ATV,  Rad,    Short‐Term Statin Treatment Reduces, and Long‐Term Statin Treatment Abolishes, Chronic Vascular Injury by Radiation Therapy
- in-vivo, Nor, NA
radioP↑, radioP↑,
1098- BA,    Baicalein inhibits fibronectin-induced epithelial–mesenchymal transition by decreasing activation and upregulation of calpain-2
- in-vitro, Nor, MCF10 - in-vivo, NA, NA
*TumCMig↓, *F-actin↓, *E-cadherin↑, *ZO-1↑, *N-cadherin↓, *Vim↓, *Snail↓, *cal2↓, *Ca+2↝,
1535- Ba,    Baicalein May Act as a Caloric Restriction Mimetic Candidate to Improve the Antioxidant Profile in a Natural Rodent Model of Aging
- in-vivo, Nor, NA
*antiOx↑, *ROS∅, *CRM↑,
1533- Ba,    Baicalein, as a Prooxidant, Triggers Mitochondrial Apoptosis in MCF-7 Human Breast Cancer Cells Through Mobilization of Intracellular Copper and Reactive Oxygen Species Generation
- in-vitro, BrCC, MCF-7 - in-vitro, Nor, MCF10
tumCV↓, i-ROS↑, MMP↓, Bcl-2↓, BAX↑, Cyt‑c↑, Casp9↑, Casp3↑, eff↓, selectivity↑, *toxicity∅, Apoptosis↑, Fenton↑,
1522- Ba,    Baicalein reduces lipopolysaccharide-induced inflammation via suppressing JAK/STATs activation and ROS production
- in-vitro, Nor, RAW264.7
*p‑STAT1↓, *p‑STAT3↓, *p‑JAK1↓, *p‑JAK2↓, *iNOS↓, *NO↓, *IL1β↓, *IL6↓, *TNF-α↓, *ROS↓,
1523- Ba,    Baicalein induces human osteosarcoma cell line MG-63 apoptosis via ROS-induced BNIP3 expression
- in-vitro, OS, MG63 - in-vitro, Nor, hFOB1.19
TumCD↑, Apoptosis↑, ROS↑, eff↓, Casp3↑, Bcl-2↓, selectivity↑, Cyt‑c↑, LDH?, BNIP3?, BAX↑,
1527- Ba,    Baicalein Alleviates Arsenic-induced Oxidative Stress through Activation of the Keap1/Nrf2 Signalling Pathway in Normal Human Liver Cells
- in-vitro, Nor, MIHA
*p‑NRF2↑, *ROS↓, *MDA↓, *antiOx↑,
1530- Ba,    Baicalein Decreases Hydrogen Peroxide‐Induced Damage to NG108‐15 Cells via Upregulation of Nrf2
- in-vitro, Nor, NG108-15
*12LOX↓, *ROS↓, *NRF2↑, *eff↑,
2047- BA,    Sodium butyrate inhibits migration and induces AMPK-mTOR pathway-dependent autophagy and ROS-mediated apoptosis via the miR-139-5p/Bmi-1 axis in human bladder cancer cells
- in-vitro, CRC, T24 - in-vitro, Nor, SV-HUC-1 - in-vitro, Bladder, 5637 - in-vivo, NA, NA
HDAC↓, AntiTum↑, TumCMig↓, AMPK↑, mTOR↑, TumAuto↑, ROS↑, miR-139-5p↑, BMI1↓, TumCI?, E-cadherin↑, N-cadherin↓, Vim↓, Snail↓, cl‑PARP↑, cl‑Casp3↑, BAX↑, Bcl-2↓, Bcl-xL↓, MMP↓, PINK1↑, PARK2↑, TumMeta↓, TumCG↓, LC3II↑, p62↓, eff↓,
2613- Ba,    Hepatoprotective Effect of Baicalein Against Acetaminophen-Induced Acute Liver Injury in Mice
- in-vivo, Nor, NA
*hepatoP↑, *MDA↓, *SOD↑, *Catalase↑, *GSH↑, *MAPK↓, *p‑JAK2↓, *p‑STAT3↓, *ALAT↓, *AST↓, *ROS↓, *antiOx↑,
2601- Ba,    Cardioprotective effects of baicalein on heart failure via modulation of Ca2 + handling proteins in vivo and in vitro
- in-vitro, Nor, NA - in-vivo, Nor, NA
*cardioP↑, *p‑Ca+2↓,
2604- Ba,  BA,    Comparison of metabolic pharmacokinetics of baicalin and baicalein in rats
- in-vivo, Nor, NA
*BioAv↝, *BioAv↝,
2607- Ba,  SIL,    Baicalein Enhances the Oral Bioavailability and Hepatoprotective Effects of Silybin Through the Inhibition of Efflux Transporters BCRP and MRP2
- in-vivo, Nor, NA
*BioEnh↑, *hepatoP↑, *antiOx↑, *Inflam↓,
2610- Ba,    Hepatoprotective effects of baicalein against CCl4-induced acute liver injury in mice
- in-vivo, Nor, NA
*TNF-α↑, *IL6↑, *hepatoP↑,
2611- Ba,    Baicalein as a potent neuroprotective agent: A review
- Review, Nor, NA - Review, AD, NA - Review, Park, NA
*neuroP↑, *ROS↓, *β-Amyloid↓,
2623- Ba,    Activation of the Nrf2/HO-1 signaling pathway contributes to the protective effects of baicalein against oxidative stress-induced DNA damage and apoptosis in HEI193 Schwann cells
- in-vitro, Nor, HEI193
*DNAdam↓, *ROS↓, *Bax:Bcl2↓, *p‑NRF2↑, *HO-1↑, *neuroP↑, *MMP↑,
2624- Ba,    Baicalein inhibition of hydrogen peroxide-induced apoptosis via ROS-dependent heme oxygenase 1 gene expression
- in-vitro, Nor, RAW264.7
*HO-1↑, *ERK↑, *ROS↓, *eff↑, *MMP↑, *Cyt‑c∅,
2630- Ba,    Baicalein decreases uric acid and prevents hyperuricemic nephropathy in mice
- in-vivo, Nor, NA
*RenoP↑, *uricA↓, *ROS↓, EMT↓,
2628- Ba,  Cisplatin,    Baicalein alleviates cisplatin-induced acute kidney injury by inhibiting ALOX12-dependent ferroptosis
- in-vitro, Nor, HK-2
*RenoP↑, *12LOX↓, *Ferroptosis↓,
2629- Ba,    Baicalein, a Component of Scutellaria baicalensis, Attenuates Kidney Injury Induced by Myocardial Ischemia and Reperfusion
- in-vivo, Nor, NA
*RenoP↑, *Apoptosis↓, *TNF-α↓, *IL1↓, *Bcl-2↑, *BAX↓, *Akt↑,
2293- Ba,    Baicalein suppresses inflammation and attenuates acute lung injury by inhibiting glycolysis via HIF‑1α signaling
- in-vitro, Nor, MH-S - in-vivo, NA, NA
*Hif1a↓, *Glycolysis↓, *Inflam↓, *HK2↓, *PFK1↓, *PKM2↓,
2294- Ba,    Baicalein attenuates cardiac hypertrophy in mice via suppressing oxidative stress and activating autophagy in cardiomyocytes
- in-vivo, Nor, NA
*Catalase↑, *ROS↓, *cardioP↑, *FOXO3?,
2473- BA,    Baicalin Inhibits EMT through PDK1/AKT Signaling in Human Nonsmall Cell Lung Cancer
- in-vitro, Lung, A549 - in-vitro, Nor, BEAS-2B - in-vitro, Lung, H460
EMT↓, PDK1↓, Akt↓, TumCMig↓, E-cadherin↑, Vim↓,
2474- Ba,    Anticancer properties of baicalein: a review
- Review, Var, NA - in-vitro, Nor, BV2
ROS⇅, ROS↑, ER Stress↑, Ca+2↑, Apoptosis↑, eff↑, DR5↑, 12LOX↓, Cyt‑c↑, Casp7↑, Casp9↑, Casp3↑, cl‑PARP↑, TumCCA↑, cycE/CCNE↑, CDK4↓, cycD1/CCND1↓, VEGF↓, cMyc↓, Hif1a↓, NF-kB↓, BioEnh↑, BioEnh↑, P450↓, *Hif1a↓, *iNOS↓, *COX2↓, *VEGF↓, *ROS↓, *PI3K↓, *Akt↓,
2769- Ba,  Rad,    Baicalein ameliorates ionizing radiation-induced injuries by rebalancing gut microbiota and inhibiting apoptosis
- in-vivo, Nor, NA
*radioP↑, GutMicro↑, *P53↓, *Apoptosis↑, *DR4↓,
1242- BBM,    Berbamine Exerts Anti-Inflammatory Effects via Inhibition of NF-κB and MAPK Signaling Pathways
- in-vivo, Nor, NA
*Macrophages↓, *Neut↓, *p‑NF-kB↓, *p‑MAPK↓, *p‑JNK↓, *p‑ERK↓,
2023- BBR,    Berberine Induces Caspase-Independent Cell Death in Colon Tumor Cells through Activation of Apoptosis-Inducing Factor
- in-vitro, Colon, NA - in-vitro, Nor, YAMC
TumCD↑, *toxicity↓, selectivity↑, ROS↑, *ROS∅, MMP↓, *MMP∅, PARP↑, BioAv↝,
2022- BBR,  GoldNP,  Rad,    Berberine-loaded Janus gold mesoporous silica nanocarriers for chemo/radio/photothermal therapy of liver cancer and radiation-induced injury inhibition
- in-vitro, Liver, SMMC-7721 cell - in-vitro, Nor, HL7702
*toxicity↓, radioP↑, BioAv↑, AntiTum↑, selectivity↑, eff↑, chemoP↑,
1380- BBR,  doxoR,    treatment with ROS scavenger N-acetylcysteine (NAC) and JNK inhibitor SP600125 could partially attenuate apoptosis and DNA damage triggered by DCZ0358.
- in-vivo, Nor, NA
*ROS↓, *MDA↓, *SOD↑, *NRF2↑, *HO-1↑,
2696- BBR,    Berberine regulates proliferation, collagen synthesis and cytokine secretion of cardiac fibroblasts via AMPK-mTOR-p70S6K signaling pathway
- in-vivo, Nor, NA
*α-SMA↓, *TGF-β1↓, *IL10↑, *p‑AMPK↑, *p‑mTOR↓, *P70S6K↓, *cardioP↑,
2700- BBR,    Cell-specific pattern of berberine pleiotropic effects on different human cell lines
- in-vitro, GBM, U343 - in-vitro, GBM, MIA PaCa-2 - in-vitro, Nor, HDFa
selectivity↑, TumCCA↑, Casp3↑, TumCI↓, TumCMig↓, N-cadherin?, DNMT1↑,
2705- BBR,    Mechanism underlying berberine's effects on HSP70/TNFα under heat stress: Correlation with the TATA boxes
- in-vivo, Nor, NA - in-vitro, Nor, PC12
HSP70/HSPA5↓, TNF-α↓,
2713- BBR,    Berberine improved the microbiota in lung tissue of colon cancer and reversed the bronchial epithelial cell changes caused by cancer cells
- in-vitro, Nor, BEAS-2B
*GutMicro↑, *IL6↑, *IL10↑, *IL17↑, *IFN-γ↑, PDGF↓, *RAD51↓,
2676- BBR,    Berberine protects rat heart from ischemia/reperfusion injury via activating JAK2/STAT3 signaling and attenuating endoplasmic reticulum stress
- in-vivo, Nor, NA - in-vivo, CardioV, NA
*cardioP↑, *ROS↓, *ER Stress↓, *p‑PERK↓, *p‑eIF2α↓, *ATF4↓, CHOP↓, *JAK2↑, *STAT3↑, *UPR↓,
2684- BBR,    Berberine is a Novel Mitochondrial Calcium Uniporter Inhibitor that Disrupts MCU‐EMRE Assembly
- in-vivo, Nor, NA
*MCU↓, *mt-Ca+2↓, *cardioP↑,
2686- BBR,    Effects of resveratrol, curcumin, berberine and other nutraceuticals on aging, cancer development, cancer stem cells and microRNAs
- Review, Nor, NA
Inflam↓, IL6↓, MCP1↓, COX2↓, PGE2↓, MMP2↓, MMP9↓, DNAdam↑, eff↝, Telomerase↓, Bcl-2↓, AMPK↑, ROS↑, MMP↓, ATP↓, p‑mTORC1↓, p‑S6K↓, ERK↓, PI3K↓, PTEN↑, Akt↓, Raf↓, MEK↓, Dose↓, Dose↑, selectivity↑, TumCCA↑, eff↑, EGFR↓, Glycolysis↓, Dose?, p27↑, CDK2↓, CDK4↓, cycD1/CCND1↓, cycE/CCNE↓, Bax:Bcl2↑, Casp3↑, Casp9↑, VEGFR2↓, ChemoSen↑, eff↑, eff↑, PGE2↓, JAK2↓, STAT3↓, CXCR4↓, CCR7↓, uPA↓, CSCs↓, EMT↓, Diff↓, CD133↓, Nestin↓, n-MYC↓, NOTCH↓, SOX2↓, Hif1a↓, VEGF↓, RadioS↑,
2689- BBR,    Berberine protects against glutamate-induced oxidative stress and apoptosis in PC12 and N2a cells
- in-vitro, Nor, PC12 - in-vitro, AD, NA - in-vitro, Stroke, NA
*ROS↓, *lipid-P↓, *DNAdam↓, *GSH↑, *SOD↑, *eff↑, *cl‑Casp3↓, *BAX↓, *neuroP↑, *Dose↝, *Ca+2↓,
2336- BBR,    Berberine Targets PKM2 to Activate the t-PA-Induced Fibrinolytic System and Improves Thrombosis
- in-vivo, Nor, NA
*PKM2↓,
956- BBR,    Berberine inhibits HIF-1alpha expression via enhanced proteolysis
- in-vitro, Nor, HUVECs - in-vitro, GC, SCM1
Hif1a↓, angioG↓,
932- BBR,    The short-term effects of berberine in the liver: Narrow margins between benefits and toxicity
- in-vivo, Nor, NA
*glucoNG↓, *Glycolysis↑, *NH3↑, *NADPH/NADP+↑, *ATP↓, *toxicity↑,
2749- BetA,    Anti-Inflammatory Activities of Betulinic Acid: A Review
- Review, Nor, NA
Inflam↓, *NO↓, *IL10↑, *ICAM-1↓, *VCAM-1↓, *E-sel↓, *NF-kB↓, *IKKα↓, *COX2↓, *PGE2↓, *IL1β↓, *IL6↓, *IL8↓, *IL12↓, *TNF-α↑, *HO-1↑, *IL10↑, *IL2↓, *IL17↓, *IFN-γ↓, *SOD↑, *GPx↑, *GSR↑, *MDA↓, *MAPK↓,
2758- BetA,    Betulinic Acid Attenuates Oxidative Stress in the Thymus Induced by Acute Exposure to T-2 Toxin via Regulation of the MAPK/Nrf2 Signaling Pathway
- in-vivo, Nor, NA
*ROS↓, *MDA↓, *SOD↑, *GSH↑, *p‑p38↓, *p‑JNK↓, *p‑ERK↓, *NRF2↑, *HO-1↑, *MAPK↓, *heparanase↑, *antiOx↑,
2761- BetA,    Betulinic acid increases lifespan and stress resistance via insulin/IGF-1 signaling pathway in Caenorhabditis elegans
- in-vivo, Nor, NA
Insulin↓, IGF-1↓, *SOD↑, *Catalase↑, *GSH↑, *MDA↓, *antiOx?,
2771- BetA,    Cardioprotective Effect of Betulinic Acid on Myocardial Ischemia Reperfusion Injury in Rats
- in-vivo, Nor, NA - in-vivo, Stroke, NA
*cardioP↑, *LDH↓, eff↑,
2724- BetA,    Down-regulation of NOX4 by betulinic acid protects against cerebral ischemia-reperfusion in mice
- in-vivo, Nor, NA - in-vivo, Stroke, NA
AntiTum↑, *Inflam↓, *ROS↓, *NOX4↓, *Apoptosis↓, neuroP↑,
2725- BetA,    Betulinic acid protects against renal damage by attenuation of oxidative stress and inflammation via Nrf2 signaling pathway in T-2 toxin-induced mice
- in-vivo, Nor, NA
*RenoP↑, *SOD?, *Catalase↑, *GSH↑, *ROS↓, *MDA↓, *IL1β↓, *TNF-α↓, *IL10↓, *IL6↑, *NRF2↑,
2739- BetA,    Glycolytic Switch in Response to Betulinic Acid in Non-Cancer Cells
- in-vitro, Nor, HUVECs - in-vitro, Nor, MEF
*Glycolysis↑, *GlucoseCon↑, *Apoptosis↓, *UCP1↓, *AMPK↑, GLUT1↑, mt-ROS↑,
2732- BetA,  Chemo,    Betulinic acid chemosensitizes breast cancer by triggering ER stress-mediated apoptosis by directly targeting GRP78
- in-vitro, BC, MCF-7 - in-vitro, BC, MDA-MB-231 - in-vitro, Nor, MCF10
ChemoSen↑, selectivity↑, GRP78/BiP↑, ER Stress↑, PERK↑, Ca+2↑, Cyt‑c↑, BAX↑, Bcl-2↓,
1566- betaCar,  Lyco,    Antioxidant and pro-oxidant effects of lycopene in comparison with beta-carotene on oxidant-induced damage in Hs68 cells
- in-vitro, Nor, HS68
*ROS↑, *ROS⇅, *Dose?,
3691- BM,    Effects of a Standardized Bacopa monnieri Extract on Cognitive Performance, Anxiety, and Depression in the Elderly: A Randomized, Double-Blind, Placebo-Controlled Trial
- Study, Nor, NA
*cognitive↑, *memory↑, *BP∅,
3513- Bor,    Boric Acid Activation of eIF2α and Nrf2 Is PERK Dependent: a Mechanism that Explains How Boron Prevents DNA Damage and Enhances Antioxidant Status
- in-vitro, Pca, DU145 - in-vitro, Nor, MEF
NRF2↑, selectivity↑, NQO1↑, GCLC↑, HO-1↑, TumCP↓,
3517- Bor,  Se,    The protective effects of selenium and boron on cyclophosphamide-induced hepatic oxidative stress, inflammation, and apoptosis in rats
- in-vivo, Nor, NA
*hepatoP↑, *ALAT↓, *AST↓, *ALP↓, *NF-kB↓, *TNF-α↓, *IL1β↓, *IL6↓, *IL10↑, *SOD↑, *Catalase↑, *MDA↓, *GSH↑, *GPx↑, *antiOx↑, *NRF2↑, *Keap1↓,
3515- Bor,    EVIDENCE THAT BORON DOWN-REGULATES INFLAMMATION THROUGH THE NF-(KAPPA)B PATHWAY
- in-vitro, Nor, NA
*TNF-α↓, *IL1β↓, *MIP‑1α↓, *iNOS↓, *NF-kB↓,
3510- Bor,    Boron Affects the Development of the Kidney Through Modulation of Apoptosis, Antioxidant Capacity, and Nrf2 Pathway in the African Ostrich Chicks
- in-vivo, Nor, NA
*RenoP↑, *ROS↓, *antiOx↑, *Apoptosis↓, *NRF2↑, *HO-1↑, *MDA↓, *lipid-P↓, *GPx↓, *Catalase↑, *SOD↑, *ALAT↓, *AST↓, *ALP↓,
729- Bor,    Promising potential of boron compounds against Glioblastoma: In Vitro antioxidant, anti-inflammatory and anticancer studies
- in-vitro, GBM, U87MG - in-vivo, Nor, HaCaT
TOS↑, TumCG↓, MDA↑, SOD↑, Catalase↑, TAC↓, GSH↓, BRAF↑, MAPK↓, PTEN↓, Raf↓, *toxicity↓,
731- Bor,    Protective Effect of Boric Acid Against Ochratoxin A-Induced Toxic Effects in Human Embryonal Kidney Cells (HEK293): A Study on Cytotoxic, Genotoxic, Oxidative, and Apoptotic Effects
- in-vitro, Nor, HEK293
*ROS↓,
757- Bor,    Phenylboronic acid is a more potent inhibitor than boric acid of key signaling networks involved in cancer cell migration
- in-vitro, Pca, DU145 - in-vitro, Nor, RWPE-1
Rho↓, Rac1↓, Cdc42↓, *eff↑,
744- Bor,    Borax affects cellular viability by inducing ER stress in hepatocellular carcinoma cells by targeting SLC12A5
- in-vitro, HCC, HepG2 - in-vitro, Nor, HL7702
TumCCA↑, SLC12A5↓, ATF6↑, CHOP↑, GRP78/BiP↑, Casp3↑, ER Stress↝, *toxicity↓, *eff↓,
738- Bor,    Borax induces ferroptosis of glioblastoma by targeting HSPA5/NRF2/GPx4/GSH pathways
- in-vitro, GBM, U251 - in-vitro, GBM, A172 - in-vitro, Nor, SVGp12
TumCP↓, GPx4↓, GSH↓, HSP70/HSPA5↓, NRF2↓, MDA↑, Casp3↑, Casp7↑, Ferroptosis↑, selectivity↑,
739- Bor,    Borax regulates iron chaperone- and autophagy-mediated ferroptosis pathway in glioblastoma cells
- in-vitro, GBM, U87MG - in-vitro, Nor, HMC3
TumCG↓, TumCP↓, TumCCA↑, PCBP1↓, GSH↓, GPx4↓, Beclin-1↑, MDA↑, ACSL4↑, Casp3↑, Casp7↑, Ferroptosis↑, *toxicity↓,
740- Bor,    Anti-cancer effect of boron derivatives on small-cell lung cancer
- in-vitro, Lung, DMS114 - in-vitro, Nor, MRC-5
Apoptosis↑, TumCCA↑, P53↑, Casp3↑, *toxicity↓,
745- Bor,    Investigation of cytotoxic antiproliferative and antiapoptotic effects of nanosized boron phosphate filled sodium alginate composite on glioblastoma cancer cells
- in-vitro, GBM, U87MG - in-vitro, Nor, L929 - in-vitro, GBM, T98G
TumCD↑, *toxicity↓,
1425- Bos,    Protective Effect of Boswellic Acids against Doxorubicin-Induced Hepatotoxicity: Impact on Nrf2/HO-1 Defense Pathway
- in-vivo, Nor, NA
*ChemoSen↑, *NRF2↑, *HO-1↑, *ROS↓, *lipid-P↓, *DNAdam↓,
1419- Bos,    Enhanced Bioavailability of Boswellic Acid by Piper longum: A Computational and Pharmacokinetic Study
- in-vivo, Nor, NA
*BioAv↑,
1421- Bos,    Coupling of boswellic acid-induced Ca2+ mobilisation and MAPK activation to lipid metabolism and peroxide formation in human leucocytes
- in-vitro, AML, HL-60 - in-vitro, Nor, NA
ROS↑, NADPH↝, 5LO↓, Ca+2↑, p38↑, p42↑,
1447- Bos,    Boswellia carterii n-hexane extract suppresses breast cancer growth via induction of ferroptosis by downregulated GPX4 and upregulated transferrin
- in-vitro, BC, MDA-MB-231 - in-vitro, BC, MCF-7 - in-vivo, BC, 4T1 - in-vitro, Nor, MCF10
tumCV↓, AntiCan↑, *toxicity↓, Ferroptosis↑, i-Iron↑, GPx4↓, ROS↑, lipid-P↑, Tf↑, TumCG↓,
2024- Bos,    Antiproliferative and cell cycle arrest potentials of 3-O-acetyl-11-keto-β-boswellic acid against MCF-7 cells in vitro
- in-vitro, BC, MCF-7 - in-vitro, Nor, MCF10
MMP↓, Cyt‑c↑, ROS↑, Casp8↑, Casp9↑, AntiTum↑, selectivity↑, TumCCA↑,
3867- Bos,    Effect of food intake on the bioavailability of boswellic acids from a herbal preparation in healthy volunteers
- Human, Nor, NA
*eff↑, BioAv↝,
2779- Bos,    Identification of a natural inhibitor of methionine adenosyltransferase 2A regulating one-carbon metabolism in keratinocytes
- in-vitro, Nor, HaCaT - in-vitro, PSA, NA
*MATs↓, *SAM-e↓,
2778- Bos,    Development, Analytical Characterization, and Bioactivity Evaluation of Boswellia serrata Extract-Layered Double Hydroxide Hybrid Composites
- in-vitro, Nor, NA
*ATP↓, *ROS↓,
1646- CA,    Caffeic acid: a brief overview of its presence, metabolism, and bioactivity
- Review, Nor, NA
*BioAv↓, ROS⇅, selectivity↑, other∅, VEGF↓, MMP2↓, MMP9↓,
2347- CAP,    Capsaicin ameliorates inflammation in a TRPV1-independent mechanism by inhibiting PKM2-LDHA-mediated Warburg effect in sepsis
- in-vivo, Nor, NA - in-vitro, Nor, RAW264.7
*PKM2↓, *LDHA↓, *Warburg↓, *COX2↓, *Sepsis↓, *Inflam↓, *ECAR↓, *OCR↑,
2348- CAP,    Recent advances in analysis of capsaicin and its effects on metabolic pathways by mass spectrometry
- Analysis, Nor, NA
Warburg↓, *PKM2↓, *COX2↓, *Inflam↓, *Sepsis↓, *AMPK↑, *PKA↑, *mitResp↑, *FAO↑, *FASN↓, *PGM1?, *ATP↑, *ROS↓,
2394- CAP,    Capsaicin acts as a novel NRF2 agonist to suppress ethanol induced gastric mucosa oxidative damage by directly disrupting the KEAP1-NRF2 interaction
- in-vitro, Nor, GES-1
*mtDam↓, *NRF2↑, *HO-1↑, *Trx↑, *GSS↑, *NQO1↑, *Keap1↓, *ROS↓, *PKM2↓, *LDHA↓, *Inflam↓,
2014- CAP,    Role of Mitochondrial Electron Transport Chain Complexes in Capsaicin Mediated Oxidative Stress Leading to Apoptosis in Pancreatic Cancer Cells
- in-vitro, PC, Bxpc-3 - in-vitro, Nor, HPDE-6 - in-vivo, PC, AsPC-1
ROS↑, *ROS∅, selectivity↑, compI↓, compIII↓, eff↑, selectivity↑, ATP↓, Cyt‑c↑, Casp9↑, Casp3↑, MMP↓, SOD↓, GSH/GSSG↓, Apoptosis↑, *toxicity∅, GSH↓, Catalase↓, GPx↓, Dose↝,
2393- Cela,    Celastrol mitigates inflammation in sepsis by inhibiting the PKM2-dependent Warburg effect
- in-vivo, Sepsis, NA - in-vitro, Nor, RAW264.7
OS↑, PKM2↓, Glycolysis↓, Warburg↓, Inflam↓, HMGB1↓, ALAT↓, AST↓, TNF-α↓, IL1β↓, IL6↓,
954- CGA,    Chlorogenic acid inhibits hypoxia-induced angiogenesis via down-regulation of the HIF-1α/AKT pathway
- in-vitro, Lung, A549 - in-vitro, Nor, HUVECs
Hif1a↓, VEGF↓, angioG↓, Akt↓,
4475- Chit,    Cholesterol-lowering properties and safety of chitosan
- Review, Nor, NA
*Weight↝, *LDL↓,
3700- Chol,    Eggs and Health Special Issue
- Review, Nor, NA
*other↑, *other↑, *Inflam↓, *ROS↓, *antiOx↑, *Iron↑, *cardioP∅,
1144- CHr,    8-bromo-7-methoxychrysin-induced apoptosis of hepatocellular carcinoma cells involves ROS and JNK
- in-vitro, HCC, HepG2 - in-vitro, HCC, Bel-7402 - in-vitro, Nor, HL7702
Casp3↑, *ROS∅, ROS↑, JNK↑, *toxicity↓,
2807- CHr,    Evidence-based mechanistic role of chrysin towards protection of cardiac hypertrophy and fibrosis in rats
- in-vivo, Nor, NA
*antiOx↑, Inflam↓, *cardioP↑, *GSH↑, *SOD↑, *Catalase↑, *GAPDH↑, *BAX↓, *Bcl-2↑, *PARP↓, *Cyt‑c↓, *Casp3↓, *NOX4↓, *NRF2↑, *HO-1↑, *HSP70/HSPA5↑,
1585- Citrate,    Sodium citrate targeting Ca2+/CAMKK2 pathway exhibits anti-tumor activity through inducing apoptosis and ferroptosis in ovarian cancer
- in-vitro, Ovarian, SKOV3 - in-vitro, Ovarian, A2780S - in-vitro, Nor, HEK293
Apoptosis↑, Ferroptosis↑, Ca+2↓, CaMKII ↓, Akt↓, mTOR↓, Hif1a↓, ROS↑, ChemoSen↑, Casp3↑, Casp9↑, BAX↑, Bcl-2↓, Cyt‑c↑, GlucoseCon↓, lactateProd↓, Pyruv↓, GLUT1↓, HK2↓, PFKP↓, Glycolysis↓, Hif1a↓, p‑Akt↓, p‑mTOR↓, Iron↑, lipid-P↑, MDA↑, ROS↑, H2O2↑, mtDam↑, GSH↓, GPx↓, GPx4↓, NADPH/NADP+↓, eff↓, FTH1↓, LC3‑Ⅱ/LC3‑Ⅰ↑, NCOA4↑, eff↓, TumCG↓,
3996- CoQ10,    Coenzyme Q10 decreases TNF-alpha and IL-2 secretion by human peripheral blood mononuclear cells
- in-vitro, Nor, NA
*TNF-α↓,
4773- CoQ10,    Coenzyme Q10 inhibits the activation of pancreatic stellate cells through PI3K/AKT/mTOR signaling pathway
- in-vitro, Nor, NA
*other↓, *PI3K↑, *Akt↑, *mTOR↑, *ROS↓,
4764- CoQ10,  VitE,    Auxiliary effect of trolox on coenzyme Q10 restricts angiogenesis and proliferation of retinoblastoma cells via the ERK/Akt pathway
- in-vitro, RPE, Y79 - in-vitro, Nor, ARPE-19 - in-vivo, NA, NA
tumCV↓, Apoptosis↑, ROS↑, MMP↓, TumCCA↑, VEGF↓, ERK↓, Akt↓, ChemoSen↑, chemoP↑, toxicity↓, angioG↓,
1642- Cu,  HCAs,    Copper-assisted anticancer activity of hydroxycinnamic acid terpyridine conjugates on triple-negative breast cancer
- in-vitro, BC, 4T1 - in-vitro, Nor, L929
tumCV↓, selectivity↑,
1616- CUR,  EA,    Kinetics of Inhibition of Monoamine Oxidase Using Curcumin and Ellagic Acid
- in-vitro, Nor, NA
*MAOA↓, *Dose∅, Dose?,
2304- CUR,    Curcumin decreases Warburg effect in cancer cells by down-regulating pyruvate kinase M2 via mTOR-HIF1α inhibition
- in-vitro, Lung, H1299 - in-vitro, BC, MCF-7 - in-vitro, Cerv, HeLa - in-vitro, Pca, PC3 - in-vitro, Nor, HEK293
Glycolysis↓, GlucoseCon↓, lactateProd↓, PKM2↓, mTOR↓, Hif1a↓, selectivity↑, Dose↝, tumCV↓,
2975- CUR,    Curcumin inhibits proliferation, migration and neointimal formation of vascular smooth muscle via activating miR-22
- in-vivo, Nor, NA
*miR-22↑, *Sp1/3/4↓,
2822- CUR,    Identification of curcumin derivatives as human glyoxalase I inhibitors: A combination of biological evaluation, molecular docking, 3D-QSAR and molecular dynamics simulation studies
- Analysis, Nor, NA
GLO-I↓,
2823- CUR,    Binding of curcumin with glyoxalase I: Molecular docking, molecular dynamics simulations, and kinetics analysis
- Study, Nor, NA
GLO-I↓,
2817- CUR,    Neuroprotection by curcumin: A review on brain delivery strategies
- Review, Nor, NA
*BioAv↝, neuroP↑,
2810- CUR,    Effect of curcuminoids on oxidative stress: A systematic review and meta-analysis of randomized controlled trials
- Review, Nor, NA
*SOD↑, *lipid-P↓, *GSH↑, *Catalase↑, *ROS↓,
2809- CUR,    Comparative absorption of curcumin formulations
- in-vivo, Nor, NA
BioAv↑, BioAv↑, BioAv↑, BioAv↑, BioAv↑, BioAv↓, Half-Life↝,
2466- CUR,    Regulatory Effects of Curcumin on Platelets: An Update and Future Directions
- Review, Nor, NA
*AntiAg↑, *antiOx↑, *Inflam↓, *12LOX↑, COX1↓, COX2↓, MMP9↓, NF-kB↓,
1864- DCA,  MET,    Dichloroacetate Enhances Apoptotic Cell Death via Oxidative Damage and Attenuates Lactate Production in Metformin-Treated Breast Cancer Cells
- in-vitro, BC, MCF-7 - in-vitro, BC, T47D - in-vitro, Nor, MCF10
PDKs↓, eff↑, ROS↑, PDK1↓, lactateProd↓, p‑PDH↑, Dose∅, OCR↑, DNA-PK↑, γH2AX↑, cl‑PARP↑, selectivity↑, *toxicity∅,
4455- DFE,    Ajwa Date (Phoenix dactylifera L.) Extract Inhibits Human Breast Adenocarcinoma (MCF7) Cells In Vitro by Inducing Apoptosis and Cell Cycle Arrest
- in-vitro, BC, MCF-7 - in-vitro, Nor, 3T3
TumCCA↑, P53↑, BAX↑, Casp3↑, MMP↓, Fas↑, FasL↑, Bcl-2↓, Apoptosis↑, TumCP↓, TUNEL↑, eff↑, selectivity↑,
951- DHA,    Docosahexaenoic Acid Attenuates Breast Cancer Cell Metabolism and the Warburg Phenotype by Targeting Bioenergetic Function
- in-vitro, BC, BT474 - in-vitro, BC, MDA-MB-231 - in-vitro, Nor, MCF10
Hif1a↓, GLUT1↓, LDH↓, GlucoseCon↓, lactateProd↓, ATP↓, p‑AMPK↑, ECAR↓, OCR↓, *toxicity↓,
1085- DHA,  EPA,    DHA and EPA Down-regulate COX-2 Expression through Suppression of NF-kappaB Activity in LPS-treated Human Umbilical Vein Endothelial Cells
- in-vitro, Nor, HUVECs
*COX2↓, *NF-kB↓, *PGE2↓, *IL6↓, *NF-kB↑,
4256- dietMed,    Association between Mediterranean dietary pattern with sleep duration, sleep quality and brain derived neurotrophic factor (BDNF) in Iranian adults
- Study, Nor, NA
*Sleep↑, *BDNF↑,
2265- dietMet,    Cysteine supplementation reverses methionine restriction effects on rat adiposity: significance of stearoyl-coenzyme A desaturase
- in-vivo, Nor, NA
*SCD1↓, *Weight↓, *Insulin↓, *IGF-1↓, *adiP↑, *eff↓,
2266- dietMet,    Cysteine dietary supplementation reverses the decrease in mitochondrial ROS production at complex I induced by methionine restriction
- in-vivo, Nor, NA
*ROS↓, eff↓,
2269- dietMet,    Mechanisms of Increased In Vivo Insulin Sensitivity by Dietary Methionine Restriction in Mice
- in-vivo, Nor, NA
*adiP↑, *FGF↑, *Insulin↓, *glucose↓, *Akt↑, *GSH↓, *PTEN↓, *FGF21↑, *PIP3↑,
2271- dietMet,    A review of methionine dependency and the role of methionine restriction in cancer growth control and life-span extension
- Review, Nor, NA
*eff↑, *OS↓, *ROS↓, *Weight↓,
2272- dietMet,    Methionine restriction - Association with redox homeostasis and implications on aging and diseases
- Review, Nor, NA
*OS↑, *mt-ROS↓, *H2S↑, *FGF21↑, *cognitive↑, *GutMicro↑, *IGF-1↓, *mTOR↓, *GSH↑, *SOD↑, *MDA↓, *NRF2↑, *HO-1↑, *NQO1↑, *GLUT4↑, *Glycolysis↑, *HK2↑, *PFK↑, *PKM2↑, *GlucoseCon↑, *ATF4↑, *PPARα↑, GSH↓, GSTs↑, ROS↑, *neuroP↑,
1894- dietMet,    Long term methionine restriction: Influence on gut microbiome and metabolic characteristics
- in-vivo, Nor, NA
*GutMicro↓, *OS↑, Weight↓, BG↓,
2158- dietP,    Association of Animal and Plant Protein Intake With All-Cause and Cause-Specific Mortality in a Japanese Cohort
- Human, Nor, NA
OS↓, Risk↓,
4987- Dipy,  ATV,    Enhanced cardioprotection against ischemia-reperfusion injury with a dipyridamole and low-dose atorvastatin combination
- in-vivo, Nor, NA
*cardioP↑, *Akt↑, *eNOS↑,
4990- Dipy,    Characterization of dipyridamole as a novel ferroptosis inhibitor and its therapeutic potential in acute respiratory distress syndrome management
- in-vivo, Nor, NA
*Ferroptosis↓, *HO-1↓, SOD1↑,
1608- EA,    Ellagic Acid from Hull Blackberries: Extraction, Purification, and Potential Anticancer Activity
- in-vitro, Cerv, HeLa - in-vitro, Liver, HepG2 - in-vitro, BC, MCF-7 - in-vitro, Lung, A549 - in-vitro, Nor, HUVECs
eff↑, Dose∅, *BioAv↑, selectivity↑, TumCP↓, Casp↑, PTEN↑, TSC1↑, mTOR⇅, Akt↓, PDK1↓, E6↓, E7↓, DNAdam↑, ROS↑, *BioAv↓, *BioEnh↑, *Half-Life∅,
1614- EA,    Bioavailability of ellagic acid in human plasma after consumption of ellagitannins from pomegranate (Punica granatum L.) juice
- Human, Nor, NA
*BioEnh↝, *Half-Life∅,
1615- EA,    Absorption, metabolism, and antioxidant effects of pomegranate (Punica granatum l.) polyphenols after ingestion of a standardized extract in healthy human volunteers
- Human, Nor, NA
*BioAv∅, *ROS∅,
1617- EA,  CUR,    The inhibition of human glutathione S-transferases activity by plant polyphenolic compounds ellagic acid and curcumin
- in-vitro, Nor, NA
Dose∅, GSTs↓,
1619- EA,  CUR,    Antimutagenic Effect of the Ellagic Acid and Curcumin Combinations
- in-vitro, Nor, NA
eff↑,
1071- EGCG,    Green tea polyphenols modulate insulin secretion by inhibiting glutamate dehydrogenase
- in-vitro, Nor, NA
*GDH↓,
1012- EGCG,    Inhibition of beta-catenin/Tcf activity by white tea, green tea, and epigallocatechin-3-gallate (EGCG): minor contribution of H(2)O(2) at physiologically relevant EGCG concentrations
- in-vitro, Nor, HEK293
*H2O2↑, *β-catenin/ZEB1↓, *TCF-4↓,
659- EGCG,  MNPs,  MF,    Augmented cellular uptake of nanoparticles using tea catechins: effect of surface modification on nanoparticle-cell interaction
- in-vivo, Nor, NA
*BioEnh↑,
660- EGCG,  FA,    Epigallocatechin-3-gallate Delivered in Nanoparticles Increases Cytotoxicity in Three Breast Carcinoma Cell Lines
- in-vitro, BC, MDA-MB-231 - in-vitro, BC, MCF-7 - in-vitro, Nor, MCF10
Apoptosis↑, *toxicity↓, *eff↓,
648- EGCG,    Bioavailability of Epigallocatechin Gallate Administered With Different Nutritional Strategies in Healthy Volunteers
- Human, Nor, NA
*BioAv↑,
647- EGCG,    Food Inhibits the Oral Bioavailability of the Major Green Tea Antioxidant Epigallocatechin Gallate in Humans
- Human, Nor, NA
*BioAv↑,
646- EGCG,  PI,    Piperine enhances the bioavailability of the tea polyphenol (-)-epigallocatechin-3-gallate in mice
- in-vivo, Nor, NA
*BioAv↑,
644- EGCG,  Citrate,    Simple Approach to Enhance Green Tea Epigallocatechin Gallate Stability in Aqueous Solutions and Bioavailability: Experimental and Theoretical Characterizations
- Analysis, Nor, NA
*BioAv↑,
2468- EGCG,    Green tea epigallocatechin-3-gallate inhibits platelet signalling pathways triggered by both proteolytic and non-proteolytic agonists
- in-vitro, Nor, NA
*AntiAg↑, *Ca+2↓,
2460- EGCG,  Taur,    Anti-fibrosis activity of combination therapy with epigallocatechin gallate, taurine and genistein by regulating glycolysis, gluconeogenesis, and ribosomal and lysosomal signaling pathways in HSC-T6 cells
- in-vitro, Nor, HSC-T6
HK2↓,
2458- EGCG,  QC,    Identification of plant-based hexokinase 2 inhibitors: combined molecular docking and dynamics simulation studies
- Analysis, Nor, NA
HK2↓,
2561- EGCG,  ASA,    Anti-platelet effects of epigallocatechin-3-gallate in addition to the concomitant aspirin, clopidogrel or ticagrelor treatment
- ex-vivo, Nor, NA
AntiAg↑, eff↑, Half-Life↝, other∅,
3210- EGCG,    Protective effect of epigallocatechin-3-gallate (EGCG) via Nrf2 pathway against oxalate-induced epithelial mesenchymal transition (EMT) of renal tubular cells
- in-vitro, Nor, NA
*ROS↓, *NRF2↑, *Catalase↑, *antiOx↑,
3208- EGCG,    Induction of Endoplasmic Reticulum Stress Pathway by Green Tea Epigallocatechin-3-Gallate (EGCG) in Colorectal Cancer Cells: Activation of PERK/p-eIF2α/ATF4 and IRE1α
- in-vitro, Colon, HT29 - in-vitro, Nor, 3T3
TumCD↓, ER Stress↑, GRP78/BiP↑, PERK↑, eIF2α↑, ATF4↑, IRE1↑, Apoptosis↑, Casp3↑, Casp7↑, Wnt↓, β-catenin/ZEB1↓, *toxicity∅, UPR↑,
3229- EGCG,    Epigallocatechin-3-gallate (EGCG) Alters Histone Acetylation and Methylation and Impacts Chromatin Architecture Profile in Human Endothelial Cells
- in-vitro, Nor, HMEC - in-vitro, Nor, HUVECs
HDAC↓,
3231- EGCG,    Epigallocatechin-3-gallate restores mitochondrial homeostasis impairment by inhibiting HDAC1-mediated NRF1 histone deacetylation in cardiac hypertrophy
- in-vitro, Nor, NA
*HDAC↓, *cardioP↑, *Nrf1↑, *PGC-1α↓,
3234- EGCG,  Rad,    EGCG, a tea polyphenol, as a potential mitigator of hematopoietic radiation injury in mice
- in-vivo, Nor, NA
*DNMTs↓, *radioP↑, *HDAC↑,
3245- EGCG,    (−)-Epigallocatechin-3-gallate protects PC12 cells against corticosterone-induced neurotoxicity via the hedgehog signaling pathway
- in-vitro, Nor, PC12
*neuroP↑, *Shh↑, *Gli1↑, *n-MYC↑, *Dose↝,
3246- EGCG,    Epigallocatechin gallate suppresses hepatic cholesterol synthesis by targeting SREBP-2 through SIRT1/FOXO1 signaling pathway
- in-vitro, Nor, NA
*MDA↓, *SOD↑, *SIRT1↑, *FOXO1↑, *SREBP2↓,
3227- EGCG,    Epigallocatechin-3-gallate treatment to promote neuroprotection and functional recovery after nervous system injury
- NA, Nor, NA
*Rho↓, *IL1↓, *IL6↓, *TNF-α↓,
3214- EGCG,    EGCG-induced selective death of cancer cells through autophagy-dependent regulation of the p62-mediated antioxidant survival pathway
- in-vitro, Nor, MRC-5 - in-vitro, Cerv, HeLa - in-vitro, Nor, HEK293 - in-vitro, BC, MDA-MB-231 - in-vitro, CRC, HCT116
mTOR↓, AMPK↑, selectivity↑, ROS↑, selectivity↑, HO-1↓, *NRF2↑, NRF2↓, *HO-1↑,
3221- EGCG,    EGCG upregulates phase-2 detoxifying and antioxidant enzymes via the Nrf2 signaling pathway in human breast epithelial cells
- in-vitro, Nor, MCF10
*antiOx↑, *GSTA1↑, *NRF2↑,
3222- EGCG,    Epigallocatechin gallate and mitochondria—A story of life and death
- Review, Nor, NA
*lipid-P↓, *SOD↑, *Catalase↑, GPx↑, *GR↑, *GSTs↑, *GSH↑, *SIRT1↑, *PGC1A↑, *other↑,
3224- EGCG,    Epigallocatechin-3-Gallate Prevents Acute Gout by Suppressing NLRP3 Inflammasome Activation and Mitochondrial DNA Synthesis
- in-vitro, Nor, NA
*Casp1↓, *NLRP3↓, *Inflam↓,
3225- EGCG,    Epigallocatechin‐3‐Gallate Ameliorates Diabetic Kidney Disease by Inhibiting the TXNIP/NLRP3/IL‐1β Signaling Pathway
- in-vitro, Nor, NA - in-vivo, Nor, NA
*RenoP↑, *NLRP3↓, *TXNIP↓, *ASC↓, *Casp1↓, *IL1β↓, *ROS↓, *TNF-α↓, *IL6↓, *IL18↓,
3226- EGCG,    Epigallocatechin-3-gallate, a green-tea polyphenol, suppresses Rho signaling in TWNT-4 human hepatic stellate cells
- in-vitro, Nor, NA
*Rho↓, other↑,
2309- EGCG,  Chemo,    Targeting Glycolysis with Epigallocatechin-3-Gallate Enhances the Efficacy of Chemotherapeutics in Pancreatic Cancer Cells and Xenografts
- in-vitro, PC, MIA PaCa-2 - in-vitro, Nor, HPNE - in-vitro, PC, PANC1 - in-vivo, NA, NA
TumCG↓, eff↑, ROS↑, ECAR↓, ChemoSen↑, selectivity↑, Glycolysis↓, PFK↓, PKA↓, HK2∅, LDHA∅, PFKP↓, PKM2↓, H2O2↑, TumW↓,
1514- EGCG,    Preferential inhibition by (-)-epigallocatechin-3-gallate of the cell surface NADH oxidase and growth of transformed cells in culture
- in-vitro, Cerv, HeLa - in-vitro, Nor, MCF10
selectivity↑, *toxicity∅, TumCG↓, NADHdeh?, eff↑, ENOX2↓, Dose?,
1515- EGCG,  Phen,    Reciprocal Relationship Between Cytosolic NADH and ENOX2 Inhibition Triggers Sphingolipid-Induced Apoptosis in HeLa Cells
- in-vitro, Cerv, HeLa - in-vitro, Nor, MCF10 - in-vitro, BC, BT20
selectivity↑, ENOX2↓, NADH↑, SK↓, eff↑, aSmase↑,
1974- EGCG,    Protective Effect of Epigallocatechin-3-Gallate in Hydrogen Peroxide-Induced Oxidative Damage in Chicken Lymphocytes
- in-vitro, Nor, NA
*ROS↓, *NO↓, *MMP↑, *i-Ca+2↓, *HO-1↑, *Catalase↑, *NRF2↑, *Trx1↑, *antiOx↑, *SOD↑, *Apoptosis↓,
1318- EMD,    Aloe-emodin Induces Apoptosis in Human Liver HL-7702 Cells through Fas Death Pathway and the Mitochondrial Pathway by Generating Reactive Oxygen Species
- in-vitro, Nor, HL7702
*TumCCA↑, *ROS↑, *MMP↓, *Fas↑, *P53↑, *P21↓, *Bax:Bcl2↑, *cl‑Casp3↑, *cl‑Casp8↑, *cl‑Casp9↑, *cl‑PARP↑,
1332- EMD,    Induction of Apoptosis in HepaRG Cell Line by Aloe-Emodin through Generation of Reactive Oxygen Species and the Mitochondrial Pathway
- in-vivo, Nor, HepaRG
*tumCV↓, *ROS↑, *MMP↓, *Fas↑, *P53↑, *P21↑, *Bax:Bcl2↑, *Casp3↑, *Casp8↑, *Casp9↑, *cl‑PARP↑, *TumCCA↑, *P21↑, *cycE/CCNE↑, *cycA1/CCNA1↓, *CDK2↓,
948- F,    Low Molecular Weight Fucoidan Inhibits Tumor Angiogenesis through Downregulation of HIF-1/VEGF Signaling under Hypoxia
- vitro+vivo, Bladder, T24 - in-vitro, Nor, HUVECs
p‑PI3k/Akt/mTOR↓, p‑p70S6↓, p‑4E-BP1↓, angioG↓, Hif1a↓, VEGF↑, TumCG↓, TumVol↓, TumW↓, Iron∅, ROS↓,
2846- FIS,    Fisetin protects against cardiac cell death through reduction of ROS production and caspases activity
- in-vitro, Nor, NA
*cardioP↑, *ROS↓, *Casp↓, *DNAdam↓,
2848- FIS,    Fisetin alleviates cellular senescence through PTEN mediated inhibition of PKCδ-NOX1 pathway in vascular smooth muscle cells
- in-vitro, Nor, NA
*ROS↓, *PTEN↑, *PKCδ↑, *Inflam↓,
2851- FIS,    Apoptosis induction in breast cancer cell lines by the dietary flavonoid fisetin
- in-vitro, BC, MDA-MB-468 - in-vitro, BC, MDA-MB-231 - in-vitro, BC, MCF-7 - in-vitro, BC, T47D - in-vitro, BC, SkBr3 - in-vitro, Nor, NA
tumCV↓, selectivity↑, TumCCA↑, Apoptosis↑, ROS∅,
2860- FIS,    Fisetin induces autophagy in pancreatic cancer cells via endoplasmic reticulum stress- and mitochondrial stress-dependent pathways
- in-vitro, PC, PANC1 - in-vitro, PC, Bxpc-3 - in-vitro, Nor, hTERT-HPNE - in-vivo, NA, NA
AMPK↑, mTOR↑, UPR↑, ER Stress↑, selectivity↑, TumCP↓, PERK↑, ATF4↑, ATF6↑,
2861- FIS,    The neuroprotective effects of fisetin, a natural flavonoid in neurodegenerative diseases: Focus on the role of oxidative stress
- Review, Nor, NA - Review, Stroke, NA - Review, Park, NA
*antiOx↑, *ROS↓, *neuroP↑, *NO↑, BioAv↝, *BBB↑, *toxicity↑, *eff↑, *GSH↑, *SOD↑, *Aβ↓, *12LOX↓, *COX2↓, *Catalase↑, *Inflam↓, *TNF-α↓, *IL6↑, *lipid-P↓, NF-kB↓, IL1β↓, NRF2↑, HO-1↑, GSTs↑, cognitive↑, *BDNF↑,
2841- FIS,    Fisetin, an Anti-Inflammatory Agent, Overcomes Radioresistance by Activating the PERK-ATF4-CHOP Axis in Liver Cancer
- in-vitro, Nor, RAW264.7 - in-vitro, Liver, HepG2 - in-vitro, Liver, Hep3B - in-vitro, Liver, HUH7
*Inflam↓, *TNF-α↓, *IL1β↓, *IL6↓, Apoptosis↓, ER Stress↑, Ca+2↑, PERK↑, ATF4↑, CHOP↑, GRP78/BiP↑, tumCV↓, LDH↑, Casp3↑, cl‑Casp3↑, cl‑Casp8↑, cl‑Casp9↑, p‑eIF2α↑, RadioS↑,
2642- Flav,  QC,  Api,  KaempF,  MCT  In Vitro–In Vivo Study of the Impact of Excipient Emulsions on the Bioavailability and Antioxidant Activity of Flavonoids: Influence of the Carrier Oil Type
- in-vitro, Nor, NA - in-vivo, Nor, NA
*BioAv↑, *eff↝, BioEnh↑,
2401- Flav,    In vitro effects of some flavonoids and phenolic acids on human pyruvate kinase isoenzyme M2
- in-vitro, Nor, NA
PKM2↓,
4027- FulvicA,    Mummy Induces Apoptosis Through Inhibiting of Epithelial-Mesenchymal Transition (EMT) in Human Breast Cancer Cells
- in-vitro, BC, MDA-MB-231 - in-vitro, BC, MCF-7 - in-vitro, Nor, MCF10
tumCV↓, selectivity↑, TGF-β↓, Twist↓, NOTCH1↓, CTNNB1↓, Src↓, E-cadherin↑, EMT↓, TumMeta↓, BioAv↑,
997- GA,    The Inhibitory Mechanisms of Tumor PD-L1 Expression by Natural Bioactive Gallic Acid in Non-Small-Cell Lung Cancer (NSCLC) Cells
- in-vitro, Lung, A549 - in-vitro, Lung, H292 - in-vitro, Nor, HUVECs
PD-L1↓, p‑EGFR↓, p‑PI3K↓, p‑Akt↓, P53↑, miR-34a↑, *toxicity↓,
947- GA,    Gallic acid, a phenolic compound, exerts anti-angiogenic effects via the PTEN/AKT/HIF-1α/VEGF signaling pathway in ovarian cancer cells
- in-vitro, Ovarian, OVCAR-3 - in-vitro, Melanoma, A2780S - in-vitro, Nor, IOSE364 - Human, NA, NA
TumCG↓, VEGF↓, angioG↓, p‑Akt↓, Hif1a↓, PTEN↑, BioAv↑, *toxicity↓,
1971- GamB,    Gambogic acid triggers vacuolization-associated cell death in cancer cells via disruption of thiol proteostasis
- in-vitro, Nor, MCF10 - in-vitro, BC, MDA-MB-435 - in-vitro, BC, MDA-MB-468 - in-vivo, NA, NA
Paraptosis↑, ER Stress↑, MMP↓, eff↓, selectivity↑, p‑ERK↑, p‑JNK↑, eff↓,
823- GAR,    Garcinol Potentiates TRAIL-Induced Apoptosis through Modulation of Death Receptors and Antiapoptotic Proteins
- in-vitro, BC, MCF-7 - in-vitro, Nor, MCF10 - in-vitro, CRC, HCT116
Casp3↑, Casp9↑, Casp8↑, DR5↑, survivin↓, Bcl-2↓, XIAP↓, cFLIP↓, BAX↑, Cyt‑c↑, ROS↑, GSH↓, *eff↓,
794- GAR,    Garcinol Enhances TRAIL-Induced Apoptotic Cell Death through Up-Regulation of DR5 and Down-Regulation of c-FLIP Expression
- in-vitro, RCC, NA - in-vitro, Lung, A549 - in-vitro, Nor, NA
DR5↑, cFLIP↓, *toxicity↓,
1186- Gb,    Ginkgolic acid suppresses the development of pancreatic cancer by inhibiting pathways driving lipogenesis
- in-vitro, PC, NA - in-vitro, Nor, HUVECs - in-vivo, PC, NA
tumCV↓, *toxicity∅, TumCMig↓, TumCI↓, Apoptosis↑, AMPK↑, lipoGen↓, ACC↓, FASN↓,
4244- Gb,    Effects of Six-Week Ginkgo biloba Supplementation on Aerobic Performance, Blood Pro/Antioxidant Balance, and Serum Brain-Derived Neurotrophic Factor in Physically Active Men
- Human, Nor, NA
*BDNF∅,
1241- Ge,  PACs,    Grape seed proanthocyanidins inhibit angiogenesis via the downregulation of both vascular endothelial growth factor and angiopoietin signaling
- in-vitro, Nor, NA
*VEGF↓, *MMP2↓, *MMP9↓, *p‑VEGFR2↓,
927- GEN,  PacT,    Bioenhancers from mother nature and their applicability in modern medicine
- Review, Nor, NA
*BioAv↑,
1005- GI,    Ginger Constituent 6-Shogaol Inhibits Inflammation- and Angiogenesis-Related Cell Functions in Primary Human Endothelial Cells
- vitro+vivo, Nor, HUVECs
*NF-kB↓, *p65↓, *TLR4∅, *angioG↓, *TumCP↓, *VEGF↓, *Inflam↓, *ICAM-1↓, *VCAM-1↓, *E-sel↓, *p‑JNK↓, *HO-1↑,
2464- GI,    The Effect of Ginger (Zingiber officinale) on Platelet Aggregation: A Systematic Literature Review
- Review, Nor, NA
*Inflam↓, *antiOx↑, *LDL↓, *AntiAg↑, *AntiAg∅,
2465- GI,    Effect of daily ginger consumption on platelet aggregation
- Trial, Nor, NA
AntiAg↝, Dose∅,
4511- GLA,    Gamma-Linolenic Acid (GLA) Protects against Ionizing Radiation-Induced Damage: An In Vitro and In Vivo Study
- vitro+vivo, Nor, RAW264.7
*radioP↑, *ROS↓, *DNAdam↓, *IL6↓, *TNF-α↓, *IL10↓, *NF-kB↓, *SOD↑, *Catalase↑, *GSH↑,
849- Gra,    Annona muricata silver nanoparticles exhibit strong anticancer activities against cervical and prostate adenocarcinomas through regulation of CASP9 and the CXCL1/CXCR2 genes axis
- in-vitro, Pca, PC3 - in-vitro, Nor, PNT1A - in-vitro, NA, HeLa
Casp9↑, CXCL1↓, *toxicity↓,
851- Gra,    Antiproliferation Activity and Apoptotic Mechanism of Soursop (Annona muricata L.) Leaves Extract and Fractions on MCF7 Breast Cancer Cells
- in-vitro, BC, MCF-7 - in-vitro, Nor, CV1
Bcl-2↓, Casp9↑, Casp3↑, other↑, *toxicity↓,
843- Gra,    Graviola (Annona muricata) Exerts Anti-Proliferative, Anti-Clonogenic and Pro-Apoptotic Effects in Human Non-Melanoma Skin Cancer UW-BCC1 and A431 Cells In Vitro: Involvement of Hedgehog Signaling
- in-vitro, NMSC, A431 - in-vitro, NMSC, UW-BCC1 - in-vitro, Nor, NHEKn
TumCG↓, TumCCA↑, Cyc↓, Apoptosis↑, cl‑Casp3↑, cl‑Casp8↑, cl‑PARP↑, HH↓, Smo↓, Gli1↓, GLI2↓, Shh↓, Sufu↑, BAX↑, Bcl-2↓, *toxicity↓,
842- Gra,    Phytochemical screening, anti-oxidant activity and in vitro anticancer potential of ethanolic and water leaves extracts of Annona muricata (Graviola)
- in-vitro, NA, NA - in-vitro, Nor, NA
other↓, *toxicity↓,
841- Gra,    The Chemopotential Effect of Annona muricata Leaves against Azoxymethane-Induced Colonic Aberrant Crypt Foci in Rats and the Apoptotic Effect of Acetogenin Annomuricin E in HT-29 Cells: A Bioassay-Guided Approach
- in-vitro, CRC, HT-29 - in-vitro, Nor, CCD841
PCNA↓, Bcl-2↓, BAX↑, *MDA↓, lipid-P↓, TumCG↓, MMP↓, Cyt‑c↑, Casp3↑, Casp7↑, Casp9↑, *ROS↓, LDH↓, *toxicity↓, selectivity↑,
837- Gra,    Quantitative assessment of the relative antineoplastic potential of the n-butanolic leaf extract of Annona muricata Linn. in normal and immortalized human cell lines
- in-vitro, BC, MDA-MB-435 - in-vitro, Nor, WRL68 - in-vitro, Nor, HaCaT
*toxicity↓,
2437- Gra,    Graviola inhibits hypoxia-induced NADPH oxidase activity in prostate cancer cells reducing their proliferation and clonogenicity
- in-vitro, Pca, LNCaP - in-vitro, Pca, 22Rv1 - in-vitro, Pca, PC3 - in-vitro, Nor, PWR-1E
NOX↓, selectivity↑,
2518- H2,    Hydrogen Therapy Reverses Cancer-Associated Fibroblasts Phenotypes and Remodels Stromal Microenvironment to Stimulate Systematic Anti-Tumor Immunity
- in-vitro, BC, 4T1 - in-vitro, Nor, 3T3
TumCD↑, CD4+↑, ROS↓,
3152- H2,  VitC,  Rad,    Hydrogen and Vitamin C Combination Therapy: A Novel Method of Radioprotection
- in-vitro, Nor, HUVECs - in-vivo, NA, NA
AntiTum↑, OS↑, QoL↑, TumVol↓, radioP↑, Dose↑, Dose↝, eff↑,
2529- H2,    Guidelines for the selection of hydrogen gas inhalers based on hydrogen explosion accidents
- Analysis, Nor, NA
other↑, eff↝, eff↝, other↝, other↝, other↝, other↝, other↝,
1413- HCA,    Effects of acute (-)-hydroxycitrate supplementation on substrate metabolism at rest and during exercise in humans
- Human, Nor, NA
*toxicity↓,
1414- HCA,    Bioefficacy of a novel calcium-potassium salt of (-)-hydroxycitric acid
- Human, Nor, NA
*BioAv↑,
1415- HCA,    Hydroxycitrate delays early mortality in mice and promotes muscle regeneration while inducing a rich hepatic energetic status
- in-vivo, Nor, NA
*OS↑, *toxicity↓, *AST∅, *ALAT∅, *Strength↑, *memory∅, *other↑, *other↑, *other↑,
1635- HCA,    Hydroxycitric acid prevents hyperoxaluric-induced nephrolithiasis and oxidative stress via activation of the Nrf2/Keap1 signaling pathway
- vitro+vivo, Nor, NA
*other↓, *ROS↓, *SOD↑, *Catalase↑, *MDA↓, *NRF2↑,
1634- HCA,    Hydroxycitrate: a potential new therapy for calcium urolithiasis
- Human, Nor, NA
*other↑, *eff↑,
1633- HCA,    Hydroxycitric Acid Alleviated Lung Ischemia-Reperfusion Injury by Inhibiting Oxidative Stress and Ferroptosis through the Hif-1α Pathway
- in-vivo, NA, NA - in-vitro, Nor, HUVECs
*other↓, *Inflam↓, *MDA↓, *ROS↓, *Iron↓, *SOD↓, *Hif1a↓, *HO-1↓,
1625- HCA,    In S. cerevisiae hydroxycitric acid antagonizes chronological aging and apoptosis regardless of citrate lyase
- Review, Nor, NA
CRM↑, ACLY↓, TumAuto↑, Inflam↓, TumCG↓, toxicity∅, lipoGen↓, *ROS↓, *OCR↓,
1638- HCAs,    Anticancer potential of hydroxycinnamic acids: mechanisms, bioavailability, and therapeutic applications
- Review, Nor, NA
*BioAv↓, Inflam↓, COX2↓, TumCCA↑, ChemoSen↑, RadioS↑, selectivity↑, ROS↑, DNAdam↑, antiOx↑, SOD↑, Catalase↑, GPx↑, GSH↑, NRF2↑, NF-kB↓, Cyc↓, CDK1↑, P21↑, p27↑, P53↑, VEGF↓, MAPK↓,
1645- HCAs,    Chapter 8 - Hydroxycinnamic Acids: Natural Sources, Biosynthesis, Possible Biological Activities, and Roles in Islamic Medicine
- Review, Nor, NA
Dose∅, ROS⇅, Dose∅,
2889- HNK,  doxoR,    Honokiol, an activator of Sirtuin-3 (SIRT3) preserves mitochondria and protects the heart from doxorubicin-induced cardiomyopathy in mice
- in-vivo, Nor, NA
*SIRT3↑, chemoP↑, *cardioP↑, mtDam↑, ROS↑, *ROS↓, *MMP↑,
2892- HNK,    Honokiol Induces Apoptosis, G1 Arrest, and Autophagy in KRAS Mutant Lung Cancer Cells
- in-vitro, Lung, A549 - in-vitro, Lung, H460 - in-vitro, Lung, H385 - in-vitro, Nor, BEAS-2B
TumCCA↑, Apoptosis↑, SIRT3↑, Hif1a↓, selectivity↑, p‑mTOR↓, p70S6↓,
2893- HNK,  doxoR,    Honokiol protects against doxorubicin cardiotoxicity via improving mitochondrial function in mouse hearts
- in-vivo, Nor, NA
*mitResp↑, *PPARγ↑, *cardioP↑, *SIRT3↑, *ROS↓, *GSH↑, *SOD2↑,
2902- HNK,  Rad,    Honokiol Mitigates Ionizing Radiation-Induced Injury by Maintaining the Redox Balance of the TrxR/Trx System
- in-vitro, Nor, BEAS-2B
*TrxR1↑, *Trx↑, *radioP↑, *ROS↓,
2899- HNK,    SIRT3 activator honokiol ameliorates surgery/anesthesia-induced cognitive decline in mice through anti-oxidative stress and anti-inflammatory in hippocampus
- in-vivo, Nor, NA
*memory↑, *Inflam↓, *ROS↓, neuroP↑, SIRT3↑, ac‑SOD2↓,
2901- HNK,  doxoR,    Honokiol protects against doxorubicin cardiotoxicity via improving mitochondrial function in mouse hearts
- in-vivo, Nor, NA
*mitResp↑, *PPARγ↑, *Inflam↓, *ROS↓, *cardioP↑, *SOD2↑, *LDH↓,
2867- HNK,    Honokiol ameliorates oxidative stress-induced DNA damage and apoptosis of c2c12 myoblasts by ROS generation and mitochondrial pathway
- in-vitro, Nor, C2C12
*antiOx↑, *ROS↓, *Bcl-2↑, *BAX↓, Casp9∅, Casp3∅, cl‑PARP∅, Cyt‑c?,
2873- HNK,    Honokiol Alleviates Oxidative Stress-Induced Neurotoxicity via Activation of Nrf2
- in-vitro, Nor, PC12
*neuroP↑, *GSH↑, *HO-1↑, *NADPH↑, *Trx1↑, *TrxR1↑, *NRF2↑, *ROS↓, *antiOx↑, *BBB↑, Dose↓,
2871- HNK,    Antihyperalgesic Properties of Honokiol in Inflammatory Pain Models by Targeting of NF-κB and Nrf2 Signaling
- in-vivo, Nor, NA
*TNF-α↓, *IL1β↓, *IL6↓, *VEGF↓, *NRF2↑, *SOD2↑, *HO-1↑, *Inflam↓, *Pain↓, *NO↓, toxicity↓,
2079- HNK,    Honokiol Microemulsion Causes Stage-Dependent Toxicity Via Dual Roles in Oxidation-Reduction and Apoptosis through FoxO Signaling Pathway
- in-vitro, Nor, PC12
*toxicity↝, *ROS↓, *ROS↑, *Dose⇅, *BioAv↑, *BioAv↓, *ROS⇅, *SOD↓, *toxicity↑,
2071- HNK,    Identification of senescence rejuvenation mechanism of Magnolia officinalis extract including honokiol as a core ingredient
- Review, Nor, HaCaT
*ROS↓, *antiOx↑, *AntiAge↑, *MMP↑, *ECAR↓, *Glycolysis↓, *PAR-2↓, *CXCL12↑, *BMAL1↑, *mt-ROS↓, *OXPHOS↓,
4637- HT,    Comparative Cytotoxic Activity of Hydroxytyrosol and Its Semisynthetic Lipophilic Derivatives in Prostate Cancer Cells
- in-vitro, Nor, RWPE-1 - in-vitro, Pca, LNCaP - in-vitro, Pca, 22Rv1 - in-vitro, Pca, PC3
selectivity↑, TumCMig↓, p‑Akt↓, ROS↑, CSCs↓, CD44↓, TumCP↓,
4212- Hup,    Huperzine A Alleviates Oxidative Glutamate Toxicity in Hippocampal HT22 Cells via Activating BDNF/TrkB-Dependent PI3K/Akt/mTOR Signaling Pathway
- in-vitro, Nor, HT22
*ROS↓, *p‑Akt↓, *p‑mTOR↓, *p‑p70S6↓, *BDNF↑, *Apoptosis↓, *Casp3↓, *Bcl-2↑,
4005- K+,    Potassium
- Review, Nor, NA - Review, Stroke, NA
*Risk↓, *Dose↝, *Risk↓, *BMD↑, *glucose↓,
1272- LA,    Lactobacillus johnsonii N6.2 Modulates the Host Immune Responses: A Double-Blind, Randomized Trial in Healthy Adults
- Trial, Nor, NA
*Pain↓, *other↑,
1266- LE,    Glycyrrhizin suppresses epithelial-mesenchymal transition by inhibiting high-mobility group box1 via the TGF-β1/Smad2/3 pathway in lung epithelial cells
- in-vitro, Lung, A549 - in-vitro, Nor, BEAS-2B
HMGB1↓, EMT↓, TumCMig↓, p‑SMAD2↓, p‑SMAD3↓,
1790- LEC,  DHA,    Dietary Crude Lecithin Increases Systemic Availability of Dietary Docosahexaenoic Acid with Combined Intake in Rats
- in-vivo, Nor, NA
*eff↑, other↑,
1795- LEC,  Chit,    Self-assembled lecithin-chitosan nanoparticles improve the oral bioavailability and alter the pharmacokinetics of raloxifene
- in-vivo, Nor, NA
eff↑, BioAv↑,
1791- LEC,    Vegetable lecithins: A review of their compositional diversity, impact on lipid metabolism and potential in cardiometabolic disease prevention
- Review, Nor, NA
*BioEnh↑, *antiOx↑, *BioEnh↑, *LDL↓, *HDL∅, *Obesity↓, eff↑, GutMicro↝,
4233- LEC,    Lecithinized brain-derived neurotrophic factor promotes the differentiation of embryonic stem cells in vitro and in vivo
- in-vitro, Nor, NA
*BDNF↑, *motorD↑, *Diff↑,
1084- LT,  CHr,    Luteolin and chrysin differentially inhibit cyclooxygenase-2 expression and scavenge reactive oxygen species but similarly inhibit prostaglandin-E2 formation in RAW 264.7 cells
- in-vitro, Nor, RAW264.7
*COX2↓, *COX2∅, *PGE2↓, *ROS↓,
1534- LT,  Api,  EGCG,  RES,    Plant polyphenol induced cell death in human cancer cells involves mobilization of intracellular copper ions and reactive oxygen species generation: a mechanism for cancer chemopreventive action
- in-vitro, Nor, MCF10 - in-vitro, BC, MDA-MB-231 - in-vitro, BC, MDA-MB-468 - in-vitro, PC, Bxpc-3
TumCP↓, Apoptosis↑, eff↓, *toxicity↑, Dose?, eff↓, eff↓,
2915- LT,    Luteolin promotes apoptotic cell death via upregulation of Nrf2 expression by DNA demethylase and the interaction of Nrf2 with p53 in human colon cancer cells
- in-vitro, Colon, HT29 - in-vitro, CRC, SNU-407 - in-vitro, Nor, FHC
DNMTs↓, TET1↑, NRF2↑, HDAC↓, tumCV↓, BAX↑, Casp9↑, Casp3↑, Bcl-2↓, ROS↓, GSS↑, Catalase↑, HO-1↑, DNMT1↓, DNMT3A↓, TET1↑, TET3↑, TET2↓, P53↑, P21↑,
2920- LT,    Formulation, characterization, in vitro and in vivo evaluations of self-nanoemulsifying drug delivery system of luteolin
- in-vitro, Nor, NA - in-vivo, Nor, NA
BioAv↑, eff↑,
2921- LT,    Luteolin as a potential hepatoprotective drug: Molecular mechanisms and treatment strategies
- Review, Nor, NA
*hepatoP↑, *AMPK↑, *SIRT1↑, *ROS↓, STAT3↓, TNF-α↓, NF-kB↓, *IL2↓, *IFN-γ↓, *GSH↑, *SREBP1↓, *ZO-1↑, *TLR4↓, BAX↑, Bcl-2↓, XIAP↓, Fas↑, Casp8↑, Beclin-1↑, *TXNIP↓, *Casp1↓, *IL1β↓, *IL18↓, *NLRP3↓, *MDA↓, *SOD↑, *NRF2↑, *ER Stress↓, *ALAT↓, *AST↓, *iNOS↓, *IL6↓, *HO-1↑, *NQO1↑, *PPARα↑, *ATF4↓, *CHOP↓, *Inflam↓, *antiOx↑, *GutMicro↑,
2925- LT,    Luteolin Induces Carcinoma Cell Apoptosis through Binding Hsp90 to Suppress Constitutive Activation of STAT3
- in-vitro, Cerv, HeLa - in-vitro, Nor, HEK293 - in-vitro, BC, MCF-7
HSP90↓, p‑STAT3↓, Apoptosis↑, selectivity↑,
2926- LT,    Luteolin ameliorates rat myocardial ischemia-reperfusion injury through peroxiredoxin II activation: LUT's cardioprotection through PRX II
- in-vitro, Nor, H9c2
*cardioP↑, *PrxII↑,
2930- LT,    Luteolin confers renoprotection against ischemia–reperfusion injury via involving Nrf2 pathway and regulating miR320
- in-vitro, Nor, NA
*RenoP↑, *ROS↓, *antiOx↑, *NRF2↓,
2907- LT,    Protective effect of luteolin against oxidative stress‑mediated cell injury via enhancing antioxidant systems
- in-vitro, Nor, NA
*ROS↓, *Casp9↓, *Casp3↓, *Bcl-2↑, *BAX↓, *GSH↑, *SOD↑, *Catalase↑, *GPx↑, *HO-1↑, *antiOx↑, *lipid-P↓, *p‑γH2AX↓, eff↑,
2911- LT,    Luteolin targets MKK4 to attenuate particulate matter-induced MMP-1 and inflammation in human keratinocytes
- in-vitro, Nor, HaCaT
*MMP1↓, *COX2↓, *IL6↓, *AP-1↓, *NF-kB↓, *ROS↓, *p‑MKK4↑, *p‑JNK↓, *p‑p38↓,
3285- Lyco,    Comparative evaluation of antiplatelet effect of lycopene with aspirin and the effect of their combination on platelet aggregation: An in vitro study
- in-vitro, Nor, NA
*AntiAg↑, *eff↑,
3286- Lyco,    Inhibitory effects of lycopene on in vitro platelet activation and in vivo prevention of thrombus formation
- in-vitro, Nor, NA
*AntiAg↑,
3267- Lyco,    Lycopene inhibits angiogenesis both in vitro and in vivo by inhibiting MMP-2/uPA system through VEGFR2-mediated PI3K-Akt and ERK/p38 signaling pathways
- in-vitro, Nor, HUVECs
*VEGF↓, *MMP2↓, *uPA↓, *Rac1↑, *TIMP2↑, *p38↓, *Akt↓, *angioG↓,
3266- Lyco,    Effects of lycopene on number and function of human peripheral blood endothelial progenitor cells cultivated with high glucose
- in-vitro, Nor, NA
*p38↓, *MAPK↓,
3265- Lyco,    Lycopene inhibits pyroptosis of endothelial progenitor cells induced by ox-LDL through the AMPK/mTOR/NLRP3 pathway
- in-vitro, Nor, NA
*AMPK↑, *mTOR↓, *NLRP3↓, *Pyro↓,
3263- Lyco,    Lycopene protects against myocardial ischemia-reperfusion injury by inhibiting mitochondrial permeability transition pore opening
- in-vitro, Nor, H9c2 - in-vitro, Stroke, NA
*Apoptosis↓, *MMP↑, *Cyt‑c↓, *APAF1↓, *cl‑Casp9↓, *cl‑Casp3↓, *Bcl-2↑, *BAX↓, cardioP↑,
3529- Lyco,    The antioxidant and anti-inflammatory properties of lycopene in mice lungs exposed to cigarette smoke
- in-vivo, Nor, NA
*antiOx↑, *Inflam↓, *ROS↓, *TNF-α↓, *IFN-γ↓, IL10↓,
3528- Lyco,    The Importance of Antioxidant Activity for the Health-Promoting Effect of Lycopene
- Review, Nor, NA - Review, AD, NA - Review, Park, NA
*antiOx↑, *ROS↓, *BioAv↝, *Half-Life↑, *BioAv↓, *BioAv↑, *cardioP↑, *neuroP↑, *H2O2↓, *VitC↑, *VitE↑, *GPx↑, *GSH↑, *MPO↓, *GSTs↓, *SOD↑, *NF-kB↓, *IL1β↓, *IL6↓, *IL10↑, *MAPK↓, *Akt↓, *COX2↓, *TNF-α↓, *TGF-β1↑, *NO↓, *GSR↑, *NRF2↑, *HO-1↑, *TAC↑, *Inflam↓, *BBB↑, *neuroP↑, *memory↑,
3531- Lyco,    Lycopene attenuates the inflammation and apoptosis in aristolochic acid nephropathy by targeting the Nrf2 antioxidant system
- in-vivo, Nor, NA
*NRF2↑, *HO-1↑, *NQO1↑, *ROS↓, *mtDam↓, *Bcl-2↑, *BAX↓, *Casp9↓, *Casp3↓, *Apoptosis↓, *RenoP↑, *lipid-P↓, *SOD↑, *GPx↑, *Inflam↓, *TNF-α↓, *IL6↓, *IL10↓,
4796- Lyco,    The Anti-proliferation Effects of Lycopene on Breast Cancer Cells
- in-vitro, BC, MCF-7 - in-vitro, Nor, MCF10
TumCG↓, selectivity↑, *BioAv↑, *antiOx↑, *ROS↓, Risk↓, *cardioP↑,
4783- Lyco,    Lycopene suppresses gastric cancer cell growth without affecting normal gastric epithelial cells
- in-vitro, GC, AGS - in-vitro, GC, SGC-7901 - in-vitro, Nor, GES-1
TumCG↓, TumCCA↑, Apoptosis↑, MMP↓, selectivity↑, cycE1↓, TP53↑, *antiOx↑,
1720- Lyco,    Antioxidant and Pro-oxidant Activities of Carotenoids
- Review, Nor, NA
ROS↑,
1713- Lyco,    Lycopene: A Potent Antioxidant with Multiple Health Benefits
- Review, Nor, NA
*antiOx↑, *ROS⇅, *Dose↝, *eff↑, *LDL↓, *RenoP↑, *Inflam↓, neuroP↑, Rho↓,
1709- Lyco,    Lycopene prevents carcinogen-induced cutaneous tumor by enhancing activation of the Nrf2 pathway through p62-triggered autophagic Keap1 degradation
- in-vitro, Nor, JB6
*antiOx↑, *NRF2↑, *GSH/GSSG↓, *Catalase↝, *GR↝, *SOD↝, *GPx↝, *GSH↑, *Keap1↓, *p62↑,
2542- M-Blu,    In Vitro Methylene Blue and Carboplatin Combination Triggers Ovarian Cancer Cells Death
- in-vitro, Ovarian, OV1369 - in-vitro, Ovarian, OV1946 - in-vitro, Nor, ARPE-19
BioAv↝, TumCP↓, GlutaM↓, Warburg↓, OCR↑, Glycolysis↓, ATP↓, BioAv↝, ROS↑,
4528- MAG,    Pharmacology, Toxicity, Bioavailability, and Formulation of Magnolol: An Update
- Review, Nor, NA
*Inflam↑, *cardioP↑, *angioG↓, *antiOx↑, *neuroP↑, *Bacteria↓, AntiTum↑, TumCG↓, TumCMig↓, TumCI↓, Apoptosis↑, E-cadherin↑, NF-kB↓, TumCCA↑, cycD1/CCND1↓, PCNA↓, Ki-67↓, MMP2↓, MMP7↓, MMP9↓, TumCG↓, Casp3↑, NF-kB↓, Akt↓, mTOR↓, LDH↓, Ca+2↑, eff↑, *toxicity↓, *BioAv↝, *PGE2↓, *TLR2↓, *TLR4↓, *MAPK↓, *PPARγ↓,
4525- MAG,  HNK,    Magnolol and Honokiol: Two Natural Compounds with Similar Chemical Structure but Different Physicochemical and Stability Properties
- Study, Nor, NA
*BioAv↝, *eff↑,
4521- MAG,  HNK,    Safety and Toxicology of Magnolol and Honokiol
- Review, Nor, NA
*antiOx↑, *Inflam↓, *Bacteria↓, *toxicity↓,
2643- MCT,    Medium Chain Triglycerides enhances exercise endurance through the increased mitochondrial biogenesis and metabolism
- Review, Nor, NA
*Akt↑, *AMPK↓, *TGF-β↓, eff↑, *BioEnh↑, *ATP↑, *PGC-1α↑, *p‑mTOR↑, *SMAD3↓,
2644- MCT,    The Effects of Medium-Chain Triglyceride Oil Supplementation on Endurance Performance and Substrate Utilization in Healthy Populations: A Systematic Review
- Review, Nor, NA
*KeyT↑, *Dose↝, eff↑,
4705- MEL,    Melatonin: beyond circadian regulation - exploring its diverse physiological roles and therapeutic potential
- Review, Nor, NA
*CLOCK↝, *BMD↑, *cardioP↑, *neuroP↑, *Sleep↑,
2491- MET,    Metformin suppresses gluconeogenesis by inhibiting mitochondrial glycerophosphate dehydrogenase
- in-vivo, Nor, NA
*glucoNG↓, *glucose↓, *mitResp↓,
2492- MET,    The Metformin Mechanism on Gluconeogenesis and AMPK Activation: The Metabolite Perspective
- Review, Nor, NA
*glucose↓, *glucoNG↓, *AMPK↑,
2493- MET,    Metformin Inhibits Gluconeogenesis by a Redox-Dependent Mechanism In Vivo
- in-vivo, Nor, NA
glucoNG↓, glucose↓,
2376- MET,    Metformin Inhibits Epithelial-to-Mesenchymal Transition of Keloid Fibroblasts via the HIF-1α/PKM2 Signaling Pathway
- in-vitro, Nor, NA
*Hif1a↓, *EMT↓, *p‑P70S6K↓, *PKM2↓,
2436- MET,    Metformin alleviates nickel-induced autophagy and apoptosis via inhibition of hexokinase-2, activating lipocalin-2, in human bronchial epithelial cells
- in-vitro, Nor, BEAS-2B
*HK2↓,
2247- MF,    Effects of Pulsed Electromagnetic Field Treatment on Skeletal Muscle Tissue Recovery in a Rat Model of Collagenase-Induced Tendinopathy: Results from a Proteome Analysis
- in-vivo, Nor, NA
*Glycolysis↓, *LDHB↑, *NAD↑, *ATP↑, *antiOx↑, *ROS↑, *YAP/TEAD↑, *PGC-1α↑, *TCA↑, *FAO↑, *OXPHOS↑,
2246- MF,    The Use of Pulsed Electromagnetic Field to Modulate Inflammation and Improve Tissue Regeneration: A Review
- in-vitro, Nor, NA
*Inflam↓, *IL1↓, *IL6↓, IL17↓, *TNF-α↓,
2245- MF,    Quantum based effects of therapeutic nuclear magnetic resonance persistently reduce glycolysis
- in-vitro, Nor, NIH-3T3
Warburg↓, Hif1a↓, *Hif1a∅, Glycolysis↓, *lactateProd↓, *ADP:ATP↓, Pyruv↓, ADP:ATP↓, *PPP↓, *mt-ROS↑, *ROS↓, RPM↑, *ECAR↓,
2243- MF,    Pulsed electromagnetic fields increase osteogenetic commitment of MSCs via the mTOR pathway in TNF-α mediated inflammatory conditions: an in-vitro study
- in-vitro, Nor, NA
*eff↑, *mTOR↑, *Akt↑, *PKA↑, *MAPK↑, *ERK↑, *BMP2↑, *Diff↑, *PKCδ↓, *VEGF↑, *IL10↑,
2242- MF,    Electromagnetic stimulation increases mitochondrial function in osteogenic cells and promotes bone fracture repair
- in-vitro, Nor, NA
*MMP↑, *Diff↑, *OXPHOS↑, *BMD↑, ATP∅,
2240- MF,    Pulsed electromagnetic field induces Ca2+-dependent osteoblastogenesis in C3H10T1/2 mesenchymal cells through the Wnt-Ca2+/Wnt-β-catenin signaling pathway
- in-vitro, Nor, C3H10T1/2
*Ca+2↑, *Diff↑, *BMD↑, *Wnt↑, *β-catenin/ZEB1↑, *eff↝,
2237- MF,    The Effect of Pulsed Electromagnetic Field Stimulation of Live Cells on Intracellular Ca2+ Dynamics Changes Notably Involving Ion Channels
- in-vitro, AML, KG-1 - in-vitro, Nor, HUVECs
Ca+2↑, selectivity↑, *Inflam↓, *TNF-α↓, *NF-kB↓, *Ca+2↓,
2236- MF,    Changes in Ca2+ release in human red blood cells under pulsed magnetic field
- in-vitro, Nor, NA
*Ca+2↓, *eff↓, *ROS↓,
2261- MF,    Tumor-specific inhibition with magnetic field
- in-vitro, Nor, GP-293 - in-vitro, Liver, HepG2 - in-vitro, Lung, A549
ROS↑, Ca+2↓, Apoptosis↑, *selectivity↑, TumCG↓, *i-Ca+2↓, i-Ca+2↑,
2248- MF,    Magnetic fields modulate metabolism and gut microbiome in correlation with Pgc-1α expression: Follow-up to an in vitro magnetic mitohormetic study
- in-vivo, Nor, NA
*PGC-1α↑, *GutMicro↑, *FAO↓, *Insulin↓,
2249- MF,    Pulsed electromagnetic fields modulate energy metabolism during wound healing process: an in vitro model study
- in-vitro, Nor, L929
*TumCMig↑, *tumCV↑, *Glycolysis↑, *ROS↓, *mitResp↓, *other↝, *OXPHOS↓, *pH↑, *antiOx↑, *PFKM↑, *PFKL↑, *PKM2↑, *HK2↑, *GLUT1↑, *GPx1↑, *GPx4↑, *SOD1↑,
2253- MF,    Low-frequency pulsed electromagnetic field promotes functional recovery, reduces inflammation and oxidative stress, and enhances HSP70 expression following spinal cord injury
- in-vivo, Nor, NA
*Inflam↓, *TNF-α↓, *IL1β↓, *NF-kB↓, *iNOS↓, *ROS↓, Catalase↑, *SOD↑, *HSP70/HSPA5↑, *neuroP↑, *motorD↑, *antiOx↑,
2256- MF,  HPT,    Effects of exposure to repetitive pulsed magnetic stimulation on cell proliferation and expression of heat shock protein 70 in normal and malignant cells
- in-vitro, BC, MCF-7 - in-vitro, Cerv, HeLa - in-vitro, Nor, HBL-100
HSP70/HSPA5↑, HSP70/HSPA5∅,
2255- MF,    Pulsed Electromagnetic Fields Induce Skeletal Muscle Cell Repair by Sustaining the Expression of Proteins Involved in the Response to Cellular Damage and Oxidative Stress
- in-vitro, Nor, SkMC
*HSP70/HSPA5↑, *Apoptosis↓, *Inflam↓, *Trx↓, *PONs↓, *SOD2↓, *TumCG↑, *Diff↑, *HIF2a↑, *Cyt‑c↑, P21↑,
2254- MF,    Effect of 60 Hz electromagnetic fields on the activity of hsp70 promoter: an in vivo study
- in-vivo, Nor, NA
*HSP70/HSPA5↑, HSP70/HSPA5↑,
4355- MF,    Ambient and supplemental magnetic fields promote myogenesis via a TRPC1-mitochondrial axis: evidence of a magnetic mitohormetic mechanism
- in-vitro, Nor, C2C12
*mt-OCR↑, *mt-ROS↑, *ECAR↑, *Dose↝, *Ca+2↑, *ATP↑, *other↑, *eff↓, *eff↝,
4356- MF,    Pulsed electromagnetic fields synergize with graphene to enhance dental pulp stem cell-derived neurogenesis by selectively targeting TRPC1 channels
- in-vitro, Nor, NA
*Diff↑, *TRPC1↑, *ROS↑,
3478- MF,    One Month of Brief Weekly Magnetic Field Therapy Enhances the Anticancer Potential of Female Human Sera: Randomized Double-Blind Pilot Study
- Trial, BC, NA - in-vitro, BC, MCF-7 - in-vitro, Nor, C2C12
TumCP↓, TumCMig↓, TumCI↓, *toxicity∅, TGF-β↓, Twist↓, Slug↓, β-catenin/ZEB1↓, Vim↓, p‑SMAD2↓, p‑SMAD3↓, angioG↓, VEGF↓, selectivity↑, LIF↑,
3484- MF,    Extremely low frequency pulsed electromagnetic fields cause antioxidative defense mechanisms in human osteoblasts via induction of •O2 − and H2O2
- in-vitro, Nor, NA
*GPx↑, *SOD2↑, *Catalase↑, *GSR↑, *ROS↓,
3474- MF,    Pulsed electromagnetic fields potentiate the paracrine function of mesenchymal stem cells for cartilage regeneration
- in-vitro, Nor, NA
*Inflam↓, *Apoptosis↓, *other↑, *PGE2↓, *COX2↓, *IL6↓, *IL8↓, *cAMP↑, *IL10↑,
3462- MF,    The Effect of a Static Magnetic Field on microRNA in Relation to the Regulation of the Nrf2 Signaling Pathway in a Fibroblast Cell Line That Had Been Treated with Fluoride Ions
- in-vitro, Nor, NA
*NRF2↑, *Keap1↓, *SOD↑, *GPx↑, *ROS↓, *MDA↓, *SOD1↑, *SOD2↑, *GSR↑,
3471- MF,    The prevention effect of pulsed electromagnetic fields treatment on senile osteoporosis in vivo via improving the inflammatory bone microenvironment
- in-vivo, Nor, NA
*BMD↑, *NLRP3↓, *proCasp1↓, *cl‑Casp1↓, *IL1β↓, *GSDMD↓,
3475- MF,    A Pulsed Electromagnetic Field Protects against Glutamate-Induced Excitotoxicity by Modulating the Endocannabinoid System in HT22 Cells
- in-vitro, Nor, HT22 - Review, AD, NA
*Apoptosis↓, *LDH↓, *neuroP↑, *toxicity∅, *IL1β↓, *Inflam↓, *IL10↑, *TNF-α↓,
3467- MF,    Pulsed Magnetic Field Induces Angiogenesis and Improves Cardiac Function of Surgically Induced Infarcted Myocardium in Sprague-Dawley Rats
- in-vivo, Nor, NA
*angioG↑, *cardioP↑,
4015- MF,    Evaluation of the PTEN and circRNA-CDR1as Gene Expression Changes in Gastric Cancer and Normal Cell Lines Following the Exposure to Weak and Moderate 50 Hz Electromagnetic Fields
- in-vitro, GC, AGS - in-vitro, Nor, HU02
*PTEN↑, PTEN↓, Dose↝,
501- MF,    Low Intensity and Frequency Pulsed Electromagnetic Fields Selectively Impair Breast Cancer Cell Viability
- in-vitro, BC, MCF-7 - in-vitro, Nor, MCF10
Apoptosis↑, *toxicity↓, ChemoSen↑, chemoP↑, selectivity↑, DNAdam↑,
526- MF,    Inhibition of Cancer Cell Growth by Exposure to a Specific Time-Varying Electromagnetic Field Involves T-Type Calcium Channels
- in-vitro, BC, MDA-MB-231 - in-vitro, BC, MCF-7 - in-vitro, Pca, HeLa - vitro+vivo, Melanoma, B16-BL6 - in-vitro, Nor, HEK293
TumCG↓, Ca+2↑, selectivity↑, *Ca+2∅, ROS↑, HSP70/HSPA5↑, AntiCan↑,
486- MF,    mTOR Activation by PI3K/Akt and ERK Signaling in Short ELF-EMF Exposed Human Keratinocytes
- in-vitro, Nor, HaCaT
*mTOR↑, *PI3K↑, *Akt↑, *p‑ERK↑, *other↑, *p‑JNK↑, *p‑P70S6K↑,
536- MF,    Comparison of pulsed and continuous electromagnetic field generated by WPT system on human dermal and neural cells
- in-vitro, Nor, SH-SY5Y - in-vitro, GBM, T98G - in-vitro, Nor, HDFa
other∅,
534- MF,    Effect of extremely low frequency electromagnetic field parameters on the proliferation of human breast cancer
- in-vitro, BC, MCF-7 - in-vitro, BC, MDA-MB-231 - in-vivo, Nor, MCF10
Ca+2↑, Apoptosis↑, eff↝, eff↑, selectivity↑, eff↝, eff↝,
533- MF,    Effects of extremely low-frequency magnetic fields on human MDA-MB-231 breast cancer cells: proteomic characterization
- in-vitro, BC, MDA-MB-231 - in-vitro, Nor, MCF10
TumCD↑, necrosis↑, mt-ROS↑, other↑, *STAT3↓, STAT3↑,
532- MF,    A 50 Hz magnetic field influences the viability of breast cancer cells 96 h after exposure
- in-vitro, BC, MDA-MB-231 - in-vitro, BC, MCF-7 - in-vitro, Nor, MCF10
TumCP↓, MMP↓, ROS↑, eff↝, selectivity↑,
531- MF,    6-mT 0-120-Hz magnetic fields differentially affect cellular ATP levels
- in-vitro, Cerv, HeLa - in-vitro, CRC, HCT116 - in-vitro, BC, MCF-7 - in-vitro, Lung, A549 - in-vitro, Nor, RPE-1 - in-vitro, Nor, GP-293
ATP⇅,
530- MF,    Low frequency sinusoidal electromagnetic fields promote the osteogenic differentiation of rat bone marrow mesenchymal stem cells by modulating miR-34b-5p/STAC2
- in-vivo, Nor, NA
*miR-34b-5p↓, *ALP↑, *RUNX2↑, *BMP2↑, *OCN↑, *OPN↑, *β-catenin/ZEB1↑, *STAC2↑, *Diff↑, *BMD↑,
507- MF,    Effects of extremely low frequency electromagnetic fields on the tumor cell inhibition and the possible mechanism
- in-vitro, Liver, HepG2 - in-vitro, Lung, A549 - in-vitro, Nor, GP-293
MMP↓, TumCG↓, ROS↑, *Ca+2↓, Ca+2↑, selectivity↑, i-pH↑,
512- MF,    Pulsed Electromagnetic Fields (PEMFs) Trigger Cell Death and Senescence in Cancer Cells
- in-vitro, BC, MCF-7 - in-vitro, BC, MDA-MB-231 - in-vitro, Nor, FF95
TumCP↓, *toxicity↓, ChemoSen↑, RadioS↑, selectivity↑, Ca+2↑,
525- MF,    Pulsed electromagnetic fields regulate metabolic reprogramming and mitochondrial fission in endothelial cells for angiogenesis
- in-vitro, Nor, HUVECs
*angioG↑, *GPx1↑, *GPx4↑, *SOD↑, *PFKM↑, *PFKL↑, *PKM2↑, *PFKP↑, *HK2↑, *GLUT1↑, *GLUT4↑, *ROS↓, *MMP↝, *Glycolysis↑, *OXPHOS↓,
520- MF,    Exposure to a 50-Hz magnetic field induced mitochondrial permeability transition through the ROS/GSK-3β signaling pathway
- in-vitro, Nor, NA
*MPT↑, *Cyt‑c↑, *ROS↑, *p‑GSK‐3β↑, *eff↓, *MMP∅, *BAX↓, *Bcl-2∅,
191- MFrot,  MF,    Early exposure of rotating magnetic fields promotes central nervous regeneration in planarian Girardia sinensis
- in-vivo, Nor, NA
*EGR4↑, *Netrins↑, *NSE↑, *NPY↑,
218- MFrot,  MF,    Extremely low frequency magnetic fields inhibit adipogenesis of human mesenchymal stem cells
- in-vitro, Nor, NA
*PPARγ↓, *p‑JNK↑, *Wnt↑, *ALP∅, *COL1∅, *RUNX2∅, *OCN∅, *FABP4↓, *p‑JNK↑, *Diff↓,
229- MFrot,  MF,    Molecular mechanism of effect of rotating constant magnetic field on organisms
- in-vivo, Nor, NA
*NO↑, *5HT↓, *eff↝, *eff↝, *β-Endo↑, *other↓,
230- MFrot,  MF,    Study on the Effect of Rotating Magnetic Field on Cellular Response of Mammalian Cells
- in-vitro, Nor, L929
*ALDH↑,
214- MFrot,  MF,    Modification of bacterial cellulose through exposure to the rotating magnetic field
- in-vitro, Nor, NA
CellMemb↑, GlucoseCon↓,
595- MFrot,  VitC,  MF,    The Effect of Alternating Magnetic Field Exposure and Vitamin C on Cancer Cells
- in-vitro, PC, MIA PaCa-2 - in-vitro, CRC, SW-620 - in-vitro, NA, HT1080 - in-vitro, Pca, PC3 - in-vitro, OS, U2OS - in-vitro, BC, MCF-7 - in-vitro, Nor, CCD-18Co
TumCD↑, eff↑, *TumCG∅,
3497- MFrot,  MF,    The Effect of a Rotating Magnetic Field on the Regenerative Potential of Platelets
- Human, Nor, NA
*PDGFR-BB↑, *TGF-β↑, *IGF-1↑, *FGF↑, *angioG↑, *Inflam↓, *ROS↓,
3499- MFrot,  MF,    Rotating magnetic field delays human umbilical vein endothelial cell aging and prolongs the lifespan of Caenorhabditis elegans
- in-vitro, Nor, HUVECs
*AntiAge↑, *AMPK↑, *mPGES-1↓, *Ca+2↑, *ER Stress↑, *OS↑, *ROS↓,
3535- MFrot,  MF,    Pulsed Electromagnetic Field Stimulation in Osteogenesis and Chondrogenesis: Signaling Pathways and Therapeutic Implications
- Review, Nor, NA
*eff↑, *COL2A1↑, *SOX9↑, *Ca+2↑, *FAK↑, *F-actin↑, *Inflam↓, *other↑, *Diff↑, *BMD↑,
2258- MFrot,  MF,    EXTH-68. ONCOMAGNETIC TREATMENT SELECTIVELY KILLS GLIOMA CANCER CELLS BY INDUCING OXIDATIVE STRESS AND DNA DAMAGE
- in-vitro, GBM, GBM - in-vitro, Nor, SVGp12
TumVol↓, OS↑, γH2AX↑, DNAdam↑, selectivity↑, ROS↑, TumCD↑, eff↑, eff↓,
2311- MFrot,  MF,    Magnetic fields as a potential therapy for diabetic wounds based on animal experiments and clinical trials
- in-vivo, Nor, HaCaT
*COX2↓, *Inflam↓, *MMP9↑, *GPx↑, *Diff↑,
656- MNPs,  MF,    Effects of combined delivery of extremely low frequency electromagnetic field and magnetic Fe3O4 nanoparticles on hepatic cell lines
- in-vitro, HCC, HepG2 - in-vitro, Nor, HL7702
BioAv↑, Apoptosis↑, *toxicity↓,
929- Moringa,    Bioenhancers from mother nature and their applicability in modern medicine
- Review, Nor, NA
*BioEnh↑,
3849- MSM,    Beauty from within: Oral administration of a sulfur-containing supplement methylsulfonylmethane improves signs of skin ageing
- Human, Nor, NA
*Dose↝, *AntiAge↑,
2939- NAD,  Rad,    NMN ameliorated radiation induced damage in NRF2-deficient cell and mice via regulating SIRT6 and SIRT7
- in-vitro, Nor, NA
*SIRT6↑, *DNAdam↓, *radioP↑, *ROS↓,
2935- NAD,    Long-term NMN treatment increases lifespan and healthspan in mice in a sex dependent manner
- in-vitro, Nor, NA
*GutMicro↑, *OS↑,
2934- NAD,    The efficacy and safety of β-nicotinamide mononucleotide (NMN) supplementation in healthy middle-aged adults: a randomized, multicenter, double-blind, placebo-controlled, parallel-group, dose-dependent clinical trial
- Trial, Nor, NA
*Dose↑, *Strength↑,
2932- NAD,    Neuroprotective effects and mechanisms of action of nicotinamide mononucleotide (NMN) in a photoreceptor degenerative model of retinal detachment
- in-vitro, Nor, NA
*SIRT1↑, *HO-1↑, *neuroP↑, *Apoptosis↓, *Inflam↓, *ROS↓, *antiOx↑, *toxicity↓,
2931- NAD,    NAD+ Repletion Rescues Female Fertility during Reproductive Aging
- in-vivo, Nor, NA
*eff↑, *SIRT2↑, *other↑, *Dose↝,
2933- NAD,    Nicotinamide mononucleotide (NMN) as an anti-aging health product – Promises and safety concerns
- Review, Nor, NA - NA, AD, NA - NA, Diabetic, NA - NA, Stroke, NA - NA, LiverDam, NA - NA, Park, NA
*mtDam↓, *BioAv↝, *BioAv↑, *OS↑, *eff↑, *eff↑, *cognitive↑, *DNAdam↓, *SIRT1↑, *cardioP↑, *ROS↓, *Dose↝, *BioAv↑, *hepatoP↑, *eff↑, *BG↓, *creat↓,
928- NarG,  PacT,    Bioenhancers from mother nature and their applicability in modern medicine
- Review, Nor, NA
*BioEnh↑,
1800- NarG,    Naringenin
- Human, Nor, NA
CYP19↓,
1802- NarG,  ATV,    Bioenhancing effects of naringin on atorvastatin
- in-vivo, Nor, NA
BioEnh↑, LDL↓, P450↓, P-gp↓,
991- OA,    Blockade of glycolysis-dependent contraction by oroxylin a via inhibition of lactate dehydrogenase-a in hepatic stellate cells
- in-vivo, NA, NA - in-vivo, Nor, NA
*Glycolysis↓, *GlucoseCon↓, *lactateProd↓, *ECAR↓, *HK2↓, *PFK↓, *PKM2↓, *LDHA↓,
2396- PACs,    PKM2 is the target of proanthocyanidin B2 during the inhibition of hepatocellular carcinoma
- in-vitro, HCC, HCCLM3 - in-vitro, HCC, SMMC-7721 cell - in-vitro, HCC, Bel-7402 - in-vitro, HCC, HUH7 - in-vitro, HCC, HepG2 - in-vitro, Nor, L02
TumCP↓, TumCCA↓, Apoptosis↑, GlucoseCon↓, lactateProd↓, PKM2↓, Glycolysis↓, HK2↓, PFK↓, OXPHOS↑, ChemoSen↑, HSP90↓, Hif1a↓,
1239- PACs,    Cranberry proanthocyanidins inhibit MMP production and activity
- in-vitro, Nor, NA
*MMPs↓, *MMP1↓, *MMP9↓, *NF-kB↓,
1994- Part,    Parthenolide Inhibits Tumor Cell Growth and Metastasis in Melanoma A2058 Cells
- in-vitro, Melanoma, A2058 - in-vitro, Nor, L929
tumCV↓, selectivity?, ROS?, BAX↑, TumCCA?, MMP2↓, MMP9↓, TumCMig↓, eff↑,
1987- Part,  Rad,    A NADPH oxidase dependent redox signaling pathway mediates the selective radiosensitization effect of parthenolide in prostate cancer cells
- in-vitro, Pca, PC3 - in-vitro, Nor, PrEC
selectivity↑, RadioS↑, ROS↑, *ROS∅, NADPH↑, Trx↓, PI3K↑, Akt↑, p‑FOXO3↓, SOD2↓, Catalase↓, radioP↑, *NADPH∅, *GSH↑, *GSH/GSSG↑, *NRF2↑,
1985- Part,    KEAP1 Is a Redox Sensitive Target That Arbitrates the Opposing Radiosensitive Effects of Parthenolide in Normal and Cancer Cells
- in-vitro, Pca, LNCaP - in-vitro, Pca, DU145 - in-vitro, Nor, PrEC - in-vivo, NA, NA
ROS↑, NADPH↑, RadioS↑, radioP↑, Trx↓, *ox-Keap1↑, ox-Keap1↓, rd-Keap1↑, *NRF2↑, NRF2∅, NF-kB↓,
2035- PB,    Sodium Phenylbutyrate Controls Neuroinflammatory and Antioxidant Activities and Protects Dopaminergic Neurons in Mouse Models of Parkinson’s Disease
- in-vitro, Nor, glial - in-vivo, NA, NA
*ROS↓, *Inflam↑, *P21↓, *antiOx↑, *GSH↑, *NF-kB↓, *neuroP↑, *HDAC↓, *iNOS↓, *TNF-α↓, *IL1β↓, *LDL↓, ROS↓,
2034- PB,    Protective effects of 4-phenylbutyrate derivatives on the neuronal cell death and endoplasmic reticulum stress
- in-vitro, Nor, SH-SY5Y
*ER Stress↓, *ChemChap↓, *cytoP↑, *cellD↓, *neuroP↑,
2062- PB,    Sodium 4-phenylbutyrate induces apoptosis of human lung carcinoma cells through activating JNK pathway
- in-vitro, Lung, H460 - in-vitro, Lung, H1792 - in-vitro, Lung, A549 - in-vitro, Lung, SK-LU-1 - in-vitro, Nor, HBE4-E6/E7
JNK↓, ERK↓,
2056- PB,    Endoplasmic Reticulum Stress Induces ROS Production and Activates NLRP3 Inflammasome Via the PERK-CHOP Signaling Pathway in Dry Eye Disease
- in-vitro, Nor, HCE-2
*ROS↓, *NLRP3↓, *IL1β↓, *TXNIP↑, *ER Stress↓,
2055- PB,    The Effects of Butyric Acid on the Differentiation, Proliferation, Apoptosis, and Autophagy of IPEC-J2 Cells
- in-vitro, Nor, IPEC-J2
*Diff↑, *TumCP↓, *TumCCA↑, *ROS↑, *Casp3↑, *TNF-α↑,
2046- PB,    Sodium butyrate promotes apoptosis in breast cancer cells through reactive oxygen species (ROS) formation and mitochondrial impairment
- in-vitro, BC, MCF-7 - in-vitro, BC, MDA-MB-468 - in-vitro, Nor, MCF10
Apoptosis↑, i-ROS?, Casp↑, MMP?, selectivity↑, *ROS∅, HDAC↓, DNArepair↓, Casp3↑, Casp8↑, *toxicity↓, TumCCA↑,
2042- PB,    Phenylbutyrate, a histone deacetylase inhibitor, protects against Adriamycin-induced cardiac injury
- in-vitro, Nor, NA
*HDAC↓, *toxicity↓, *LDH↓, *SOD2↑, *ROS↓, *cardioP↑, *antiOx↑,
2041- PB,    The Effect of Glucose Concentration and Sodium Phenylbutyrate Treatment on Mitochondrial Bioenergetics and ER Stress in 3T3-L1 Adipocytes
- in-vitro, Nor, 3T3
*mitResp↓, *ER Stress↓, MMP↓, GlucoseCon↓, OCR↓, CHOP↑,
2039- PB,    TXNIP mediates the differential responses of A549 cells to sodium butyrate and sodium 4‐phenylbutyrate treatment
- in-vitro, Lung, A549 - in-vitro, Nor, HEK293
TXNIP↑, Casp3↑, Casp7↑, mt-ROS↑, GlucoseCon↓, TumCP↓, TumCD↑, IGF-2↑, HDAC↓, ROS⇅,
2030- PB,    4-Phenylbutyric acid protects against neuronal cell death by primarily acting as a chemical chaperone rather than histone deacetylase inhibitor
- Review, Nor, NA
*HDAC↓, *neuroP↑, *ChemChap↑,
2068- PB,    Phenylbutyrate-induced glutamine depletion in humans: effect on leucine metabolism
- in-vivo, Nor, NA
glut↓, NH3↓, eff↝,
2421- PB,    Sodium butyrate inhibits aerobic glycolysis of hepatocellular carcinoma cells via the c‐myc/hexokinase 2 pathway
- in-vitro, HCC, HCCLM3 - in-vivo, NA, NA - in-vitro, HCC, Bel-7402 - in-vitro, HCC, SMMC-7721 cell - in-vitro, Nor, L02
Glycolysis↓, Apoptosis↑, TumCP↓, lactateProd↓, GlucoseCon↓, HK2↓, ChemoSen↑, *toxicity↓, cMyc↓, PFK1↓, LDHA↓, cMyc↓, ChemoSen↑,
1665- PBG,    Evidence on the Health Benefits of Supplemental Propolis
- Review, Nor, NA
*antiOx↑, *Inflam↓, *toxicity↑, *Dose?,
1659- PBG,    Improvement of insulin resistance, blood pressure and interstitial pH in early developmental stage of insulin resistance in OLETF rats by intake of propolis extracts
- in-vivo, Nor, NA
pH↑, BP↓, BG↓,
1648- PBG,    Contribution of Green Propolis to the Antioxidant, Physical, and Sensory Properties of Fruity Jelly Candies Made with Sugars or Fructans
- Review, Nor, NA
Dose∅, Dose∅, eff↓, antiOx↑,
1647- PBG,  CA,    Antioxidant Properties and Phenolic Composition of Greek Propolis Extracts
- Analysis, Nor, NA
Dose?, antiOx↑, other↑,
1671- PBG,    Importance of pH Homeostasis in Metabolic Health and Diseases: Crucial Role of Membrane Proton Transport
- Review, Nor, NA
pH↑,
1681- PBG,    Propolis: Its Role and Efficacy in Human Health and Diseases
- Review, Nor, NA
*Inflam↓, *AntiCan↑, *antiOx↑, *hyperG↓, *BG↓, *HbA1c↓, *NF-kB↓, *ROS↓, *TGF-β↑, *selectivity↑,
1683- PBG,  Rad,    Protective effect of propolis in protecting against radiation-induced oxidative stress in the liver as a distant organ
- in-vivo, Nor, NA
GPx↑, SOD↓, RadioS↑,
1684- PBG,    Antitumor Activity of Chinese Propolis in Human Breast Cancer MCF-7 and MDA-MB-231 Cells
- in-vitro, BC, MCF-7 - in-vitro, BC, MDA-MB-231 - in-vitro, Nor, HUVECs
Apoptosis?, ANXA7↑, ROS↑, NF-kB↓, MMP↓, selectivity↑,
1680- PBG,    Protection against Ultraviolet A-Induced Skin Apoptosis and Carcinogenesis through the Oxidative Stress Reduction Effects of N-(4-bromophenethyl) Caffeamide, a Propolis Derivative
- in-vitro, Nor, HS68
*ROS↓, *NRF2↑, *HO-1↑, *cJun↓, *MMP1↓, *MMP2↓, *p‑cJun↓, *cFos↓, *BAX↓, *Casp3↓, *DNAdam↓, *iNOS↓, *COX2↓, *IL6↓, *PGE2↓, *NO↓,
1674- PBG,  SDT,  HPT,    Study on the effect of a triple cancer treatment of propolis, thermal cycling-hyperthermia, and low-intensity ultrasound on PANC-1 cells
- in-vitro, PC, PANC1 - in-vitro, Nor, H6c7
tumCV↓, ROS↑, eff↑, Dose∅, selectivity↑, MMP↓, mtDam↑, cl‑PARP↑, p‑ERK↓, p‑JNK↑, p‑p38↑, eff↓, ChemoSen↑,
1677- PBG,    Propolis Inhibits UVA-Induced Apoptosis of Human Keratinocyte HaCaT Cells by Scavenging ROS
- in-vitro, Nor, HaCaT
*Dose∅, *AP-1↓, *MMP↑, *Casp3↓, *ROS↓,
4218- PBG,    The Neuroprotective Effects of Brazilian Green Propolis on Neurodegenerative Damage in Human Neuronal SH-SY5Y Cells
- in-vitro, Nor, SH-SY5Y - in-vitro, AD, NA
*cognitive↑, *ROS↓, *BDNF↑, *neuroP↑, *antiOx↑,
3251- PBG,    The Antioxidant and Anti-Inflammatory Effects of Flavonoids from Propolis via Nrf2 and NF-κB Pathways
- Review, AD, NA - Review, Diabetic, NA - Review, Var, NA - in-vitro, Nor, H9c2
*antiOx↑, *Inflam↓, *ROS↓, *SOD↑, *Catalase↑, *HO-1↑, *NO↓, *NOS2↓, *NF-kB↓, *NRF2↑, *hepatoP↑, *MDA↓, *mtDam↓, *GSH↑, *p65↓, *TNF-α↓, *IL1β↓, *NRF2↑, *NRF2↓, *ROS⇅, *BioAv↓, *BioAv↑,
3253- PBG,    Brazilian red propolis extract enhances expression of antioxidant enzyme genes in vitro and in vivo
- in-vitro, Nor, HEK293 - in-vivo, Nor, NA
*NRF2↑, *ROS↓,
3254- PBG,    Brazilian green propolis water extract up-regulates the early expression level of HO-1 and accelerates Nrf2 after UVA irradiation
- in-vitro, Nor, NA
*HO-1↑, *NRF2↑,
3255- PBG,    Propolis reversed cigarette smoke-induced emphysema through macrophage alternative activation independent of Nrf2
- in-vivo, Nor, NA
*IGF-1↓, *MMP2↑, *ROS↓, *Inflam↓, *IL10↓, *NRF2∅,
3259- PBG,    Propolis and its therapeutic effects on renal diseases: A review
- Review, Nor, NA
*Inflam↓, *COX2↓, *ROS↓, *NO↓, *NF-kB↓, TumCP↓, angioG↓, VEGF↓, STAT↓, Hif1a↓, RenoP↑, TLR4↓, *MDA↓, *GSH↑, *SOD↑, *Catalase↑, *toxicity∅,
5016- PEITC,    Phenethyl Isothiocyanate (PEITC) interaction with Keap1 activates the Nrf2 pathway and inhibits lipid accumulation in adipocytes
- in-vitro, Nor, NA
*NRF2↑, *Diff↓, *Weight↓, *lipid-P↓,
4938- PEITC,    Clinical Trial of 2-Phenethyl Isothiocyanate as an Inhibitor of Metabolic Activation of a Tobacco-Specific Lung Carcinogen in Cigarette Smokers
- Trial, Nor, NA
*Risk↑, *P450↓, *BioAv↑, *BioAv↑, *BioAv↑, *Dose↝, Dose↝,
4939- PEITC,    Phenethyl Isothiocyanate Inhibits Angiogenesis In vitro and Ex vivo
- in-vitro, Pca, PC3 - ex-vivo, Nor, HUVECs
Risk↓, angioG↓, VEGF↓, TumCMig↓, Akt↓, EGF↓, TumCMig↓,
1764- PG,  Cu,    DNA strand break induction and enhanced cytotoxicity of propyl gallate in the presence of copper(II)
- in-vitro, Nor, GM05757
*DNAdam↑, *ROS↑, *Dose∅, *DNAdam∅,
1766- PG,    Propyl gallate induces human pulmonary fibroblast cell death through the regulation of Bax and caspase-3
- in-vitro, Nor, NA
TumCCA↑, MMP↓,
1767- PG,    Propyl gallate induces cell death in human pulmonary fibroblast through increasing reactive oxygen species levels and depleting glutathione
- in-vitro, Nor, NA
*ROS↑, *GSH↓, *SOD↓, *Catalase↓, eff↓,
1771- PG,    Pharmacokinetic and toxicological overview of propyl gallate food additive
- Human, Nor, NA
*toxicity∅,
3596- PI,    Antioxidant efficacy of black pepper (Piper nigrum L.) and piperine in rats with high fat diet induced oxidative stress
- in-vivo, Nor, NA
*TBARS↑, *SOD↑, *Catalase↑, *GSTs↑, *GPx↑, *GSH↑, *ROS↓,
925- PI,    Bioenhancers from mother nature and their applicability in modern medicine
- Review, Nor, NA
*BioEnh↑,
1164- PI,    Inhibition of T cell activation by the phytochemical piperine
- in-vitro, Nor, NA
*other↓, *CD25+↓, *IFN-γ↓, *IL2↓, *IL4↓, *IL17↓, *CD69↓, *CTLA-4↓, *p‑ERK↓, *IKKα↓,
1953- PL,    Designing piperlongumine-directed anticancer agents by an electrophilicity-based prooxidant strategy: A mechanistic investigation
- in-vitro, Lung, A549 - in-vitro, Nor, WI38
ROS↑, selectivity↑, TrxR↓, TumCCA↑, GSH?, H2O2↑,
2960- PL,    Synthesis of Piperlongumine Analogues and Discovery of Nuclear Factor Erythroid 2-Related Factor 2 (Nrf2) Activators as Potential Neuroprotective Agents
- Analysis, Nor, NA
NRF2↑, neuroP↑,
2959- PL,    Piperlongumine mitigates LPS-induced inflammation and lung injury via targeting MD2/TLR4
- in-vivo, Nor, NA
*Inflam↓,
2955- PL,    Heme Oxygenase-1 Determines the Differential Response of Breast Cancer and Normal Cells to Piperlongumine
- in-vitro, BC, MCF-7 - in-vitro, Nor, MCF10
ROS?, *ROS∅, other⇅, HO-1↑, *HO-1↑, NRF2↑, Keap1↓, cl‑PARP↑, selectivity↑, GSH↓, GSSG↑,
2953- PL,    Piperlongumine Acts as an Immunosuppressant by Exerting Prooxidative Effects in Human T Cells Resulting in Diminished TH17 but Enhanced Treg Differentiation
- in-vitro, Nor, NA
*ROS↑, *GSTA1↓, eff↝, *toxicity↓, ROS↑, *Hif1a↓,
2964- PL,    Preformulation Studies on Piperlongumine
- Analysis, Nor, NA
*BioAv↓, *BioAv↑, *other↝, *eff↓,
2999- PL,    Piperlongumine alleviates corneal allograft rejection via suppressing angiogenesis and inflammation
- in-vivo, Nor, HUVECs
*Inflam↓, *angioG↓, *Hif1a↓, *VEGF↓, *ICAM-1↓, *VCAM-1↓, *neuroP↑,
3000- PL,    Biological and physical approaches on the role of piplartine (piperlongumine) in cancer
- in-vitro, Nor, HUVECs - in-vitro, Laryn, HEp2
Inflam↓, AntiTum↑, *α-tubulin↓, selectivity↑, HIF2a↓, MCP1↓,
2962- PL,    Synthesis of Piperlongumine Analogues and Discovery of Nuclear Factor Erythroid 2‑Related Factor 2 (Nrf2) Activators as Potential Neuroprotective Agents
- in-vitro, Nor, PC12
*GSH↑, *NQO1↑, *Trx↑, *TrxR↑, *NRF2↑, *NRF2⇅, *eff↑, *BioAv↑, *ROS↓,
2006- Plum,    Plumbagin induces apoptosis in human osteosarcoma through ROS generation, endoplasmic reticulum stress and mitochondrial apoptosis pathway
- in-vitro, OS, MG63 - in-vitro, Nor, hFOB1.19
tumCV↓, selectivity↑, mtDam↑, Ca+2↓, ER Stress↑, ROS↑, Casp3↑, Casp9↑, Apoptosis↑, eff↓,
2005- Plum,    Plumbagin induces apoptosis in lymphoma cells via oxidative stress mediated glutathionylation and inhibition of mitogen-activated protein kinase phosphatases (MKP1/2)
- in-vivo, Nor, EL4 - in-vitro, AML, Jurkat
JNK↑, Cyt‑c↑, FasL↑, BAX↑, ROS↑, *ROS↑, MKP1↓, MKP2↓, selectivity∅, tumCV↑, Cyt‑c↑, Casp3↑, GSH/GSSG↓, ROS↑, mt-ROS↑, *ROS↑, eff↓,
4703- PTS,  RES,    Pterostilbene and resveratrol: Exploring their protective mechanisms against skin photoaging - A scoping review
- NA, Nor, NA
*AntiAge↑, *eff↑, *Inflam↓, *AntiCan↑, *ROS↓, *Catalase↑, *GSR↑, *HO-1↑, *NAD↑, *NQO1↑, *SOD↑, *NRF2↑,
2409- PTS,    Pterostilbene Induces Pyroptosis in Breast Cancer Cells through Pyruvate Kinase 2/Caspase-8/Gasdermin C Signaling Pathway
- in-vitro, BC, EMT6 - in-vitro, BC, 4T1 - in-vitro, Nor, HC11
Pyro↑, Glycolysis↓, *toxicity∅, selectivity↑, GSDMC↑, PKM2↓, PKM1↑, GlucoseCon↓, lactateProd↓, ATP↓, TumCG↓,
3361- QC,    Quercetin ameliorates testosterone secretion disorder by inhibiting endoplasmic reticulum stress through the miR-1306-5p/HSD17B7 axis in diabetic rats
- in-vivo, Nor, NA - in-vitro, NA, NA
*BG↓, *ROS↓, *SOD↑, *MDA↓, *ER Stress↓, *iNOS↓, *CHOP↓, *GRP78/BiP↓, *antiOx↓, *Inflam↓, *JAK2↑, *STAT3?,
3353- QC,    Quercetin triggers cell apoptosis-associated ROS-mediated cell death and induces S and G2/M-phase cell cycle arrest in KON oral cancer cells
- in-vitro, Oral, KON - in-vitro, Nor, MRC-5
tumCV↓, selectivity↑, TumCCA↑, TumCMig↓, TumCI↓, Apoptosis↑, TumMeta↓, Bcl-2↓, BAX↑, TIMP1↑, MMP2↓, MMP9↓, *Inflam↓, *neuroP↑, *cardioP↑, p38↓, MAPK↓, Twist↓, P21↓, cycD1/CCND1↓, Casp3↑, Casp9↑, p‑Akt↓, p‑ERK↓, CD44↓, CD24↓, ChemoSen↑, MMP↓, Cyt‑c↑, AIF↑, ROS↑, Ca+2↑, Hif1a↓, VEGF↓,
3340- QC,    Quercetin regulates inflammation, oxidative stress, apoptosis, and mitochondrial structure and function in H9C2 cells by promoting PVT1 expression
- in-vitro, Nor, H9c2
*Inflam↓, *ROS↓, *Apoptosis↓,
3344- QC,    Quercetin induced ROS production triggers mitochondrial cell death of human embryonic stem cells
- in-vitro, Nor, hESC
mt-ROS↑, selectivity↑, P53↑, ROS⇅,
3342- QC,    Quercetin modulates OTA-induced oxidative stress and redox signalling in HepG2 cells — up regulation of Nrf2 expression and down regulation of NF-κB and COX-2
- in-vitro, Nor, HepG2
*ROS↓, *Ca+2↓, *NF-kB↓, *NRF2↑, *COX2↓, *Inflam↓,
3364- QC,    Quercetin Protects Human Thyroid Cells against Cadmium Toxicity
- in-vitro, Nor, NA
*MDA↓, *GRP78/BiP↓,
3363- QC,    The Protective Effect of Quercetin on Endothelial Cells Injured by Hypoxia and Reoxygenation
- in-vitro, Nor, HBMECs
*Apoptosis↓, *angioG↑, *NRF2↑, *Keap1↓, *ATF6↓, *GRP78/BiP↓, *CLDN5↑, *ZO-1↑, *MMP↑, *BBB↑, *ROS↓, *ER Stress↓,
3334- QC,    Pharmacokinetics of Quercetin Absorption from Apples and Onions in Healthy Humans
- Trial, Nor, NA
*Half-Life↑,
3611- QC,    Quercetin and vitamin C supplementation: effects on lipid profile and muscle damage in male athletes
- Trial, Nor, NA
*eff↝, *LDH↓,
3534- QC,  Lyco,    Synergistic protection of quercetin and lycopene against oxidative stress via SIRT1-Nox4-ROS axis in HUVEC cells
- in-vitro, Nor, HUVECs
*ROS↓, *NOX4↓, *Inflam↓, *NF-kB↓, *p65↓, *SIRT1↑, *cardioP↑, *IL6↓, *COX2↓,
2431- QC,    The Protective Effect of Quercetin against the Cytotoxicity Induced by Fumonisin B1 in Sertoli Cells
- in-vitro, Nor, TM4
*Apoptosis↓, *ROS↓, *antiOx↓, *MMP↑, *GPI↑, *HK2↑, *ALDOA↑, *PKM1↑, *LDHA↑, *PFKL↑,
2343- QC,    Pharmacological Activity of Quercetin: An Updated Review
- Review, Nor, NA
*ROS↓, *GSH↑, *Catalase↑, *SOD↑, *MDA↓, *GPx↑, *Copper↓, *Iron↓, Apoptosis↓, TumCCA↑, MMP2↓, MMP9↓, GlucoseCon↓, lactateProd↓, PKM2↓, GLUT1↓, LDHA↓, ROS↑,
2344- QC,    Quercetin: A natural solution with the potential to combat liver fibrosis
- Review, Nor, NA
*HK2↓, *PFKP↓, *PKM2↓, *hepatoP↑, *ALAT↓, *AST↓, *Glycolysis↓, *lactateProd↓, *GlucoseCon↓, *CXCL1↓, *Inflam↓,
2339- QC,    Quercetin protects against LPS-induced lung injury in mice via SIRT1-mediated suppression of PKM2 nuclear accumulation
- in-vivo, Nor, NA
*Inflam↓, *antiOx↑, *NLRP3↓, *Sepsis↓, *PKM2↓, *SIRT1↓,
2338- QC,    Quercetin: A Flavonoid with Potential for Treating Acute Lung Injury
- Review, Nor, NA
*SIRT1↑, *NLRP3↓, *Inflam↓, *TNF-α↓, *IL1β↓, *IL6↓, *PKM2↓, *HO-1↑, *ROS↓, *NO↓, *MDA↓, *antiOx↑, *COX2↓, *HMGB1↓, *iNOS↓, *NF-kB↓,
917- QC,  BML,  Pap,    Quercetin: A Versatile Flavonoid
- Review, Nor, NA
*BioEnh↑,
926- QC,  PacT,  doxoR,  Tam,    Bioenhancers from mother nature and their applicability in modern medicine
- Review, Nor, NA
*BioEnh↑, BioEnh↑, BioEnh↑, BioEnh↑, BioEnh↑, BioEnh↑, BioEnh↑, P-gp↓,
894- QC,    The antioxidant, rather than prooxidant, activities of quercetin on normal cells: quercetin protects mouse thymocytes from glucose oxidase-mediated apoptosis
- in-vitro, Nor, NA
Apoptosis↑, *NF-kB↓, *AP-1↓, *P53↝, *ROS↓,
873- QC,  RES,  CUR,  PI,    Combination Effects of Quercetin, Resveratrol and Curcumin on In Vitro Intestinal Absorption
- in-vitro, Nor, NA
*BioEnh↑,
897- QC,    Anti- and prooxidant effects of chronic quercetin administration in rats
- in-vivo, Nor, NA
*MDA↓, *GSH⇅, *ROS⇅,
900- QC,    Quercetin Affects Erythropoiesis and Heart Mitochondrial Function in Mice
- in-vivo, Nor, NA
*Weight↓, *TAC∅, *ROS↑,
5030- QC,    Quercetin-derived microbial metabolite DOPAC potentiates CD8+ T cell anti-tumor immunity via NRF2-mediated mitophagy
- in-vivo, Nor, NA
*MitoP↑, *NRF2↑, eff↑, *eff↓, *GutMicro↑,
5028- QC,    Quercetin inhibited LPS-induced cytokine storm by interacting with the AKT1-FoxO1 and Keap1-Nrf2 signaling pathway in macrophages
- vitro+vivo, Nor, RAW264.7
*ROS↓, *Keap1↓, *NRF2↑,
5025- QC,    New perspectives on the therapeutic potential of quercetin in non-communicable diseases: Targeting Nrf2 to counteract oxidative stress and inflammation
- Review, Nor, NA
*antiOx↑, *Inflam↓, *NRF2↓, *ROS↓, *cardioP↑, *HO-1↑, *Catalase↑, *GPx↑, *NQO1↑, *SIRT1↑,
993- RES,    Resveratrol reverses the Warburg effect by targeting the pyruvate dehydrogenase complex in colon cancer cells
- in-vitro, CRC, Caco-2 - in-vivo, Nor, HCEC 1CT
TumCG↓, Glycolysis↓, PPP↓, ATP↑, PDH↑, Ca+2↝, TumCP↓, lactateProd↓, OCR↑, ECAR↓, *ECAR∅, *other?, cycE/CCNE↑, cycA1/CCNA1↑, TumCCA↑, cycD1/CCND1↑, OXPHOS↑,
885- RES,    Resveratrol induces intracellular Ca2 + rise via T-type Ca2 + channels in a mesothelioma cell line
- in-vitro, RCC, REN - in-vitro, Nor, MeT5A
TumCG↓, Ca+2↑, *toxicity↓,
2331- RES,    Resveratrol improves follicular development of PCOS rats via regulating glycolysis pathway and targeting SIRT1
- in-vivo, Nor, NA
*LDHA↑, *PKM2↑, *SIRT1↑, *Glycolysis↝,
2333- RES,    Resveratrol regulates insulin resistance to improve the glycolytic pathway by activating SIRT2 in PCOS granulosa cells
- in-vitro, Nor, NA
*glucose↓, *Insulin↓, *IGFR↓, *IGF-1↓, *LDHA↑, *HK2↑, *PKM2↑, *Glycolysis↝, *SIRT2↑,
2442- RES,    High absorption but very low bioavailability of oral resveratrol in humans
- in-vitro, Nor, NA
BioAv↝, Half-Life↝, BioAv↓, eff↝,
2439- RES,    By reducing hexokinase 2, resveratrol induces apoptosis in HCC cells addicted to aerobic glycolysis and inhibits tumor growth in mice
- in-vitro, HCC, HCCLM3 - in-vitro, Nor, L02 - in-vitro, HCC, SMMC-7721 cell - in-vitro, HCC, Bel-7402 - in-vitro, HCC, HUH7
HK2↓, ChemoSen↑, other↑, Glycolysis↓, lactateProd↓, TumCP↓, Casp3↑, cl‑PARP↑, PKM2↓,
2467- RES,    Resveratrol inhibits Ca2+ signals and aggregation of platelets
- in-vitro, Nor, NA
*AntiAg↑, Ca+2↓,
2472- RES,    Resveratrol Restores Sirtuin 1 (SIRT1) Activity and Pyruvate Dehydrogenase Kinase 1 (PDK1) Expression after Hemorrhagic Injury in a Rat Model
- in-vivo, Nor, NA
*SIRT1↑, *PGC-1α↑, *cMyc↑, *PDK1↓,
3069- RES,    Resveratrol Inhibits NLRP3 Inflammasome-Induced Pyroptosis and miR-155 Expression in Microglia Through Sirt1/AMPK Pathway
- in-vitro, Nor, N9
*antiOx↑, *Inflam↓, *ROS↓, *NF-kB↓, *AMPK↑, *SIRT1↑, *miR-155↓, *NLRP3↓,
3073- RES,    Resveratrol inhibits NLRP3 inflammasome activation by preserving mitochondrial integrity and augmenting autophagy
- in-vitro, Nor, NA
*NLRP3↓, *mtDam↓, *p38↑,
3075- RES,  Rad,    The Protection Effect of Resveratrol Against Radiation-Induced Inflammatory Bowel Disease via NLRP-3 Inflammasome Repression in Mice
- in-vivo, Nor, NA
*SIRT1↑, *radioP↑, *NLRP3↓, *Weight↑, *IL1β↓,
3062- RES,    Resveratrol enhances post-injury muscle regeneration by regulating antioxidant and mitochondrial biogenesis
- in-vivo, Nor, NA
*antiOx↑, *Keap1↓, *NRF2↑, *HO-1↑, *GPx↑, *SOD↑,
3060- RES,    Resveratrol targeting NRF2 disrupts the binding between KEAP1 and NRF2-DLG motif to ameliorate oxidative stress damage in mice pulmonary infection
- in-vitro, Nor, RAW264.7 - in-vivo, NA, NA
*NRF2↑, *antiOx↑, *ROS↓,
3059- RES,    Resveratrol, an Nrf2 activator, ameliorates aging-related progressive renal injury
- in-vivo, Nor, HK-2
*RenoP↑, *Inflam↓, *NRF2↑, *HO-1↑, *SIRT1↑, *ROS↓, AntiAge↑,
3056- RES,    Less is more for cancer chemoprevention: evidence of a non-linear dose response for the protective effects of resveratrol in humans and mice
- in-vivo, Nor, NA
*AMPK↑, *P21↑, *Dose↓, *chemoPv↑,
2983- RES,    Resveratrol Improves Diabetic Retinopathy via Regulating MicroRNA-29b/Specificity Protein 1/Apoptosis Pathway by Enhancing Autophagy
- in-vitro, Nor, NA
*Beclin-1↑, *p62↓, *Sp1/3/4↓, *Apoptosis↓,
2984- RES,    Involvement of miR-539-5p in the inhibition of de novo lipogenesis induced by resveratrol in white adipose tissue
- in-vivo, Nor, NA
*Sp1/3/4↓, *SREBP1↓, *FASN↓,
2985- RES,    Resveratrol Inhibits Diabetic-Induced Müller Cells Apoptosis through MicroRNA-29b/Specificity Protein 1 Pathway
- in-vivo, Nor, NA - vitro+vivo, Diabetic, NA
*Sp1/3/4↓, *miR-29b↑,
2987- RES,    Resveratrol ameliorates myocardial damage by inducing vascular endothelial growth factor-angiogenesis and tyrosine kinase receptor Flk-1
- in-vivo, Nor, NA
*VEGF↑, *iNOS↑, *NF-kB↑, *Sp1/3/4↑, *cardioP↑,
2991- RES,  Chemo,    Synergistic anti-cancer effects of resveratrol and chemotherapeutic agent clofarabine against human malignant mesothelioma MSTO-211H cells
- in-vitro, Melanoma, MSTO-211H - in-vitro, Nor, MeT5A
eff↑, selectivity↑, Sp1/3/4↓,
3099- RES,    Resveratrol and cognitive decline: a clinician perspective
- Review, Nor, NA - NA, AD, NA
*antiOx↑, *ROS↓, *cognitive↑, *neuroP↑, *SIRT1↑, *AMPK↑, *GPx↑, *HO-1↑, *GSK‐3β↑, *COX2↓, *PGE2↓, *NF-kB↓, *NO↓, *Casp3↓, *MMP3↓, *MMP9↓, *MMP↑, *GSH↑, *other↑, *BioAv↑, *memory↑, *GlutMet↑, *BioAv↓, *Half-Life↓, *toxicity∅,
4670- RES,  CUR,  EGCG,  TQ,    Targeting aging pathways with natural compounds: a review of curcumin, epigallocatechin gallate, thymoquinone, and resveratrol
- Review, Nor, NA
*antiOx↑, *Inflam↓, *AntiAge↑, *SIRT1↑, *SIRT3↑, *FOXO↑, *ROS↓,
4706- RES,    Resveratrol as a circadian clock modulator: mechanisms of action and therapeutic applications
- Review, Nor, NA
*SIRT1↑, *CLOCK↝,
4570- RF,    Role of Mitochondria in the Oxidative Stress Induced by Electromagnetic Fields: Focus on Reproductive Systems
- Review, Nor, NA
*ETC↓, *ROS↑, *ROS∅,
3020- RosA,    Protective Effect of Rosmarinic Acid on Endotoxin-Induced Neuronal Damage Through Modulating GRP78/PERK/MANF Pathway
- in-vivo, Nor, NA - in-vitro, NA, SH-SY5Y
*cognitive↑, *PERK↓, *GRP78/BiP↓, *ER Stress↓,
3026- RosA,    Modulatory Effect of Rosmarinic Acid on H2O2-Induced Adaptive Glycolytic Response in Dermal Fibroblasts
- in-vitro, Nor, NA
*ROS↓, *ATP↑, *NADPH↓, *HK2↓, *PFK2↓, *LDHA↓, *GSR↑, *GPx↑, *Prx↑, *Trx↑, *antiOx↑, *GSH↑, *ROS↓, *GlucoseCon↓, *lactateProd↓, *Glycolysis↝, *ATP↑, *NADPH↓, *PPP↓,
3019- RosA,    Orally administered rosmarinic acid is present as the conjugated and/or methylated forms in plasma, and is degraded and metabolized to conjugated forms of caffeic acid, ferulic acid and m-coumaric acid
- in-vivo, Nor, NA
*BioAv↝, *Half-Life↝, *Half-Life↑, *Half-Life↝, *BioAv↑,
3015- RosA,  Rad,    Rosmarinic Acid Prevents Radiation-Induced Pulmonary Fibrosis Through Attenuation of ROS/MYPT1/TGFβ1 Signaling Via miR-19b-3p
- in-vivo, Nor, IMR90
*radioP↑, *Inflam↓, *ROS↓, *NF-kB↓, *Rho↓, *ROCK1↓, *other↓,
3014- RosA,    Rosmarinic Acid Supplementation Acts as an Effective Antioxidant for Restoring the Antioxidation/Oxidation Balance in Wistar Rats with Cadmium-Induced Toxicity
- in-vivo, Nor, NA
*antiOx↑, *Thiols↑, *GSH↑, *TAC↑, *SOD↑, *GPx↑, *Catalase↑, *ALP↓, *ALAT↓, *AST↓, *creat↓, *BUN↓, *H2O2↓, *MDA↓, *ROS↓, cardioP↑, hepatoP↑, neuroP↑,
3012- RosA,  Rad,    Rosmarinic Acid Prevents Radiation-Induced Pulmonary Fibrosis Through Attenuation of ROSMYPT1TGFβ1 Signaling Via miR-19b-3p
- in-vitro, Nor, IMR90
*Inflam↓, *ROS↓, *p‑NF-kB↓, *Rho↓, *ROCK1↓, *radioP↑, *MCP1↓, *RANTES↓, *ICAM-1↓, *PGC1A↑, *NOX4↓, *Dose↝,
3004- RosA,    Rosmarinic acid counteracts activation of hepatic stellate cells via inhibiting the ROS-dependent MMP-2 activity: Involvement of Nrf2 antioxidant system
- in-vitro, Nor, HSC-T6
*GSH↑, *MMP2↓, *ROS↓, *lipid-P↓, *NRF2↑,
3011- RosA,    Rosmarinic Acid Exhibits Anticancer Effects via MARK4 Inhibition
- in-vitro, GBM, SH-SY5Y - in-vitro, Lung, A549 - in-vitro, Nor, HEK293 - in-vitro, Nor, MCF10
MARK4↓, p‑tau↓, selectivity↑, *toxicity∅,
3039- RosA,    Rosmarinic acid liposomes suppress ferroptosis in ischemic brain via inhibition of TfR1 in BMECs
- in-vivo, Nor, NA - in-vivo, Stroke, NA
*Ferroptosis↓, *GPx4↑, *ACSL4↓, *BBB↑, *IronCh↑, *TfR1/CD71↓, *neuroP↑,
3038- RosA,    Prooxidant action of rosmarinic acid: transition metal-dependent generation of reactive oxygen species
- in-vitro, Nor, NA
IronCh↑, ROS↑,
966- RT,    Antioxidant Mechanism of Rutin on Hypoxia-Induced Pulmonary Arterial Cell Proliferation
- vitro+vivo, Nor, NA
*ROS↓, *NOX4↓, *Hif1a↓, *α-tubulin↓,
3643- Sage,    Effects of cholinesterase inhibiting sage (Salvia officinalis) on mood, anxiety and performance on a psychological stressor battery
- Human, Nor, NA
*cognitive↑, *AChE↓,
2550- SDT,    Intracellular Delivery and Calcium Transients Generated in Sonoporation Facilitated by Microbubbles
- in-vitro, Nor, NA
*Ca+2↑, sonoP↑, BioEnh↑,
4615- Se,  Rad,    Selenium as an adjuvant for modification of radiation response
- Review, Nor, NA
*antiOx↑, *radioP↑, *GSH↑, *GPx↑, *Dose↝, selectivity↑, RadioS↑,
4614- Se,  Rad,    Updates on clinical studies of selenium supplementation in radiotherapy
- Review, Nor, NA
*toxicity∅, Risk↓, *selenoP↑, *ROS↓, *DNAdam↓, *QoL↑, *radioP↑, *Dose↝,
4613- Se,  Rad,    Effect of Selenium and Selenoproteins on Radiation Resistance
- Review, Nor, NA
*selenoP↑, *GPx1↑, *GPx4↑, *lipid-P↓, *DNAdam↓, *ROS↓, *radioP↑,
4612- Se,  Rad,    Histopathological Evaluation of Radioprotective Effects: Selenium Nanoparticles Protect Lung Tissue from Radiation Damage
- in-vivo, Nor, NA
*radioP↑, *Inflam↓, *antiOx↑, *Dose↝, *DNAdam↓, *ROS↓, *SOD↑, *GPx↑, *Dose↝, *eff↑,
4601- Se,  SNP,    Antioxidant and hepatoprotective role of selenium against silver nanoparticles
- in-vivo, Nor, NA
*TAC↑, *CRP↓, *AST↓, *ALAT↓, *toxicity↓, *GSH↑, *SOD↑, *Catalase↑, *hepatoP↑,
4602- Se,  SNP,  GoldNP,    Advances in nephroprotection: the therapeutic role of selenium, silver, and gold nanoparticles in renal health
- NA, Nor, NA
*ROS↓, *RenoP↑, *Inflam↓,
4604- Se,  SNP,  Chit,    The ameliorative effect of selenium-loaded chitosan nanoparticles against silver nanoparticles-induced ovarian toxicity in female albino rats
- in-vivo, Nor, NA
*Dose↝, *GSH↑, *SOD↑, *toxicity↓,
4711- Se,    Association of selenium status and blood glutathione concentrations in blacks and whites
- Human, Nor, NA
Risk↓, chemoP↑, *GSH↑,
4738- Se,  doxoR,    Selenium Attenuates Doxorubicin-Induced Cardiotoxicity Through Nrf2-NLRP3 Pathway
- NA, Nor, NA
*NRF2↑, *NLRP3↓, *cardioP↑,
4736- Se,  SFN,    Synergy between sulforaphane and selenium in protection against oxidative damage in colonic CCD841 cells
- in-vitro, Nor, CCD841
*TrxR1↑, *H2O2↓, *NRF2↑,
4735- Se,    Selenium triggers Nrf2-AMPK crosstalk to alleviate cadmium-induced autophagy in rabbit cerebrum
- in-vivo, Nor, NA
*MDA↓, *H2O2↓, *Catalase↑, *SOD↑, *GSTs↑, *GSH↑, *NRF2↓, *ATG3↓, *AMPK↓, *ROS↓,
4733- Se,    Selenium supplementation of lung epithelial cells enhances nuclear factor E2-related factor 2 (Nrf2) activation following thioredoxin reductase inhibition
- NA, Nor, NA
*selenoP↑, *Trx↑, *GPx↑, *NRF2↑,
4731- Se,    Dietary selenium mitigates cadmium-induced apoptosis and inflammation in chicken testicles by inhibiting oxidative stress through the activation of the Nrf2/HO-1 signaling pathway
- in-vivo, Nor, NA
*ROS↓, *MDA↓, *H2O2↓, *Catalase↑, *GSH↑, *NRF2↑, *HO-1↑, *Bcl-2↑, *other↝,
4730- Se,    Association between plasma selenium level and NRF2 target genes expression in humans
- Human, Nor, NA
*NRF2↑, *GSTP1/GSTπ↓, *SOD2↓,
4500- Se,    Dietary selenium affects host selenoproteome expression by influencing the gut microbiota
- in-vivo, Nor, NA
*GutMicro↑, Risk↓, *GPx↑,
4501- Se,    Mechanisms of the Cytotoxic Effect of Selenium Nanoparticles in Different Human Cancer Cell Lines
- in-vitro, GBM, A172 - in-vitro, Colon, Caco-2 - in-vitro, Pca, DU145 - in-vitro, BC, MCF-7 - in-vitro, Nor, L929
*BioAv↑, selectivity↑, AntiCan↑, Apoptosis↑, CHOP↑, GADD34↑, BIM↑, PUMA↑, Ca+2↝,
4502- Se,    Modulatory effects of selenium nanoparticles on gut microbiota and metabolites of juvenile Nile tilapia (Oreochromis niloticus) by microbiome-metabolomic analysis
- in-vivo, Nor, NA
*GutMicro↑, *Dose↝, *other↝, *toxicity↓, *BioAv↑, *Bacteria↓,
4503- Se,    Prophylactic supplementation with biogenic selenium nanoparticles mitigated intestinal barrier oxidative damage through suppressing epithelial-immune crosstalk with gut-on-a-chip
- in-vitro, Nor, NA
*selenoP↑, *ROS↓, *Inflam↓, *other↝,
4452- Se,  Chit,    Antioxidant capacities of the selenium nanoparticles stabilized by chitosan
- in-vitro, Nor, 3T3
*toxicity↓, *antiOx↑, *GPx↑, *ROS↓,
4448- Se,    Selenium Nanoparticles: A Comprehensive Examination of Synthesis Techniques and Their Diverse Applications in Medical Research and Toxicology Studies
- Review, Nor, NA
*toxicity↓, *toxicity↓, selectivity↑, *antiOx↑, *cognitive↑, *other↝, TumCCA↑,
4441- Se,    The Role of Selenium Nanoparticles in the Treatment of Liver Pathologies of Various Natures
- Review, Nor, NA
*ROS↓, *hepatoP↑, *selenoP↑, *ALAT↓, *AST↓, *GSH↑, *GPx↑, *TNF-α↓, *IL6↓, *NF-kB↓, *p65↓, *Dose⇅,
4473- Se,    Anti-cancerous effect and biological evaluation of green synthesized Selenium nanoparticles on MCF-7 breast cancer and HUVEC cell lines
- in-vitro, BC, MCF-7 - in-vitro, Nor, HUVECs
AntiCan↑, selectivity↓, *Bacteria↓, *antiOx↑, *toxicity↓, ROS↑, tumCV↓,
4463- Se,  VitC,    Selenium nanoparticles: Synthesis, characterization and study of their cytotoxicity, antioxidant and antibacterial activity
- Study, Nor, NA
Dose↝,
4480- Se,  Chit,    Biogenic synthesized selenium nanoparticles combined chitosan nanoparticles controlled lung cancer growth via ROS generation and mitochondrial damage pathway
- in-vitro, Lung, A549 - in-vitro, Nor, HK-2
selectivity↑, *toxicity↓, ROS↑, mtDam↑, Apoptosis↑, LDH↑,
4488- Se,  Chit,  PEG,    Anticancer effect of selenium/chitosan/polyethylene glycol/allyl isothiocyanate nanocomposites against diethylnitrosamine-induced liver cancer in rats
- in-vivo, Liver, HepG2 - in-vivo, Nor, HL7702
tumCV↓, Apoptosis↑, *GSH↑, *VitC↑, *VitE↑, *SOD↑, *GPx↑, *GR↑, ALAT↓, ALP↓, AST↓, LDH↓, selectivity↑, eff↑,
4462- Se,  VitC,    Selenium nanoparticles: influence of reducing agents on particle stability and antibacterial activity at biogenic concentrations
- Study, Nor, NA
*Dose↝, *Bacteria↓,
3194- SFN,    Sulforaphane impedes mitochondrial reprogramming and histone acetylation in polarizing M1 (LPS) macrophages
- in-vitro, Nor, NA
*OXPHOS↑, *M1↓, *IL1β↓, *IL6↓, *NOS2↓, *TNF-α↓, *ROS↓, *NO↓, *ACC↑,
3189- SFN,    Sulforaphane Inhibits TNF-α-Induced Adhesion Molecule Expression Through the Rho A/ROCK/NF-κB Signaling Pathway
- in-vitro, Nor, ECV304
*ICAM-1↓, *IL1β↓, *IL6↓, *IL8↓, *p‑IKKα↓, *Rho↓, *ROCK1↓, *ERK↓, *Inflam↓,
3187- SFN,    Sulforaphane inhibits the expression of interleukin-6 and interleukin-8 induced in bronchial epithelial IB3-1 cells by exposure to the SARS-CoV-2 Spike protein
- in-vitro, Nor, IB3-1
*IL6↓, *IL8↓, *Inflam↓,
3186- SFN,    A pharmacological inhibitor of NLRP3 inflammasome prevents non-alcoholic fatty liver disease in a mouse model induced by high fat diet
- in-vivo, Nor, NA
*NLRP3↓, *ASC↓, *Casp1↓, *IL1β↓, *ALAT↓, *AST↓, *AMPK↑, *mTOR↓, *P70S6K↓,
3185- SFN,    Sulforaphane decreases oxidative stress and inhibits NLRP3 inflammasome activation in a mouse model of ulcerative colitis
- in-vivo, Nor, RAW264.7
*IL18↓, *IL1β↓, *NLRP3↓, *Inflam↓,
3184- SFN,    The Integrative Role of Sulforaphane in Preventing Inflammation, Oxidative Stress and Fatigue: A Review of a Potential Protective Phytochemical
- Review, Nor, NA
*NRF2↑, *Inflam↓, *NF-kB↓, *ROS↓, *BioAv↝, *BioAv↝, *BioAv↝, *BioAv↝, *cardioP↑, *GPx↑, *SOD↑, *Catalase↑, *GPx↑, *HO-1↑, *NADPH↑, *NQO1↑, *LDH↓, *hepatoP↑, *ALAT↓, *AST↓, *IL6↓,
3190- SFN,    Sulforaphane inhibits TGF-β-induced fibrogenesis and inflammation in human Tenon’s fibroblasts
- in-vitro, Nor, NA
*Fibronectin↓, *α-SMA↓, *ITGB1↓, *ITGA5↓, *IL6↓, *IL8↓, Inflam↓,
2447- SFN,    Sulforaphane Bioavailability from Glucoraphanin-Rich Broccoli: Control by Active Endogenous Myrosinase
- Review, Nor, NA
*BioAv↓, *BioAv↓, *BioAv↓, *BioAv↝,
2449- SFN,    Optimization of a blanching step to maximize sulforaphane synthesis in broccoli florets
- Study, Nor, NA
BioAv↑,
2444- SFN,    Sulforaphane Delays Fibroblast Senescence by Curbing Cellular Glucose Uptake, Increased Glycolysis, and Oxidative Damage
- in-vitro, Nor, MRC-5
*GlucoseCon↓, *ROS↓, *Trx↓, *HK2↓, *NRF2↑, *Catalase↑, *TXNIP↑, *PFKFB2↓, *G6PD↑,
1733- SFN,    Sonic Hedgehog Signaling Inhibition Provides Opportunities for Targeted Therapy by Sulforaphane in Regulating Pancreatic Cancer Stem Cell Self-Renewal
- in-vitro, PC, PanCSC - in-vitro, Nor, HPNE - in-vitro, Nor, HNPSC
CSCs↓, Shh↓, Gli↓, Nanog↓, OCT4↓, PDGFRA↓, cycD1/CCND1↑, Apoptosis↑, Casp↑, Smo↓, Gli1↓, GLI2↓, Bcl-2↓, Casp3↑, Casp7↑,
1729- SFN,    Discovery and development of sulforaphane as a cancer chemopreventive phytochemical
- Review, Nor, NA
eff↑, angioG↓, VEGF↓, MMP9↓, MMP2↓,
1728- SFN,    Broccoli sprouts: An exceptionally rich source of inducers of enzymes that protect against chemical carcinogens
- Review, Nor, NA
eff↑, eff↓,
1727- SFN,    Glucoraphanin, sulforaphane and myrosinase activity in germinating broccoli sprouts as affected by growth temperature and plant organs
- Analysis, Nor, NA
eff↑, eff↓,
1494- SFN,  doxoR,    Sulforaphane potentiates anticancer effects of doxorubicin and attenuates its cardiotoxicity in a breast cancer model
- in-vivo, BC, NA - in-vitro, BC, MCF-7 - in-vitro, Nor, MCF10
CardioT↓, *GSH↑, *ROS↓, *NRF2↑, NRF2∅, HDAC↓, DNMTs↓, Casp3↑, ER-α36↓, Remission↑, eff↑, ROS↑, selectivity?,
1455- SFN,    Sulforaphane Activates a lysosome-dependent transcriptional program to mitigate oxidative stress
- in-vitro, Cerv, HeLa - in-vitro, Nor, 1321N1
*ROS↓, *BioAv↑, LC3II↑, LAMP1?, TumAuto↑, TFEB↑, ROS↑, eff↓,
1483- SFN,    Targeting p62 by sulforaphane promotes autolysosomal degradation of SLC7A11, inducing ferroptosis for osteosarcoma treatment
- in-vitro, OS, 143B - in-vitro, Nor, HEK293 - in-vivo, OS, NA
AntiCan↑, *toxicity∅, Ferroptosis↑, ROS↑, lipid-P↑, GSH↓, p62↑, SLC12A5↓, eff↓, GPx4↓, i-Iron↑, eff↓, MDA↑, TumVol↓, TumW↓, Ki-67↓, LC3B↑, *Weight∅,
1429- SFN,    Preclinical and clinical evaluation of sulforaphane for chemoprevention in the breast
- in-vivo, Nor, NA - Human, Nor, NA
*NADPH↑, *NQO1↑, *HO-1↑, *Risk↑,
1454- SFN,    Absorption and chemopreventive targets of sulforaphane in humans following consumption of broccoli sprouts or a myrosinase-treated broccoli sprout extract
- Human, Nor, NA
*HDAC↓, *eff↑, *eff↑, *eff↑, *BioAv↑, *BioAv↑,
1495- SFN,  doxoR,    Sulforaphane protection against the development of doxorubicin-induced chronic heart failure is associated with Nrf2 Upregulation
- in-vivo, Nor, NA
*CardioT↓, *NRF2↑, *eff↓, *ROS↓,
1497- SFN,    Differential effects of sulforaphane on histone deacetylases, cell cycle arrest and apoptosis in normal prostate cells versus hyperplastic and cancerous prostate cells
- in-vitro, Nor, PrEC - in-vitro, Pca, LNCaP - in-vitro, Pca, PC3
HDAC↓, selectivity↑, TumCCA↑, Apoptosis↑, selectivity↑, H3↑, P21↑, selectivity↑,
1498- SFN,    Prolonged sulforaphane treatment activates survival signaling in nontumorigenic NCM460 colon cells but apoptotic signaling in tumorigenic HCT116 colon cells
- in-vitro, CRC, HCT116 - in-vitro, Nor, NCM460
selectivity↑, TumCCA↑, Apoptosis↑, *p‑ERK↑, cMYB↓, selectivity↑, selectivity↑,
1500- SFN,    A novel mechanism of chemoprotection by sulforaphane: inhibition of histone deacetylase
- in-vitro, Nor, HEK293 - in-vitro, CRC, HCT116
HDAC↓, P21↑, TOPflash↑,
1431- SFN,    Induction of the phase 2 response in mouse and human skin by sulforaphane-containing broccoli sprout extracts
- in-vivo, Nor, NA
*NADPH↑, *NQO1↑, *GSTA1↑, *HO-1↑,
1478- SFN,  acet,    Anti-inflammatory and anti-oxidant effects of combination between sulforaphane and acetaminophen in LPS-stimulated RAW 264.7 macrophage cells
- in-vitro, Nor, NA
eff↑, NO↓, iNOS↓, COX2↓, IL1β↓, ROS↓,
1507- SFN,    Sulforaphane retards the growth of human PC-3 xenografts and inhibits HDAC activity in human subjects
- in-vivo, Colon, NA - Human, Nor, NA
TumCG↓, HDAC↓, *BioAv↑, Dose∅, Half-Life∅,
3311- SIL,    Silymarin protects against acrylamide-induced neurotoxicity via Nrf2 signalling in PC12 cells
- in-vitro, Nor, PC12
*antiOx↑, *Inflam↓, AntiCan↑, *ROS↓, *MDA↓, *GSH↓, *NRF2↑, *GPx↑, *GCLC↑, *GCLM↑,
3315- SIL,    Silymarin alleviates docetaxel-induced central and peripheral neurotoxicity by reducing oxidative stress, inflammation and apoptosis in rats
- in-vivo, Nor, NA
neuroP↑, *NRF2↑, *HO-1↑, *lipid-P↓, *GSH↑, *SOD↑, *Catalase↑, *GPx↑, *NF-kB↓, *TNF-α↓, *JNK↓, *Bcl-2↑, *BAX↑,
3294- SIL,    Silymarin: a review on paving the way towards promising pharmacological agent
- Review, Nor, NA - Review, Arthritis, NA
*hepatoP↑, *Inflam↓, *chemoP↑, *glucose↓, *antiOx↑, *ROS↓, *ACC↓, *FASN↓, *radioP↑, *NF-kB↓, *TGF-β↓, *AST↓, *α-SMA↝, *eff↑, *neuroP↑, eff↑, ROS↓,
3291- SIL,    Antioxidant effects and mechanism of silymarin in oxidative stress induced cardiovascular diseases
- Review, Nor, NA
*antiOx↑, *ROS↓, *cardioP↑, *BioAv↓, *Half-Life↝, *other↑, IronCh↑,
3329- SIL,    Silymarin regulates the HIF-1 and iNOS expression in the brain and Gills of the hypoxic-reoxygenated rainbow trout (Oncorhynchus mykis)
- in-vivo, Nor, NA
*NO↓, *MDA↓, *TAC↑, *Hif1a↓, *iNOS↓,
3325- SIL,    Modulatory effect of silymarin on pulmonary vascular dysfunction through HIF-1α-iNOS following rat lung ischemia-reperfusion injury
- in-vivo, Nor, NA
*Inflam↓, *ROS↓, *Casp3↑, *Casp9↑, *Hif1a↓, *iNOS↓, *SOD↑, *MDA↓,
3312- SIL,    Silymarin Alleviates Oxidative Stress and Inflammation Induced by UV and Air Pollution in Human Epidermis and Activates β-Endorphin Release through Cannabinoid Receptor Type 2
- Human, Nor, NA
*antiOx↑, *Inflam↓, *ROS↓, *IL1α↓, *AhR↑, *NRF2↑, *IL8↓,
4131- Silicon,    Silicon reduces aluminum accumulation in rats: relevance to the aluminum hypothesis of Alzheimer disease
- Study, Nor, NA
*other↓, *BioAv↓, *neuroP↑,
977- SK,    A novel antiestrogen agent Shikonin inhibits estrogen-dependent gene transcription in human breast cancer cells
- in-vitro, BC, T47D - in-vitro, BC, MDA-MB-231 - in-vitro, BC, MCF-7 - in-vitro, Nor, HMEC
TumCG↓, ERα/ESR1↓, selectivity↑, *toxicity↓,
2217- SK,    Shikonin Inhibits Endoplasmic Reticulum Stress-Induced Apoptosis to Attenuate Renal Ischemia/Reperfusion Injury by Activating the Sirt1/Nrf2/HO-1 Pathway
- in-vivo, Nor, NA - in-vitro, Nor, HK-2
*ER Stress↓, *SIRT1↑, *NRF2↑, *HO-1↑, *eff↓, *RenoP↑, *GRP78/BiP↓, *CHOP↓, *Casp12↓, *BAX↓, *cl‑Casp3↓,
2225- SK,    Shikonin protects skin cells against oxidative stress and cellular dysfunction induced by fine particulate matter
- in-vitro, Nor, HaCaT
*antiOx↑, *ROS↓, *GSH↑, *GCLC↑, *GSS↑, *Akt↑, *NRF2↑,
2227- SK,    Shikonin induces mitochondria-mediated apoptosis and enhances chemotherapeutic sensitivity of gastric cancer through reactive oxygen species
- in-vitro, GC, BGC-823 - in-vitro, GC, SGC-7901 - in-vitro, Nor, GES-1
selectivity↑, TumCP↓, TumCD↑, ROS↑, MMP↓, Casp↑, Cyt‑c↑, Endon↑, AIF↑, eff↓, ChemoSen↑, TumCCA↑, GSH/GSSG↓, lipid-P↑,
2220- SK,    Shikonin Alleviates Gentamicin-Induced Renal Injury in Rats by Targeting Renal Endocytosis, SIRT1/Nrf2/HO-1, TLR-4/NF-κB/MAPK, and PI3K/Akt Cascades
- in-vivo, Nor, NA
*RenoP↑, *ROS↓, *SIRT1↓, *NRF2↑, *HO-1↑, *GSH↑, *TAC↑, *SOD↑, *MDA↓, *NO↓, *iNOS↓, *NHE3↑, *PI3K↑,
2219- SK,    Shikonin induces apoptosis of HaCaT cells via the mitochondrial, Erk and Akt pathways
- in-vitro, Nor, HaCaT
*MMP↓, *ROS↑, *Casp3↑, *TumCG↓,
2218- SK,    Shikonin Alleviates Endothelial Cell Injury Induced by ox-LDL via AMPK/Nrf2/HO-1 Signaling Pathway
- in-vitro, Nor, HUVECs
*Dose↝, *Apoptosis↓, *Casp3↓, *Bcl-2↑, *Inflam↓, *VCAM-1↓, *ICAM-1↓, *E-sel↓, *ROS↓, *SOD↑, *AMPK↑, *NRF2↑, *HO-1↑, *TNF-α↓, *IL1β↓, *IL6↓,
2216- SK,    Shikonin upregulates the expression of drug-metabolizing enzymes and drug transporters in primary rat hepatocytes
- in-vivo, Nor, NA
*NRF2↑, *AhR↑, *CYP1A1↑, *CYP1A2↑, *CYP2C6↑, *CYP2D1↑, *CYP3A2↑, *NQO1↑,
2419- SK,    Regulation of glycolysis and the Warburg effect in wound healing
- in-vivo, Nor, NA
Glycolysis↓, GLUT1↓, GLUT3↓, HK2↓, HK1↓, PFK1↓, PFK2↓, PKM2↓, lactateProd↓, GlucoseCon↓,
3050- SK,    Systemic administration of Shikonin ameliorates cognitive impairment and neuron damage in NPSLE mice
- in-vivo, Nor, NA
*Inflam↓, *neuroP↑, *cognitive↑,
3042- SK,    The protective effects of Shikonin on lipopolysaccharide/D -galactosamine-induced acute liver injury via inhibiting MAPK and NF-kB and activating Nrf2/HO-1 signaling pathways
- in-vivo, Nor, NA
*TNF-α↓, *IL1β↓, *IL6↓, *IFN-γ↓, *ALAT↓, *AST↓, *MPO↓, *ROS↓, *JNK↓, *ERK↓, *p38↓, *NF-kB↓, *p‑IKKα↓, *SOD↑, *GSH↑, *HO-1↑, *NRF2↑, *hepatoP↑,
3048- SK,    Shikonin inhibits triple-negative breast cancer-cell metastasis by reversing the epithelial-to-mesenchymal transition via glycogen synthase kinase 3β-regulated suppression of β-catenin signaling
- in-vitro, BC, MDA-MB-231 - in-vitro, BC, 4T1 - in-vitro, Nor, MCF12A - in-vivo, NA, NA
tumCV↓, selectivity↑, EMT↓, TumCMig↓, TumCI↓, E-cadherin↑, N-cadherin↓, Vim↓, Snail↓, β-catenin/ZEB1↓, GSK‐3β↑,
3049- SK,    Shikonin Attenuates Chronic Cerebral Hypoperfusion-Induced Cognitive Impairment by Inhibiting Apoptosis via PTEN/Akt/CREB/BDNF Signaling
- in-vivo, Nor, NA - NA, Stroke, NA
*neuroP↑, *p‑PTEN↓, *p‑Akt↑, *Bcl-2↑, *BAX↓, *cognitive↑, *BDNF↑,
2011- SK,    Shikonin Attenuates Acetaminophen-Induced Hepatotoxicity by Upregulation of Nrf2 through Akt/GSK3β Signaling
- in-vitro, Nor, HL7702 - in-vivo, Nor, NA
*NRF2↑, *hepatoP↑, *ALAT↓, *AST↓, *MPO↓, *ROS↓, *GSH↑,
2010- SK,    Shikonin inhibits gefitinib-resistant non-small cell lung cancer by inhibiting TrxR and activating the EGFR proteasomal degradation pathway
- in-vitro, Lung, H1975 - in-vitro, Lung, H1650 - in-vitro, Nor, CCD19
EGFR↓, selectivity↑, Casp↑, PARP↑, Apoptosis↑, ROS↑, eff↓, selectivity↑,
2007- SK,    Shikonin Directly Targets Mitochondria and Causes Mitochondrial Dysfunction in Cancer Cells
- in-vitro, lymphoma, U937 - in-vitro, BC, MCF-7 - in-vitro, BC, SkBr3 - in-vitro, CRC, HCT116 - in-vitro, OS, U2OS - NA, Nor, RPE-1
tumCV↓, selectivity↑, Dose↝, other↑, MMP↓, ROS↑, DNAdam↑, Ca+2↑, Casp9↑, Cyt‑c↑, *toxicity↓,
2214- SK,    Shikonin Attenuates Cochlear Spiral Ganglion Neuron Degeneration by Activating Nrf2-ARE Signaling Pathway
- in-vitro, Nor, NA
*NRF2↑, *HO-1↑, *NQO1↑, *antiOx↑, *neuroP↑, *ROS↓, *MDA↓, *SOD↑, GSH↑,
2215- SK,  doxoR,    Shikonin alleviates doxorubicin-induced cardiotoxicity via Mst1/Nrf2 pathway in mice
- in-vivo, Nor, NA
*cardioP↑, *ROS↓, *Inflam↓, *Mst1↓, *NRF2↑, *eff↓, *antiOx↑, *SOD↑, *GSH↑, *TNF-α↓, BAX↓, Bcl-2↑,
2193- SK,    Shikonin Suppresses Lymphangiogenesis via NF-κB/HIF-1α Axis Inhibition
- in-vitro, Nor, HMVEC-dLy
*NF-kB↓, *Hif1a↓, other↓,
1133- SM,    Salvianolic Acid A, a Component of Salvia miltiorrhiza, Attenuates Endothelial-Mesenchymal Transition of HPAECs Induced by Hypoxia
- in-vitro, Nor, HPAECs
*ROS↓, *p‑Smad1↑, *p‑SMAD5↑, *SMAD2↓, *SMAD3↓, *p‑ERK↓, *p‑Cofilin↓,
359- SNP,    Anti-cancer & anti-metastasis properties of bioorganic-capped silver nanoparticles fabricated from Juniperus chinensis extract against lung cancer cells
- in-vitro, Lung, A549 - in-vitro, Nor, HEK293
Casp3↑, Casp9↑, P53↑, ROS↑, MMP2↓, MMP9↓, TumCCA↑, *toxicity↓, TumCMig↓, TumCI↓,
2205- SNP,    Potential protective efficacy of biogenic silver nanoparticles synthesised from earthworm extract in a septic mice model
- in-vivo, Nor, NA
*Dose↝, *eff↑, *RenoP↑, *antiOx↑, *MDA↓, *NO↓, *hepatoP↑, *toxicity↝, *GSH↑, *SOD↑, *GSTs↑, *Catalase↑,
2207- SNP,  TQ,    Protective effects of Nigella sativa L. seeds aqueous extract-based silver nanoparticles on sepsis-induced damages in rats
- in-vivo, Nor, NA
*eff↑, *RenoP↑, *hepatoP↑, *MDA↓, *SOD↑, *GSH↑, *TNF-α↓, *IL1β↓,
2206- SNP,  RES,    ENHANCED EFFICACY OF RESVERATROL-LOADED SILVER NANOPARTICLE IN ATTENUATING SEPSIS-INDUCED ACUTE LIVER INJURY: MODULATION OF INFLAMMATION, OXIDATIVE STRESS, AND SIRT1 ACTIVATION
- in-vivo, Nor, NA
*hepatoP↑, *Inflam↓, *NF-kB↓, *VEGF↓, *SIRT1↑, *ROS↓, *Dose↝, *Catalase↑, *MDA↓, *MPO↓, *NO↓, *ALAT↓, *AST↓, *antiOx↑,
1406- SNP,    The antioxidant effects of silver, gold, and zinc oxide nanoparticles on male mice in in vivo condition
- in-vivo, Nor, NA
*ROS↓, *GPx↑, *Catalase↑, *ROS↑,
1905- SNP,    Evaluation of the effect of silver and silver nanoparticles on the function of selenoproteins using an in-vitro model of the fish intestine: The cell line RTgutGC
- in-vivo, Nor, NA
*TrxR↓, *ROS∅, GPx↑,
1909- SNP,    The Antibacterial Drug Candidate SBC3 is a Potent Inhibitor of Bacterial Thioredoxin Reductase
- in-vivo, Nor, NA
TrxR↓,
2287- SNP,    Silver nanoparticles induce endothelial cytotoxicity through ROS-mediated mitochondria-lysosome damage and autophagy perturbation: The protective role of N-acetylcysteine
- in-vitro, Nor, HUVECs
*TumCP↓, *ROS↑, *eff↓, *MDA↑, *GSH↓, *MMP↓, *ATP↓, *LC3II↑, *p62↑, *Bcl-2↓, *BAX↑, *Casp3↑,
2286- SNP,    Short-term changes in intracellular ROS localisation after the silver nanoparticles exposure depending on particle size
- in-vitro, Nor, 3T3
*eff↑, *mt-ROS↑, *eff↑,
4553- SNP,    Cytotoxicity induced by engineered silver nanocrystallites is dependent on surface coatings and cell types
- in-vitro, Nor, RAW264.7
*Wound Healing↑, *eff↝, *toxicity↝,
4550- SNP,    The Effect of Charge at the Surface of Silver Nanoparticles on Antimicrobial Activity against Gram-Positive and Gram-Negative Bacteria: A Preliminary Study
- Study, Nor, NA
*Bacteria↓,
4544- SNP,  VitC,    Current Research on Silver Nanoparticles: Synthesis, Characterization, and Applications
- Review, Nor, NA
*Bacteria↓, *eff↑,
4543- SNP,    Biogenic synthesis of silver nanoparticles using Zaleya pentandra and investigation of their biological activities
- Study, Nor, NA
*Bacteria↓,
4541- SNP,  RosA,    Eco-friendly synthesis of silver nanoparticles: multifaceted antioxidant, antidiabetic, anticancer, and antimicrobial activities
- in-vitro, Nor, WI38 - in-vitro, BC, MDA-MB-231 - in-vitro, PC, PANC1
*antiOx↑, TumCD↓, selectivity↑,
4540- SNP,  VitC,    Silver nanoparticles from ascorbic acid: Biosynthesis, characterization, in vitro safety profile, antimicrobial activity and phytotoxicity
- in-vitro, Nor, NA
*Bacteria↓, *selectivity↑,
4539- SNP,  VitC,  Citrate,    Investigating the Anti-cancer Potential of Silver Nanoparticles Synthesized by Chemical Reduction of AgNO3 Using Trisodium Citrate and Ascorbic Acid
- in-vitro, Nor, L929 - in-vitro, Ovarian, SKOV3
AntiCan↑,
4430- SNP,    Evaluation of the Genotoxic and Oxidative Damage Potential of Silver Nanoparticles in Human NCM460 and HCT116 Cells
- in-vitro, Colon, HCT116 - in-vitro, Nor, NCM460
*Bacteria↓, ROS↑, p‑p38↑, BAX↑, Bcl-2↓, BAX↑, P21↑, TumCD↑, toxicity↝,
4431- SNP,  doxoR,    Oxidative Stress-Induced Silver Nano-Carriers for Chemotherapy
- in-vitro, BC, 4T1 - in-vivo, BC, 4T1 - in-vitro, Nor, 3T3
AntiCan↑, ROS↑, TumVol↓, EPR↑, selectivity↑, ChemoSen↑,
4433- SNP,    Advancements in metal and metal oxide nanoparticles for targeted cancer therapy and imaging: Mechanisms, applications, and safety concerns
- in-vitro, Liver, HepG2 - in-vitro, Nor, L02
selectivity↑, selectivity↓, mt-ROS↑,
4434- SNP,  Se,    Sodium Selenite Ameliorates Silver Nanoparticles Induced Vascular Endothelial Cytotoxic Injury by Antioxidative Properties and Suppressing Inflammation Through Activating the Nrf2 Signaling Pathway
- vitro+vivo, Nor, NA
*ROS↓, *Inflam↓, *NLRP3↓, *NF-kB↓, *NRF2↑, *HO-1↑, *toxicity↓,
4447- SNP,    Anti-inflammatory action of silver nanoparticles in vivo: systematic review and meta-analysis
- Review, Nor, NA
*Inflam↓, *COX2↓, *ROS↓, *Dose↝, *eff↑, *toxicity↓, *IL4↑, *IL5↑, *IL10↑, *IL1↓, *IL6↓, *TNF-α↓, *NF-kB↓, *MDA↓, *GSH↑,
4561- SNP,  VitC,    Cellular Effects Nanosilver on Cancer and Non-cancer Cells: Potential Environmental and Human Health Impacts
- in-vitro, CRC, HCT116 - in-vitro, Nor, HEK293
NRF2↑, TumCCA↑, ROS↑, selectivity↑, *AntiViral↑, *toxicity↝, ETC↓, MMP↓, DNAdam↑, Apoptosis↑, lipid-P↑, other↝, UPR↑, *GRP78/BiP↑, *p‑PERK↑, *cl‑eIF2α↑, *CHOP↑, *JNK↑, Hif1a↓, AntiCan↑, *toxicity↓, eff↑,
4600- SNP,    Effects of particle size and coating on toxicologic parameters, fecal elimination kinetics and tissue distribution of acutely ingested silver nanoparticles in a mouse model
- in-vivo, Nor, NA
*Half-Life↝, *toxicity↓, *Dose↑, *other↝, *eff↝, *BioAv↓,
4599- SNP,  ProBio,    Impacts of dietary silver nanoparticles and probiotic administration on the microbiota of an in-vitro gut model
- in-vivo, Nor, NA
*GutMicro∅, *chemoPv↑,
4598- SNP,    In vivo human time-exposure study of orally dosed commercial silver nanoparticles
- in-vivo, Nor, NA
*toxicity∅, *Dose↝, *Dose↝, *BioAv↝, *BioAv↝, *H2O2∅, *IL8∅, *IL1α∅, *IL1β∅, *MCP1∅, *NQO1∅, *BioAv↓,
4594- SNP,  Citrate,    Bioavailability and Toxicokinetics of citrate-coated silver nanoparticles in rats
- in-vivo, Nor, NA
*BioAv↓,
4382- SNP,    Silver nanoparticles induce cytotoxicity by a Trojan-horse type mechanism
- in-vitro, Nor, RAW264.7
*GSH↓, *NO↑, *TNF-α↑, *MMP3↑, *MMP11↑,
4376- SNP,    Interaction of multi-functional silver nanoparticles with living cells
- in-vitro, Nor, L929 - in-vitro, Lung, A549
eff↑, selectivity↑,
4402- SNP,    Enhancement of Triple-Negative Breast Cancer-Specific Induction of Cell Death by Silver Nanoparticles by Combined Treatment with Proteotoxic Stress Response Inhibitors
- in-vitro, BC, BT549 - in-vitro, BC, MDA-MB-231 - in-vitro, Nor, MCF10
TumCD↑, selectivity↑, *toxicity↝, Dose↝, OS↑,
4400- SNP,  Rad,    Differential cytotoxic and radiosensitizing effects of silver nanoparticles on triple-negative breast cancer and non-triple-negative breast cells
- in-vitro, BC, MCF-7 - in-vitro, Nor, MCF10 - in-vitro, BC, MDA-MB-231 - in-vitro, BC, BT549 - in-vivo, BC, MDA-MB-231
ROS↑, DNAdam↑, selectivity↑, TumCG↓, RadioS↑, Dose↝, selectivity↑, other↝, eff↓, eff↑, γH2AX↑, Dose↓, eff↑,
4369- SNP,    Silver nanoparticles induce p53-mediated apoptosis in human bronchial epithelial (BEAS-2B) cells
- in-vitro, Nor, BEAS-2B
*ROS↑,
4393- SNP,    Nanotoxic Effects of Silver Nanoparticles on Normal HEK-293 Cells in Comparison to Cancerous HeLa Cell Line
- in-vitro, Cerv, HeLa - in-vitro, Nor, HEK293
selectivity↓,
4368- SNP,    Silver nanoparticles crossing through and distribution in the blood-brain barrier in vitro
- NA, Nor, NA
*BBB↑,
4411- SNP,    Eco-friendly synthesis of silver nanoparticles using Anemone coronaria bulb extract and their potent anticancer and antibacterial activities
- in-vitro, Lung, A549 - in-vitro, PC, MIA PaCa-2 - in-vitro, Pca, PC3 - in-vitro, Nor, HEK293
AntiCan↑, selectivity↑, Apoptosis↑, TumCCA↑, Bacteria↓, tumCV↓, selectivity↑, Apoptosis↑, TumCCA↑,
4366- SNP,    Gut Dysbiosis and Neurobehavioral Alterations in Rats Exposed to Silver Nanoparticles
- in-vivo, Nor, NA
*GutMicro↝,
4360- SNP,    Silver Nanoparticles as Real Topical Bullets for Wound Healing
- Study, Nor, NA
*other↝, *toxicity↓, *eff↑, *eff↑, *Inflam↓, *IL6↓, *TGF-β↑, *MMP9↓, *eff↑,
4367- SNP,    Effects of Prolonged Silver Nanoparticle Exposure on the Contextual Cognition and Behavior of Mammals
- in-vivo, Nor, NA
*other↝,
3967- Taur,    The Effects of Oral Taurine on Resting Blood Pressure in Humans: a Meta-Analysis
- Review, Nor, NA
*BP↓,
962- TQ,    Thymoquinone affects hypoxia-inducible factor-1α expression in pancreatic cancer cells via HSP90 and PI3K/AKT/mTOR pathways
- in-vitro, PC, PANC1 - in-vitro, Nor, hTERT-HPNE - in-vitro, PC, AsPC-1 - in-vitro, PC, Bxpc-3
TumCMig↓, TumCI↓, Apoptosis↑, Hif1a↓, PI3k/Akt/mTOR↓, TumCCA↑, *toxicity↓, *TumCI∅, *TumCMig∅,
3553- TQ,    Study Effectiveness and Stability Formulation Nanoemulsion of Black Cumin Seed (Nigella sativa L.) Essential Oil: A Review
- Review, Nor, NA
*AntiCan↑, *Inflam↓, *antiOx↑, *AntiAge↑, *hepatoP↑, *cardioP↑, *neuroP↑, *eff↑,
3572- TQ,    Enhanced oral bioavailability and hepatoprotective activity of thymoquinone in the form of phospholipidic nano-constructs
- in-vivo, Nor, NA
*BioAv↑, *hepatoP↑, *ALAT↓, *ALP↓, *AST↓,
3420- TQ,    Thymoquinone alleviates the accumulation of ROS and pyroptosis and promotes perforator skin flap survival through SIRT1/NF-κB pathway
- in-vitro, Nor, HUVECs - in-vitro, NA, NA
*NF-kB↓, *NLRP3↓, *angioG↑, *MMP9↑, *VEGF↑, *OS↑, *Pyro?, *ROS↓, *Apoptosis↓, *SIRT1↑, *SOD1↑, *HO-1↑, *eNOS↑, *ASC?, *Casp1↓, *IL1β↓, *IL18↓,
3416- TQ,    Thymoquinone induces apoptosis in bladder cancer cell via endoplasmic reticulum stress-dependent mitochondrial pathway
- in-vitro, Bladder, T24 - in-vitro, Bladder, 253J - in-vitro, Nor, SV-HUC-1
TumCP↓, Apoptosis↑, ER Stress↑, cl‑Casp3↑, cl‑Casp8↑, cl‑Casp7↑, cl‑PARP↑, Cyt‑c↑, PERK↑, IRE1↑, ATF6↑, p‑eIF2α↑, ATF4↑, GRP78/BiP↑, CHOP↑,
3421- TQ,    Insights into the molecular interactions of thymoquinone with histone deacetylase: evaluation of the therapeutic intervention potential against breast cancer
- Analysis, Nor, NA - in-vivo, Nor, NA - in-vitro, BC, MCF-7 - in-vitro, Nor, HaCaT
HDAC↓, P21↑, Maspin↑, BAX↑, B2M↓, TumCCA↑, selectivity↑, *toxicity↓, TumCMig↓, TumCP↓,
3398- TQ,  5-FU,    Impact of thymoquinone on the Nrf2/HO-1 and MAPK/NF-κB axis in mitigating 5-fluorouracil-induced acute kidney injury in vivo
- in-vivo, Nor, NA
*RenoP↑, *TAC↑, *ROS↓, *lipid-P↓, *p38↓, *MAPK↓, *NF-kB↓, *NRF2↑, *HO-1↑, *MDA↓, *GPx↑, *GSR↑, *Catalase↑, *BUN↓, *LDH↓, *IL1β↓,
3400- TQ,  Chemo,    Thymoquinone Ameliorates Carfilzomib-Induced Renal Impairment by Modulating Oxidative Stress Markers, Inflammatory/Apoptotic Mediators, and Augmenting Nrf2 in Rats
- in-vitro, Nor, NA
*GSH↑, *SOD↑, *lipid-P↓, *IL1β↓, *IL6↓, *TNF-α↓, *Casp3↓, *Catalase↑, *NRF2↑, *RenoP↑,
3409- TQ,    Thymoquinone therapy remediates elevated brain tissue inflammatory mediators induced by chronic administration of food preservatives
- in-vivo, Nor, NA
*MDA↓, *TGF-β↓, *CRP↓, *NF-kB↓, *TNF-α↓, *IL1β↓, *Casp3↓, *GSH↑, *NRF2↑, *IL10↑, *neuroP↑, *ROS↓, *Apoptosis↓, *Inflam↓,
1937- TQ,    Migration and Proliferation Effects of Thymoquinone-Loaded Nanostructured Lipid Carrier (TQ-NLC) and Thymoquinone (TQ) on In Vitro Wound Healing Models
- NA, Nor, 3T3
*ROS↓, *antiOx↓, *BioAv↓, *BioAv↑, *NO↑, *SOD↑, *GPx↑, *Catalase↑,
1936- TQ,    Thymoquinone induces apoptosis and increase ROS in ovarian cancer cell line
- in-vitro, Ovarian, CaOV3 - in-vitro, Nor, WRL68
selectivity↑, TumCP↓, MMP↓, Bcl-2↓, BAX↑, ROS↑,
2126- TQ,    Biological and therapeutic activities of thymoquinone: Focus on the Nrf2 signaling pathway
- Review, Nor, NA
*antiOx↑, *Bacteria↓, *RenoP↑, *hepatoP↑, *neuroP↑, *Inflam↓, *Keap1↓, *NRF2↑, *other↝,
2130- TQ,    Thymoquinone Attenuates Brain Injury via an Anti-oxidative Pathway in a Status Epilepticus Rat Model
- in-vivo, Nor, NA
*eff↑, *memory↑, *NRF2↑, *HO-1↑, *SOD↑, *ROS↓,
2131- TQ,    Therapeutic impact of thymoquninone to alleviate ischemic brain injury via Nrf2/HO-1 pathway
- in-vitro, Stroke, NA - in-vivo, Nor, NA
*eff↑, *OS↑, *Inflam↓, *ROS↓, *NRF2↑, *HO-1↑,
2132- TQ,    Thymoquinone treatment modulates the Nrf2/HO-1 signaling pathway and abrogates the inflammatory response in an animal model of lung fibrosis
- in-vivo, Nor, NA
*Weight∅, *antiOx↑, *lipid-P↓, *MMP7↓, *Casp3↓, *BAX↓, *TGF-β↓, *Diff↑, *NRF2↓, *HO-1↓, *NF-kB↓, *IκB↑,
2133- TQ,  CUR,  Cisplatin,    Thymoquinone and curcumin combination protects cisplatin-induced kidney injury, nephrotoxicity by attenuating NFκB, KIM-1 and ameliorating Nrf2/HO-1 signalling
- in-vitro, Nor, HEK293 - in-vivo, NA, NA
*creat↓, *TNF-α↓, *IL6↓, *MRP↓, *GFR↑, *mt-ATPase↑, *p‑Akt↑, *NRF2↑, *HO-1↑, *Casp3↓, *NF-kB↓, *RenoP↑,
2134- TQ,    Modulation of Nrf2/HO1 Pathway by Thymoquinone to Exert Protection Against Diazinon-induced Myocardial Infarction in Rats
- in-vivo, Nor, NA
*ALAT↓, *AST↓, *MDA↓, *ROS↓, *GSSG↓, *GSH↑, *VitE↑, *VitC↑, *NRF2↑, *HO-1↑, *NQO1↑, *SOD↑, *cardioP↑, *GSH/GSSG↑, *GPx↑,
2135- TQ,    Thymoquinone induces heme oxygenase-1 expression in HaCaT cells via Nrf2/ARE activation: Akt and AMPKα as upstream targets
- in-vitro, Nor, HaCaT
*HO-1↑, *NRF2↑, *e-ERK↑, *e-Akt↑, *AMPKα↑, *ROS⇅, *eff↓, *tumCV∅,
2136- TQ,    Nigella sativa and thymoquinone suppress cyclooxygenase-2 and oxidative stress in pancreatic tissue of streptozotocin-induced diabetic rats
- in-vivo, Nor, NA
*COX2↓, *lipid-P↓, *SOD↑, *ROS↓, *Inflam↓, *NF-kB↓,
2137- TQ,    Gastroprotective activity of Nigella sativa L oil and its constituent, thymoquinone against acute alcohol-induced gastric mucosal injury in rats
- in-vivo, Nor, NA
*GSH↑, *SOD↑, *GSTA1↑,
2138- TQ,    Thymoquinone has a synergistic effect with PHD inhibitors to ameliorate ischemic brain damage in mice
- in-vivo, Nor, NA
*Hif1a↑, *VEGF↑, *TrkB↑, *PI3K↑, *angioG↑, *neuroG↑, *motorD↑,
2139- TQ,    Thymoquinone regulates microglial M1/M2 polarization after cerebral ischemia-reperfusion injury via the TLR4 signaling pathway
- in-vivo, Nor, NA
*TLR4↓, *NF-kB↓, *Inflam↓, *Hif1a↑, *motorD↑,
2115- TQ,    Protective effects of Nigella sativa on gamma radiation-induced jejunal mucosal damage in rats
- in-vivo, Nor, NA
*radioP↑, *MDA↓, *GSH↑,
2114- TQ,    Anti-Aging Effect of Nigella Sativa Fixed Oil on D-Galactose-Induced Aging in Mice
- in-vivo, Nor, NA
*ALAT↓, *AST↓, *lipid-P↓, *GSH↑, *Bax:Bcl2↓, *proCasp3↓, *cl‑Casp3↓, *antiOx↑,
2113- TQ,    Potential role of Nigella sativa (NS) in abating oxidative stress-induced toxicity in rats: a possible protection mechanism
- in-vivo, Nor, NA
*antiOx↑, *RenoP↑, *hepatoP↑, *SOD↑, *GSH↑, *ROS↓, *lipid-P↓, ALAT↓, creat↓,
2118- TQ,  Rad,    In vivo radioprotective effects of Nigella sativa L oil and reduced glutathione against irradiation-induced oxidative injury and number of peripheral blood lymphocytes in rats
- in-vivo, Nor, NA
*ROS↓, RenoP↑, hepatoP↑,
2117- TQ,    Effects of Nigella sativa L. on Lipid Peroxidation and Reduced Glutathione Levels in Erythrocytes of Broiler Chickens
- in-vivo, Nor, NA
*GSH↑, *ROS↓,
2116- TQ,  Cisplatin,    Oral administration of Nigella sativa oil ameliorates the effect of cisplatin on membrane enzymes, carbohydrate metabolism and oxidative damage in rat liver
- in-vivo, Nor, NA
*hepatoP↑, *antiOx↑, *ROS↓, ALAT↓, AST↓,
2096- TQ,    Effect of total hydroalcholic extract of Nigella sativa and its n-hexane and ethyl acetate fractions on ACHN and GP-293 cell lines
- in-vitro, Nor, GP-293 - in-vitro, Kidney, ACHN
selectivity↑, eff↝,
2093- TQ,    Regulation of NF-κB Expression by Thymoquinone; A Role in Regulating Pro-Inflammatory Cytokines and Programmed Cell Death in Hepatic Cancer Cells
- in-vitro, Liver, HepG2 - in-vitro, Nor, NA
TumCD↑, selectivity↑, Casp3↑, DLC1↑, NF-kB↑, LDH↑, *toxicity↓,
2089- TQ,    Modulation of Hydrogen Peroxide-Induced Oxidative Stress in Human Neuronal Cells by Thymoquinone-Rich Fraction and Thymoquinone via Transcriptomic Regulation of Antioxidant and Apoptotic Signaling Genes
- in-vitro, Nor, SH-SY5Y
*neuroP↑, *ROS↓, *SOD1↑, *Catalase↑,
2088- TQ,    Nigella sativa L. and Its Bioactive Constituents as Hepatoprotectant: A Review
- Review, Nor, NA
*hepatoP↑, *lipid-P↓, *Thiols↑, *ROS↓, *Catalase↑, *SOD↑, *GSTs↑, *NF-kB↓, *COX2↓, *LOX1↓,
2087- TQ,    Nigella sativa thymoquinone-rich fraction greatly improves plasma antioxidant capacity and expression of antioxidant genes in hypercholesterolemic rats
- in-vivo, Nor, NA
*LDL↓, *SOD1↑, *Catalase↑, *GPx↑, *antiOx↑,
2086- TQ,    Cardioprotective effects of Nigella sativa oil on cyclosporine A-induced cardiotoxicity in rats
- in-vivo, Nor, NA
*SOD↑, *Catalase↑, *GSH↑, *cardioP↑, *lipid-P↓,
2110- TQ,    Nigella sativa seed oil suppresses cell proliferation and induces ROS dependent mitochondrial apoptosis through p53 pathway in hepatocellular carcinoma cells
- in-vitro, HCC, HepG2 - in-vitro, BC, MCF-7 - in-vitro, Lung, A549 - in-vitro, Nor, HEK293
P53↑, lipid-P↑, GSH↓, ROS↑, MMP↓, BAX↑, Casp3↑, Casp9↑, Bcl-2↓, tumCV↓, selectivity↑,
2111- TQ,  MTX,    Effect of Nigella sativa (black seeds) against methotrexate-induced nephrotoxicity in mice
- in-vivo, Nor, NA
*RenoP↑, *GSH↑,
4858- Uro,    The Metabolite Urolithin-A Ameliorates Oxidative Stress in Neuro-2a Cells, Becoming a Potential Neuroprotective Agent
- in-vitro, Nor, NA
*ROS?, *neuroP↑, *lipid-P↓, *Catalase↑, *SOD↑, *GPx↑, *GSR↑, *monoA↓, *tyrosinase↓,
4859- Uro,  Rad,    Urolithin A Enhances Tight Junction Protein Expression in Endothelial Cells Cultured In Vitro via Pink1-Parkin-Mediated Mitophagy in Irradiated Astrocytes
- in-vitro, Nor, NA
*ROS↓, *VEGF↓,
4860- Uro,    Urolithins–gut Microbial Metabolites with Potential Health Benefits
- Review, Nor, NA - Review, AD, NA - Review, Park, NA
*ROS↓, *Inflam↓, TumCG↓, *neuroP↑, *cardioP↑, *LDL↓, *BioAv↝, *BioAv↓, *BioAv↑, *SIRT1↑, *mTOR↑, *BDNF↑, *cognitive↑,
4862- Uro,    Neuroprotective effect of Urolithin A via downregulating VDAC1-mediated autophagy in Alzheimer's disease
- in-vivo, AD, NA - in-vitro, Nor, PC12
*cognitive↑, *p‑PI3K↓, *p‑Akt↓, *AMPK↑, *VDAC1↓, *neuroP↑, *PARK2↑, *PTEN↑, *LC3‑Ⅱ/LC3‑Ⅰ↑, *p62↓, *Aβ↓, *Apoptosis↓,
580- VitC,  MF,    Extremely low frequency magnetic field induces oxidative stress in mouse cerebellum
- in-vivo, Nor, NA
*other↓, *MDA↓, *GPx∅, *SOD↑, *GSH∅,
610- VitC,    Pharmacologic ascorbic acid concentrations selectively kill cancer cells: Action as a pro-drug to deliver hydrogen peroxide to tissues
- in-vitro, lymphoma, JPL119 - in-vitro, BC, MCF-7 - in-vitro, BC, MDA-MB-231 - in-vitro, BC, HS587T - in-vitro, Nor, NA
Apoptosis↑, necrosis↑, H2O2↑, *toxicity↓,
3101- VitC,    Vitamin C stimulates or attenuates reactive oxygen and nitrogen species (ROS, RNS) production depending on cell state: Quantitative amperometric measurements of oxidative bursts at PLB-985 and RAW 264.7 cells at the single cell level
- in-vitro, Nor, RAW264.7 - in-vitro, AML, PLB-985
*antiOx↑, *ROS↓, *RNS↓, ROS↑,
3103- VitC,    Effect of Vitamin C on Reactive Oxygen Species Formation in Erythrocytes of Sickle Cell Anemia Patients
- Human, Nor, NA
*ROS↓,
3116- VitC,    Vitamin C Inhibits NF-kB Activation by TNF Via the Activation of p38 Mitogen-Activated Protein Kinase
- in-vitro, Nor, ECV304 - in-vitro, Nor, HUVECs
*NF-kB↓, *p38↑, *MAPK↑,
3117- VitC,    Vitamin C induces Tet-dependent DNA demethylation and a blastocyst-like state in ES cells
- in-vitro, Nor, mESC
TET1↑, eff↝,
3118- VitC,    Vitamin C boosts DNA demethylation in TET2 germline mutation carriers
- Trial, Nor, NA
TET2↑,
3123- VitC,    Ascorbic Acid Enhances Tet-Mediated 5-Methylcytosine Oxidation and Promotes DNA Demethylation in Mammals
- in-vitro, Nor, mESC
*TET2↑, other↝,
3124- VitC,    Ascorbic acid improves parthenogenetic embryo development through TET proteins in mice
- in-vivo, Nor, NA
TET2↑, TET1↑, TET3↑,
3125- VitC,    Vitamin C inhibits NLRP3 inflammasome activation and delays the development of age-related hearing loss in male C57BL/6 mice
- in-vivo, Nor, NA
*Hear↑, *Inflam↓, *NLRP3↓,
3127- VitC,    Vitamin C inhibits the activation of the NLRP3 inflammasome by scavenging mitochondrial ROS
- in-vitro, Nor, NA - in-vivo, Nor, NA
*NLRP3↓, *AIM2↓, *mt-ROS↓, *IL1β↓,
3113- VitC,    Vitamin C enhances NF-κB-driven epigenomic reprogramming and boosts the immunogenic properties of dendritic cells
- in-vitro, Nor, NA
TET2↑, NF-kB↑,
3112- VitC,    Antioxidative and Anti-Inflammatory Activity of Ascorbic Acid
- Review, Nor, NA
*ROS↓, *antiOx↑, *SOD↑, *Catalase↑, *GPx↑, *NRF2↑, *AP-1↑, *Inflam↓, *CRP↓, IFN-γ↓,
3111- VitC,    https://pmc.ncbi.nlm.nih.gov/articles/PMC4492638/
- Trial, Nor, NA
Inflam↓, CRP↓, IL6↓,
3110- VitC,    Vitamin C Attenuates Oxidative Stress, Inflammation, and Apoptosis Induced by Acute Hypoxia through the Nrf2/Keap1 Signaling Pathway in Gibel Carp (Carassius gibelio)
- in-vivo, Nor, NA
*IL2↑, *IL6↑, *IL12↑, *NRF2↑, *Catalase↑, *SOD↑, *GPx↑, *GRP78/BiP↓, *ER Stress↓,
3106- VitC,    Protective effect of vitamin C on oxidative stress: a randomized controlled trial
- Trial, Nor, NA
*ROS↓,
3140- VitC,    Vitamin-C-dependent downregulation of the citrate metabolism pathway potentiates pancreatic ductal adenocarcinoma growth arrest
- in-vitro, PC, MIA PaCa-2 - in-vitro, Nor, HEK293
citrate↓, FASN↓, ACLY↓, LDH↓, Glycolysis↓, Warburg↓, PDK1↓, GLUT1↓, LDHA↓, ECAR↓, PDH↑, eff↑,
3151- VitC,    Role of Vitamin C in the Function of the Vascular Endothelium
- Review, Nor, NA
angioG↓,
3149- VitC,    Hepatoprotective benefits of vitamin C against perfluorooctane sulfonate-induced liver damage in mice through suppressing inflammatory reaction and ER stress
- in-vivo, Nor, NA
*hepatoP↑, *ALAT↓, *AST↓, *TNF-α↓, *IL6↓, *ER Stress↓, *ATF6↓, *eIF2α↓, *GRP78/BiP↓, *XBP-1↓, *Inflam↓,
3147- VitC,    Vitamin C modulates the metabolic and cytokine profiles, alleviates hepatic endoplasmic reticulum stress, and increases the life span of Gulo−/− mice
- in-vivo, Nor, NA
*OS↑, *ER Stress↓, *GRP78/BiP↓,
3146- VitC,    Vitamin C protects against hypoxia, inflammation, and ER stress in primary human preadipocytes and adipocytes
- in-vivo, Nor, NA
*Obesity↓, *ER Stress↓, *Inflam↓, Hif1a↓, VEGF↓, GLUT1↓, GRP78/BiP↓,
3144- VitC,    Some characteristics of Rabbit muscle phosphofructokinase-1 inhibition by ascorbate
- in-vitro, Nor, NA
PFK1↓, LDH↓,
3142- VitC,    Vitamin C promotes apoptosis in breast cancer cells by increasing TRAIL expression
- in-vitro, BC, MDA-MB-231 - in-vitro, BC, MCF-7 - in-vitro, Nor, MCF12A
TET2↑, Apoptosis↑, TRAIL↑, BAX↑, Casp↑, Cyt‑c↑, HK2↓, PDK1↓, BNIP3↓,
3128- VitC,    Vitamin C Mitigates Oxidative Stress and Tumor Necrosis Factor-Alpha in Severe Community-Acquired Pneumonia and LPS-Induced Macrophages
- in-vitro, Nor, NA
*ROS↓, *DNAdam↓, *TNF-α↓, *IL6↓, *p38↓,
3139- VitC,    Vitamin C and sodium bicarbonate enhance the antioxidant ability of H9C2 cells and induce HSPs to relieve heat stress
- in-vitro, Nor, H9c2
*Apoptosis∅, *LDH∅, *MDA∅, *SOD↓, eff↝,
3134- VitC,    Vitamin C promotes human endothelial cell growth via the ERK-signaling pathway
- in-vitro, Nor, HUVECs
*ERK↑,
3131- VitC,    Antioxidant Vitamin C attenuates experimental abdominal aortic aneurysm development in an elastase-induced rat model
- in-vivo, Nor, NA
*MMP2↓, *MMP9↓, *TNF-α↓, *IL1β↓, *TIMP2↑, *TIMP1↓, *antiOx↑, *Inflam↓,
2171- VitD3,    Vitamin D and the Immune System
- Analysis, Nor, NA
eff↑, Dose↝, eff↝, eff↑, eff↑,
2282- VitK2,    Vitamin K prevents oxidative cell death by inhibiting activation of 12-lipoxygenase in developing oligodendrocytes
- in-vitro, Nor, NA
*ROS↓, *12LOX↓,
2274- VitK2,    Vitamin K2 Modulates Mitochondrial Dysfunction Induced by 6-Hydroxydopamine in SH-SY5Y Cells via Mitochondrial Quality-Control Loop
- in-vitro, Nor, SH-SY5Y
*Bcl-2↓, *BAX↑, *MMP↑, *ROS↓, *p62↓, *LC3A↑, *Dose↝, *Apoptosis↓, *PINK1↑, *PARK2↑,
2279- VitK2,    Vitamin K2 Induces Mitochondria-Related Apoptosis in Human Bladder Cancer Cells via ROS and JNK/p38 MAPK Signal Pathways
- in-vitro, Bladder, T24 - in-vitro, Bladder, J82 - in-vitro, Nor, HEK293 - in-vitro, Nor, L02 - in-vivo, NA, NA
MMP↓, Cyt‑c↑, Casp3↑, p‑JNK↑, p‑p38↑, ROS↑, eff↓, tumCV↓, selectivity↑, *toxicity↓, TumVol↓,
2277- VitK2,    Vitamin K2 suppresses rotenone-induced microglial activation in vitro
- in-vitro, Nor, BV2 - NA, AD, NA - NA, Park, NA
*p38↓, *ROS↓, *Casp1↓, *MMP↑, *NF-kB↓, *IL1β↓, *iNOS↓, *COX2↓, *TNF-α↓,
2276- VitK2,    Vitamin K2 (MK-7) Intercepts Keap-1/Nrf-2/HO-1 Pathway and Hinders Inflammatory/Apoptotic Signaling and Liver Aging in Naturally Aging Rat
- in-vivo, Nor, NA
*Albumin↑, *AST↓, *ALAT↓, *Keap1↓, *NRF2↑, *HO-1↑, *COX2↓, *iNOS↓, *TNF-α↓, *TIMP1↓, *TGF-β↓, *ROS↓, *DNAdam↓, *Inflam↓,
2275- VitK2,    Delivery of the reduced form of vitamin K2(20) to NIH/3T3 cells partially protects against rotenone induced cell death
- in-vitro, Nor, NIH-3T3
*MMP↓, *ROS↓, *HO-1↓,
1815- VitK3,  VitK2,    Vitamin K
- Review, Nor, NA
*Dose↝, BMD↑,
1821- VitK3,    Menadione (Vitamin K3) induces apoptosis of human oral cancer cells and reduces their metastatic potential by modulating the expression of epithelial to mesenchymal transition markers and inhibiting migration
- in-vitro, Oral, NA - in-vitro, Nor, HEK293 - in-vitro, Nor, HaCaT
selectivity↑, TumCD↓, BAX↑, P53↑, Bcl-2↓, p65↓, E-cadherin↑, EMT↓, Vim↓, Fibronectin↓, TumCG↓, TumCMig↓,
1757- WBV,    The Impact of Vibration Therapy Interventions on Skin Condition and Skin Temperature Changes in Young Women with Lipodystrophy: A Pilot Study
- Human, Nor, NA
Dose∅, other↑,
1221- Z,    Unexpected zinc dependency of ferroptosis: what is in a name?
- Analysis, Nor, NA
*Ferroptosis↑, *ROS↑, *lipid-P↑,
961- Z,    Zinc Downregulates HIF-1α and Inhibits Its Activity in Tumor Cells In Vitro and In Vivo
- in-vitro, RCC, RCC4 - vitro+vivo, GBM, U373MG - in-vitro, Nor, HUVECs
Hif1a↓, HIF-1↓, VEGF↓, TumCI↓,
4890- ZER,    Zerumbone, a Southeast Asian ginger sesquiterpene, markedly suppresses free radical generation, proinflammatory protein production, and cancer cell proliferation accompanied by apoptosis: the alpha,beta-unsaturated carbonyl group is a prerequisite
- in-vitro, Nor, RAW264.7
*iNOS↓, *COX2↓, *EP2↓, TumCP↓, selectivity↑, Apoptosis↑, *chemoP↑, *Inflam↓,

* indicates research on normal cells as opposed to diseased cells
Total Research Paper Matches: 681

Pathway results for Effect on Cancer / Diseased Cells:


Redox & Oxidative Stress

antiOx↑, 3,   Catalase↓, 2,   Catalase↑, 5,   compI↓, 1,   ENOX2↓, 2,   Fenton↑, 1,   Ferroptosis↑, 7,   GCLC↑, 1,   GPx↓, 2,   GPx↑, 4,   GPx4↓, 5,   GSH?, 1,   GSH↓, 14,   GSH↑, 2,   GSH/GSSG↓, 3,   GSS↑, 1,   GSSG↑, 1,   GSTs↓, 1,   GSTs↑, 2,   H2O2↑, 4,   HK1↓, 1,   HO-1↓, 2,   HO-1↑, 4,   Iron↑, 3,   Iron∅, 1,   i-Iron↑, 2,   Keap1↓, 2,   Keap1↑, 1,   ox-Keap1↓, 1,   rd-Keap1↑, 1,   lipid-P↓, 1,   lipid-P↑, 6,   MDA↓, 1,   MDA↑, 8,   NADH↑, 1,   NADHdeh?, 1,   NADPH/NADP+↓, 1,   NQO1↑, 1,   NRF2↓, 3,   NRF2↑, 8,   NRF2∅, 2,   OXPHOS↓, 2,   OXPHOS↑, 2,   PARK2↑, 1,   ROS?, 2,   ROS↓, 6,   ROS↑, 68,   ROS⇅, 5,   ROS∅, 2,   i-ROS?, 1,   i-ROS↑, 1,   mt-ROS↑, 7,   RPM↑, 1,   SIRT3↑, 2,   SOD↓, 2,   SOD↑, 3,   SOD1↑, 1,   SOD2↓, 1,   ac‑SOD2↓, 1,   TAC↓, 1,   TOS↑, 1,   Trx↓, 2,   TrxR↓, 2,  

Metal & Cofactor Biology

FTH1↓, 2,   IronCh↑, 2,   NCOA4↑, 2,   Tf↑, 1,   TfR1/CD71↓, 1,  

Mitochondria & Bioenergetics

ADP:ATP↓, 1,   AIF↑, 3,   ATP↓, 5,   ATP↑, 1,   ATP⇅, 1,   ATP∅, 2,   compIII↓, 1,   compIII↑, 1,   EGF↓, 1,   ETC↓, 1,   Insulin↓, 1,   MEK↓, 1,   mitResp↓, 1,   MMP?, 1,   MMP↓, 26,   mtDam↑, 5,   OCR↓, 2,   OCR↑, 3,   p42↑, 1,   PINK1↑, 1,   Raf↓, 2,   XIAP↓, 3,  

Core Metabolism/Glycolysis

12LOX↓, 1,   ACC↓, 1,   ACLY↓, 2,   ACSL4↑, 1,   ALAT↓, 4,   AMPK↑, 5,   p‑AMPK↑, 2,   ANXA7↑, 1,   ATG7↑, 1,   citrate↓, 1,   cMyc↓, 3,   CRM↑, 1,   CYP3A4↓, 1,   ECAR↓, 4,   FASN↓, 2,   GLO-I↓, 2,   glucoNG↓, 1,   glucose↓, 1,   GlucoseCon↓, 11,   glut↓, 1,   GlutaM↓, 1,   Glycolysis↓, 14,   HK2↓, 8,   HK2∅, 1,   lactateProd↓, 11,   LDH?, 1,   LDH↓, 6,   LDH↑, 3,   LDHA↓, 3,   LDHA∅, 1,   LDL↓, 1,   lipoGen↓, 2,   NADPH↑, 2,   NADPH↝, 1,   NH3↓, 1,   PDH↑, 2,   p‑PDH↑, 1,   PDK1↓, 5,   PDKs↓, 1,   PFK↓, 2,   PFK1↓, 3,   PFK2↓, 1,   PFKP↓, 2,   PI3k/Akt/mTOR↓, 1,   p‑PI3k/Akt/mTOR↓, 1,   PKM1↑, 1,   PKM2↓, 10,   PPP↓, 1,   Pyruv↓, 2,   p‑S6K↓, 1,   Warburg↓, 5,  

Cell Death

Akt↓, 9,   Akt↑, 1,   p‑Akt↓, 6,   Apoptosis?, 1,   Apoptosis↓, 3,   Apoptosis↑, 51,   aSmase↑, 1,   Bak↑, 1,   BAX↓, 1,   BAX↑, 23,   BAX⇅, 1,   Bax:Bcl2↑, 2,   Bcl-2↓, 24,   Bcl-2↑, 1,   Bcl-xL↓, 1,   BIM↑, 2,   Casp↑, 7,   Casp3↑, 33,   Casp3∅, 1,   cl‑Casp3↑, 5,   Casp7↑, 7,   cl‑Casp7↑, 1,   Casp8↑, 5,   cl‑Casp8↑, 3,   Casp9↑, 17,   Casp9∅, 1,   cl‑Casp9↑, 2,   cFLIP↓, 2,   Cyt‑c↑, 20,   Cyt‑c?, 1,   DR5↑, 4,   Endon↑, 1,   Fas↑, 2,   FasL↑, 2,   Ferroptosis↑, 7,   GADD34↑, 1,   GSDMC↑, 1,   iNOS↓, 1,   JNK↓, 2,   JNK↑, 3,   p‑JNK↑, 3,   MAPK↓, 3,   MKP1↓, 1,   MKP2↓, 1,   MLKL↑, 1,   p‑MLKL↓, 1,   Necroptosis↑, 1,   necrosis↑, 2,   p27↑, 2,   p38↓, 1,   p38↑, 1,   p‑p38↓, 1,   p‑p38↑, 3,   Paraptosis↑, 2,   PUMA↑, 1,   Pyro↑, 1,   SK↓, 1,   survivin↓, 2,   Telomerase↓, 1,   TRAIL↑, 1,   TumCD↓, 3,   TumCD↑, 14,   TUNEL↑, 1,  

Kinase & Signal Transduction

CaMKII ↓, 1,   p70S6↓, 1,   p‑p70S6↓, 1,   Sp1/3/4↓, 1,  

Transcription & Epigenetics

H3↑, 1,   HATs↓, 1,   other↓, 3,   other↑, 10,   other⇅, 1,   other↝, 8,   other∅, 3,   TET3↑, 2,   tumCV↓, 24,   tumCV↑, 1,  

Protein Folding & ER Stress

ATF6↑, 3,   CHOP↓, 1,   CHOP↑, 5,   eIF2α↑, 1,   p‑eIF2α↑, 2,   ER Stress↑, 9,   ER Stress↝, 1,   GRP78/BiP↓, 1,   GRP78/BiP↑, 5,   HSP70/HSPA5↓, 2,   HSP70/HSPA5↑, 4,   HSP70/HSPA5∅, 1,   HSP90↓, 2,   IRE1↑, 2,   PERK↑, 5,   UPR↑, 3,  

Autophagy & Lysosomes

ATG5↑, 1,   Beclin-1↑, 2,   BNIP3?, 1,   BNIP3↓, 1,   LC3‑Ⅱ/LC3‑Ⅰ↑, 2,   LC3B↑, 2,   LC3II↑, 2,   p62↓, 2,   p62↑, 2,   TFEB↑, 1,   TumAuto↑, 5,  

DNA Damage & Repair

DNA-PK↑, 1,   DNAdam↑, 11,   DNArepair↓, 1,   DNMT1↓, 1,   DNMT1↑, 1,   DNMT3A↓, 1,   DNMTs↓, 2,   P53↑, 10,   p‑P53↑, 1,   PARP↑, 2,   p‑PARP↑, 1,   cl‑PARP↑, 8,   cl‑PARP∅, 1,   PCNA↓, 2,   TP53↑, 1,   γH2AX↑, 3,  

Cell Cycle & Senescence

CDK1↑, 1,   CDK2↓, 1,   CDK4↓, 2,   Cyc↓, 2,   cycA1/CCNA1↑, 1,   cycD1/CCND1↓, 4,   cycD1/CCND1↑, 2,   cycE/CCNE↓, 1,   cycE/CCNE↑, 2,   cycE1↓, 1,   P21↓, 1,   P21↑, 7,   TumCCA?, 1,   TumCCA↓, 1,   TumCCA↑, 36,  

Proliferation, Differentiation & Cell State

p‑4E-BP1↓, 1,   BMI1↓, 1,   BRAF↑, 1,   CD133↓, 1,   CD24↓, 1,   CD44↓, 2,   cFos↓, 1,   cFos↑, 1,   cMYB↓, 1,   CREB2↓, 1,   CSCs↓, 3,   CTNNB1↓, 1,   Diff↓, 1,   EMT↓, 8,   ERK↓, 3,   p‑ERK↓, 2,   p‑ERK↑, 1,   p‑FOXO3↓, 1,   Gli↓, 1,   Gli1↓, 2,   GSK‐3β↑, 1,   HDAC↓, 10,   HH↓, 1,   IGF-1↓, 1,   IGF-2↑, 1,   miR-34a↑, 1,   mTOR↓, 6,   mTOR↑, 2,   mTOR⇅, 1,   p‑mTOR↓, 2,   p‑mTORC1↓, 1,   n-MYC↓, 1,   Nanog↓, 1,   Nestin↓, 1,   NOTCH↓, 1,   NOTCH1↓, 1,   OCT4↓, 1,   PDGFRA↓, 1,   PI3K↓, 2,   PI3K↑, 1,   p‑PI3K↓, 1,   PTEN↓, 2,   PTEN↑, 3,   Shh↓, 2,   Smo↓, 2,   SOX2↓, 1,   Src↓, 1,   STAT↓, 1,   STAT3↓, 3,   STAT3↑, 1,   p‑STAT3↓, 1,   Sufu↑, 1,   TOPflash↑, 1,   TumCG?, 1,   TumCG↓, 28,   TumCG↑, 1,   Wnt↓, 1,  

Migration

5LO↓, 1,   AntiAg↑, 3,   AntiAg↝, 1,   AntiAg∅, 1,   Ca+2↓, 4,   Ca+2↑, 13,   Ca+2↝, 2,   i-Ca+2↑, 1,   Cdc42↓, 1,   DLC1↑, 1,   E-cadherin↑, 6,   ER-α36↓, 1,   Fibronectin↓, 1,   GLI2↓, 2,   ITGB1↓, 1,   Ki-67↓, 2,   LAMP1?, 1,   MARK4↓, 1,   miR-139-5p↑, 1,   MMP2↓, 8,   MMP7↓, 1,   MMP9↓, 10,   N-cadherin?, 1,   N-cadherin↓, 2,   PCBP1↓, 1,   PDGF↓, 1,   PKA↓, 1,   Rac1↓, 1,   Rho↓, 2,   RIP3↑, 1,   p‑RIP3↑, 1,   Slug↓, 1,   p‑SMAD2↓, 3,   p‑SMAD3↓, 2,   Snail↓, 2,   TET1↑, 4,   TGF-β↓, 3,   TIMP1↑, 1,   TSC1↑, 1,   TumCI?, 1,   TumCI↓, 13,   TumCMig↓, 21,   TumCP↓, 29,   TumMeta↓, 4,   Twist↓, 3,   TXNIP↑, 1,   uPA↓, 1,   Vim↓, 5,   β-catenin/ZEB1↓, 3,  

Angiogenesis & Vasculature

angioG↓, 13,   ATF4↑, 4,   EGFR↓, 2,   p‑EGFR↓, 1,   EPR↑, 1,   HIF-1↓, 1,   Hif1a↓, 19,   Hif1a↑, 1,   HIF2a↓, 1,   KDR/FLK-1↓, 1,   NO↓, 2,   VEGF↓, 16,   VEGF↑, 1,   VEGFR2↓, 1,  

Barriers & Transport

CellMemb↑, 1,   GLUT1↓, 6,   GLUT1↑, 1,   GLUT3↓, 1,   P-gp↓, 2,   SLC12A5↓, 2,   sonoP↑, 1,  

Immune & Inflammatory Signaling

B2M↓, 1,   CCR7↓, 1,   CD4+↑, 1,   COX1↓, 1,   COX2↓, 6,   CRP↓, 1,   CXCL1↓, 1,   CXCR4↓, 1,   HMGB1↓, 2,   IFN-γ↓, 1,   IKKα↓, 2,   IL10↓, 1,   IL17↓, 1,   IL1β↓, 3,   IL6↓, 5,   Inflam↓, 12,   JAK2↓, 1,   LIF↑, 1,   MCP1↓, 2,   NF-kB↓, 11,   NF-kB↑, 2,   p65↓, 1,   PD-L1↓, 1,   PGE2↓, 2,   TLR4↓, 1,   TNF-α↓, 4,  

Cellular Microenvironment

NOX↓, 1,   pH↑, 2,   i-pH↑, 1,  

Synaptic & Neurotransmission

p‑tau↓, 1,  

Hormonal & Nuclear Receptors

CYP19↓, 1,   ERα/ESR1↓, 1,  

Drug Metabolism & Resistance

BioAv↓, 2,   BioAv↑, 13,   BioAv↝, 8,   BioEnh↑, 11,   ChemoSen↑, 17,   ChemoSen∅, 1,   CYP1A2↓, 1,   CYP2C9↓, 1,   Dose?, 5,   Dose↓, 4,   Dose↑, 2,   Dose↝, 11,   Dose∅, 13,   eff↓, 28,   eff↑, 49,   eff↝, 14,   Half-Life↝, 3,   Half-Life∅, 2,   P450↓, 2,   RadioS↑, 9,   selectivity?, 2,   selectivity↓, 4,   selectivity↑, 103,   selectivity∅, 1,   TET2↓, 1,   TET2↑, 4,  

Clinical Biomarkers

ALAT↓, 4,   ALP↓, 1,   AST↓, 3,   B2M↓, 1,   BG↓, 2,   BMD↑, 1,   BP↓, 1,   BRAF↑, 1,   creat↓, 1,   CRP↓, 1,   E6↓, 1,   E7↓, 1,   EGFR↓, 2,   p‑EGFR↓, 1,   ERα/ESR1↓, 1,   GutMicro↑, 1,   GutMicro↝, 1,   IL6↓, 5,   Ki-67↓, 2,   LDH?, 1,   LDH↓, 6,   LDH↑, 3,   Maspin↑, 1,   PD-L1↓, 1,   TP53↑, 1,  

Functional Outcomes

AntiAge↑, 1,   AntiCan↑, 11,   AntiTum↑, 7,   cardioP↑, 3,   CardioT↓, 1,   chemoP↑, 7,   cognitive↑, 1,   hepatoP↑, 2,   neuroP↑, 9,   OS↓, 1,   OS↑, 5,   QoL↑, 1,   radioP↑, 7,   Remission↑, 1,   RenoP↑, 3,   Risk↓, 6,   toxicity↓, 2,   toxicity↝, 1,   toxicity∅, 1,   TumVol↓, 7,   TumW↓, 5,   Weight↓, 1,  

Infection & Microbiome

Bacteria↓, 1,  
Total Targets: 509

Pathway results for Effect on Normal Cells:


NA, unassigned

chemoPv↑, 2,  

Redox & Oxidative Stress

antiOx?, 1,   antiOx↓, 3,   antiOx↑, 80,   Catalase↓, 3,   Catalase↑, 42,   Catalase↝, 1,   Copper↓, 1,   CYP1A1↑, 1,   Ferroptosis↓, 4,   Ferroptosis↑, 1,   GCLC↑, 2,   GCLM↑, 1,   GPx↓, 1,   GPx↑, 35,   GPx↝, 1,   GPx∅, 1,   GPx1↑, 3,   GPx4↑, 4,   GSH↓, 5,   GSH↑, 59,   GSH⇅, 1,   GSH∅, 2,   GSH/GSSG↓, 1,   GSH/GSSG↑, 2,   GSR↑, 8,   GSS↑, 2,   GSSG↓, 2,   GSTA1↓, 1,   GSTA1↑, 3,   GSTP1/GSTπ↓, 1,   GSTs↓, 1,   GSTs↑, 5,   H2O2↓, 5,   H2O2↑, 1,   H2O2∅, 1,   HDL∅, 1,   HO-1↓, 4,   HO-1↑, 50,   hyperG↓, 1,   Iron↓, 2,   Iron↑, 1,   Keap1↓, 9,   ox-Keap1↑, 1,   lipid-P↓, 21,   lipid-P↑, 1,   MDA↓, 43,   MDA↑, 2,   MDA∅, 1,   MPO↓, 4,   NADPH/NADP+↑, 1,   NOX4↓, 6,   NQO1↑, 13,   NQO1∅, 1,   Nrf1↑, 1,   NRF2↓, 5,   NRF2↑, 78,   NRF2⇅, 1,   NRF2∅, 1,   p‑NRF2↑, 2,   OXPHOS↓, 3,   OXPHOS↑, 3,   PARK2↑, 2,   Prx↑, 1,   PrxII↑, 1,   RNS↓, 1,   ROS?, 1,   ROS↓, 175,   ROS↑, 21,   ROS⇅, 6,   ROS∅, 16,   mt-ROS↓, 3,   mt-ROS↑, 3,   SAM-e↓, 1,   selenoP↑, 5,   SIRT3↑, 3,   SOD?, 1,   SOD↓, 5,   SOD↑, 62,   SOD↝, 1,   SOD1↑, 6,   SOD2↓, 2,   SOD2↑, 7,   TAC↑, 7,   TAC∅, 1,   TBARS↑, 1,   Thiols↑, 2,   Trx↓, 2,   Trx↑, 5,   Trx1↑, 2,   TrxR↓, 1,   TrxR↑, 1,   TrxR1↑, 3,   uricA↓, 2,   VDAC1↓, 1,   VitC↑, 3,   VitE↑, 3,  

Metal & Cofactor Biology

IronCh↑, 2,   TfR1/CD71↓, 1,  

Mitochondria & Bioenergetics

ADP:ATP↓, 1,   ATP↓, 3,   ATP↑, 6,   ETC↓, 1,   Insulin↓, 4,   mitResp↓, 3,   mitResp↑, 3,   p‑MKK4↑, 1,   MMP↓, 5,   MMP↑, 13,   MMP↝, 1,   MMP∅, 2,   MPT↑, 1,   mtDam↓, 5,   OCR↓, 1,   OCR↑, 1,   mt-OCR↑, 1,   PGC-1α↓, 1,   PGC-1α↑, 4,   PINK1↑, 1,   UCP1↓, 1,  

Core Metabolism/Glycolysis

12LOX↓, 4,   12LOX↑, 1,   ACC↓, 1,   ACC↑, 1,   ACSL4↓, 1,   adiP↑, 2,   ALAT↓, 19,   ALAT∅, 1,   ALDOA↑, 1,   AMPK↓, 2,   AMPK↑, 13,   p‑AMPK↑, 1,   BMAL1↑, 1,   BUN↓, 3,   cAMP↑, 1,   cMyc↓, 1,   cMyc↑, 1,   CRM↑, 1,   CYP2C6↑, 1,   CYP3A2↑, 1,   ECAR↓, 4,   ECAR↑, 1,   ECAR∅, 1,   FABP4↓, 1,   FAO↓, 1,   FAO↑, 2,   FASN↓, 3,   FGF21↑, 2,   G6PD↑, 1,   GAPDH↑, 1,   GDH↓, 1,   glucoNG↓, 3,   glucose↓, 6,   GlucoseCon↓, 4,   GlucoseCon↑, 2,   GlutMet↑, 1,   Glycolysis↓, 5,   Glycolysis↑, 5,   Glycolysis↝, 3,   GPI↑, 1,   H2S↑, 1,   HK2↓, 6,   HK2↑, 5,   KeyT↑, 1,   lactateProd↓, 4,   LDH↓, 8,   LDH∅, 1,   LDHA↓, 4,   LDHA↑, 3,   LDHB↑, 1,   LDL↓, 7,   MATs↓, 1,   MCU↓, 1,   NAD↑, 2,   NADPH↓, 2,   NADPH↑, 4,   NADPH∅, 1,   NH3↑, 1,   PDK1↓, 1,   PFK↓, 1,   PFK↑, 1,   PFK1↓, 1,   PFK2↓, 1,   PFKFB2↓, 1,   PFKL↑, 3,   PFKM↑, 2,   PFKP↓, 1,   PFKP↑, 1,   PGC1A↑, 2,   PGM1?, 1,   PIP3↑, 1,   PKM1↑, 1,   PKM2↓, 12,   PKM2↑, 5,   PONs↓, 1,   PPARα↑, 2,   PPARγ↓, 2,   PPARγ↑, 2,   PPP↓, 2,   SCD1↓, 1,   SIRT1↓, 2,   SIRT1↑, 20,   SIRT2↑, 2,   SREBF2↓, 1,   SREBP1↓, 2,   SREBP2↓, 1,   TCA↑, 1,   Warburg↓, 1,  

Cell Death

AhR↑, 3,   Akt↓, 3,   Akt↑, 9,   p‑Akt↓, 2,   p‑Akt↑, 2,   e-Akt↑, 1,   APAF1↓, 1,   Apoptosis↓, 22,   Apoptosis↑, 1,   Apoptosis∅, 1,   BAX↓, 12,   BAX↑, 3,   Bax:Bcl2↓, 2,   Bax:Bcl2↑, 2,   Bcl-2↓, 2,   Bcl-2↑, 11,   Bcl-2∅, 1,   BMP2↑, 2,   Casp↓, 1,   Casp1↓, 6,   cl‑Casp1↓, 1,   proCasp1↓, 1,   Casp12↓, 1,   Casp3↓, 12,   Casp3↑, 5,   cl‑Casp3↓, 4,   cl‑Casp3↑, 1,   proCasp3↓, 1,   Casp8↑, 1,   cl‑Casp8↑, 1,   Casp9↓, 2,   Casp9↑, 2,   cl‑Casp9↓, 1,   cl‑Casp9↑, 1,   cellD↓, 1,   Cyt‑c↓, 2,   Cyt‑c↑, 2,   Cyt‑c∅, 1,   DR4↓, 1,   Fas↑, 2,   Ferroptosis↓, 4,   Ferroptosis↑, 1,   GSDMD↓, 1,   iNOS↓, 17,   iNOS↑, 1,   JNK↓, 2,   JNK↑, 1,   p‑JNK↓, 4,   p‑JNK↑, 3,   MAPK↓, 7,   MAPK↑, 2,   p‑MAPK↓, 1,   p38↓, 6,   p38↑, 2,   p‑p38↓, 3,   Pyro?, 1,   Pyro↓, 1,   YAP/TEAD↑, 1,  

Kinase & Signal Transduction

AMPKα↑, 1,   OCN↑, 1,   OCN∅, 1,   p‑p70S6↓, 1,   SOX9↑, 1,   Sp1/3/4↓, 5,   Sp1/3/4↑, 1,  

Transcription & Epigenetics

cJun↓, 1,   p‑cJun↓, 2,   other?, 1,   other↓, 8,   other↑, 15,   other↝, 11,   tumCV↓, 1,   tumCV↑, 1,   tumCV∅, 1,  

Protein Folding & ER Stress

ATF6↓, 2,   ChemChap↓, 1,   ChemChap↑, 1,   CHOP↓, 3,   CHOP↑, 1,   eIF2α↓, 1,   p‑eIF2α↓, 1,   cl‑eIF2α↑, 1,   ER Stress↓, 13,   ER Stress↑, 1,   GRP78/BiP↓, 8,   GRP78/BiP↑, 1,   HSP70/HSPA5↑, 4,   PERK↓, 1,   p‑PERK↓, 1,   p‑PERK↑, 1,   UPR↓, 1,   XBP-1↓, 1,  

Autophagy & Lysosomes

ATG3↓, 1,   Beclin-1↑, 1,   LC3‑Ⅱ/LC3‑Ⅰ↑, 1,   LC3A↑, 1,   LC3II↑, 1,   MitoP↑, 1,   p62↓, 3,   p62↑, 2,  

DNA Damage & Repair

DNAdam↓, 14,   DNAdam↑, 1,   DNAdam∅, 1,   DNMT1↓, 1,   DNMT3A↓, 1,   DNMTs↓, 1,   P53↓, 1,   P53↑, 2,   P53↝, 1,   PARP↓, 1,   cl‑PARP↑, 2,   RAD51↓, 1,   SIRT6↑, 1,   p‑γH2AX↓, 1,  

Cell Cycle & Senescence

CDK2↓, 1,   cycA1/CCNA1↓, 1,   cycE/CCNE↑, 1,   P21↓, 2,   P21↑, 3,   TumCCA↑, 3,  

Proliferation, Differentiation & Cell State

ALDH↑, 1,   cFos↓, 1,   CLOCK↝, 2,   Diff↓, 2,   Diff↑, 11,   EMT↓, 3,   EP2↓, 1,   ERK↓, 2,   ERK↑, 3,   p‑ERK↓, 6,   p‑ERK↑, 2,   e-ERK↑, 1,   FGF↑, 2,   FOXO↑, 1,   FOXO1↑, 1,   FOXO3?, 1,   Gli1↑, 1,   GSK‐3β↑, 1,   p‑GSK‐3β↑, 1,   HDAC↓, 6,   HDAC↑, 1,   HMGCR↓, 1,   IGF-1↓, 4,   IGF-1↑, 1,   IGFR↓, 1,   Jun↑, 1,   Mst1↓, 1,   mTOR↓, 3,   mTOR↑, 4,   p‑mTOR↓, 2,   p‑mTOR↑, 1,   n-MYC↑, 1,   neuroG↑, 1,   P70S6K↓, 2,   p‑P70S6K↓, 1,   p‑P70S6K↑, 1,   PI3K↓, 2,   PI3K↑, 4,   p‑PI3K↓, 1,   PTEN↓, 1,   PTEN↑, 3,   p‑PTEN↓, 1,   RUNX2↑, 1,   RUNX2∅, 1,   Shh↑, 1,   p‑STAT1↓, 1,   STAT3?, 1,   STAT3↓, 1,   STAT3↑, 1,   p‑STAT3↓, 2,   TCF-4↓, 1,   TumCG↓, 1,   TumCG↑, 1,   TumCG∅, 1,   tyrosinase↓, 1,   Wnt↑, 2,  

Migration

AntiAg↑, 7,   AntiAg∅, 1,   AP-1↓, 4,   AP-1↑, 1,   mt-ATPase↑, 1,   Ca+2↓, 6,   Ca+2↑, 5,   Ca+2↝, 1,   Ca+2∅, 1,   p‑Ca+2↓, 1,   i-Ca+2↓, 2,   mt-Ca+2↓, 1,   cal2↓, 1,   p‑Cofilin↓, 1,   COL1↓, 1,   COL1∅, 1,   COL2A1↑, 1,   COL3A1↓, 1,   CXCL12↑, 1,   CYP2D1↑, 1,   E-cadherin↑, 3,   E-sel↓, 4,   F-actin↓, 1,   F-actin↑, 1,   FAK↑, 1,   Fibronectin↓, 1,   heparanase↑, 1,   ITGA5↓, 1,   ITGB1↓, 1,   miR-155↓, 1,   miR-22↑, 1,   miR-29b↑, 1,   MMP1↓, 3,   MMP11↑, 1,   MMP2↓, 5,   MMP2↑, 1,   MMP3↓, 1,   MMP3↑, 1,   MMP7↓, 1,   MMP9↓, 5,   MMP9↑, 2,   MMPs↓, 1,   N-cadherin↓, 1,   Netrins↑, 1,   NFAM1↑, 1,   NFAT↑, 2,   OPN↑, 1,   PKA↑, 2,   PKCδ↓, 1,   PKCδ↑, 2,   Rac1↑, 1,   Rho↓, 5,   ROCK1↓, 3,   p‑Smad1↑, 1,   SMAD2↓, 1,   SMAD3↓, 2,   p‑SMAD5↑, 1,   Smad7↑, 1,   Snail↓, 1,   STAC2↑, 1,   TGF-β↓, 7,   TGF-β↑, 3,   TGF-β1↓, 2,   TGF-β1↑, 1,   TIMP1↓, 2,   TIMP2↑, 2,   TRPC1↑, 1,   TumCI∅, 1,   TumCMig↓, 1,   TumCMig↑, 1,   TumCMig∅, 1,   TumCP↓, 3,   TXNIP↓, 2,   TXNIP↑, 2,   uPA↓, 1,   VCAM-1↓, 6,   Vim↓, 4,   ZO-1↑, 3,   α-SMA↓, 7,   α-SMA↝, 1,   α-tubulin↓, 2,   β-catenin/ZEB1↓, 2,   β-catenin/ZEB1↑, 2,   β-Endo↑, 1,  

Angiogenesis & Vasculature

angioG↓, 6,   angioG↑, 6,   ATF4↓, 2,   ATF4↑, 1,   CLDN5↑, 1,   EGR4↑, 1,   eNOS↓, 1,   eNOS↑, 2,   Hif1a↓, 12,   Hif1a↑, 3,   Hif1a∅, 1,   HIF2a↑, 1,   LOX1↓, 1,   miR-34b-5p↓, 1,   NO↓, 16,   NO↑, 4,   NPY↑, 1,   PDGFR-BB↑, 1,   REL↑, 1,   VEGF↓, 10,   VEGF↑, 4,   p‑VEGFR2↓, 1,  

Barriers & Transport

BBB↑, 7,   GLUT1↑, 2,   GLUT4↑, 2,   MRP↓, 1,   NHE3↑, 1,  

Immune & Inflammatory Signaling

AIM2↓, 1,   ASC?, 1,   ASC↓, 2,   CD25+↓, 1,   CD69↓, 1,   COX2↓, 23,   COX2∅, 1,   CRP↓, 3,   CTLA-4↓, 1,   CXCc↑, 1,   CXCL1↓, 1,   HMGB1↓, 1,   ICAM-1↓, 9,   IFN-γ↓, 6,   IFN-γ↑, 1,   IKKα↓, 2,   p‑IKKα↓, 2,   IL1↓, 4,   IL10↓, 4,   IL10↑, 11,   IL12↓, 1,   IL12↑, 1,   IL17↓, 2,   IL17↑, 1,   IL18↓, 4,   IL1α↓, 1,   IL1α∅, 1,   IL1β↓, 33,   IL1β∅, 1,   IL2↓, 3,   IL2↑, 2,   IL4↓, 1,   IL4↑, 1,   IL5↑, 1,   IL6↓, 35,   IL6↑, 6,   IL8↓, 7,   IL8∅, 1,   Inflam↓, 91,   Inflam↑, 2,   IκB↑, 2,   p‑JAK1↓, 1,   JAK2↑, 2,   p‑JAK2↓, 2,   LIF↑, 1,   M1↓, 1,   Macrophages↓, 1,   MCP1↓, 3,   MCP1∅, 1,   MIP‑1α↓, 1,   mPGES-1↓, 1,   Neut↓, 1,   NF-kB↓, 47,   NF-kB↑, 2,   p‑NF-kB↓, 2,   OSM↑, 1,   p65↓, 4,   PAR-2↓, 1,   PGE2↓, 7,   RANTES↓, 1,   TLR2↓, 1,   TLR4↓, 4,   TLR4∅, 1,   TNF-α↓, 42,   TNF-α↑, 4,  

Cellular Microenvironment

pH↑, 1,  

Synaptic & Neurotransmission

5HT↓, 1,   5HT↑, 1,   AChE↓, 1,   BDNF↑, 8,   BDNF∅, 1,   MAOA↓, 1,   monoA↓, 1,   TrkB↑, 1,  

Protein Aggregation

Aβ↓, 2,   NLRP3↓, 19,   β-Amyloid↓, 1,  

Hormonal & Nuclear Receptors

ARNT↑, 1,   GR↑, 2,   GR↝, 1,  

Drug Metabolism & Resistance

BioAv?, 1,   BioAv↓, 21,   BioAv↑, 34,   BioAv↝, 19,   BioAv∅, 1,   BioEnh↑, 12,   BioEnh↝, 1,   ChemoSen↑, 1,   CYP1A2↑, 1,   Dose?, 2,   Dose↓, 1,   Dose↑, 2,   Dose⇅, 2,   Dose↝, 27,   Dose∅, 5,   eff↓, 15,   eff↑, 41,   eff↝, 8,   Half-Life↓, 3,   Half-Life↑, 3,   Half-Life↝, 5,   Half-Life∅, 3,   P450↓, 1,   selectivity↑, 3,   TET2↑, 1,  

Clinical Biomarkers

ALAT↓, 19,   ALAT∅, 1,   Albumin↑, 1,   ALP↓, 5,   ALP↑, 1,   ALP∅, 1,   ascitic↓, 1,   AST↓, 20,   AST∅, 1,   BG↓, 3,   BMD↑, 7,   BP↓, 1,   BP∅, 1,   creat↓, 4,   CRP↓, 3,   GutMicro↓, 1,   GutMicro↑, 9,   GutMicro↝, 1,   GutMicro∅, 1,   HbA1c↓, 1,   IL6↓, 35,   IL6↑, 6,   LDH↓, 8,   LDH∅, 1,   NOS2↓, 2,   NSE↑, 1,  

Functional Outcomes

AntiAge↑, 6,   AntiCan↑, 4,   AntiTum↑, 1,   cardioP↑, 35,   cardioP∅, 1,   CardioT↓, 1,   chemoP↑, 2,   cognitive↑, 12,   cytoP↑, 1,   GFR↑, 1,   Hear↑, 1,   hepatoP↑, 28,   memory↑, 5,   memory∅, 1,   motorD↑, 4,   neuroP↑, 34,   Obesity↓, 2,   OS↓, 1,   OS↑, 9,   Pain↓, 2,   QoL↑, 1,   radioP↑, 17,   RenoP↑, 23,   Risk↓, 2,   Risk↑, 2,   Sleep↑, 2,   Strength↑, 2,   toxicity↓, 63,   toxicity↑, 5,   toxicity↝, 5,   toxicity∅, 17,   Weight↓, 5,   Weight↑, 1,   Weight↝, 1,   Weight∅, 2,   Wound Healing↑, 1,  

Infection & Microbiome

AntiViral↑, 1,   Bacteria↓, 11,   Sepsis↓, 3,  
Total Targets: 665

Query results interpretion may depend on "conditions" listed in the research papers.
Such Conditions may include : 
  -low or high Dose
  -format for product, such as nano of lipid formations
  -different cell line effects
  -synergies with other products 
  -if effect was for normal or cancerous cells
Filter Conditions: Pro/AntiFlg:%  IllCat:%  CanType:49  Cells:%  prod#:%  Target#:%  State#:%  Dir#:%
wNotes=0 sortOrder:rid,rpid

 

Home Page