Database Query Results : , ,

CRC, Colorectal Cancer: Click to Expand ⟱
Colorectal cancer is a broader term that encompasses both colon and rectal cancer.


Scientific Papers found: Click to Expand⟱
4774- 5-FU,  TQ,  CoQ10,    Exploring potential additive effects of 5-fluorouracil, thymoquinone, and coenzyme Q10 triple therapy on colon cancer cells in relation to glycolysis and redox status modulation
- in-vitro, CRC, NA
AntiCan↑, TumCCA↑, Apoptosis↑, eff↑, Bcl-2↓, survivin↓, P21↑, p27↑, BAX↑, Cyt‑c↑, Casp3↑, PI3K↓, Akt↓, mTOR↓, Hif1a↓, PTEN↑, AMPKα↑, PDH↑, LDHA↓, antiOx↓, ROS↑, AntiCan↑,
2668- AL,    Allicin enhances the radiosensitivity of colorectal cancer cells via inhibition of NF-κB signaling pathway
- in-vitro, CRC, HCT116
RadioS↑, NF-kB↓,
1009- And,  5-FU,    Andrographis-mediated chemosensitization through activation of ferroptosis and suppression of β-catenin/Wnt-signaling pathways in colorectal cancer
- in-vivo, CRC, HCT116 - in-vitro, CRC, SW480
ChemoSen↑, Casp9↑, Ferroptosis↑, Wnt/(β-catenin)↓, FTL↑, TP53↑, ACSL5↑, GCLC↑, GCLM↑, SAT1↑, STEAP3↑, ACSL5↑,
1351- And,  MEL,    Impact of Andrographolide and Melatonin Combinatorial Drug Therapy on Metastatic Colon Cancer Cells and Organoids
- in-vitro, CRC, T84 - in-vitro, CRC, COLO205 - in-vitro, CRC, HT-29 - in-vitro, CRC, DLD1
eff↑, Ki-67↓, Casp3↑, ER Stress↑, ROS↑, BAX↑, XBP-1↑, CHOP↑, eff↑,
1294- And,  5-FU,    Andrographolide reversed 5-FU resistance in human colorectal cancer by elevating BAX expression
- in-vitro, CRC, HCT116
Apoptosis↑, BAX↑,
1008- Api,    Apigenin-induced lysosomal degradation of β-catenin in Wnt/β-catenin signaling
- in-vitro, CRC, HCT116 - in-vitro, CRC, SW480
Wnt/(β-catenin)↓, β-catenin/ZEB1↓, TumAuto↑, Akt↓, mTOR↓, tumCV↓, TumCCA↑, TumAuto↑, p‑Akt↓, p‑p70S6↓, p‑4E-BP1↓,
578- Api,  Cisplatin,    Apigenin enhances the cisplatin cytotoxic effect through p53-modulated apoptosis
- in-vitro, Lung, A549 - in-vitro, BC, MCF-7 - in-vitro, CRC, HCT116 - in-vitro, Pca, HeLa - in-vitro, Lung, H1299
p‑P53↑,
206- Api,    Inhibition of glutamine utilization sensitizes lung cancer cells to apigenin-induced apoptosis resulting from metabolic and oxidative stress
- in-vitro, Lung, H1299 - in-vitro, Lung, H460 - in-vitro, Lung, A549 - in-vitro, CRC, HCT116 - in-vitro, Melanoma, A375 - in-vitro, Lung, H2030 - in-vitro, CRC, SW480
Glycolysis↓, NA?, PGK1↓, ALDOA↓, GLUT1↓, ENO1↓, ATP↓, Casp9↑, Casp3↑, cl‑PARP↑, PI3K/Akt↓, HK1↓, HK2↓,
172- Api,    Apigenin suppresses colorectal cancer cell proliferation, migration and invasion via inhibition of the Wnt/β-catenin signaling pathway
- in-vitro, CRC, SW480 - in-vitro, CRC, HTC15
Wnt/(β-catenin)↓, TCF↓, LEF1↓,
175- Api,    Apigenin up-regulates transgelin and inhibits invasion and migration of colorectal cancer through decreased phosphorylation of AKT
- vitro+vivo, CRC, SW480 - vitro+vivo, CRC, DLD1 - vitro+vivo, CRC, LS174T
MMP↓, p‑Akt↓,
174- Api,    Downregulation of NEDD9 by apigenin suppresses migration, invasion, and metastasis of colorectal cancer cells
- in-vitro, CRC, SW480 - in-vitro, CRC, DLD1
NEDD9↓,
1552- Api,    Apigenin inhibits the growth of colorectal cancer through down-regulation of E2F1/3 by miRNA-215-5p
- in-vitro, CRC, HCT116
Apoptosis↑, TumCP↓, miR-215-5p↑, TumCCA↑, E2Fs↓,
2634- Api,    Apigenin induces both intrinsic and extrinsic pathways of apoptosis in human colon carcinoma HCT-116 cells
- in-vitro, CRC, HCT116
TumCG↓, TumCCA↑, MMP↓, ROS↑, Ca+2↑, ER Stress↑, mtDam↑, CHOP↑, DR5↑, cl‑BID↑, BAX↑, Cyt‑c↑, cl‑Casp3↑, cl‑Casp8↑, cl‑Casp9↑, Apoptosis↑,
2316- Api,    The interaction between apigenin and PKM2 restrains progression of colorectal cancer
- in-vitro, CRC, LS174T - in-vitro, CRC, HCT8 - in-vivo, CRC, NA
TumCP↓, PKM2↓, Glycolysis↓, TumCG↑, selectivity↑,
2582- ART/DHA,  5-ALA,    Mechanistic Investigation of the Specific Anticancer Property of Artemisinin and Its Combination with Aminolevulinic Acid for Enhanced Anticolorectal Cancer Activity
- in-vivo, CRC, HCT116 - in-vitro, CRC, HCT116
eff↑, ROS↑, selectivity↑, TumCG↓, toxicity↓,
2573- ART/DHA,    Cell death mechanisms induced by synergistic effects of halofuginone and artemisinin in colorectal cancer cells
- in-vitro, CRC, HCT116
eff↑,
563- ART/DHA,    Artesunate down-regulates immunosuppression from colorectal cancer Colon26 and RKO cells in vitro by decreasing transforming growth factor β1 and interleukin-10
- in-vitro, Colon, colon26 - in-vitro, CRC, RKO
TGF-β↓, IL10↓,
944- AS,    Astragalus saponins inhibit cell growth, aerobic glycolysis and attenuate the inflammatory response in a DSS-induced colitis model
- vitro+vivo, CRC, NA
Glycolysis↓, lactateProd↓, TumCG↓,
1304- ASA,    Aspirin Inhibits Colorectal Cancer via the TIGIT-BCL2-BAX pathway in T Cells
- in-vitro, CRC, NA - in-vivo, NA, NA
TumCP↓, Apoptosis↑, Bcl-2↓, BAX↑, IL10↓, TNF-β↓,
1360- Ash,  immuno,    Withaferin A Increases the Effectiveness of Immune Checkpoint Blocker for the Treatment of Non-Small Cell Lung Cancer
- in-vitro, Lung, H1650 - in-vitro, Lung, A549 - in-vitro, CRC, HCT116 - in-vitro, BC, MDA-MB-231 - in-vivo, NA, NA
PD-L1↑, eff↓, ROS↑, ER Stress↑, Apoptosis↑, BAX↑, Bak↑, BAD↑, Bcl-2↓, XIAP↓, survivin↓, cl‑PARP↑, CHOP↑, p‑eIF2α↑, ICD↑, eff↑,
1356- Ash,    Withaferin A induces apoptosis by ROS-dependent mitochondrial dysfunction in human colorectal cancer cells
- in-vitro, CRC, HCT116
ROS↑, TumCCA↑, MMP↓, TumCG↓, Apoptosis↑, JNK↝,
1179- Ash,    Withaferin-A Inhibits Colon Cancer Cell Growth by Blocking STAT3 Transcriptional Activity
- in-vitro, CRC, HCT116 - in-vivo, NA, NA
TumCP↓, TumCMig↓, STAT3↓, TumVol↓, TumW↓,
4806- ASTX,    Astaxanthin's Impact on Colorectal Cancer: Examining Apoptosis, Antioxidant Enzymes, and Gene Expression
- in-vitro, CRC, HCT116
BAX↑, Casp3↑, Apoptosis↑, Bcl-2↓, MDA↓, ROS↓, SOD↑, Catalase↑, GPx↑, antiOx↑, TumCG↓, TumCP↓,
4812- ASTX,    Astaxanthin suppresses the metastasis of colon cancer by inhibiting the MYC-mediated downregulation of microRNA-29a-3p and microRNA-200a
- in-vitro, CRC, HCT116
miR-29b↑, miR-200b↑, MMP2↓, Zeb1↓, EMT↓, Apoptosis↑, ERK↓, MAPK↓, PI3K↓, Akt↓, MMPs↓, TumMeta↓,
1080- BA,    Butyrate suppresses Cox-2 activation in colon cancer cells through HDAC inhibition
- in-vitro, CRC, HT-29
HDAC↓, TNF-α↓, COX2↓,
1531- Ba,    Proteomic analysis of the effects of baicalein on colorectal cancer cells
- in-vitro, CRC, DLD1 - in-vitro, CRC, SW48
TumCP↓, ROS↓, Prx6↑, eff↓, TumCCA↑, ROS↝, *ROS∅,
2047- BA,    Sodium butyrate inhibits migration and induces AMPK-mTOR pathway-dependent autophagy and ROS-mediated apoptosis via the miR-139-5p/Bmi-1 axis in human bladder cancer cells
- in-vitro, CRC, T24 - in-vitro, Nor, SV-HUC-1 - in-vitro, Bladder, 5637 - in-vivo, NA, NA
HDAC↓, AntiTum↑, TumCMig↓, AMPK↑, mTOR↑, TumAuto↑, ROS↑, miR-139-5p↑, BMI1↓, TumCI?, E-cadherin↑, N-cadherin↓, Vim↓, Snail↓, cl‑PARP↑, cl‑Casp3↑, BAX↑, Bcl-2↓, Bcl-xL↓, MMP↓, PINK1↑, PARK2↑, TumMeta↓, TumCG↓, LC3II↑, p62↓, eff↓,
2475- Ba,    Baicalein triggers ferroptosis in colorectal cancer cells via blocking the JAK2/STAT3/GPX4 axis
- in-vitro, CRC, HCT116 - in-vitro, CRC, DLD1 - in-vivo, NA, NA
tumCV↓, GPx4↓, STAT3↓, Ferroptosis↑,
2477- Ba,    Baicalein induces apoptosis via a mitochondrial-dependent caspase activation pathway in T24 bladder cancer cells
- in-vitro, CRC, T24
TumCG↓, TumCCA↑, MMP↓, Cyt‑c↑, Casp9↑, Casp3↑, p‑Akt↓, Bcl-2↓, BAX↑, Bax:Bcl2↑, 12LOX↓,
1375- BBR,    13-[CH2CO-Cys-(Bzl)-OBzl]-Berberine: Exploring The Correlation Of Anti-Tumor Efficacy With ROS And Apoptosis Protein
- in-vitro, CRC, HCT8 - in-vivo, NA, NA
ROS↑, TumCP↓, XIAP↓, TumCG↓, *toxicity↓,
2708- BBR,    Berberine decelerates glucose metabolism via suppression of mTOR‑dependent HIF‑1α protein synthesis in colon cancer cells
- in-vitro, CRC, HCT116
TumCG↓, GlucoseCon↓, GLUT1↓, LDHA↓, HK2↓, Hif1a↓, mTOR↓, Glycolysis↓,
2678- BBR,    Berberine as a Potential Agent for the Treatment of Colorectal Cancer
- Review, CRC, NA
*Inflam↓, *antiOx↑, *cardioP↑, *neuroP↑, TumCCA↑, cycD1/CCND1↓, cycE/CCNE↓, CDC2↓, AMPK↝, mTOR↝, Casp8↑, Casp9↑, Cyt‑c↑, TumCMig↓, TumCI↓, EMT↓, MMPs↓, E-cadherin↓, Telomerase↓, *toxicity↓, GRP78/BiP↓, EGFR↓, CDK4↓, COX2↓, PGE2↓, p‑JAK2↓, p‑STAT3↓, MMP2↓, MMP9↓, GutMicro↑, eff↝, *BioAv↓, BioAv↑,
2682- BBR,    Berberine Inhibited Growth and Migration of Human Colon Cancer Cell Lines by Increasing Phosphatase and Tensin and Inhibiting Aquaporins 1, 3 and 5 Expressions
- in-vitro, CRC, HT29 - in-vitro, CRC, SW480 - in-vitro, CRC, HCT116
TumCP↓, TumCMig↓, TumCI↓, Apoptosis↑, necrosis↑, AQPs↓, PTEN↑, PI3K↓, Akt↓, p‑Akt↓, mTOR↓, p‑mTOR↓,
2335- BBR,    Chemoproteomics reveals berberine directly binds to PKM2 to inhibit the progression of colorectal cancer
- in-vitro, CRC, HT29 - in-vitro, CRC, HCT116 - in-vivo, NA, NA
PKM2↓, Glycolysis↓, p‑STAT3↓, Bcl-2↓, cycD1/CCND1↓, TumCG↓, Ki-67↓, lactateProd↓, glucose↓,
2337- BBR,    Berberine Inhibited the Proliferation of Cancer Cells by Suppressing the Activity of Tumor Pyruvate Kinase M2
- in-vitro, CRC, HCT116 - in-vitro, Cerv, HeLa
TumCP↓, PKM2↓,
1010- BBR,    Berberine binds RXRα to suppress β-catenin signaling in colon cancer cells
- vitro+vivo, CRC, NA
β-catenin/ZEB1↓, TumCG↓,
4658- BBR,    Berberine Suppresses Stemness and Tumorigenicity of Colorectal Cancer Stem-Like Cells by Inhibiting m6A Methylation
- in-vitro, CRC, HCT116 - in-vitro, CRC, HT29
CSCs↓, TumCP↓, cycD1/CCND1↓, p27↑, P21↑, TumCCA↑, Apoptosis↑, ChemoSen↑, β-catenin/ZEB1↓, FTO↑, CD44↓, CD133↓, ChemoSen↑,
1031- BCA,    Biochanin A Suppresses Tumor Progression and PD-L1 Expression via Inhibiting ZEB1 Expression in Colorectal Cancer
- vitro+vivo, CRC, HCT116 - vitro+vivo, CRC, SW-620
PD-L1↓, TumCG↓, Zeb1↓, E-cadherin↑, N-cadherin↓, EMT↓,
2746- BetA,    Betulinic acid induces apoptosis and inhibits metastasis of human colorectal cancer cells in vitro and in vivo
- in-vitro, CRC, HCT116 - in-vivo, CRC, NA
TumCG↓, BAX↑, Bcl-2↓, ROS↑, MMP↓, TIMP2↑, TumVol↓,
2745- BetA,    Betulinic acid inhibits colon cancer cell and tumor growth and induces proteasome-dependent and -independent downregulation of specificity proteins (Sp) transcription factors
- in-vitro, CRC, RKO - in-vitro, CRC, SW480 - in-vivo, NA, NA
Apoptosis↑, TumCG↓, Sp1/3/4↓, survivin↓, VEGF↓, p65↓, EGFR↓, cycD1/CCND1↓, ROS↑, MMP↓,
2740- BetA,    Effects and mechanisms of fatty acid metabolism-mediated glycolysis regulated by betulinic acid-loaded nanoliposomes in colorectal cancer
- in-vitro, CRC, HCT116
TumCP↓, Glycolysis↓, HK2↓, PFK1↓, PKM2↓, ACSL1↓, CPT1A↓, FASN↓, FAO↓, GlucoseCon↓, lactateProd↓,
2719- BetA,    Betulinic Acid Restricts Human Bladder Cancer Cell Proliferation In Vitro by Inducing Caspase-Dependent Cell Death and Cell Cycle Arrest, and Decreasing Metastatic Potential
- in-vitro, CRC, T24 - in-vitro, Bladder, UMUC3 - in-vitro, Bladder, 5637
TumCD↑, Apoptosis↑, TumCCA↑, CycB/CCNB1↓, cycA1/CCNA1↓, CDK2↓, CDC25↓, mtDam↑, BAX↑, cl‑PARP↑, Casp3↑, Casp8↑, Casp9↑, Snail↓, Slug↓, MMP9↓, selectivity↑, MMP↓, ROS∅, TumCMig↓, TumCI↓,
2734- BetA,    Betulinic Acid Modulates the Expression of HSPA and Activates Apoptosis in Two Cell Lines of Human Colorectal Cancer
- in-vitro, CRC, HCT116 - in-vitro, CRC, SW480
tumCV↓, HSP70/HSPA5⇅, ROS↑, cl‑Casp3↑, mt-Apoptosis↑, Dose↝,
743- Bor,    Boric Acid (Boron) Attenuates AOM-Induced Colorectal Cancer in Rats by Augmentation of Apoptotic and Antioxidant Mechanisms
- in-vitro, CRC, NA
BAX↑, Bcl-2↓, GPx↑, SOD↑, Catalase↑, MDA↓, TNF-α↓, IL6↓, IL10↑,
750- Bor,    Calcium fructoborate regulate colon cancer (Caco-2) cytotoxicity through modulation of apoptosis
- in-vitro, CRC, Caco-2
Bcl-2↓, BAX↑, Akt↓, p70S6↓, PTEN↑, TSC2↑,
751- Bor,  5-FU,    Cytotoxic and Apoptotic Effects of the Combination of Borax (Sodium Tetraborate) and 5-Fluorouracil on DLD-1 Human Colorectal Adenocarcinoma Cell Line
- in-vitro, CRC, DLD1
Apoptosis↑,
1169- Bos,    Boswellic Acid Inhibits Growth and Metastasis of Human Colorectal Cancer in Orthotopic Mouse Model By Downregulating Inflammatory, Proliferative, Invasive, and Angiogenic Biomarkers
- in-vivo, CRC, NA
TumCG↓, TumVol↓, Weight∅, ascitic↓, TumMeta↓, Ki-67↓, CD31↓, NF-kB↓, COX2↓, Bcl-2↓, Bcl-xL↓, IAP1↓, survivin↓, cycD1/CCND1↓, ICAM-1↓, MMP9↓, CXCR4↓, VEGF↓,
1422- Bos,    Boswellic acid exerts antitumor effects in colorectal cancer cells by modulating expression of the let-7 and miR-200 microRNA family
- in-vitro, CRC, NA - in-vivo, NA, NA
5LO↓, TumCG↓, Let-7↑, miR-200b↑, NF-kB↓, cMyc↓, cycD1/CCND1↓, MMP9↓, CXCR4↓, VEGF↓, Bcl-xL↓, survivin↓, IAP1↓, XIAP↓, TumCG↓, CDK6↓, Vim↓, E-cadherin↑,
1426- Bos,  CUR,  Chemo,    Novel evidence for curcumin and boswellic acid induced chemoprevention through regulation of miR-34a and miR-27a in colorectal cancer
- in-vivo, CRC, NA - in-vitro, CRC, HCT116 - in-vitro, CRC, RKO - in-vitro, CRC, SW480 - in-vitro, RCC, SW-620 - in-vitro, RCC, HT-29 - in-vitro, CRC, Caco-2
miR-34a↑, miR-27a-3p↓, TumCG↓, BAX↑, Bcl-2↓, PARP1↓, TumCCA↑, Apoptosis↑, cMyc↓, CDK4↓, CDK6↓, cycD1/CCND1↓, ChemoSen↑, miR-34a↑, miR-27a-3p↓,
1427- Bos,    Acetyl-keto-β-boswellic acid inhibits cellular proliferation through a p21-dependent pathway in colon cancer cells
- in-vitro, CRC, HT-29 - in-vitro, CRC, HCT116 - in-vitro, CRC, LS174T
TumCG↓, TumCCA↑, cycD1/CCND1↓, cycE/CCNE↓, CDK2↓, CDK4↓, p‑RB1↓, P21↑,
1451- Bos,    Phytochemical Analysis and Anti-cancer Investigation of Boswellia serrata Bioactive Constituents In Vitro
- in-vitro, CRC, HepG2 - in-vitro, CRC, HCT116
eff↑,
1265- CAP,    Capsaicin shapes gut microbiota and pre-metastatic niche to facilitate cancer metastasis to liver
- in-vivo, CRC, NA
GutMicro↓, Risk↑,
1517- CAP,    Capsaicin Inhibits Multiple Bladder Cancer Cell Phenotypes by Inhibiting Tumor-Associated NADH Oxidase (tNOX) and Sirtuin1 (SIRT1)
- in-vitro, Bladder, TSGH8301 - in-vitro, CRC, T24
ENOX2↓, TumCCA↑, ERK↓, p‑FAK↓, p‑pax↓, TumCMig↓, EMT↓, SIRT1↓, Dose∅, ROS↑, MMP↓, Bcl-2↓, Bak↑, cl‑PARP↑, Casp3↑, SIRT1↓, ac‑P53↑, BIM↑, p‑RB1↓, cycD1/CCND1↓, Dose∅, β-catenin/ZEB1↓, N-cadherin↓, E-cadherin↑,
1518- CAP,    Capsaicin-mediated tNOX (ENOX2) up-regulation enhances cell proliferation and migration in vitro and in vivo
- in-vitro, CRC, HCT116
ENOX2↑, TumCP↑, TumCMig↑, Dose?, eff↑,
17- CBC/D,    CBC-1 as a Cynanbungeigenin C derivative inhibits the growth of colorectal cancer through targeting Hedgehog pathway component GLI 1
- in-vivo, CRC, NA
HH↓, Gli1↓,
2804- CHr,  Rad,    Gamma-Irradiated Chrysin Improves Anticancer Activity in HT-29 Colon Cancer Cells Through Mitochondria-Related Pathway
- in-vitro, CRC, HT29
RadioS↑, ROS↑, MMP↓, Casp3↑, Casp9↑, cl‑PARP↑,
1055- Cin,    Cinnamon extract induces tumor cell death through inhibition of NFκB and AP1
- vitro+vivo, Melanoma, NA - vitro+vivo, CRC, NA - vitro+vivo, lymphoma, NA
TumCP↓, NF-kB↓, AP-1↓, Bcl-2↓, Bcl-xL↓, survivin↓,
1601- Cu,    The copper (II) complex of salicylate phenanthroline induces immunogenic cell death of colorectal cancer cells through inducing endoplasmic reticulum stress
- in-vitro, CRC, NA
i-CRT↓, ICD↑, i-ATP↓, i-HMGB1↓, ER Stress↑, ROS↑, DCells↑, CD8+↑, IL12↑, IFN-γ↑, TGF-β↓,
3578- CUR,  SIL,    Curcumin, but not its degradation products, in combination with silibinin is primarily responsible for the inhibition of colon cancer cell proliferation
- in-vitro, CRC, DLD1
eff↑, BioAv↓, TumCG↓,
2974- CUR,    Curcumin Suppresses Metastasis via Sp-1, FAK Inhibition, and E-Cadherin Upregulation in Colorectal Cancer
- in-vitro, CRC, HCT116 - in-vitro, CRC, HT29 - in-vitro, CRC, HCT15 - in-vitro, CRC, COLO205 - in-vitro, CRC, SW-620 - in-vivo, NA, NA
TumCMig↓, TumCI↓, TumCG↓, TumMeta↓, Sp1/3/4↓, HDAC4↓, FAK↓, CD24↓, E-cadherin↑, EMT↓, TumCP↓, NF-kB↓, AP-1↝, STAT3↓, P53?, β-catenin/ZEB1↓, NOTCH1↝, Hif1a↝, PPARα↝, Rho↓, MMP2↓, MMP9↓,
4672- CUR,    An old spice with new tricks: Curcumin targets adenoma and colorectal cancer stem-like cells associated with poor survival outcomes
- vitro+vivo, CRC, HCT116
CSCs↓, Nanog↓, BioAv↓,
4671- CUR,    Targeting colorectal cancer stem cells using curcumin and curcumin analogues: insights into the mechanism of the therapeutic efficacy
- in-vitro, CRC, NA
CSCs↓, TumCG↓, ChemoSen↑, Wnt↓, β-catenin/ZEB1↓, Shh↓, NOTCH↓, DNMT1↓, STAT3↓, NF-kB↓, EGFR↓, IGFR↓, TumCCA↓, cl‑PARP↑, BAX↑, ECM/TCF↓,
4674- CUR,    Curcumin Shows Promise in Targeting Colorectal Cancer Stem-like Cells: Mechanistic Insights and Clinical Implications
- Review, CRC, NA
CSCs↓, Nanog↓,
4673- CUR,    Curcumin and colorectal cancer: An update and current perspective on this natural medicine
- Review, CRC, NA
AntiCan↑, GutMicro↝,
438- CUR,    Curcumin Reduces Colorectal Cancer Cell Proliferation and Migration and Slows In Vivo Growth of Liver Metastases in Rats
- vitro+vivo, CRC, CC531
TumCP↓, TumVol↓, Albumin↑, ALP↑, AST↑, ALAT↑, cholinesterase↓,
437- CUR,    Anti-cancer activity of amorphous curcumin preparation in patient-derived colorectal cancer organoids
- vitro+vivo, CRC, TCO1 - vitro+vivo, CRC, TCO2
cycD1/CCND1↓, cMyc↓, p‑ERK↓, CD44↓, CD133↓, LGR5↓, TumCCA↑, TumVol↓, CSCs↓,
439- CUR,    Curcumin suppresses LGR5(+) colorectal cancer stem cells by inducing autophagy and via repressing TFAP2A-mediated ECM pathway
- in-vitro, CRC, LGR5
Apoptosis↑, TumAuto↑, GP1BB↓, COL9A3↓, COMP↓, AGRN↓, ITGB4↓, LAMA5↓, COL2A1↓, ITGB6↓, LGR5↓, TFAP2A↓, ECM/TCF↓,
405- CUR,  5-FU,    Curcumin activates a ROS/KEAP1/NRF2/miR-34a/b/c cascade to suppress colorectal cancer metastasis
- vitro+vivo, CRC, HCT116
Apoptosis↑, TumCMig↓, NRF2↑, ROS↑, MET↑, miR-34a↑,
449- CUR,    Curcumin Suppresses the Colon Cancer Proliferation by Inhibiting Wnt/β-Catenin Pathways via miR-130a
- vitro+vivo, CRC, SW480
TumCP↓, β-catenin/ZEB1↓, TCF↓, miR-21↓, NKD2↑, miR-130a↓,
441- CUR,    Curcumin Regulates ERCC1 Expression and Enhances Oxaliplatin Sensitivity in Resistant Colorectal Cancer Cells through Its Effects on miR-409-3p
- in-vitro, CRC, HCT116
ERCC1↓, Bcl-2↓, GSTP1/GSTπ↓, MRP↓, P-gp↓, miR-409-3p↑, survivin↓,
442- CUR,  5-FU,    Curcumin may reverse 5-fluorouracil resistance on colonic cancer cells by regulating TET1-NKD-Wnt signal pathway to inhibit the EMT progress
- in-vitro, CRC, HCT116
Apoptosis↑, TumCP↓, TumCCA↑, TET1↑, NKD2↑, Wnt↓, EMT↓, Vim↑, E-cadherin↓, β-catenin/ZEB1↓, TCF↓, AXIN1↓,
443- CUR,    Reduced Caudal Type Homeobox 2 (CDX2) Promoter Methylation Is Associated with Curcumin’s Suppressive Effects on Epithelial-Mesenchymal Transition in Colorectal Cancer Cells
- in-vitro, CRC, SW480
DNMT1↓, DNMT3A↓, N-cadherin↓, Vim↓, Wnt↓, Snail↓, Twist↓, β-catenin/ZEB1↓, E-cadherin↑, EMT↓, CDX2↓,
444- CUR,  Cisplatin,    LncRNA KCNQ1OT1 is a key factor in the reversal effect of curcumin on cisplatin resistance in the colorectal cancer cells
- vitro+vivo, CRC, HCT8
TumVol↓, Apoptosis↑, Bcl-2↓, Cyt‑c↑, BAX↑, cl‑Casp3↑, cl‑PARP1↑, miR-497↑, KCNQ1OT1↓,
445- CUR,    Curcumin Regulates the Progression of Colorectal Cancer via LncRNA NBR2/AMPK Pathway
- in-vitro, CRC, HCT116 - in-vitro, CRC, HCT8 - in-vitro, CRC, SW480 - in-vitro, CRC, SW-620
p‑AMPK↑, p‑ACC-α↑, NBR2↑, p‑S6K↓, mTOR↓,
446- CUR,    The Influence of Curcumin on the Downregulation of MYC, Insulin and IGF-1 Receptors: A Possible Mechanism Underlying the Anti-Growth and Anti-Migration in Chemoresistant Colorectal Cancer Cells
- in-vitro, CRC, SW480
IR↓, IGF-1↓, Myc↓, TumCMig↓, TumCP↓,
447- CUR,  OXA,    Curcumin reverses oxaliplatin resistance in human colorectal cancer via regulation of TGF-β/Smad2/3 signaling pathway
- vitro+vivo, CRC, HCT116
p‑p65↓, Bcl-2↓, Casp3↑, EMT↓, p‑SMAD2↓, p‑SMAD3↓, N-cadherin↓, TGF-β↓, E-cadherin↑, TumVol↓, TumCMig↓,
448- CUR,    Heat shock protein 27 influences the anti-cancer effect of curcumin in colon cancer cells through ROS production and autophagy activation
- in-vitro, CRC, HT-29
Apoptosis↑, TumCCA↑, p‑Akt↓, Akt↓, Bcl-2↓, p‑BAD↓, BAD↑, cl‑PARP↑, ROS↑, HSP27↑, Beclin-1↑, p62↑, GPx1↓, GPx4↓,
440- CUR,    Curcumin Reverses NNMT-Induced 5-Fluorouracil Resistance via Increasing ROS and Cell Cycle Arrest in Colorectal Cancer Cells
- vitro+vivo, CRC, SW480 - vitro+vivo, CRC, HT-29
NNMT↓, p‑STAT3↓, TumCP↓, TumCCA↑, ROS↑,
450- CUR,    Curcumin may be a potential adjuvant treatment drug for colon cancer by targeting CD44
- in-vitro, CRC, HCT116 - in-vitro, CRC, HCT8
TumCP↓, TumCMig↓, CD44↓, CSCs↓,
990- CUR,    Curcumin inhibits aerobic glycolysis and induces mitochondrial-mediated apoptosis through hexokinase II in human colorectal cancer cells in vitro
- in-vitro, CRC, HCT116 - in-vitro, CRC, HT-29
HK2↓, Glycolysis↓, Apoptosis↑,
1885- DCA,    Role of SLC5A8, a plasma membrane transporter and a tumor suppressor, in the antitumor activity of dichloroacetate
- in-vitro, CRC, HCT116 - in-vitro, CRC, SW-620 - in-vitro, CRC, HT-29
SMCT1∅, eff↓, eff↑, eff↑, PDKs↓, MMP↓, Glycolysis↓, mitResp↑, ROS↑, eff↑,
1878- DCA,  5-FU,    Synergistic Antitumor Effect of Dichloroacetate in Combination with 5-Fluorouracil in Colorectal Cancer
- in-vitro, CRC, LS174T - in-vitro, CRC, LoVo - in-vitro, CRC, SW-620 - in-vitro, CRC, HT-29
tumCV↓, eff↑, PDKs↓, lactateProd↓, Glycolysis↓, mitResp↑, TumCCA↑, Bcl-2↓, BAX↑, Casp3↑,
1884- DCA,  Sal,    Dichloroacetate and Salinomycin Exert a Synergistic Cytotoxic Effect in Colorectal Cancer Cell Lines
- in-vitro, CRC, DLD1 - in-vitro, CRC, HCT116
eff↑, pH↓, PDKs↓, Warburg↓,
1869- DCA,    Dichloroacetate induces autophagy in colorectal cancer cells and tumours
- in-vitro, CRC, HT-29 - in-vitro, CRC, HCT116 - in-vitro, Pca, PC3 - in-vitro, CRC, HT-29
LC3II↑, ROS↑, mTOR↓, MCT1↓, NADH:NAD↓, NAD↑, TumAuto↑, lactateProd↓, LDH↑,
1886- Dicl,    Regulation of colonic epithelial butyrate transport: Focus on colorectal cancer
- Review, CRC, NA
SMCT1↑,
1850- dietFMD,    Fasting-mimicking diet remodels gut microbiota and suppresses colorectal cancer progression
- in-vivo, CRC, NA
TumCP↑, angioG↓, CD8+↑, GutMicro↑, eff↑,
1896- dietMet,    Dietary methionine links nutrition and metabolism to the efficacy of cancer therapies
- in-vivo, CRC, NA
TumCG↓, *GSH↓, RadioS↑, eff↑,
1037- EA,    Unripe Black Raspberry (Rubus coreanus Miquel) Extract and Its Constitute, Ellagic Acid Induces T Cell Activation and Antitumor Immunity by Blocking PD-1/PD-L1 Interaction
- in-vivo, CRC, NA
AntiTum↑, PD-L1↓,
640- EGCG,    Epigallocatechin Gallate (EGCG) Is the Most Effective Cancer Chemopreventive Polyphenol in Green Tea
- in-vitro, CRC, HCT116 - in-vitro, Colon, SW480
TumCCA↑, Apoptosis↑,
684- EGCG,    Improving the anti-tumor effect of EGCG in colorectal cancer cells by blocking EGCG-induced YAP activation
- in-vitro, CRC, NA
eff↑, Akt↓, VEGFR2↓, STAT3↓, P53↓, Hippo↓, YAP/TEAD↑,
679- EGCG,  5-FU,    Epigallocatechin-3-gallate targets cancer stem-like cells and enhances 5-fluorouracil chemosensitivity in colorectal cancer
- in-vitro, CRC, NA
NOTCH1↓, BMI1↓, SUZ12↓, EZH2↓, miR-34a↑, miR-200c↑, miR-145↑, CSCs↓,
677- EGCG,    Induction of Endoplasmic Reticulum Stress Pathway by Green Tea Epigallocatechin-3-Gallate (EGCG) in Colorectal Cancer Cells: Activation of PERK/p-eIF2 α /ATF4 and IRE1 α
- in-vitro, CRC, HT-29
ER Stress↑, GRP78/BiP↑, PERK↑, eIF2α↑, ATF4↑, IRE1↑, Apoptosis↑,
673- EGCG,    Iron Chelation Properties of Green Tea Epigallocatechin-3-Gallate (EGCG) in Colorectal Cancer Cells: Analysis on Tfr/Fth Regulations and Molecular Docking
- in-vitro, CRC, HT-29
IronCh↑, TfR1/CD71↑, FTH1↓,
3207- EGCG,    EGCG Enhances the Chemosensitivity of Colorectal Cancer to Irinotecan through GRP78-MediatedEndoplasmic Reticulum Stress
- in-vitro, CRC, RKO - in-vitro, CRC, HCT116
GRP78/BiP↑, MMP↓, ER Stress↑, ROS↓, UPR↑,
3230- EGCG,    Green Tea Polyphenol Epigallocatechin 3-Gallate, Contributes to the Degradation of DNMT3A and HDAC3 in HCT 116 Human Colon Cancer Cells
- in-vitro, CRC, HCT116 - in-vitro, CRC, HT29
HDAC↓, DNMTs↓,
3241- EGCG,    Epigallocatechin gallate triggers apoptosis by suppressing de novo lipogenesis in colorectal carcinoma cells
- in-vitro, CRC, HCT116 - in-vitro, CRC, HT29 - in-vitro, Liver, HepG2 - in-vitro, Liver, HUH7
tumCV↓, mtDam↑, Apoptosis↑, ATP↓, lipoGen↓, eff↑,
3213- EGCG,  Rad,    Epigallocatechin-3-gallate Enhances Radiation Sensitivity in Colorectal Cancer Cells Through Nrf2 Activation and Autophagy
- in-vitro, CRC, HCT116
RadioS↑, TumCP↓, NRF2↑,
3214- EGCG,    EGCG-induced selective death of cancer cells through autophagy-dependent regulation of the p62-mediated antioxidant survival pathway
- in-vitro, Nor, MRC-5 - in-vitro, Cerv, HeLa - in-vitro, Nor, HEK293 - in-vitro, BC, MDA-MB-231 - in-vitro, CRC, HCT116
mTOR↓, AMPK↑, selectivity↑, ROS↑, selectivity↑, HO-1↓, *NRF2↑, NRF2↓, *HO-1↑,
1321- EMD,    Antitumor effects of emodin on LS1034 human colon cancer cells in vitro and in vivo: roles of apoptotic cell death and LS1034 tumor xenografts model
- in-vitro, CRC, LS1034 - in-vivo, NA, NA
tumCV↓, TumCCA↑, ROS↑, Ca+2↑, MMP↓, Apoptosis↑, Cyt‑c↑, Casp9↑, Bax:Bcl2↑,
1296- EMD,    Emodin inhibits LOVO colorectal cancer cell proliferation via the regulation of the Bcl-2/Bax ratio and cytochrome c
- in-vitro, CRC, LoVo
BAX↑, Bcl-2↓, MMP↓, Cyt‑c↑,
2173- FA,  VitB12,    Elevated serum homocysteine levels associated with poor recurrence-free and overall survival in patients with colorectal cancer
- Study, CRC, NA
Risk↓, eff↝, eff↝, homoC↓,
2852- FIS,    A comprehensive view on the fisetin impact on colorectal cancer in animal models: Focusing on cellular and molecular mechanisms
- Review, CRC, NA
Risk↓, P53↑, MDM2↓, COX2↓, Wnt↓, NF-kB↓, CDK2↓, CDK4↓, p‑RB1↓, cycE/CCNE↓, P21↑, NRF2↓, ROS↑, Casp8↑, Fas↑, TRAIL↑, DR5↑, MMP↓, Cyt‑c↑, selectivity↑, P450↝, GSTs↝, RadioS↑, Inflam↓, β-catenin/ZEB1↓, EGFR↓, TumCCA↑, ChemoSen↑,
1283- GA,  immuno,    Gallic acid induces T-helper-1-like Treg cells and strengthens immune checkpoint blockade efficacy
- vitro+vivo, CRC, NA
p‑STAT3↓, Treg lymp↓, FOXP3↓, CD8+↑, IFN-γ↑,
830- GAR,    Garcinol modulates tyrosine phosphorylation of FAK and subsequently induces apoptosis through down-regulation of Src, ERK, and Akt survival signaling in human colon cancer cells
- in-vitro, CRC, HT-29
TumCI↓, TumCMig↓, Apoptosis↑, p‑FAK↓, Src↓, MAPK↓, ERK↓, PI3K/Akt↓, Bax:Bcl2↑, Cyt‑c↑, MMP7↓,
823- GAR,    Garcinol Potentiates TRAIL-Induced Apoptosis through Modulation of Death Receptors and Antiapoptotic Proteins
- in-vitro, BC, MCF-7 - in-vitro, Nor, MCF10 - in-vitro, CRC, HCT116
Casp3↑, Casp9↑, Casp8↑, DR5↑, survivin↓, Bcl-2↓, XIAP↓, cFLIP↓, BAX↑, Cyt‑c↑, ROS↑, GSH↓, *eff↓,
811- GAR,    Garcinol exhibits anti-proliferative activities by targeting microsomal prostaglandin E synthase-1 in human colon cancer cells
- in-vitro, CRC, HT-29
mPGES-1↓, Hif1a↓, VEGF↓, CXCR4↓, MMP2↓, MMP9↓, Casp3↑, TumCP↓, PGE2↓,
1190- Gb,    Extract of Ginkgo biloba exacerbates liver metastasis in a mouse colon cancer Xenograft model
- in-vivo, CRC, SW-620
TumMeta↑, Ki-67↑,
1292- Ge,  EGCG,    Antiproliferative and Apoptotic Effects Triggered by Grape Seed Extract (GSE) versus Epigallocatechin and Procyanidins on Colon Cancer Cell Lines
- in-vitro, Colon, Caco-2 - in-vitro, CRC, HCT8
TumCG↓, Apoptosis↑,
1116- GI,    6-Shogaol Inhibits the Cell Migration of Colon Cancer by Suppressing the EMT Process Through the IKKβ/NF-κB/Snail Pathway
- in-vitro, Colon, Caco-2 - in-vitro, CRC, HCT116
TumCG↓, Apoptosis↑, TumCMig↓, MMP2↓, N-cadherin↓, IKKα↓, p‑NF-kB↓, Snail↓, VEGF↓,
848- Gra,  SNP,    Synthesis, Characterization and Evaluation of Antioxidant and Cytotoxic Potential of Annona muricata Root Extract-derived Biogenic Silver Nanoparticles
- in-vitro, CRC, HCT116
ROS↑, PUMA↝, Casp3↑, Casp8↑, Casp9↑, Apoptosis↑,
841- Gra,    The Chemopotential Effect of Annona muricata Leaves against Azoxymethane-Induced Colonic Aberrant Crypt Foci in Rats and the Apoptotic Effect of Acetogenin Annomuricin E in HT-29 Cells: A Bioassay-Guided Approach
- in-vitro, CRC, HT-29 - in-vitro, Nor, CCD841
PCNA↓, Bcl-2↓, BAX↑, *MDA↓, lipid-P↓, TumCG↓, MMP↓, Cyt‑c↑, Casp3↑, Casp7↑, Casp9↑, *ROS↓, LDH↓, *toxicity↓, selectivity↑,
857- Gra,    The Value of Caspase-3 after the Application of Annona muricata Leaf Extract in COLO-205 Colorectal Cancer Cell Line
- in-vitro, CRC, COLO205
Casp3↑, tumCV↓,
858- Gra,    Annona muricata leaves induce G₁ cell cycle arrest and apoptosis through mitochondria-mediated pathway in human HCT-116 and HT-29 colon cancer cells
- in-vitro, CRC, HT-29 - in-vitro, CRC, HCT116
TumCCA↑, Apoptosis↑, ROS↑, MMP↓, Cyt‑c↑, Casp↑, BAX↑, Bcl-2↓, TumCMig↓, TumCI↓,
2505- H2,    Hydrogen gas restores exhausted CD8+ T cells in patients with advanced colorectal cancer to improve prognosis
- Trial, CRC, NA
PGC-1α↑, Dose↝, CD8+↑, OS↑,
2521- H2,    Oxyhydrogen Gas: A Promising Therapeutic Approach for Lung, Breast and Colorectal Cancer
- Review, CRC, NA - Review, Lung, NA - Review, BC, NA
Inflam↑, ROS↓, ChemoSen↑, p‑PI3K↓, p‑Akt↓, QoL↑, GutMicro↑, chemoP↑, radioP↑, *NRF2↑, *Catalase↑, *GPx↑, *HO-1↑, *SOD↑, *TNF-α↓, *IL4↓, *IL6↓, ChemoSen↑, Appetite↑, cognitive↑, Pain↓, Sleep↑, other?,
2520- H2,    The Impact of Molecular Hydrogen on Mitochondrial ROS and Apoptosis in Colorectal Cancer Cells
- in-vitro, CRC, NA
mt-ROS↓, ChemoSen↑, other↝,
1657- HCAs,    Anticancer Activity of Sinapic Acid by Inducing Apoptosis in HT-29 Human Colon Cancer Cell Line 2023
- in-vitro, CRC, HT-29
cl‑Casp3↑, BAX↑, cl‑PARP↑, γH2AX↑, Cyt‑c↑,
2400- HCAs,    The Mixture of Ferulic Acid and P-Coumaric Acid Suppresses Colorectal Cancer through lncRNA 495810/PKM2 Mediated Aerobic Glycolysis
- in-vitro, CRC, NA - in-vivo, CRC, NA
PKM2↓, Glycolysis↓, TumCG↓,
1439- HCQ,    Acidic extracellular pH neutralizes the autophagy-inhibiting activity of chloroquine
- in-vitro, Melanoma, NA - in-vitro, CRC, HCT116
TumAuto↓, eff↓, other↓,
4523- HNK,  MAG,  BA,    Honokiol-Magnolol-Baicalin Possesses Synergistic Anticancer Potential and Enhances the Efficacy of Anti-PD-1 Immunotherapy in Colorectal Cancer by Triggering GSDME-Dependent Pyroptosis
- in-vitro, CRC, HCT116 - in-vitro, CRC, LoVo - in-vivo, CRC, HCT116
AntiCan↑, eff↑, TumCP↓, TumCCA↓, cycD1/CCND1↓, Pyro↑, Apoptosis↑, cl‑GSDME↑, Bcl-2↓, Cyt‑c↑, Casp9↑, TumCG↓,
4638- HT,    Hydroxytyrosol induces apoptosis in human colon cancer cells through ROS generation
- in-vitro, CRC, DLD1 - NA, NA, 1-
selectivity↑, ROS↑, Akt↑, FOXO3↓, Apoptosis↑,
4641- HT,    Hydroxytyrosol induced ferroptosis through Nrf2 signaling pathway in colorectal cancer cells
- in-vitro, CRC, HCT116 - in-vitro, CRC, SW48
Ferroptosis↑, Iron↑, lipid-P↑, ROS↑, GSH↓, MMP↓, GPx4↓, TLR1↑, eff↓, NRF2↓, ROS↑,
1088- IP6,    Preventive Inositol Hexaphosphate Extracted from Rice Bran Inhibits Colorectal Cancer through Involvement of Wnt/β-Catenin and COX-2 Pathways
- in-vivo, CRC, NA
AntiTum↑, β-catenin/ZEB1↓, COX2↓,
2178- itraC,    Itraconazole inhibits tumor growth via CEBPB-mediated glycolysis in colorectal cancer
- in-vivo, CRC, HCT116
TumCG↓, Glycolysis↓, CEBPB?, ENO1↓, LDHA↓, PKM2↓, GAPDH↓, ECAR↓, OCR↓,
2177- itraC,    Itraconazole improves survival outcomes in patients with colon cancer by inducing autophagic cell death and inhibiting transketolase expression
- Study, Colon, NA - in-vitro, CRC, COLO205 - in-vitro, CRC, HCT116
OS↑, tumCV↓, Casp3↑, TumCCA↑, HH↓, TumAuto↑, LC3B↑, p62↑, TKT↓,
2390- KaempF,    Kaempferol Can Reverse the 5-Fu Resistance of Colorectal Cancer Cells by Inhibiting PKM2-Mediated Glycolysis
- in-vitro, CRC, HCT8
eff↑, GlucoseCon↓, lactateProd↓, PKM2↓, Glycolysis↓, glucose↑,
1064- LT,  Cisplatin,    Inhibition of cell survival, invasion, tumor growth and histone deacetylase activity by the dietary flavonoid luteolin in human epithelioid cancer cells
- vitro+vivo, Lung, LNM35 - in-vitro, CRC, HT-29 - in-vitro, Liver, HepG2 - in-vitro, BC, MCF-7 - in-vitro, BC, MDA-MB-231
Casp3↑, Casp7↑, HDAC↓,
973- LT,    Luteolin impairs hypoxia adaptation and progression in human breast and colon cancer cells
- in-vitro, CRC, HCT116 - in-vitro, BC, MDA-MB-231
Apoptosis↑, necrosis↑, TumAuto↑, HIF-1↓,
2915- LT,    Luteolin promotes apoptotic cell death via upregulation of Nrf2 expression by DNA demethylase and the interaction of Nrf2 with p53 in human colon cancer cells
- in-vitro, Colon, HT29 - in-vitro, CRC, SNU-407 - in-vitro, Nor, FHC
DNMTs↓, TET1↑, NRF2↑, HDAC↓, tumCV↓, BAX↑, Casp9↑, Casp3↑, Bcl-2↓, ROS↓, GSS↑, Catalase↑, HO-1↑, DNMT1↓, DNMT3A↓, TET1↑, TET3↑, TET2↓, P53↑, P21↑,
2588- LT,  Chemo,    Luteolin sensitizes two oxaliplatin-resistant colorectal cancer cell lines to chemotherapeutic drugs via inhibition of the Nrf2 pathway
- in-vitro, CRC, HCT116
NRF2↓, NQO1↓, HO-1↓, GSH↓, ChemoSen↑,
2534- M-Blu,  doxoR,  PDT,    Methylene Blue-Mediated Photodynamic Therapy in Combination With Doxorubicin: A Novel Approach in the Treatment of HT-29 Colon Cancer Cells
- in-vitro, CRC, HT-29
LDH↑, ROS↑,
4534- MAG,    Molecular mechanisms of apoptosis induced by magnolol in colon and liver cancer cells
- in-vitro, Liver, HepG2 - in-vitro, CRC, COLO205
AntiCan↑, Apoptosis↑, selectivity↑, Ca+2↑, Cyt‑c↑, Casp3↑, Casp8↑, Casp9↑, Bcl-2↓,
4531- MAG,    Magnolol-induced apoptosis in HCT-116 colon cancer cells is associated with the AMP-activated protein kinase signaling pathway
- in-vitro, CRC, HCT116
Apoptosis↑, DNAdam↑, Casp3↑, cl‑PARP↑, p‑AMPK↑, Bcl-2↓, P53↑, BAX↑, Cyt‑c↑, TumCMig↓, TumCI↓,
4536- MAG,    Magnolol suppresses proliferation of cultured human colon and liver cancer cells by inhibiting DNA synthesis and activating apoptosis
- in-vitro, Liver, HepG2 - in-vivo, CRC, COLO205
AntiCan↑, selectivity↑, TumCCA↑, P21↑, Apoptosis↑,
2251- MF,  Rad,    BEMER Electromagnetic Field Therapy Reduces Cancer Cell Radioresistance by Enhanced ROS Formation and Induced DNA Damage
- in-vitro, Lung, A549 - in-vitro, HNSCC, UTSCC15 - in-vitro, CRC, DLD1 - in-vitro, PC, MIA PaCa-2
RadioS↑, DNAdam↑, ROS↑, ChemoSen∅, Pyruv↓, ADP:ATP↓, ROS↑,
502- MF,    Electromagnetic field investigation on different cancer cell lines
- in-vitro, BC, MDA-MB-231 - in-vitro, Colon, SW480 - in-vitro, CRC, HCT116
TumCG↓, Apoptosis↑,
531- MF,    6-mT 0-120-Hz magnetic fields differentially affect cellular ATP levels
- in-vitro, Cerv, HeLa - in-vitro, CRC, HCT116 - in-vitro, BC, MCF-7 - in-vitro, Lung, A549 - in-vitro, Nor, RPE-1 - in-vitro, Nor, GP-293
ATP⇅,
595- MFrot,  VitC,  MF,    The Effect of Alternating Magnetic Field Exposure and Vitamin C on Cancer Cells
- in-vitro, PC, MIA PaCa-2 - in-vitro, CRC, SW-620 - in-vitro, NA, HT1080 - in-vitro, Pca, PC3 - in-vitro, OS, U2OS - in-vitro, BC, MCF-7 - in-vitro, Nor, CCD-18Co
TumCD↑, eff↑, *TumCG∅,
775- Mg,    The Supplement of Magnesium Element to Inhibit Colorectal Tumor Cells
- vitro+vivo, CRC, DLD1
TumCCA↑, Apoptosis↑, Casp3↑, TumCG↓,
1182- MushCha,    Ergosterol peroxide from Chaga mushroom (Inonotus obliquus) exhibits anti-cancer activity by down-regulation of the β-catenin pathway in colorectal cancer
- in-vitro, CRC, HCT116 - in-vitro, CRC, HT-29 - in-vitro, CRC, SW-620 - in-vitro, CRC, DLD1
Apoptosis↑, TumCG↓, FASN↓, β-catenin/ZEB1↓, cMyc↓, cycD1/CCND1↓, CDK8↓, Ki-67↓,
1227- OLST,    Anti-Obesity Drug Orlistat Alleviates Western-Diet-Driven Colitis-Associated Colon Cancer via Inhibition of STAT3 and NF-κB-Mediated Signaling
- in-vivo, CRC, NA
OS↑, Inflam↓, TumCG↓, STAT3↓, NF-kB↓, β-catenin/ZEB1↓, Slug↓, XIAP↓, CDK4↓, cycD1/CCND1↓, Bcl-2↓,
1996- Part,    Critical roles of intracellular thiols and calcium in parthenolide-induced apoptosis in human colorectal cancer cells
- in-vitro, CRC, COLO205
Apoptosis↑, GSH↓, ROS↑, Ca+2↑, GRP78/BiP↑, ER Stress↑, eff↓, eff↑, Thiols↓,
2075- PB,  Chemo,    Preliminary Findings on the Use of Targeted Therapy in Combination with Sodium Phenylbutyrate in Colorectal Cancer after Failure of Second-Line Therapy—A Potential Strategy for Improved Survival
- Trial, CRC, NA
OS↑, HDAC↓,
2076- PB,    Sodium Butyrate Induces Endoplasmic Reticulum Stress and Autophagy in Colorectal Cells: Implications for Apoptosis
- in-vitro, CRC, HCT116 - in-vitro, CRC, HT29
TumCP↓, TumAuto↑, Apoptosis↑, ER Stress↑, BID↑, CHOP↑, PDI↑, IRE1↓, LC3‑Ⅱ/LC3‑Ⅰ↑, LC3B↑, Beclin-1↑, other↝, other↝,
2070- PB,    Phenylbutyrate-induced apoptosis is associated with inactivation of NF-kappaB IN HT-29 colon cancer cells
- in-vitro, CRC, HT-29
TumCG↓, Apoptosis↑, MMP↓, Casp3↑, PARP↓, NF-kB↓, eff↑,
2078- PB,    Butyrate-induced apoptosis in HCT116 colorectal cancer cells includes induction of a cell stress response
- in-vitro, CRC, HCT116
p38↑, ER Stress↑, Casp3↑, Casp7↑, TumCD↑, Apoptosis↑, TumCP↑, HSP27↓,
1678- PBG,  5-FU,  sericin,    In vitro and in vivo anti-colorectal cancer effect of the newly synthesized sericin/propolis/fluorouracil nanoplatform through modulation of PI3K/AKT/mTOR pathway
- in-vitro, CRC, Caco-2 - in-vivo, NA, NA
PI3K↓, Akt↓, mTOR↓, TumCP↓, Bcl-2↓, BAX↑, Casp3↑, Casp9↑, ROS↓, FOXO1↑, *toxicity∅, eff↑,
4926- PEITC,    PEITC inhibits the invasion and migration of colorectal cancer cells by blocking TGF-β-induced EMT
- in-vitro, CRC, SW48
TumCI↓, TumCMig↓, EMT↓, Smad1↓, AntiCan↑, Snail↓, Slug↓, Zeb1↓, ZEB2↓, TGF-β1↓, eff↑, E-cadherin↑, N-cadherin↓, Vim↓,
4961- PEITC,    Phenethyl isothiocyanate suppresses cancer stem cell properties in vitro and in a xenograft model
- vitro+vivo, CRC, HCT116
CSCs↓, TumCG↓, CSCsMark↓,
4958- PEITC,    Cancer-preventive effect of phenethyl isothiocyanate through tumor microenvironment regulation in a colorectal cancer stem cell xenograft model
- vitro+vivo, CRC, NA
CSCs↓, TumCG↓, Inflam↓,
4952- PEITC,    Cancer-preventive effect of phenethyl isothiocyanate through tumor microenvironment regulation in a colorectal cancer stem cell xenograft model
- in-vitro, CRC, HCT116
CSCs↓,
1258- PI,    Piperlongumine Alleviates Mouse Colitis and Colitis-Associated Colorectal Cancer
- in-vivo, CRC, NA
COX2↓, IL6↓, EMT↓, β-catenin/ZEB1↓, Snail↓, Symptoms∅,
1016- PI,    Piperine suppresses the Wnt/β-catenin pathway and has anti-cancer effects on colorectal cancer cells
- in-vitro, CRC, HCT116 - in-vitro, CRC, SW480 - in-vitro, CRC, DLD1
β-catenin/ZEB1↓, Wnt↓, TumCP↓, TumCMig↓,
1949- PL,    Design, synthesis, and biological evaluation of a novel indoleamine 2,3-dioxigenase 1 (IDO1) and thioredoxin reductase (TrxR) dual inhibitor
- in-vitro, CRC, HCT116 - in-vitro, Cerv, HeLa
TrxR↓, selectivity↑, ROS↑, IDO1↓,
1952- PL,  5-FU,    Piperlongumine induces ROS accumulation to reverse resistance of 5-FU in human colorectal cancer via targeting TrxR
- in-vivo, CRC, HCT8
ROS↑, TrxR↓, eff↑, p‑Akt↓,
2945- PL,    Piperlongumine induces ROS mediated cell death and synergizes paclitaxel in human intestinal cancer cells
- in-vitro, CRC, HCT116
ROS↑, SMAD4↑, ChemoSen↑, P53↑, P21↑, BAX↑, Bcl-2↓, survivin↓, TumCMig↓,
2943- PL,    Piperlongumine Inhibits Thioredoxin Reductase 1 by Targeting Selenocysteine Residues and Sensitizes Cancer Cells to Erastin
- in-vitro, CRC, HCT116 - in-vitro, Lung, A549 - in-vitro, BC, MCF-7
TrxR1?, TumCD↑, ROS↑, GSH↓, eff↑,
2942- PL,    Piperlongumine increases sensitivity of colorectal cancer cells to radiation: Involvement of ROS production via dual inhibition of glutathione and thioredoxin systems
- in-vitro, CRC, CT26 - in-vitro, CRC, DLD1 - in-vivo, CRC, CT26
ROS↑, GSH↓, TrxR↓, RadioS↑, DNAdam↑, TumCCA↑, mitResp↓, GSTs↓, OS↑,
58- QC,  doxoR,    Quercetin induces cell cycle arrest and apoptosis in CD133+ cancer stem cells of human colorectal HT29 cancer cell line and enhances anticancer effects of doxorubicin
- in-vitro, CRC, HT-29 - in-vitro, NA, CD133+
Bcl-2↓,
44- QC,    Preclinical Colorectal Cancer Chemopreventive Efficacy and p53-Modulating Activity of 3′,4′,5′-Trimethoxyflavonol, a Quercetin Analog
- in-vivo, CRC, HCT116
P53↑,
919- QC,    Quercetin Regulates Sestrin 2-AMPK-mTOR Signaling Pathway and Induces Apoptosis via Increased Intracellular ROS in HCT116 Colon Cancer Cells
- in-vitro, CRC, HCT116
Apoptosis↑, ROS↑, SESN2↑, P53↑, AMPKα↑, mTOR↓,
4787- QC,    Quercetin: A Phytochemical with Pro-Apoptotic Effects in Colon Cancer Cells
- Review, CRC, NA
Inflam↓, AntiCan↑, Apoptosis↑, MMP↓, P53↑, BAX↑, Casp3↑, Casp9↑, Bcl-2↓, NF-kB↓, IL6↓, IL1β↓, *antiOx↑, *lipid-P↓, *ROS↓, MAPK↓, JAK↓, STAT↓, PI3K↓, Akt↓, chemoP↑, ROS⇅, DNAdam↑, ChemoSen↝,
993- RES,    Resveratrol reverses the Warburg effect by targeting the pyruvate dehydrogenase complex in colon cancer cells
- in-vitro, CRC, Caco-2 - in-vivo, Nor, HCEC 1CT
TumCG↓, Glycolysis↓, PPP↓, ATP↑, PDH↑, Ca+2↝, TumCP↓, lactateProd↓, OCR↑, ECAR↓, *ECAR∅, *other?, cycE/CCNE↑, cycA1/CCNA1↑, TumCCA↑, cycD1/CCND1↑, OXPHOS↑,
877- RES,    Resveratrol Inhibits Invasion and Metastasis of Colorectal Cancer Cells via MALAT1 Mediated Wnt/β-Catenin Signal Pathway
- in-vitro, CRC, LoVo - in-vitro, CRC, HCT116
MALAT1↓, Wnt/(β-catenin)↓, TumCI↓, TumMeta↓,
878- RES,    Resveratrol suppresses epithelial-to-mesenchymal transition in colorectal cancer through TGF-β1/Smads signaling pathway mediated Snail/E-cadherin expression
- vitro+vivo, CRC, LoVo
TumMeta↓, E-cadherin↑, Vim↓, TGF-β↓, SMAD2↓, EMT↓, SMAD3↓,
879- RES,    Evidence that TNF-β induces proliferation in colorectal cancer cells and resveratrol can down-modulate it
- in-vitro, CRC, HCT116
TumCP↓, NF-kB↓,
2330- RES,    Resveratrol Induces Cancer Cell Apoptosis through MiR-326/PKM2-Mediated ER Stress and Mitochondrial Fission
- in-vitro, CRC, DLD1 - in-vitro, Cerv, HeLa - in-vitro, BC, MCF-7
TumCP↓, Apoptosis↑, PKM2↓, ER Stress↑,
3064- RES,    Resveratrol Suppresses Cancer Cell Glucose Uptake by Targeting Reactive Oxygen Species–Mediated Hypoxia-Inducible Factor-1α Activation
- in-vitro, CRC, HT-29 - in-vitro, BC, T47D - in-vitro, Lung, LLC1
FDG↓, ROS↓, Hif1a↓, GLUT1↓, lactateProd↓,
3081- RES,    Resveratrol and p53: How are they involved in CRC plasticity and apoptosis?
- Review, CRC, NA
NF-kB↓, FAK↓, Ki-67↓, MMP9↓, CSCs↓, CD44↓, CD133↓, ALDH1A1↓, EMT↓, ChemoSen↑, Hif1a↓, ITGB1↓, Inflam↓,
3036- RosA,    Anti-Warburg effect of rosmarinic acid via miR-155 in colorectal carcinoma cells
- in-vitro, CRC, HCT8 - in-vitro, CRC, HCT116 - in-vitro, CRC, LS174T
GlucoseCon↓, lactateProd↓, Hif1a↓, Inflam↓, miR-155↓, STAT3↓, Glycolysis↓, IL6↓, Warburg↓,
2040- SAHA,    The histone deacetylase inhibitor SAHA arrests cancer cell growth, up-regulates thioredoxin-binding protein-2, and down-regulates thioredoxin
- in-vitro, Pca, LNCaP - in-vitro, CRC, T24 - in-vitro, BC, MCF-7
HDAC↓, TumCG↓, Diff↑, Apoptosis↑, TXNIP↑,
4909- Sal,    Salinomycin: Anti-tumor activity in a pre-clinical colorectal cancer model
- vitro+vivo, CRC, NA
AntiTum↑, Apoptosis↑, mtDam↑, ROS↑, SOD1↓, ChemoSen↑, CSCs↑, ALDH↓, TumCG↓, TumCP↓, TumCD↑, ATP↓,
4902- Sal,  OXA,    Salinomycin and oxaliplatin synergistically enhances cytotoxic effect on human colorectal cancer cells in vitro and in vivo
- vitro+vivo, CRC, NA
RadioS↑, ChemoSen↑, TumCP↓, Apoptosis↑, ROS↑, MMP↓, MAPK↑, eff↓, TumCG↓, TumCCA↑,
5002- Sal,  SFN,    Salinomycin and Sulforaphane Exerted Synergistic Antiproliferative and Proapoptotic Effects on Colorectal Cancer Cells by Inhibiting the PI3K/Akt Signaling Pathway in vitro and in vivo
- in-vivo, CRC, Caco-2 - vitro+vivo, CRC, CX-1
Apoptosis↑, PI3K↓, Akt↓, P53↑, BAX↑, Bax:Bcl2↑, p‑PARP↑, TumCMig↓,
5001- Sal,    Salinomycin exerts anti‐colorectal cancer activity by targeting the β‐catenin/T‐cell factor complex
- in-vitro, CRC, NA
CSCs↓, β-catenin/ZEB1↓, Wnt↓,
1307- SANG,    Sanguinarine induces apoptosis of HT-29 human colon cancer cells via the regulation of Bax/Bcl-2 ratio and caspase-9-dependent pathway
- in-vitro, CRC, HT-29
Apoptosis↑, BAX↑, Bcl-2↓, Casp3↑, Casp9↑,
1388- Sco,    Scoulerine promotes cell viability reduction and apoptosis by activating ROS-dependent endoplasmic reticulum stress in colorectal cancer cells
- in-vitro, CRC, NA
tumCV↓, Apoptosis↑, Casp3↑, Casp7↑, BAX↑, Bcl-2↓, ROS↑, GSH↓, SOD↓, ER Stress↑, GRP78/BiP↑, CHOP↑, eff↓,
1698- Se,    Association between Dietary Zinc and Selenium Intake, Oxidative Stress-Related Gene Polymorphism, and Colorectal Cancer Risk in Chinese Population - A Case-Control Study
- Human, CRC, NA
Risk↓,
1697- Se,  Calc,    Calcium intake may explain the reduction of colorectal cancer odds by dietary selenium - a case-control study in Poland
- Human, CRC, NA
Risk↓, Risk↓, Dose∅, AntiCan↑,
1691- Se,    The influence of selenium and selenoprotein gene variants on colorectal cancer risk
- Analysis, CRC, NA
Risk↓,
1692- Se,    Association of Selenoprotein and Selenium Pathway Genotypes with Risk of Colorectal Cancer and Interaction with Selenium Status
- Analysis, CRC, NA
Risk↓,
1694- Se,    Expression of Selenoprotein Genes and Association with Selenium Status in Colorectal Adenoma and Colorectal Cancer
- Analysis, CRC, NA
AntiCan↑, selenoP↓,
1695- Se,    Serum Selenium Concentration as a Potential Diagnostic Marker for Early-Stage Colorectal Cancer: A Comparative Study
- Trial, CRC, NA
Risk↓, selm↑, Dose↓, antiOx↑, Dose↑, Dose↝,
1696- Se,    Selenium dietary intake and survival among CRC patients
- Human, CRC, NA
OS↑,
1699- Se,    Vegetarianism and colorectal cancer risk in a low-selenium environment: effect modification by selenium status? A possible factor contributing to the null results in British vegetarians
- Analysis, CRC, NA
Dose↑, eff↓, Dose↓,
4725- Se,    Targeting the Nrf2-Prx1 Pathway with Selenium to Enhance the Efficacy and Selectivity of Cancer Therapy
- in-vitro, Lung, A549 - in-vitro, CRC, HT29
AntiCan↑, NRF2↓, Prx↓, ChemoSen↑, *Prx↑, *NRF2↑,
4723- Se,    Selenium Induces Ferroptosis in Colorectal Cancer Cells via Direct Interaction with Nrf2 and Gpx4
- in-vitro, CRC, HCT116
TumCP↓, Iron↑, MDA↑, ROS↑, MMP↓, NRF2↓, GPx4↓, Ferroptosis↑,
4734- Se,  CPT-11,    Cytotoxicity and therapeutic effect of irinotecan combined with selenium nanoparticles
- in-vitro, CRC, HCT8 - in-vivo, NA, NA
chemoP↑, ChemoSen↑, P53↑, Apoptosis↑, TumCG↓, Casp↑, Dose↝, NRF2↓, selectivity↑, *NRF2↑,
4495- Se,    Selenium status is associated with colorectal cancer risk in the European prospective investigation of cancer and nutrition cohort
- Study, CRC, NA
Risk↓, Dose↝,
4496- Se,    Selenium status and survival from colorectal cancer in the European prospective investigation of cancer and nutrition
- Analysis, CRC, NA
Risk↝, OS↑,
4470- Se,  Chit,    Synthesis and cytotoxic activities of selenium nanoparticles incorporated nano-chitosan
- in-vitro, CRC, HCT116 - in-vitro, Liver, HepG2 - in-vitro, BC, MCF-7
Dose↝, AntiCan↑, eff↑,
1018- Sel,    Selenite-induced autophagy antagonizes apoptosis in colorectal cancer cells in vitro and in vivo
- vitro+vivo, CRC, HCT116 - vitro+vivo, CRC, SW480
TumAuto↑, LC3s↑, TumW↓, Weight∅, Beclin-1↑, p62↓, ROS↑,
1017- Sel,    Selenite induces apoptosis in colorectal cancer cells via AKT-mediated inhibition of β-catenin survival axis
- vitro+vivo, CRC, NA
Akt↓, β-catenin/ZEB1↓, cycD1/CCND1↓, survivin↓, Apoptosis↑, ROS↑,
1135- Selenate,    Selenate induces epithelial-mesenchymal transition in a colorectal carcinoma cell line by AKT activation
- in-vitro, CRC, DLD1
EMT↑, Akt↑, Twist↑, Vim↑, E-cadherin↓,
963- SFN,    Sulforaphane inhibits hypoxia-induced HIF-1α and VEGF expression and migration of human colon cancer cells
- in-vitro, CRC, HCT116 - in-vitro, GC, AGS
Hif1a↓, VEGF↓, angioG↓, Akt∅, ERK∅,
1496- SFN,  VitD3,    Association between histone deacetylase activity and vitamin D-dependent gene expressions in relation to sulforaphane in human colorectal cancer cells
- in-vitro, CRC, Caco-2
eff↑, VDR↑, CYP11A1↓, HDAC↓,
1498- SFN,    Prolonged sulforaphane treatment activates survival signaling in nontumorigenic NCM460 colon cells but apoptotic signaling in tumorigenic HCT116 colon cells
- in-vitro, CRC, HCT116 - in-vitro, Nor, NCM460
selectivity↑, TumCCA↑, Apoptosis↑, *p‑ERK↑, cMYB↓, selectivity↑, selectivity↑,
1500- SFN,    A novel mechanism of chemoprotection by sulforaphane: inhibition of histone deacetylase
- in-vitro, Nor, HEK293 - in-vitro, CRC, HCT116
HDAC↓, P21↑, TOPflash↑,
1501- SFN,    The Inhibitory Effect of Sulforaphane on Bladder Cancer Cell Depends on GSH Depletion-Induced by Nrf2 Translocation
- in-vitro, CRC, T24
Dose↝, NRF2↑, GSH↓, eff↑,
1457- SFN,    Sulforaphane Inhibits IL-1β-Induced IL-6 by Suppressing ROS Production, AP-1, and STAT3 in Colorectal Cancer HT-29 Cells
- in-vitro, CRC, HT-29
IL6↓, ROS↓, TumCP↓, TumCI↓, p38↓, AP-1↓,
1480- SFN,    Sulforaphane Induces Cell Death Through G2/M Phase Arrest and Triggers Apoptosis in HCT 116 Human Colon Cancer Cells
- in-vitro, CRC, HCT116
tumCV↓, TumCCA↑, Apoptosis↑, cycA1/CCNA1↑, CycB/CCNB1↑, CDC25↓, CDK1↓, ROS↑, eff↓, Cyt‑c↑, AIF↑, ER Stress↑,
1479- SFN,    Sulforaphane triggers Sirtuin 3-mediated ferroptosis in colorectal cancer cells via activating the adenosine 5'-monophosphate (AMP)-activated protein kinase/ mechanistic target of rapamycin signaling pathway
- in-vitro, CRC, HCT116
Ferroptosis↑, SIRT3↑, AMPK↑, mTOR↑, tumCV↓, ROS↑, MDA↑, Iron↑,
3297- SIL,  Rad,    Studies on radiation sensitization efficacy by silymarin in colon carcinoma cells
- in-vitro, CRC, HCT15 - in-vitro, CRC, RKO
TumCP↓, RadioS↑, TumCCA↑, DNAdam↓, MMP↓, ROS↓, *radioP↑,
965- SK,    Shikonin suppresses proliferation and induces cell cycle arrest through the inhibition of hypoxia-inducible factor-1α signaling
- in-vitro, CRC, HCT116 - in-vitro, CRC, SW-620
Hif1a↓, ROS↓, mTOR↓, p70S6↓, 4E-BP1↓, eIF2α↓, TumCCA↑, TumCP↓, Half-Life↝,
2361- SK,    Natural shikonin and acetyl-shikonin improve intestinal microbial and protein composition to alleviate colitis-associated colorectal cancer
- in-vivo, CRC, NA
GutMicro↑, Dose↝, IL1β↓, IL6↓, TNF-α↓, PKM2↓,
2231- SK,    Shikonin Exerts Cytotoxic Effects in Human Colon Cancers by Inducing Apoptotic Cell Death via the Endoplasmic Reticulum and Mitochondria-Mediated Pathways
- in-vitro, CRC, SNU-407
Apoptosis↑, ER Stress↑, PERK↑, eIF2α↑, CHOP↑, mt-Ca+2↑, MMP↓, Bcl-2↓, Casp3↑, Casp9↑, ERK↑, JNK↑, p38↓,
2230- SK,    Shikonin induces ROS-based mitochondria-mediated apoptosis in colon cancer
- in-vitro, CRC, HCT116 - in-vivo, NA, NA
TumCG↓, Bcl-2↓, ROS↑, Bcl-xL↓, MMP↓, Casp↑, selectivity↑, cycD1/CCND1↓, TumCCA↑, eff↓,
2228- SK,    Shikonin induced Apoptosis Mediated by Endoplasmic Reticulum Stress in Colorectal Cancer Cells
- in-vitro, CRC, HCT116 - in-vitro, CRC, HCT15 - in-vivo, NA, NA
Apoptosis↑, Bcl-2↓, Casp3↑, Casp9↑, cl‑PARP↑, GRP78/BiP↑, PERK↑, eIF2α↑, ATF4↑, CHOP↑, JNK↑, eff↓, ER Stress↑, ROS↑, TumCG↓,
3047- SK,    Shikonin suppresses colon cancer cell growth and exerts synergistic effects by regulating ADAM17 and the IL-6/STAT3 signaling pathway
- in-vitro, CRC, HCT116 - in-vitro, CRC, SW48
TumCG↓, p‑STAT3↓, ADAM17↓, Apoptosis↑, Casp3↑, cl‑PARP↑, cycD1/CCND1↓, cycE/CCNE↓, TumCCA↑, JAK1?, p‑JAK1↓, p‑JAK2↓, p‑eIF2α↑, eff↓, ROS↑, IL6↓,
2008- SK,  Cisplatin,    Enhancement of cisplatin-induced colon cancer cells apoptosis by shikonin, a natural inducer of ROS in vitro and in vivo
- in-vitro, CRC, HCT116 - in-vivo, NA, NA
ChemoSen↑, selectivity↑, i-ROS↑, DNAdam↑, MMP↓, TumCCA↑, eff↓, *toxicity↓,
2007- SK,    Shikonin Directly Targets Mitochondria and Causes Mitochondrial Dysfunction in Cancer Cells
- in-vitro, lymphoma, U937 - in-vitro, BC, MCF-7 - in-vitro, BC, SkBr3 - in-vitro, CRC, HCT116 - in-vitro, OS, U2OS - NA, Nor, RPE-1
tumCV↓, selectivity↑, Dose↝, other↑, MMP↓, ROS↑, DNAdam↑, Ca+2↑, Casp9↑, Cyt‑c↑, *toxicity↓,
2184- SK,  Cisplatin,    PKM2 Inhibitor Shikonin Overcomes the Cisplatin Resistance in Bladder Cancer by Inducing Necroptosis
- in-vitro, CRC, T24
PKM2↓, ChemoSen↑, Necroptosis↑,
1195- SM,    Salvia miltiorrhiza polysaccharide activates T Lymphocytes of cancer patients through activation of TLRs mediated -MAPK and -NF-κB signaling pathways
- in-vitro, Lung, A549 - in-vitro, Liver, HepG2 - in-vitro, CRC, HCT116
T-Cell↑, TumCP∅, IL4↑, IL6↑, IFN-γ↑, TLR4↑, TLR1↑, TLR2↑, p‑JNK↑, p‑ERK↑, IKKα↑,
340- SNP,    Screening bioactivities of Caesalpinia pulcherrima L. swartz and cytotoxicity of extract synthesized silver nanoparticles on HCT116 cell line
- in-vitro, CRC, HCT116
TumCD↑,
399- SNP,  SIL,    Cytotoxic potentials of silibinin assisted silver nanoparticles on human colorectal HT-29 cancer cells
- in-vitro, CRC, HT-29
P53↑,
364- SNP,    Differential Action of Silver Nanoparticles on ABCB1 (MDR1) and ABCC1 (MRP1) Activity in Mammalian Cell Lines
- in-vitro, Lung, A549 - in-vitro, Hepat, HepG2 - in-vitro, CRC, SW-620
TumCD↑,
4561- SNP,  VitC,    Cellular Effects Nanosilver on Cancer and Non-cancer Cells: Potential Environmental and Human Health Impacts
- in-vitro, CRC, HCT116 - in-vitro, Nor, HEK293
NRF2↑, TumCCA↑, ROS↑, selectivity↑, *AntiViral↑, *toxicity↝, ETC↓, MMP↓, DNAdam↑, Apoptosis↑, lipid-P↑, other↝, UPR↑, *GRP78/BiP↑, *p‑PERK↑, *cl‑eIF2α↑, *CHOP↑, *JNK↑, Hif1a↓, AntiCan↑, *toxicity↓, eff↑,
4559- SNP,    Anticancer activity of biogenerated silver nanoparticles: an integrated proteomic investigation
- in-vitro, BC, SkBr3 - in-vitro, CRC, HT-29 - in-vitro, CRC, HCT116 - in-vitro, Colon, Caco-2
MMP2↓, MMP9↓, ROS↑, TumAuto↑, Apoptosis↑, ER Stress↑,
4557- SNP,    The apoptotic effect of nanosilver is mediated by a ROS- and JNK-dependent mechanism involving the mitochondrial pathway in NIH3T3 cells
- in-vitro, NA, NIH-3T3 - in-vitro, CRC, HCT116
Cyt‑c↑, ROS↑, JNK↑,
4379- SNP,    Exposure to silver nanoparticles induces size- and dose-dependent oxidative stress and cytotoxicity in human colon carcinoma cells
- in-vitro, CRC, LoVo
eff↑, TumCD↑, ROS↑, Bacteria↓,
4403- SNP,    Silver Nanoparticles Decorated UiO-66-NH2 Metal-Organic Framework for Combination Therapy in Cancer Treatment
- in-vitro, GBM, U251 - in-vitro, GBM, U87MG - in-vitro, GBM, GL26 - in-vitro, Cerv, HeLa - in-vitro, CRC, RKO
AntiCan↑, eff↑, EPR↑, selectivity↑, ROS↑, Casp↑, Apoptosis↑, DNAdam↑, tumCV↓, eff↑,
4412- SNP,    Biosynthesis and characterization of silver nanoparticles from Asplenium dalhousiae and their potential biological properties
- in-vitro, CRC, HCT116 - in-vitro, Melanoma, A2780S
Bacteria↓, antiOx↑, AntiCan↑, eff↑,
4362- SNP,    Enhancing Colorectal Cancer Radiation Therapy Efficacy using Silver Nanoprisms Decorated with Graphene as Radiosensitizers
- in-vitro, CRC, HCT116 - in-vitro, CRC, HT29 - in-vivo, NA, NA
eff↑, TumCG↓, OS↑, RadioS↑, eff↑, ROS↑, DNAdam↑, eff↝,
1019- TQ,    Thymoquinone suppresses migration of LoVo human colon cancer cells by reducing prostaglandin E2 induced COX-2 activation
- vitro+vivo, CRC, LoVo
TumCP↓, p‑PI3K↓, p‑Akt↓, p‑GSK‐3β↓, β-catenin/ZEB1↓, COX2↓, PGE2↓, EP2↓, EP4↓,
3431- TQ,    PI3K-AKT Pathway Modulation by Thymoquinone Limits Tumor Growth and Glycolytic Metabolism in Colorectal Cancer
- in-vitro, CRC, HCT116 - in-vitro, CRC, SW48
Glycolysis↓, Warburg↓, HK2↓, ATP↓, NADPH↓, PI3K↓, Akt↓, TumCP↓, E-cadherin↑, N-cadherin↓, Hif1a↓, PKM2↓, GlucoseCon↓, lactateProd↓, EMT↓,
3397- TQ,    Thymoquinone: A Promising Therapeutic Agent for the Treatment of Colorectal Cancer
- Review, CRC, NA
ChemoSen↑, *Half-Life↝, *BioAv↝, *antiOx↑, *Inflam↓, *hepatoP↑, TumCP↓, TumCCA↑, Apoptosis↑, angioG↑, selectivity↑, JNK↑, p38↑, p‑NF-kB↑, ERK↓, PI3K↓, PTEN↑, Akt↓, mTOR↓, EMT↓, Twist↓, E-cadherin↓, ROS⇅, *Catalase↑, *SOD↑, *GSTA1↑, *GPx↑, *PGE2↓, *IL1β↓, *COX2↓, *MMP13↓, MMPs↓, TumMeta↓, VEGF↓, STAT3↓, BAX↑, Bcl-2↑, Casp9↑, Casp7↑, Casp3↑, cl‑PARP↑, survivin↓, cMyc↓, cycD1/CCND1↓, p27↑, P21↑, GSK‐3β↓, β-catenin/ZEB1↓, chemoP↑,
3413- TQ,    Thymoquinone induces apoptosis in human colon cancer HCT116 cells through inactivation of STAT3 by blocking JAK2- and Src‑mediated phosphorylation of EGF receptor tyrosine kinase
- in-vitro, CRC, HCT116
tumCV↓, Apoptosis↓, BAX↑, Bcl-2↓, Casp9↑, Casp7↑, Casp3↑, cl‑PARP↑, STAT3↓, survivin↓, cMyc↓, cycD1/CCND1↓, p27↑, P21↑, EGFR↓, ROS↑,
5017- UA,    Ursolic acid disturbs ROS homeostasis and regulates survival-associated gene expression to induce apoptosis in intestinal cancer cells
- in-vitro, Cerv, INT-407 - in-vitro, CRC, HCT116
AntiCan↑, TumCG↓, ROS↑, Apoptosis↑, TumCMig↓, CTNNB1↓, Twist↓, Bcl-2↓, survivin↓, NF-kB↓, Sp1/3/4↓, BAX↑, P21↑, P53↑, eff↓, TumCMig↓,
4847- Uro,    Metabolite of ellagitannins, urolithin A induces autophagy and inhibits metastasis in human sw620 colorectal cancer cells
- in-vitro, CRC, SW-620
TumCP↓, TumCMig↓, MMP9↓, TumAuto↑, Apoptosis↑, TumCCA↓, TumMeta↓, ChemoSen↓,
4841- Uro,    Urolithin A induces cell cycle arrest and apoptosis by inhibiting Bcl-2, increasing p53-p21 proteins and reactive oxygen species production in colorectal cancer cells
- in-vitro, CRC, HT29 - in-vitro, CRC, SW480 - in-vitro, CRC, SW-620
TumCP↓, TumCCA↑, Apoptosis↑, P53↑, P21↑, Bcl-2↓, Cyt‑c↑, Casp↑, ROS↑, *ROS↓,
1067- VitC,    Vitamin C activates pyruvate dehydrogenase (PDH) targeting the mitochondrial tricarboxylic acid (TCA) cycle in hypoxic KRAS mutant colon cancer
- in-vivo, CRC, NA
PDK1↓, Hif1a↓, GLUT1↓, ATP↓, MMP↓,
3145- VitC,    Vitamin C inhibits the growth of colorectal cancer cell HCT116 and reverses the glucose‐induced oncogenic effect by downregulating the Warburg effect
- in-vitro, CRC, HCT116
Warburg↓, TumCG↓, Glycolysis↓, GlucoseCon↓, ATP↓, lactateProd↓, selectivity↑, GLUT1↓, PKM2↓, LDHA↓, mTOR↓,
3141- VitC,    High-dose Vitamin C inhibits PD-L1 expression by activating AMPK in colorectal cancer
- in-vitro, CRC, HCT116
Glycolysis↓, eff↑, PD-L1↓, AMPK↑, HK2↓, NF-kB↓, Warburg↓, tumCV↓, GLUT1↓, PKM2↓, LDHA↓, CD4+↑, CD8+↑,
3138- VitC,    The Hypoxia-inducible Factor Renders Cancer Cells More Sensitive to Vitamin C-induced Toxicity
- in-vitro, RCC, RCC4 - in-vitro, CRC, HCT116 - in-vitro, BC, MDA-MB-435 - in-vitro, Ovarian, SKOV3 - in-vitro, Colon, SW48 - in-vitro, GBM, U251
eff↑, Warburg↓, BioAv↑, ROS↑, DNAdam↑, ATP↓, eff↑, necrosis↑, PARP↑,
3137- VitC,    Vitamin C inhibits the growth of colorectal cancer cell HCT116 and reverses the glucose-induced oncogenic effect by downregulating the Warburg effect
- in-vitro, CRC, HCT116
Warburg↓, TumCG↓,
4468- VitC,  Se,    Selenium modulates cancer cell response to pharmacologic ascorbate
- in-vivo, GBM, U87MG - in-vitro, CRC, HCT116
eff↓, TumCD↑, ChemoSen↑, ROS⇅, DNAdam↑, PARP↑, NAD↓, Glycolysis↓, Fenton↑, lipid-P↑, eff↓, H2O2↑, other↝,
2369- VitD3,    Long Non-coding RNA MEG3 Activated by Vitamin D Suppresses Glycolysis in Colorectal Cancer via Promoting c-Myc Degradation
- in-vitro, CRC, DLD1 - in-vitro, CRC, RKO
MEG3↑, Glycolysis↓, lactateProd↓, LDHA↓, PKM2↓, HK2↓,
1823- VitK2,  VitK3,    Vitamins K2, K3 and K5 exert antitumor effects on established colorectal cancer in mice by inducing apoptotic death of tumor cells
- in-vitro, CRC, NA - in-vivo, NA, NA
TumCP↓, TumCCA↑, Casp3↑,
1820- VitK3,    Vitamin K3 (menadione) suppresses epithelial-mesenchymal-transition and Wnt signaling pathway in human colorectal cancer cells
- in-vitro, CRC, SW480 - in-vitro, CRC, SW-620
selectivity↑, TumCI↓, TumCMig↓, EMT↓, E-cadherin↑, ZO-1↑, N-cadherin↓, Vim↓, Zeb1↓, MMP2↓, MMP9↓, TOPflash↓, β-catenin/ZEB1↓, p300↓, cycD1/CCND1↓, TumCCA↑,
4888- ZER,  5-FU,    Modulation of the tumor microenvironment by zerumbone and 5-fluorouracil in colorectal cancer by target in cancer-associated fibroblasts
- in-vitro, CRC, CT26
TumVol↓, *tumCV↓, survivin↓, β-catenin/ZEB1↓, Vim↓,
4889- ZER,    Zerumbone reduces proliferation of HCT116 colon cancer cells by inhibition of TNF-alpha
- in-vitro, CRC, HCT116
TumCP↓, TNF-α↓, *toxicity↝,

* indicates research on normal cells as opposed to diseased cells
Total Research Paper Matches: 241

Pathway results for Effect on Cancer / Diseased Cells:


NA, unassigned

NA?, 1,  

Redox & Oxidative Stress

antiOx↓, 1,   antiOx↑, 3,   Catalase↑, 3,   ENOX2↓, 1,   ENOX2↑, 1,   Fenton↑, 1,   Ferroptosis↑, 5,   GCLC↑, 1,   GCLM↑, 1,   GPx↑, 2,   GPx1↓, 1,   GPx4↓, 4,   GSH↓, 8,   GSS↑, 1,   GSTP1/GSTπ↓, 1,   GSTs↓, 1,   GSTs↝, 1,   H2O2↑, 1,   HK1↓, 1,   HO-1↓, 2,   HO-1↑, 1,   ICD↑, 2,   Iron↑, 3,   lipid-P↓, 1,   lipid-P↑, 3,   MDA↓, 2,   MDA↑, 2,   NQO1↓, 1,   NRF2↓, 7,   NRF2↑, 5,   OXPHOS↑, 1,   PARK2↑, 1,   Prx↓, 1,   Prx6↑, 1,   ROS↓, 10,   ROS↑, 60,   ROS⇅, 3,   ROS↝, 1,   ROS∅, 1,   i-ROS↑, 1,   mt-ROS↓, 1,   selenoP↓, 1,   SIRT3↑, 1,   SOD↓, 1,   SOD↑, 2,   SOD1↓, 1,   Thiols↓, 1,   TKT↓, 1,   TrxR↓, 3,   TrxR1?, 1,  

Metal & Cofactor Biology

FTH1↓, 1,   FTL↑, 1,   IronCh↑, 1,   selm↑, 1,   STEAP3↑, 1,   TfR1/CD71↑, 1,  

Mitochondria & Bioenergetics

ADP:ATP↓, 1,   AIF↑, 1,   ATP↓, 7,   ATP↑, 1,   ATP⇅, 1,   i-ATP↓, 1,   CDC2↓, 1,   CDC25↓, 2,   ETC↓, 1,   mitResp↓, 1,   mitResp↑, 2,   MMP↓, 29,   mtDam↑, 4,   OCR↓, 1,   OCR↑, 1,   PGC-1α↑, 1,   PINK1↑, 1,   XIAP↓, 5,  

Core Metabolism/Glycolysis

12LOX↓, 1,   p‑ACC-α↑, 1,   ACSL1↓, 1,   ACSL5↑, 2,   ALAT↑, 1,   ALDOA↓, 1,   AMPK↑, 4,   AMPK↝, 1,   p‑AMPK↑, 2,   cMyc↓, 6,   CPT1A↓, 1,   ECAR↓, 2,   ENO1↓, 2,   ERCC1↓, 1,   FAO↓, 1,   FASN↓, 2,   FDG↓, 1,   GAPDH↓, 1,   glucose↓, 1,   glucose↑, 1,   GlucoseCon↓, 6,   Glycolysis↓, 19,   HK2↓, 7,   homoC↓, 1,   IDO1↓, 1,   IR↓, 1,   lactateProd↓, 12,   LDH↓, 1,   LDH↑, 2,   LDHA↓, 6,   lipoGen↓, 1,   NAD↓, 1,   NAD↑, 1,   NADH:NAD↓, 1,   NADPH↓, 1,   NNMT↓, 1,   PDH↑, 2,   PDK1↓, 1,   PDKs↓, 3,   PFK1↓, 1,   PGK1↓, 1,   PI3K/Akt↓, 2,   PKM2↓, 14,   PPARα↝, 1,   PPP↓, 1,   Pyruv↓, 1,   p‑S6K↓, 1,   SAT1↑, 1,   SIRT1↓, 2,   Warburg↓, 7,  

Cell Death

Akt↓, 13,   Akt↑, 2,   Akt∅, 1,   p‑Akt↓, 8,   Apoptosis↓, 1,   Apoptosis↑, 66,   mt-Apoptosis↑, 1,   BAD↑, 2,   p‑BAD↓, 1,   Bak↑, 2,   BAX↑, 33,   Bax:Bcl2↑, 4,   Bcl-2↓, 40,   Bcl-2↑, 1,   Bcl-xL↓, 5,   BID↑, 1,   cl‑BID↑, 1,   BIM↑, 1,   Casp↑, 5,   Casp3↑, 33,   cl‑Casp3↑, 5,   Casp7↑, 6,   Casp8↑, 6,   cl‑Casp8↑, 1,   Casp9↑, 21,   cl‑Casp9↑, 1,   cFLIP↓, 1,   Cyt‑c↑, 20,   DR5↑, 3,   Fas↑, 1,   Ferroptosis↑, 5,   cl‑GSDME↑, 1,   Hippo↓, 1,   IAP1↓, 2,   JNK↑, 4,   JNK↝, 1,   p‑JNK↑, 1,   MAPK↓, 3,   MAPK↑, 1,   MCT1↓, 1,   MDM2↓, 1,   MEG3↑, 1,   miR-497↑, 1,   Myc↓, 1,   Necroptosis↑, 1,   necrosis↑, 3,   p27↑, 4,   p38↓, 2,   p38↑, 2,   PUMA↝, 1,   Pyro↑, 1,   survivin↓, 14,   Telomerase↓, 1,   TRAIL↑, 1,   TumCD↑, 9,   YAP/TEAD↑, 1,  

Kinase & Signal Transduction

AMPKα↑, 2,   p70S6↓, 2,   p‑p70S6↓, 1,   Sp1/3/4↓, 3,   TSC2↑, 1,  

Transcription & Epigenetics

COMP↓, 1,   EZH2↓, 1,   KCNQ1OT1↓, 1,   miR-145↑, 1,   miR-21↓, 1,   miR-27a-3p↓, 2,   miR-409-3p↑, 1,   other?, 1,   other↓, 1,   other↑, 1,   other↝, 5,   TET3↑, 1,   tumCV↓, 16,  

Protein Folding & ER Stress

CHOP↑, 7,   i-CRT↓, 1,   eIF2α↓, 1,   eIF2α↑, 3,   p‑eIF2α↑, 2,   ER Stress↑, 15,   GRP78/BiP↓, 1,   GRP78/BiP↑, 5,   HSP27↓, 1,   HSP27↑, 1,   HSP70/HSPA5⇅, 1,   IRE1↓, 1,   IRE1↑, 1,   PERK↑, 3,   UPR↑, 2,   XBP-1↑, 1,  

Autophagy & Lysosomes

Beclin-1↑, 3,   LC3‑Ⅱ/LC3‑Ⅰ↑, 1,   LC3B↑, 2,   LC3II↑, 2,   LC3s↑, 1,   p62↓, 2,   p62↑, 2,   SESN2↑, 1,   TumAuto↓, 1,   TumAuto↑, 11,  

DNA Damage & Repair

DNAdam↓, 1,   DNAdam↑, 11,   DNMT1↓, 3,   DNMT3A↓, 2,   DNMTs↓, 2,   NBR2↑, 1,   P53?, 1,   P53↓, 1,   P53↑, 12,   p‑P53↑, 1,   ac‑P53↑, 1,   PARP↓, 1,   PARP↑, 2,   p‑PARP↑, 1,   cl‑PARP↑, 14,   PARP1↓, 1,   cl‑PARP1↑, 1,   PCNA↓, 1,   TP53↑, 1,   γH2AX↑, 1,  

Cell Cycle & Senescence

CDK1↓, 1,   CDK2↓, 3,   CDK4↓, 5,   cycA1/CCNA1↓, 1,   cycA1/CCNA1↑, 2,   CycB/CCNB1↓, 1,   CycB/CCNB1↑, 1,   cycD1/CCND1↓, 19,   cycD1/CCND1↑, 1,   cycE/CCNE↓, 4,   cycE/CCNE↑, 1,   E2Fs↓, 1,   P21↑, 12,   p‑RB1↓, 3,   TFAP2A↓, 1,   TumCCA↓, 3,   TumCCA↑, 40,  

Proliferation, Differentiation & Cell State

4E-BP1↓, 1,   p‑4E-BP1↓, 1,   ALDH↓, 1,   ALDH1A1↓, 1,   AXIN1↓, 1,   BMI1↓, 2,   CD133↓, 3,   CD24↓, 1,   CD44↓, 4,   CDK8↓, 1,   CDX2↓, 1,   CEBPB?, 1,   cMYB↓, 1,   CSCs↓, 12,   CSCs↑, 1,   CSCsMark↓, 1,   CTNNB1↓, 1,   Diff↑, 1,   EMT↓, 15,   EMT↑, 1,   EP2↓, 1,   EP4↓, 1,   ERK↓, 4,   ERK↑, 1,   ERK∅, 1,   p‑ERK↓, 1,   p‑ERK↑, 1,   FOXO1↑, 1,   FOXO3↓, 1,   Gli1↓, 1,   GSK‐3β↓, 1,   p‑GSK‐3β↓, 1,   HDAC↓, 9,   HDAC4↓, 1,   HH↓, 2,   IGF-1↓, 1,   IGFR↓, 1,   Let-7↑, 1,   LGR5↓, 2,   miR-34a↑, 4,   mTOR↓, 12,   mTOR↑, 2,   mTOR↝, 1,   p‑mTOR↓, 1,   Nanog↓, 2,   NKD2↑, 2,   NOTCH↓, 1,   NOTCH1↓, 1,   NOTCH1↝, 1,   p300↓, 1,   PI3K↓, 8,   p‑PI3K↓, 2,   PTEN↑, 4,   Shh↓, 1,   Src↓, 1,   STAT↓, 1,   STAT3↓, 9,   p‑STAT3↓, 5,   SUZ12↓, 1,   TCF↓, 3,   TOPflash↓, 1,   TOPflash↑, 1,   TumCG↓, 48,   TumCG↑, 1,   VDR↑, 1,   Wnt↓, 6,   Wnt/(β-catenin)↓, 4,  

Migration

5LO↓, 1,   AGRN↓, 1,   AP-1↓, 2,   AP-1↝, 1,   Ca+2↑, 5,   Ca+2↝, 1,   mt-Ca+2↑, 1,   CD31↓, 1,   COL2A1↓, 1,   COL9A3↓, 1,   E-cadherin↓, 4,   E-cadherin↑, 11,   FAK↓, 2,   p‑FAK↓, 2,   FTO↑, 1,   GP1BB↓, 1,   ITGB1↓, 1,   ITGB4↓, 1,   ITGB6↓, 1,   Ki-67↓, 5,   Ki-67↑, 1,   LAMA5↓, 1,   LEF1↓, 1,   MALAT1↓, 1,   MET↑, 1,   miR-130a↓, 1,   miR-139-5p↑, 1,   miR-155↓, 1,   miR-200b↑, 2,   miR-200c↑, 1,   miR-215-5p↑, 1,   miR-29b↑, 1,   MMP2↓, 7,   MMP7↓, 1,   MMP9↓, 10,   MMPs↓, 3,   N-cadherin↓, 9,   NEDD9↓, 1,   p‑pax↓, 1,   Rho↓, 1,   Slug↓, 3,   Smad1↓, 1,   SMAD2↓, 1,   p‑SMAD2↓, 1,   SMAD3↓, 1,   p‑SMAD3↓, 1,   SMAD4↑, 1,   Snail↓, 6,   TET1↑, 3,   TGF-β↓, 4,   TGF-β1↓, 1,   TIMP2↑, 1,   Treg lymp↓, 1,   TumCI?, 1,   TumCI↓, 11,   TumCMig↓, 23,   TumCMig↑, 1,   TumCP↓, 41,   TumCP↑, 3,   TumCP∅, 1,   TumMeta↓, 8,   TumMeta↑, 1,   Twist↓, 3,   Twist↑, 1,   TXNIP↑, 1,   Vim↓, 7,   Vim↑, 2,   Zeb1↓, 4,   ZEB2↓, 1,   ZO-1↑, 1,   β-catenin/ZEB1↓, 21,  

Angiogenesis & Vasculature

angioG↓, 2,   angioG↑, 1,   ATF4↑, 2,   ECM/TCF↓, 2,   EGFR↓, 5,   EPR↑, 1,   HIF-1↓, 1,   Hif1a↓, 11,   Hif1a↝, 1,   PDI↑, 1,   VEGF↓, 7,   VEGFR2↓, 1,  

Barriers & Transport

AQPs↓, 1,   GLUT1↓, 6,   MRP↓, 1,   P-gp↓, 1,   SMCT1↑, 1,   SMCT1∅, 1,  

Immune & Inflammatory Signaling

CD4+↑, 1,   COX2↓, 7,   CXCR4↓, 3,   DCells↑, 1,   FOXP3↓, 1,   i-HMGB1↓, 1,   ICAM-1↓, 1,   IFN-γ↑, 3,   IKKα↓, 1,   IKKα↑, 1,   IL10↓, 2,   IL10↑, 1,   IL12↑, 1,   IL1β↓, 2,   IL4↑, 1,   IL6↓, 7,   IL6↑, 1,   Inflam↓, 6,   Inflam↑, 1,   JAK↓, 1,   JAK1?, 1,   p‑JAK1↓, 1,   p‑JAK2↓, 2,   mPGES-1↓, 1,   NF-kB↓, 14,   p‑NF-kB↓, 1,   p‑NF-kB↑, 1,   p65↓, 1,   p‑p65↓, 1,   PD-L1↓, 3,   PD-L1↑, 1,   PGE2↓, 3,   T-Cell↑, 1,   TLR1↑, 2,   TLR2↑, 1,   TLR4↑, 1,   TNF-α↓, 4,   TNF-β↓, 1,  

Cellular Microenvironment

ADAM17↓, 1,   pH↓, 1,  

Synaptic & Neurotransmission

cholinesterase↓, 1,  

Hormonal & Nuclear Receptors

CDK6↓, 2,   CYP11A1↓, 1,  

Drug Metabolism & Resistance

BioAv↓, 2,   BioAv↑, 2,   ChemoSen↓, 1,   ChemoSen↑, 20,   ChemoSen↝, 1,   ChemoSen∅, 1,   Dose?, 1,   Dose↓, 2,   Dose↑, 2,   Dose↝, 9,   Dose∅, 3,   eff↓, 18,   eff↑, 40,   eff↝, 4,   Half-Life↝, 1,   P450↝, 1,   RadioS↑, 10,   selectivity↑, 23,   TET2↓, 1,  

Clinical Biomarkers

ALAT↑, 1,   Albumin↑, 1,   ALP↑, 1,   ascitic↓, 1,   AST↑, 1,   EGFR↓, 5,   EZH2↓, 1,   GutMicro↓, 1,   GutMicro↑, 4,   GutMicro↝, 1,   IL6↓, 7,   IL6↑, 1,   Ki-67↓, 5,   Ki-67↑, 1,   LDH↓, 1,   LDH↑, 2,   Myc↓, 1,   PD-L1↓, 3,   PD-L1↑, 1,   SUZ12↓, 1,   TP53↑, 1,  

Functional Outcomes

AntiCan↑, 16,   AntiTum↑, 4,   Appetite↑, 1,   chemoP↑, 4,   cognitive↑, 1,   OS↑, 8,   Pain↓, 1,   QoL↑, 1,   radioP↑, 1,   Risk↓, 9,   Risk↑, 1,   Risk↝, 1,   Sleep↑, 1,   Symptoms∅, 1,   toxicity↓, 1,   TumVol↓, 8,   TumW↓, 2,   Weight∅, 2,  

Infection & Microbiome

Bacteria↓, 2,   CD8+↑, 5,  
Total Targets: 521

Pathway results for Effect on Normal Cells:


Redox & Oxidative Stress

antiOx↑, 3,   Catalase↑, 2,   GPx↑, 2,   GSH↓, 1,   GSTA1↑, 1,   HO-1↑, 2,   lipid-P↓, 1,   MDA↓, 1,   NRF2↑, 4,   Prx↑, 1,   ROS↓, 3,   ROS∅, 1,   SOD↑, 2,  

Core Metabolism/Glycolysis

ECAR∅, 1,  

Cell Death

JNK↑, 1,  

Transcription & Epigenetics

other?, 1,   tumCV↓, 1,  

Protein Folding & ER Stress

CHOP↑, 1,   cl‑eIF2α↑, 1,   GRP78/BiP↑, 1,   p‑PERK↑, 1,  

Proliferation, Differentiation & Cell State

p‑ERK↑, 1,   TumCG∅, 1,  

Migration

MMP13↓, 1,  

Immune & Inflammatory Signaling

COX2↓, 1,   IL1β↓, 1,   IL4↓, 1,   IL6↓, 1,   Inflam↓, 2,   PGE2↓, 1,   TNF-α↓, 1,  

Drug Metabolism & Resistance

BioAv↓, 1,   BioAv↝, 1,   eff↓, 1,   Half-Life↝, 1,  

Clinical Biomarkers

IL6↓, 1,  

Functional Outcomes

cardioP↑, 1,   hepatoP↑, 1,   neuroP↑, 1,   radioP↑, 1,   toxicity↓, 6,   toxicity↝, 2,   toxicity∅, 1,  

Infection & Microbiome

AntiViral↑, 1,  
Total Targets: 44

Query results interpretion may depend on "conditions" listed in the research papers.
Such Conditions may include : 
  -low or high Dose
  -format for product, such as nano of lipid formations
  -different cell line effects
  -synergies with other products 
  -if effect was for normal or cancerous cells
Filter Conditions: Pro/AntiFlg:%  IllCat:%  CanType:6  Cells:%  prod#:%  Target#:%  State#:%  Dir#:%
wNotes=0 sortOrder:rid,rpid

 

Home Page