| Colorectal cancer is a broader term that encompasses both colon and rectal cancer. |
| - | in-vitro, | CRC, | NA |
| 2668- | AL, | Allicin enhances the radiosensitivity of colorectal cancer cells via inhibition of NF-κB signaling pathway |
| - | in-vitro, | CRC, | HCT116 |
| 1009- | And, | 5-FU, | Andrographis-mediated chemosensitization through activation of ferroptosis and suppression of β-catenin/Wnt-signaling pathways in colorectal cancer |
| - | in-vivo, | CRC, | HCT116 | - | in-vitro, | CRC, | SW480 |
| 1351- | And, | MEL, | Impact of Andrographolide and Melatonin Combinatorial Drug Therapy on Metastatic Colon Cancer Cells and Organoids |
| - | in-vitro, | CRC, | T84 | - | in-vitro, | CRC, | COLO205 | - | in-vitro, | CRC, | HT-29 | - | in-vitro, | CRC, | DLD1 |
| 1294- | And, | 5-FU, | Andrographolide reversed 5-FU resistance in human colorectal cancer by elevating BAX expression |
| - | in-vitro, | CRC, | HCT116 |
| 1008- | Api, | Apigenin-induced lysosomal degradation of β-catenin in Wnt/β-catenin signaling |
| - | in-vitro, | CRC, | HCT116 | - | in-vitro, | CRC, | SW480 |
| 578- | Api, | Cisplatin, | Apigenin enhances the cisplatin cytotoxic effect through p53-modulated apoptosis |
| - | in-vitro, | Lung, | A549 | - | in-vitro, | BC, | MCF-7 | - | in-vitro, | CRC, | HCT116 | - | in-vitro, | Pca, | HeLa | - | in-vitro, | Lung, | H1299 |
| 206- | Api, | Inhibition of glutamine utilization sensitizes lung cancer cells to apigenin-induced apoptosis resulting from metabolic and oxidative stress |
| - | in-vitro, | Lung, | H1299 | - | in-vitro, | Lung, | H460 | - | in-vitro, | Lung, | A549 | - | in-vitro, | CRC, | HCT116 | - | in-vitro, | Melanoma, | A375 | - | in-vitro, | Lung, | H2030 | - | in-vitro, | CRC, | SW480 |
| 172- | Api, | Apigenin suppresses colorectal cancer cell proliferation, migration and invasion via inhibition of the Wnt/β-catenin signaling pathway |
| - | in-vitro, | CRC, | SW480 | - | in-vitro, | CRC, | HTC15 |
| 175- | Api, | Apigenin up-regulates transgelin and inhibits invasion and migration of colorectal cancer through decreased phosphorylation of AKT |
| - | vitro+vivo, | CRC, | SW480 | - | vitro+vivo, | CRC, | DLD1 | - | vitro+vivo, | CRC, | LS174T |
| 174- | Api, | Downregulation of NEDD9 by apigenin suppresses migration, invasion, and metastasis of colorectal cancer cells |
| - | in-vitro, | CRC, | SW480 | - | in-vitro, | CRC, | DLD1 |
| 1552- | Api, | Apigenin inhibits the growth of colorectal cancer through down-regulation of E2F1/3 by miRNA-215-5p |
| - | in-vitro, | CRC, | HCT116 |
| 2634- | Api, | Apigenin induces both intrinsic and extrinsic pathways of apoptosis in human colon carcinoma HCT-116 cells |
| - | in-vitro, | CRC, | HCT116 |
| 2316- | Api, | The interaction between apigenin and PKM2 restrains progression of colorectal cancer |
| - | in-vitro, | CRC, | LS174T | - | in-vitro, | CRC, | HCT8 | - | in-vivo, | CRC, | NA |
| 2582- | ART/DHA, | 5-ALA, | Mechanistic Investigation of the Specific Anticancer Property of Artemisinin and Its Combination with Aminolevulinic Acid for Enhanced Anticolorectal Cancer Activity |
| - | in-vivo, | CRC, | HCT116 | - | in-vitro, | CRC, | HCT116 |
| 2573- | ART/DHA, | Cell death mechanisms induced by synergistic effects of halofuginone and artemisinin in colorectal cancer cells |
| - | in-vitro, | CRC, | HCT116 |
| 563- | ART/DHA, | Artesunate down-regulates immunosuppression from colorectal cancer Colon26 and RKO cells in vitro by decreasing transforming growth factor β1 and interleukin-10 |
| - | in-vitro, | Colon, | colon26 | - | in-vitro, | CRC, | RKO |
| 944- | AS, | Astragalus saponins inhibit cell growth, aerobic glycolysis and attenuate the inflammatory response in a DSS-induced colitis model |
| - | vitro+vivo, | CRC, | NA |
| 1304- | ASA, | Aspirin Inhibits Colorectal Cancer via the TIGIT-BCL2-BAX pathway in T Cells |
| - | in-vitro, | CRC, | NA | - | in-vivo, | NA, | NA |
| 1360- | Ash, | immuno, | Withaferin A Increases the Effectiveness of Immune Checkpoint Blocker for the Treatment of Non-Small Cell Lung Cancer |
| - | in-vitro, | Lung, | H1650 | - | in-vitro, | Lung, | A549 | - | in-vitro, | CRC, | HCT116 | - | in-vitro, | BC, | MDA-MB-231 | - | in-vivo, | NA, | NA |
| 1356- | Ash, | Withaferin A induces apoptosis by ROS-dependent mitochondrial dysfunction in human colorectal cancer cells |
| - | in-vitro, | CRC, | HCT116 |
| 1179- | Ash, | Withaferin-A Inhibits Colon Cancer Cell Growth by Blocking STAT3 Transcriptional Activity |
| - | in-vitro, | CRC, | HCT116 | - | in-vivo, | NA, | NA |
| 4806- | ASTX, | Astaxanthin's Impact on Colorectal Cancer: Examining Apoptosis, Antioxidant Enzymes, and Gene Expression |
| - | in-vitro, | CRC, | HCT116 |
| 4812- | ASTX, | Astaxanthin suppresses the metastasis of colon cancer by inhibiting the MYC-mediated downregulation of microRNA-29a-3p and microRNA-200a |
| - | in-vitro, | CRC, | HCT116 |
| 1080- | BA, | Butyrate suppresses Cox-2 activation in colon cancer cells through HDAC inhibition |
| - | in-vitro, | CRC, | HT-29 |
| 1531- | Ba, | Proteomic analysis of the effects of baicalein on colorectal cancer cells |
| - | in-vitro, | CRC, | DLD1 | - | in-vitro, | CRC, | SW48 |
| 2047- | BA, | Sodium butyrate inhibits migration and induces AMPK-mTOR pathway-dependent autophagy and ROS-mediated apoptosis via the miR-139-5p/Bmi-1 axis in human bladder cancer cells |
| - | in-vitro, | CRC, | T24 | - | in-vitro, | Nor, | SV-HUC-1 | - | in-vitro, | Bladder, | 5637 | - | in-vivo, | NA, | NA |
| 2475- | Ba, | Baicalein triggers ferroptosis in colorectal cancer cells via blocking the JAK2/STAT3/GPX4 axis |
| - | in-vitro, | CRC, | HCT116 | - | in-vitro, | CRC, | DLD1 | - | in-vivo, | NA, | NA |
| 2477- | Ba, | Baicalein induces apoptosis via a mitochondrial-dependent caspase activation pathway in T24 bladder cancer cells |
| - | in-vitro, | CRC, | T24 |
| 1375- | BBR, | 13-[CH2CO-Cys-(Bzl)-OBzl]-Berberine: Exploring The Correlation Of Anti-Tumor Efficacy With ROS And Apoptosis Protein |
| - | in-vitro, | CRC, | HCT8 | - | in-vivo, | NA, | NA |
| 2708- | BBR, | Berberine decelerates glucose metabolism via suppression of mTOR‑dependent HIF‑1α protein synthesis in colon cancer cells |
| - | in-vitro, | CRC, | HCT116 |
| 2678- | BBR, | Berberine as a Potential Agent for the Treatment of Colorectal Cancer |
| - | Review, | CRC, | NA |
| 2682- | BBR, | Berberine Inhibited Growth and Migration of Human Colon Cancer Cell Lines by Increasing Phosphatase and Tensin and Inhibiting Aquaporins 1, 3 and 5 Expressions |
| - | in-vitro, | CRC, | HT29 | - | in-vitro, | CRC, | SW480 | - | in-vitro, | CRC, | HCT116 |
| 2335- | BBR, | Chemoproteomics reveals berberine directly binds to PKM2 to inhibit the progression of colorectal cancer |
| - | in-vitro, | CRC, | HT29 | - | in-vitro, | CRC, | HCT116 | - | in-vivo, | NA, | NA |
| 2337- | BBR, | Berberine Inhibited the Proliferation of Cancer Cells by Suppressing the Activity of Tumor Pyruvate Kinase M2 |
| - | in-vitro, | CRC, | HCT116 | - | in-vitro, | Cerv, | HeLa |
| 1010- | BBR, | Berberine binds RXRα to suppress β-catenin signaling in colon cancer cells |
| - | vitro+vivo, | CRC, | NA |
| 4658- | BBR, | Berberine Suppresses Stemness and Tumorigenicity of Colorectal Cancer Stem-Like Cells by Inhibiting m6A Methylation |
| - | in-vitro, | CRC, | HCT116 | - | in-vitro, | CRC, | HT29 |
| 1031- | BCA, | Biochanin A Suppresses Tumor Progression and PD-L1 Expression via Inhibiting ZEB1 Expression in Colorectal Cancer |
| - | vitro+vivo, | CRC, | HCT116 | - | vitro+vivo, | CRC, | SW-620 |
| 2746- | BetA, | Betulinic acid induces apoptosis and inhibits metastasis of human colorectal cancer cells in vitro and in vivo |
| - | in-vitro, | CRC, | HCT116 | - | in-vivo, | CRC, | NA |
| 2745- | BetA, | Betulinic acid inhibits colon cancer cell and tumor growth and induces proteasome-dependent and -independent downregulation of specificity proteins (Sp) transcription factors |
| - | in-vitro, | CRC, | RKO | - | in-vitro, | CRC, | SW480 | - | in-vivo, | NA, | NA |
| 2740- | BetA, | Effects and mechanisms of fatty acid metabolism-mediated glycolysis regulated by betulinic acid-loaded nanoliposomes in colorectal cancer |
| - | in-vitro, | CRC, | HCT116 |
| 2719- | BetA, | Betulinic Acid Restricts Human Bladder Cancer Cell Proliferation In Vitro by Inducing Caspase-Dependent Cell Death and Cell Cycle Arrest, and Decreasing Metastatic Potential |
| - | in-vitro, | CRC, | T24 | - | in-vitro, | Bladder, | UMUC3 | - | in-vitro, | Bladder, | 5637 |
| 2734- | BetA, | Betulinic Acid Modulates the Expression of HSPA and Activates Apoptosis in Two Cell Lines of Human Colorectal Cancer |
| - | in-vitro, | CRC, | HCT116 | - | in-vitro, | CRC, | SW480 |
| 743- | Bor, | Boric Acid (Boron) Attenuates AOM-Induced Colorectal Cancer in Rats by Augmentation of Apoptotic and Antioxidant Mechanisms |
| - | in-vitro, | CRC, | NA |
| 750- | Bor, | Calcium fructoborate regulate colon cancer (Caco-2) cytotoxicity through modulation of apoptosis |
| - | in-vitro, | CRC, | Caco-2 |
| 751- | Bor, | 5-FU, | Cytotoxic and Apoptotic Effects of the Combination of Borax (Sodium Tetraborate) and 5-Fluorouracil on DLD-1 Human Colorectal Adenocarcinoma Cell Line |
| - | in-vitro, | CRC, | DLD1 |
| 1169- | Bos, | Boswellic Acid Inhibits Growth and Metastasis of Human Colorectal Cancer in Orthotopic Mouse Model By Downregulating Inflammatory, Proliferative, Invasive, and Angiogenic Biomarkers |
| - | in-vivo, | CRC, | NA |
| 1422- | Bos, | Boswellic acid exerts antitumor effects in colorectal cancer cells by modulating expression of the let-7 and miR-200 microRNA family |
| - | in-vitro, | CRC, | NA | - | in-vivo, | NA, | NA |
| 1426- | Bos, | CUR, | Chemo, | Novel evidence for curcumin and boswellic acid induced chemoprevention through regulation of miR-34a and miR-27a in colorectal cancer |
| - | in-vivo, | CRC, | NA | - | in-vitro, | CRC, | HCT116 | - | in-vitro, | CRC, | RKO | - | in-vitro, | CRC, | SW480 | - | in-vitro, | RCC, | SW-620 | - | in-vitro, | RCC, | HT-29 | - | in-vitro, | CRC, | Caco-2 |
| 1427- | Bos, | Acetyl-keto-β-boswellic acid inhibits cellular proliferation through a p21-dependent pathway in colon cancer cells |
| - | in-vitro, | CRC, | HT-29 | - | in-vitro, | CRC, | HCT116 | - | in-vitro, | CRC, | LS174T |
| 1451- | Bos, | Phytochemical Analysis and Anti-cancer Investigation of Boswellia serrata Bioactive Constituents In Vitro |
| - | in-vitro, | CRC, | HepG2 | - | in-vitro, | CRC, | HCT116 |
| 1265- | CAP, | Capsaicin shapes gut microbiota and pre-metastatic niche to facilitate cancer metastasis to liver |
| - | in-vivo, | CRC, | NA |
| 1517- | CAP, | Capsaicin Inhibits Multiple Bladder Cancer Cell Phenotypes by Inhibiting Tumor-Associated NADH Oxidase (tNOX) and Sirtuin1 (SIRT1) |
| - | in-vitro, | Bladder, | TSGH8301 | - | in-vitro, | CRC, | T24 |
| 1518- | CAP, | Capsaicin-mediated tNOX (ENOX2) up-regulation enhances cell proliferation and migration in vitro and in vivo |
| - | in-vitro, | CRC, | HCT116 |
| 17- | CBC/D, | CBC-1 as a Cynanbungeigenin C derivative inhibits the growth of colorectal cancer through targeting Hedgehog pathway component GLI 1 |
| - | in-vivo, | CRC, | NA |
| 2804- | CHr, | Rad, | Gamma-Irradiated Chrysin Improves Anticancer Activity in HT-29 Colon Cancer Cells Through Mitochondria-Related Pathway |
| - | in-vitro, | CRC, | HT29 |
| 1055- | Cin, | Cinnamon extract induces tumor cell death through inhibition of NFκB and AP1 |
| - | vitro+vivo, | Melanoma, | NA | - | vitro+vivo, | CRC, | NA | - | vitro+vivo, | lymphoma, | NA |
| 1601- | Cu, | The copper (II) complex of salicylate phenanthroline induces immunogenic cell death of colorectal cancer cells through inducing endoplasmic reticulum stress |
| - | in-vitro, | CRC, | NA |
| 3578- | CUR, | SIL, | Curcumin, but not its degradation products, in combination with silibinin is primarily responsible for the inhibition of colon cancer cell proliferation |
| - | in-vitro, | CRC, | DLD1 |
| 2974- | CUR, | Curcumin Suppresses Metastasis via Sp-1, FAK Inhibition, and E-Cadherin Upregulation in Colorectal Cancer |
| - | in-vitro, | CRC, | HCT116 | - | in-vitro, | CRC, | HT29 | - | in-vitro, | CRC, | HCT15 | - | in-vitro, | CRC, | COLO205 | - | in-vitro, | CRC, | SW-620 | - | in-vivo, | NA, | NA |
| 4672- | CUR, | An old spice with new tricks: Curcumin targets adenoma and colorectal cancer stem-like cells associated with poor survival outcomes |
| - | vitro+vivo, | CRC, | HCT116 |
| 4671- | CUR, | Targeting colorectal cancer stem cells using curcumin and curcumin analogues: insights into the mechanism of the therapeutic efficacy |
| - | in-vitro, | CRC, | NA |
| 4674- | CUR, | Curcumin Shows Promise in Targeting Colorectal Cancer Stem-like Cells: Mechanistic Insights and Clinical Implications |
| - | Review, | CRC, | NA |
| 4673- | CUR, | Curcumin and colorectal cancer: An update and current perspective on this natural medicine |
| - | Review, | CRC, | NA |
| 438- | CUR, | Curcumin Reduces Colorectal Cancer Cell Proliferation and Migration and Slows In Vivo Growth of Liver Metastases in Rats |
| - | vitro+vivo, | CRC, | CC531 |
| 437- | CUR, | Anti-cancer activity of amorphous curcumin preparation in patient-derived colorectal cancer organoids |
| - | vitro+vivo, | CRC, | TCO1 | - | vitro+vivo, | CRC, | TCO2 |
| 439- | CUR, | Curcumin suppresses LGR5(+) colorectal cancer stem cells by inducing autophagy and via repressing TFAP2A-mediated ECM pathway |
| - | in-vitro, | CRC, | LGR5 |
| 405- | CUR, | 5-FU, | Curcumin activates a ROS/KEAP1/NRF2/miR-34a/b/c cascade to suppress colorectal cancer metastasis |
| - | vitro+vivo, | CRC, | HCT116 |
| 449- | CUR, | Curcumin Suppresses the Colon Cancer Proliferation by Inhibiting Wnt/β-Catenin Pathways via miR-130a |
| - | vitro+vivo, | CRC, | SW480 |
| 441- | CUR, | Curcumin Regulates ERCC1 Expression and Enhances Oxaliplatin Sensitivity in Resistant Colorectal Cancer Cells through Its Effects on miR-409-3p |
| - | in-vitro, | CRC, | HCT116 |
| 442- | CUR, | 5-FU, | Curcumin may reverse 5-fluorouracil resistance on colonic cancer cells by regulating TET1-NKD-Wnt signal pathway to inhibit the EMT progress |
| - | in-vitro, | CRC, | HCT116 |
| 443- | CUR, | Reduced Caudal Type Homeobox 2 (CDX2) Promoter Methylation Is Associated with Curcumin’s Suppressive Effects on Epithelial-Mesenchymal Transition in Colorectal Cancer Cells |
| - | in-vitro, | CRC, | SW480 |
| 444- | CUR, | Cisplatin, | LncRNA KCNQ1OT1 is a key factor in the reversal effect of curcumin on cisplatin resistance in the colorectal cancer cells |
| - | vitro+vivo, | CRC, | HCT8 |
| 445- | CUR, | Curcumin Regulates the Progression of Colorectal Cancer via LncRNA NBR2/AMPK Pathway |
| - | in-vitro, | CRC, | HCT116 | - | in-vitro, | CRC, | HCT8 | - | in-vitro, | CRC, | SW480 | - | in-vitro, | CRC, | SW-620 |
| - | in-vitro, | CRC, | SW480 |
| 447- | CUR, | OXA, | Curcumin reverses oxaliplatin resistance in human colorectal cancer via regulation of TGF-β/Smad2/3 signaling pathway |
| - | vitro+vivo, | CRC, | HCT116 |
| 448- | CUR, | Heat shock protein 27 influences the anti-cancer effect of curcumin in colon cancer cells through ROS production and autophagy activation |
| - | in-vitro, | CRC, | HT-29 |
| 440- | CUR, | Curcumin Reverses NNMT-Induced 5-Fluorouracil Resistance via Increasing ROS and Cell Cycle Arrest in Colorectal Cancer Cells |
| - | vitro+vivo, | CRC, | SW480 | - | vitro+vivo, | CRC, | HT-29 |
| 450- | CUR, | Curcumin may be a potential adjuvant treatment drug for colon cancer by targeting CD44 |
| - | in-vitro, | CRC, | HCT116 | - | in-vitro, | CRC, | HCT8 |
| 990- | CUR, | Curcumin inhibits aerobic glycolysis and induces mitochondrial-mediated apoptosis through hexokinase II in human colorectal cancer cells in vitro |
| - | in-vitro, | CRC, | HCT116 | - | in-vitro, | CRC, | HT-29 |
| 1885- | DCA, | Role of SLC5A8, a plasma membrane transporter and a tumor suppressor, in the antitumor activity of dichloroacetate |
| - | in-vitro, | CRC, | HCT116 | - | in-vitro, | CRC, | SW-620 | - | in-vitro, | CRC, | HT-29 |
| 1878- | DCA, | 5-FU, | Synergistic Antitumor Effect of Dichloroacetate in Combination with 5-Fluorouracil in Colorectal Cancer |
| - | in-vitro, | CRC, | LS174T | - | in-vitro, | CRC, | LoVo | - | in-vitro, | CRC, | SW-620 | - | in-vitro, | CRC, | HT-29 |
| 1884- | DCA, | Sal, | Dichloroacetate and Salinomycin Exert a Synergistic Cytotoxic Effect in Colorectal Cancer Cell Lines |
| - | in-vitro, | CRC, | DLD1 | - | in-vitro, | CRC, | HCT116 |
| 1869- | DCA, | Dichloroacetate induces autophagy in colorectal cancer cells and tumours |
| - | in-vitro, | CRC, | HT-29 | - | in-vitro, | CRC, | HCT116 | - | in-vitro, | Pca, | PC3 | - | in-vitro, | CRC, | HT-29 |
| 1886- | Dicl, | Regulation of colonic epithelial butyrate transport: Focus on colorectal cancer |
| - | Review, | CRC, | NA |
| 1850- | dietFMD, | Fasting-mimicking diet remodels gut microbiota and suppresses colorectal cancer progression |
| - | in-vivo, | CRC, | NA |
| 1896- | dietMet, | Dietary methionine links nutrition and metabolism to the efficacy of cancer therapies |
| - | in-vivo, | CRC, | NA |
| 1037- | EA, | Unripe Black Raspberry (Rubus coreanus Miquel) Extract and Its Constitute, Ellagic Acid Induces T Cell Activation and Antitumor Immunity by Blocking PD-1/PD-L1 Interaction |
| - | in-vivo, | CRC, | NA |
| 640- | EGCG, | Epigallocatechin Gallate (EGCG) Is the Most Effective Cancer Chemopreventive Polyphenol in Green Tea |
| - | in-vitro, | CRC, | HCT116 | - | in-vitro, | Colon, | SW480 |
| 684- | EGCG, | Improving the anti-tumor effect of EGCG in colorectal cancer cells by blocking EGCG-induced YAP activation |
| - | in-vitro, | CRC, | NA |
| 679- | EGCG, | 5-FU, | Epigallocatechin-3-gallate targets cancer stem-like cells and enhances 5-fluorouracil chemosensitivity in colorectal cancer |
| - | in-vitro, | CRC, | NA |
| 677- | EGCG, | Induction of Endoplasmic Reticulum Stress Pathway by Green Tea Epigallocatechin-3-Gallate (EGCG) in Colorectal Cancer Cells: Activation of PERK/p-eIF2 α /ATF4 and IRE1 α |
| - | in-vitro, | CRC, | HT-29 |
| 673- | EGCG, | Iron Chelation Properties of Green Tea Epigallocatechin-3-Gallate (EGCG) in Colorectal Cancer Cells: Analysis on Tfr/Fth Regulations and Molecular Docking |
| - | in-vitro, | CRC, | HT-29 |
| 3207- | EGCG, | EGCG Enhances the Chemosensitivity of Colorectal Cancer to Irinotecan through GRP78-MediatedEndoplasmic Reticulum Stress |
| - | in-vitro, | CRC, | RKO | - | in-vitro, | CRC, | HCT116 |
| 3230- | EGCG, | Green Tea Polyphenol Epigallocatechin 3-Gallate, Contributes to the Degradation of DNMT3A and HDAC3 in HCT 116 Human Colon Cancer Cells |
| - | in-vitro, | CRC, | HCT116 | - | in-vitro, | CRC, | HT29 |
| 3241- | EGCG, | Epigallocatechin gallate triggers apoptosis by suppressing de novo lipogenesis in colorectal carcinoma cells |
| - | in-vitro, | CRC, | HCT116 | - | in-vitro, | CRC, | HT29 | - | in-vitro, | Liver, | HepG2 | - | in-vitro, | Liver, | HUH7 |
| 3213- | EGCG, | Rad, | Epigallocatechin-3-gallate Enhances Radiation Sensitivity in Colorectal Cancer Cells Through Nrf2 Activation and Autophagy |
| - | in-vitro, | CRC, | HCT116 |
| 3214- | EGCG, | EGCG-induced selective death of cancer cells through autophagy-dependent regulation of the p62-mediated antioxidant survival pathway |
| - | in-vitro, | Nor, | MRC-5 | - | in-vitro, | Cerv, | HeLa | - | in-vitro, | Nor, | HEK293 | - | in-vitro, | BC, | MDA-MB-231 | - | in-vitro, | CRC, | HCT116 |
| 1321- | EMD, | Antitumor effects of emodin on LS1034 human colon cancer cells in vitro and in vivo: roles of apoptotic cell death and LS1034 tumor xenografts model |
| - | in-vitro, | CRC, | LS1034 | - | in-vivo, | NA, | NA |
| 1296- | EMD, | Emodin inhibits LOVO colorectal cancer cell proliferation via the regulation of the Bcl-2/Bax ratio and cytochrome c |
| - | in-vitro, | CRC, | LoVo |
| 2173- | FA, | VitB12, | Elevated serum homocysteine levels associated with poor recurrence-free and overall survival in patients with colorectal cancer |
| - | Study, | CRC, | NA |
| 2852- | FIS, | A comprehensive view on the fisetin impact on colorectal cancer in animal models: Focusing on cellular and molecular mechanisms |
| - | Review, | CRC, | NA |
| 1283- | GA, | immuno, | Gallic acid induces T-helper-1-like Treg cells and strengthens immune checkpoint blockade efficacy |
| - | vitro+vivo, | CRC, | NA |
| 830- | GAR, | Garcinol modulates tyrosine phosphorylation of FAK and subsequently induces apoptosis through down-regulation of Src, ERK, and Akt survival signaling in human colon cancer cells |
| - | in-vitro, | CRC, | HT-29 |
| 823- | GAR, | Garcinol Potentiates TRAIL-Induced Apoptosis through Modulation of Death Receptors and Antiapoptotic Proteins |
| - | in-vitro, | BC, | MCF-7 | - | in-vitro, | Nor, | MCF10 | - | in-vitro, | CRC, | HCT116 |
| 811- | GAR, | Garcinol exhibits anti-proliferative activities by targeting microsomal prostaglandin E synthase-1 in human colon cancer cells |
| - | in-vitro, | CRC, | HT-29 |
| 1190- | Gb, | Extract of Ginkgo biloba exacerbates liver metastasis in a mouse colon cancer Xenograft model |
| - | in-vivo, | CRC, | SW-620 |
| 1292- | Ge, | EGCG, | Antiproliferative and Apoptotic Effects Triggered by Grape Seed Extract (GSE) versus Epigallocatechin and Procyanidins on Colon Cancer Cell Lines |
| - | in-vitro, | Colon, | Caco-2 | - | in-vitro, | CRC, | HCT8 |
| 1116- | GI, | 6-Shogaol Inhibits the Cell Migration of Colon Cancer by Suppressing the EMT Process Through the IKKβ/NF-κB/Snail Pathway |
| - | in-vitro, | Colon, | Caco-2 | - | in-vitro, | CRC, | HCT116 |
| 848- | Gra, | SNP, | Synthesis, Characterization and Evaluation of Antioxidant and Cytotoxic Potential of Annona muricata Root Extract-derived Biogenic Silver Nanoparticles |
| - | in-vitro, | CRC, | HCT116 |
| - | in-vitro, | CRC, | HT-29 | - | in-vitro, | Nor, | CCD841 |
| 857- | Gra, | The Value of Caspase-3 after the Application of Annona muricata Leaf Extract in COLO-205 Colorectal Cancer Cell Line |
| - | in-vitro, | CRC, | COLO205 |
| 858- | Gra, | Annona muricata leaves induce G₁ cell cycle arrest and apoptosis through mitochondria-mediated pathway in human HCT-116 and HT-29 colon cancer cells |
| - | in-vitro, | CRC, | HT-29 | - | in-vitro, | CRC, | HCT116 |
| 2505- | H2, | Hydrogen gas restores exhausted CD8+ T cells in patients with advanced colorectal cancer to improve prognosis |
| - | Trial, | CRC, | NA |
| 2521- | H2, | Oxyhydrogen Gas: A Promising Therapeutic Approach for Lung, Breast and Colorectal Cancer |
| - | Review, | CRC, | NA | - | Review, | Lung, | NA | - | Review, | BC, | NA |
| 2520- | H2, | The Impact of Molecular Hydrogen on Mitochondrial ROS and Apoptosis in Colorectal Cancer Cells |
| - | in-vitro, | CRC, | NA |
| 1657- | HCAs, | Anticancer Activity of Sinapic Acid by Inducing Apoptosis in HT-29 Human Colon Cancer Cell Line 2023 |
| - | in-vitro, | CRC, | HT-29 |
| 2400- | HCAs, | The Mixture of Ferulic Acid and P-Coumaric Acid Suppresses Colorectal Cancer through lncRNA 495810/PKM2 Mediated Aerobic Glycolysis |
| - | in-vitro, | CRC, | NA | - | in-vivo, | CRC, | NA |
| 1439- | HCQ, | Acidic extracellular pH neutralizes the autophagy-inhibiting activity of chloroquine |
| - | in-vitro, | Melanoma, | NA | - | in-vitro, | CRC, | HCT116 |
| - | in-vitro, | CRC, | HCT116 | - | in-vitro, | CRC, | LoVo | - | in-vivo, | CRC, | HCT116 |
| 4638- | HT, | Hydroxytyrosol induces apoptosis in human colon cancer cells through ROS generation |
| - | in-vitro, | CRC, | DLD1 | - | NA, | NA, | 1- |
| 4641- | HT, | Hydroxytyrosol induced ferroptosis through Nrf2 signaling pathway in colorectal cancer cells |
| - | in-vitro, | CRC, | HCT116 | - | in-vitro, | CRC, | SW48 |
| 1088- | IP6, | Preventive Inositol Hexaphosphate Extracted from Rice Bran Inhibits Colorectal Cancer through Involvement of Wnt/β-Catenin and COX-2 Pathways |
| - | in-vivo, | CRC, | NA |
| 2178- | itraC, | Itraconazole inhibits tumor growth via CEBPB-mediated glycolysis in colorectal cancer |
| - | in-vivo, | CRC, | HCT116 |
| 2177- | itraC, | Itraconazole improves survival outcomes in patients with colon cancer by inducing autophagic cell death and inhibiting transketolase expression |
| - | Study, | Colon, | NA | - | in-vitro, | CRC, | COLO205 | - | in-vitro, | CRC, | HCT116 |
| 2390- | KaempF, | Kaempferol Can Reverse the 5-Fu Resistance of Colorectal Cancer Cells by Inhibiting PKM2-Mediated Glycolysis |
| - | in-vitro, | CRC, | HCT8 |
| 1064- | LT, | Cisplatin, | Inhibition of cell survival, invasion, tumor growth and histone deacetylase activity by the dietary flavonoid luteolin in human epithelioid cancer cells |
| - | vitro+vivo, | Lung, | LNM35 | - | in-vitro, | CRC, | HT-29 | - | in-vitro, | Liver, | HepG2 | - | in-vitro, | BC, | MCF-7 | - | in-vitro, | BC, | MDA-MB-231 |
| 973- | LT, | Luteolin impairs hypoxia adaptation and progression in human breast and colon cancer cells |
| - | in-vitro, | CRC, | HCT116 | - | in-vitro, | BC, | MDA-MB-231 |
| 2915- | LT, | Luteolin promotes apoptotic cell death via upregulation of Nrf2 expression by DNA demethylase and the interaction of Nrf2 with p53 in human colon cancer cells |
| - | in-vitro, | Colon, | HT29 | - | in-vitro, | CRC, | SNU-407 | - | in-vitro, | Nor, | FHC |
| 2588- | LT, | Chemo, | Luteolin sensitizes two oxaliplatin-resistant colorectal cancer cell lines to chemotherapeutic drugs via inhibition of the Nrf2 pathway |
| - | in-vitro, | CRC, | HCT116 |
| 2534- | M-Blu, | doxoR, | PDT, | Methylene Blue-Mediated Photodynamic Therapy in Combination With Doxorubicin: A Novel Approach in the Treatment of HT-29 Colon Cancer Cells |
| - | in-vitro, | CRC, | HT-29 |
| 4534- | MAG, | Molecular mechanisms of apoptosis induced by magnolol in colon and liver cancer cells |
| - | in-vitro, | Liver, | HepG2 | - | in-vitro, | CRC, | COLO205 |
| 4531- | MAG, | Magnolol-induced apoptosis in HCT-116 colon cancer cells is associated with the AMP-activated protein kinase signaling pathway |
| - | in-vitro, | CRC, | HCT116 |
| 4536- | MAG, | Magnolol suppresses proliferation of cultured human colon and liver cancer cells by inhibiting DNA synthesis and activating apoptosis |
| - | in-vitro, | Liver, | HepG2 | - | in-vivo, | CRC, | COLO205 |
| 2251- | MF, | Rad, | BEMER Electromagnetic Field Therapy Reduces Cancer Cell Radioresistance by Enhanced ROS Formation and Induced DNA Damage |
| - | in-vitro, | Lung, | A549 | - | in-vitro, | HNSCC, | UTSCC15 | - | in-vitro, | CRC, | DLD1 | - | in-vitro, | PC, | MIA PaCa-2 |
| 502- | MF, | Electromagnetic field investigation on different cancer cell lines |
| - | in-vitro, | BC, | MDA-MB-231 | - | in-vitro, | Colon, | SW480 | - | in-vitro, | CRC, | HCT116 |
| 531- | MF, | 6-mT 0-120-Hz magnetic fields differentially affect cellular ATP levels |
| - | in-vitro, | Cerv, | HeLa | - | in-vitro, | CRC, | HCT116 | - | in-vitro, | BC, | MCF-7 | - | in-vitro, | Lung, | A549 | - | in-vitro, | Nor, | RPE-1 | - | in-vitro, | Nor, | GP-293 |
| 595- | MFrot, | VitC, | MF, | The Effect of Alternating Magnetic Field Exposure and Vitamin C on Cancer Cells |
| - | in-vitro, | PC, | MIA PaCa-2 | - | in-vitro, | CRC, | SW-620 | - | in-vitro, | NA, | HT1080 | - | in-vitro, | Pca, | PC3 | - | in-vitro, | OS, | U2OS | - | in-vitro, | BC, | MCF-7 | - | in-vitro, | Nor, | CCD-18Co |
| 775- | Mg, | The Supplement of Magnesium Element to Inhibit Colorectal Tumor Cells |
| - | vitro+vivo, | CRC, | DLD1 |
| 1182- | MushCha, | Ergosterol peroxide from Chaga mushroom (Inonotus obliquus) exhibits anti-cancer activity by down-regulation of the β-catenin pathway in colorectal cancer |
| - | in-vitro, | CRC, | HCT116 | - | in-vitro, | CRC, | HT-29 | - | in-vitro, | CRC, | SW-620 | - | in-vitro, | CRC, | DLD1 |
| 1227- | OLST, | Anti-Obesity Drug Orlistat Alleviates Western-Diet-Driven Colitis-Associated Colon Cancer via Inhibition of STAT3 and NF-κB-Mediated Signaling |
| - | in-vivo, | CRC, | NA |
| 1996- | Part, | Critical roles of intracellular thiols and calcium in parthenolide-induced apoptosis in human colorectal cancer cells |
| - | in-vitro, | CRC, | COLO205 |
| - | Trial, | CRC, | NA |
| 2076- | PB, | Sodium Butyrate Induces Endoplasmic Reticulum Stress and Autophagy in Colorectal Cells: Implications for Apoptosis |
| - | in-vitro, | CRC, | HCT116 | - | in-vitro, | CRC, | HT29 |
| 2070- | PB, | Phenylbutyrate-induced apoptosis is associated with inactivation of NF-kappaB IN HT-29 colon cancer cells |
| - | in-vitro, | CRC, | HT-29 |
| 2078- | PB, | Butyrate-induced apoptosis in HCT116 colorectal cancer cells includes induction of a cell stress response |
| - | in-vitro, | CRC, | HCT116 |
| 1678- | PBG, | 5-FU, | sericin, | In vitro and in vivo anti-colorectal cancer effect of the newly synthesized sericin/propolis/fluorouracil nanoplatform through modulation of PI3K/AKT/mTOR pathway |
| - | in-vitro, | CRC, | Caco-2 | - | in-vivo, | NA, | NA |
| 4926- | PEITC, | PEITC inhibits the invasion and migration of colorectal cancer cells by blocking TGF-β-induced EMT |
| - | in-vitro, | CRC, | SW48 |
| 4961- | PEITC, | Phenethyl isothiocyanate suppresses cancer stem cell properties in vitro and in a xenograft model |
| - | vitro+vivo, | CRC, | HCT116 |
| 4958- | PEITC, | Cancer-preventive effect of phenethyl isothiocyanate through tumor microenvironment regulation in a colorectal cancer stem cell xenograft model |
| - | vitro+vivo, | CRC, | NA |
| 4952- | PEITC, | Cancer-preventive effect of phenethyl isothiocyanate through tumor microenvironment regulation in a colorectal cancer stem cell xenograft model |
| - | in-vitro, | CRC, | HCT116 |
| 1258- | PI, | Piperlongumine Alleviates Mouse Colitis and Colitis-Associated Colorectal Cancer |
| - | in-vivo, | CRC, | NA |
| 1016- | PI, | Piperine suppresses the Wnt/β-catenin pathway and has anti-cancer effects on colorectal cancer cells |
| - | in-vitro, | CRC, | HCT116 | - | in-vitro, | CRC, | SW480 | - | in-vitro, | CRC, | DLD1 |
| 1949- | PL, | Design, synthesis, and biological evaluation of a novel indoleamine 2,3-dioxigenase 1 (IDO1) and thioredoxin reductase (TrxR) dual inhibitor |
| - | in-vitro, | CRC, | HCT116 | - | in-vitro, | Cerv, | HeLa |
| 1952- | PL, | 5-FU, | Piperlongumine induces ROS accumulation to reverse resistance of 5-FU in human colorectal cancer via targeting TrxR |
| - | in-vivo, | CRC, | HCT8 |
| 2945- | PL, | Piperlongumine induces ROS mediated cell death and synergizes paclitaxel in human intestinal cancer cells |
| - | in-vitro, | CRC, | HCT116 |
| 2943- | PL, | Piperlongumine Inhibits Thioredoxin Reductase 1 by Targeting Selenocysteine Residues and Sensitizes Cancer Cells to Erastin |
| - | in-vitro, | CRC, | HCT116 | - | in-vitro, | Lung, | A549 | - | in-vitro, | BC, | MCF-7 |
| 2942- | PL, | Piperlongumine increases sensitivity of colorectal cancer cells to radiation: Involvement of ROS production via dual inhibition of glutathione and thioredoxin systems |
| - | in-vitro, | CRC, | CT26 | - | in-vitro, | CRC, | DLD1 | - | in-vivo, | CRC, | CT26 |
| 58- | QC, | doxoR, | Quercetin induces cell cycle arrest and apoptosis in CD133+ cancer stem cells of human colorectal HT29 cancer cell line and enhances anticancer effects of doxorubicin |
| - | in-vitro, | CRC, | HT-29 | - | in-vitro, | NA, | CD133+ |
| 44- | QC, | Preclinical Colorectal Cancer Chemopreventive Efficacy and p53-Modulating Activity of 3′,4′,5′-Trimethoxyflavonol, a Quercetin Analog |
| - | in-vivo, | CRC, | HCT116 |
| 919- | QC, | Quercetin Regulates Sestrin 2-AMPK-mTOR Signaling Pathway and Induces Apoptosis via Increased Intracellular ROS in HCT116 Colon Cancer Cells |
| - | in-vitro, | CRC, | HCT116 |
| 4787- | QC, | Quercetin: A Phytochemical with Pro-Apoptotic Effects in Colon Cancer Cells |
| - | Review, | CRC, | NA |
| 993- | RES, | Resveratrol reverses the Warburg effect by targeting the pyruvate dehydrogenase complex in colon cancer cells |
| - | in-vitro, | CRC, | Caco-2 | - | in-vivo, | Nor, | HCEC 1CT |
| 877- | RES, | Resveratrol Inhibits Invasion and Metastasis of Colorectal Cancer Cells via MALAT1 Mediated Wnt/β-Catenin Signal Pathway |
| - | in-vitro, | CRC, | LoVo | - | in-vitro, | CRC, | HCT116 |
| 878- | RES, | Resveratrol suppresses epithelial-to-mesenchymal transition in colorectal cancer through TGF-β1/Smads signaling pathway mediated Snail/E-cadherin expression |
| - | vitro+vivo, | CRC, | LoVo |
| 879- | RES, | Evidence that TNF-β induces proliferation in colorectal cancer cells and resveratrol can down-modulate it |
| - | in-vitro, | CRC, | HCT116 |
| 2330- | RES, | Resveratrol Induces Cancer Cell Apoptosis through MiR-326/PKM2-Mediated ER Stress and Mitochondrial Fission |
| - | in-vitro, | CRC, | DLD1 | - | in-vitro, | Cerv, | HeLa | - | in-vitro, | BC, | MCF-7 |
| 3064- | RES, | Resveratrol Suppresses Cancer Cell Glucose Uptake by Targeting Reactive Oxygen Species–Mediated Hypoxia-Inducible Factor-1α Activation |
| - | in-vitro, | CRC, | HT-29 | - | in-vitro, | BC, | T47D | - | in-vitro, | Lung, | LLC1 |
| 3081- | RES, | Resveratrol and p53: How are they involved in CRC plasticity and apoptosis? |
| - | Review, | CRC, | NA |
| 3036- | RosA, | Anti-Warburg effect of rosmarinic acid via miR-155 in colorectal carcinoma cells |
| - | in-vitro, | CRC, | HCT8 | - | in-vitro, | CRC, | HCT116 | - | in-vitro, | CRC, | LS174T |
| 2040- | SAHA, | The histone deacetylase inhibitor SAHA arrests cancer cell growth, up-regulates thioredoxin-binding protein-2, and down-regulates thioredoxin |
| - | in-vitro, | Pca, | LNCaP | - | in-vitro, | CRC, | T24 | - | in-vitro, | BC, | MCF-7 |
| 4909- | Sal, | Salinomycin: Anti-tumor activity in a pre-clinical colorectal cancer model |
| - | vitro+vivo, | CRC, | NA |
| 4902- | Sal, | OXA, | Salinomycin and oxaliplatin synergistically enhances cytotoxic effect on human colorectal cancer cells in vitro and in vivo |
| - | vitro+vivo, | CRC, | NA |
| - | in-vivo, | CRC, | Caco-2 | - | vitro+vivo, | CRC, | CX-1 |
| 5001- | Sal, | Salinomycin exerts anti‐colorectal cancer activity by targeting the β‐catenin/T‐cell factor complex |
| - | in-vitro, | CRC, | NA |
| 1307- | SANG, | Sanguinarine induces apoptosis of HT-29 human colon cancer cells via the regulation of Bax/Bcl-2 ratio and caspase-9-dependent pathway |
| - | in-vitro, | CRC, | HT-29 |
| 1388- | Sco, | Scoulerine promotes cell viability reduction and apoptosis by activating ROS-dependent endoplasmic reticulum stress in colorectal cancer cells |
| - | in-vitro, | CRC, | NA |
| 1698- | Se, | Association between Dietary Zinc and Selenium Intake, Oxidative Stress-Related Gene Polymorphism, and Colorectal Cancer Risk in Chinese Population - A Case-Control Study |
| - | Human, | CRC, | NA |
| 1697- | Se, | Calc, | Calcium intake may explain the reduction of colorectal cancer odds by dietary selenium - a case-control study in Poland |
| - | Human, | CRC, | NA |
| 1691- | Se, | The influence of selenium and selenoprotein gene variants on colorectal cancer risk |
| - | Analysis, | CRC, | NA |
| 1692- | Se, | Association of Selenoprotein and Selenium Pathway Genotypes with Risk of Colorectal Cancer and Interaction with Selenium Status |
| - | Analysis, | CRC, | NA |
| 1694- | Se, | Expression of Selenoprotein Genes and Association with Selenium Status in Colorectal Adenoma and Colorectal Cancer |
| - | Analysis, | CRC, | NA |
| 1695- | Se, | Serum Selenium Concentration as a Potential Diagnostic Marker for Early-Stage Colorectal Cancer: A Comparative Study |
| - | Trial, | CRC, | NA |
| 1696- | Se, | Selenium dietary intake and survival among CRC patients |
| - | Human, | CRC, | NA |
| 1699- | Se, | Vegetarianism and colorectal cancer risk in a low-selenium environment: effect modification by selenium status? A possible factor contributing to the null results in British vegetarians |
| - | Analysis, | CRC, | NA |
| 4725- | Se, | Targeting the Nrf2-Prx1 Pathway with Selenium to Enhance the Efficacy and Selectivity of Cancer Therapy |
| - | in-vitro, | Lung, | A549 | - | in-vitro, | CRC, | HT29 |
| 4723- | Se, | Selenium Induces Ferroptosis in Colorectal Cancer Cells via Direct Interaction with Nrf2 and Gpx4 |
| - | in-vitro, | CRC, | HCT116 |
| 4734- | Se, | CPT-11, | Cytotoxicity and therapeutic effect of irinotecan combined with selenium nanoparticles |
| - | in-vitro, | CRC, | HCT8 | - | in-vivo, | NA, | NA |
| 4495- | Se, | Selenium status is associated with colorectal cancer risk in the European prospective investigation of cancer and nutrition cohort |
| - | Study, | CRC, | NA |
| 4496- | Se, | Selenium status and survival from colorectal cancer in the European prospective investigation of cancer and nutrition |
| - | Analysis, | CRC, | NA |
| 4470- | Se, | Chit, | Synthesis and cytotoxic activities of selenium nanoparticles incorporated nano-chitosan |
| - | in-vitro, | CRC, | HCT116 | - | in-vitro, | Liver, | HepG2 | - | in-vitro, | BC, | MCF-7 |
| 1018- | Sel, | Selenite-induced autophagy antagonizes apoptosis in colorectal cancer cells in vitro and in vivo |
| - | vitro+vivo, | CRC, | HCT116 | - | vitro+vivo, | CRC, | SW480 |
| 1017- | Sel, | Selenite induces apoptosis in colorectal cancer cells via AKT-mediated inhibition of β-catenin survival axis |
| - | vitro+vivo, | CRC, | NA |
| 1135- | Selenate, | Selenate induces epithelial-mesenchymal transition in a colorectal carcinoma cell line by AKT activation |
| - | in-vitro, | CRC, | DLD1 |
| 963- | SFN, | Sulforaphane inhibits hypoxia-induced HIF-1α and VEGF expression and migration of human colon cancer cells |
| - | in-vitro, | CRC, | HCT116 | - | in-vitro, | GC, | AGS |
| 1496- | SFN, | VitD3, | Association between histone deacetylase activity and vitamin D-dependent gene expressions in relation to sulforaphane in human colorectal cancer cells |
| - | in-vitro, | CRC, | Caco-2 |
| 1498- | SFN, | Prolonged sulforaphane treatment activates survival signaling in nontumorigenic NCM460 colon cells but apoptotic signaling in tumorigenic HCT116 colon cells |
| - | in-vitro, | CRC, | HCT116 | - | in-vitro, | Nor, | NCM460 |
| 1500- | SFN, | A novel mechanism of chemoprotection by sulforaphane: inhibition of histone deacetylase |
| - | in-vitro, | Nor, | HEK293 | - | in-vitro, | CRC, | HCT116 |
| 1501- | SFN, | The Inhibitory Effect of Sulforaphane on Bladder Cancer Cell Depends on GSH Depletion-Induced by Nrf2 Translocation |
| - | in-vitro, | CRC, | T24 |
| 1457- | SFN, | Sulforaphane Inhibits IL-1β-Induced IL-6 by Suppressing ROS Production, AP-1, and STAT3 in Colorectal Cancer HT-29 Cells |
| - | in-vitro, | CRC, | HT-29 |
| 1480- | SFN, | Sulforaphane Induces Cell Death Through G2/M Phase Arrest and Triggers Apoptosis in HCT 116 Human Colon Cancer Cells |
| - | in-vitro, | CRC, | HCT116 |
| - | in-vitro, | CRC, | HCT116 |
| 3297- | SIL, | Rad, | Studies on radiation sensitization efficacy by silymarin in colon carcinoma cells |
| - | in-vitro, | CRC, | HCT15 | - | in-vitro, | CRC, | RKO |
| 965- | SK, | Shikonin suppresses proliferation and induces cell cycle arrest through the inhibition of hypoxia-inducible factor-1α signaling |
| - | in-vitro, | CRC, | HCT116 | - | in-vitro, | CRC, | SW-620 |
| 2361- | SK, | Natural shikonin and acetyl-shikonin improve intestinal microbial and protein composition to alleviate colitis-associated colorectal cancer |
| - | in-vivo, | CRC, | NA |
| 2231- | SK, | Shikonin Exerts Cytotoxic Effects in Human Colon Cancers by Inducing Apoptotic Cell Death via the Endoplasmic Reticulum and Mitochondria-Mediated Pathways |
| - | in-vitro, | CRC, | SNU-407 |
| 2230- | SK, | Shikonin induces ROS-based mitochondria-mediated apoptosis in colon cancer |
| - | in-vitro, | CRC, | HCT116 | - | in-vivo, | NA, | NA |
| 2228- | SK, | Shikonin induced Apoptosis Mediated by Endoplasmic Reticulum Stress in Colorectal Cancer Cells |
| - | in-vitro, | CRC, | HCT116 | - | in-vitro, | CRC, | HCT15 | - | in-vivo, | NA, | NA |
| 3047- | SK, | Shikonin suppresses colon cancer cell growth and exerts synergistic effects by regulating ADAM17 and the IL-6/STAT3 signaling pathway |
| - | in-vitro, | CRC, | HCT116 | - | in-vitro, | CRC, | SW48 |
| 2008- | SK, | Cisplatin, | Enhancement of cisplatin-induced colon cancer cells apoptosis by shikonin, a natural inducer of ROS in vitro and in vivo |
| - | in-vitro, | CRC, | HCT116 | - | in-vivo, | NA, | NA |
| 2007- | SK, | Shikonin Directly Targets Mitochondria and Causes Mitochondrial Dysfunction in Cancer Cells |
| - | in-vitro, | lymphoma, | U937 | - | in-vitro, | BC, | MCF-7 | - | in-vitro, | BC, | SkBr3 | - | in-vitro, | CRC, | HCT116 | - | in-vitro, | OS, | U2OS | - | NA, | Nor, | RPE-1 |
| 2184- | SK, | Cisplatin, | PKM2 Inhibitor Shikonin Overcomes the Cisplatin Resistance in Bladder Cancer by Inducing Necroptosis |
| - | in-vitro, | CRC, | T24 |
| 1195- | SM, | Salvia miltiorrhiza polysaccharide activates T Lymphocytes of cancer patients through activation of TLRs mediated -MAPK and -NF-κB signaling pathways |
| - | in-vitro, | Lung, | A549 | - | in-vitro, | Liver, | HepG2 | - | in-vitro, | CRC, | HCT116 |
| 340- | SNP, | Screening bioactivities of Caesalpinia pulcherrima L. swartz and cytotoxicity of extract synthesized silver nanoparticles on HCT116 cell line |
| - | in-vitro, | CRC, | HCT116 |
| 399- | SNP, | SIL, | Cytotoxic potentials of silibinin assisted silver nanoparticles on human colorectal HT-29 cancer cells |
| - | in-vitro, | CRC, | HT-29 |
| 364- | SNP, | Differential Action of Silver Nanoparticles on ABCB1 (MDR1) and ABCC1 (MRP1) Activity in Mammalian Cell Lines |
| - | in-vitro, | Lung, | A549 | - | in-vitro, | Hepat, | HepG2 | - | in-vitro, | CRC, | SW-620 |
| 4561- | SNP, | VitC, | Cellular Effects Nanosilver on Cancer and Non-cancer Cells: Potential Environmental and Human Health Impacts |
| - | in-vitro, | CRC, | HCT116 | - | in-vitro, | Nor, | HEK293 |
| 4559- | SNP, | Anticancer activity of biogenerated silver nanoparticles: an integrated proteomic investigation |
| - | in-vitro, | BC, | SkBr3 | - | in-vitro, | CRC, | HT-29 | - | in-vitro, | CRC, | HCT116 | - | in-vitro, | Colon, | Caco-2 |
| 4557- | SNP, | The apoptotic effect of nanosilver is mediated by a ROS- and JNK-dependent mechanism involving the mitochondrial pathway in NIH3T3 cells |
| - | in-vitro, | NA, | NIH-3T3 | - | in-vitro, | CRC, | HCT116 |
| 4379- | SNP, | Exposure to silver nanoparticles induces size- and dose-dependent oxidative stress and cytotoxicity in human colon carcinoma cells |
| - | in-vitro, | CRC, | LoVo |
| 4403- | SNP, | Silver Nanoparticles Decorated UiO-66-NH2 Metal-Organic Framework for Combination Therapy in Cancer Treatment |
| - | in-vitro, | GBM, | U251 | - | in-vitro, | GBM, | U87MG | - | in-vitro, | GBM, | GL26 | - | in-vitro, | Cerv, | HeLa | - | in-vitro, | CRC, | RKO |
| 4412- | SNP, | Biosynthesis and characterization of silver nanoparticles from Asplenium dalhousiae and their potential biological properties |
| - | in-vitro, | CRC, | HCT116 | - | in-vitro, | Melanoma, | A2780S |
| 4362- | SNP, | Enhancing Colorectal Cancer Radiation Therapy Efficacy using Silver Nanoprisms Decorated with Graphene as Radiosensitizers |
| - | in-vitro, | CRC, | HCT116 | - | in-vitro, | CRC, | HT29 | - | in-vivo, | NA, | NA |
| 1019- | TQ, | Thymoquinone suppresses migration of LoVo human colon cancer cells by reducing prostaglandin E2 induced COX-2 activation |
| - | vitro+vivo, | CRC, | LoVo |
| 3431- | TQ, | PI3K-AKT Pathway Modulation by Thymoquinone Limits Tumor Growth and Glycolytic Metabolism in Colorectal Cancer |
| - | in-vitro, | CRC, | HCT116 | - | in-vitro, | CRC, | SW48 |
| 3397- | TQ, | Thymoquinone: A Promising Therapeutic Agent for the Treatment of Colorectal Cancer |
| - | Review, | CRC, | NA |
| 3413- | TQ, | Thymoquinone induces apoptosis in human colon cancer HCT116 cells through inactivation of STAT3 by blocking JAK2- and Src‑mediated phosphorylation of EGF receptor tyrosine kinase |
| - | in-vitro, | CRC, | HCT116 |
| 5017- | UA, | Ursolic acid disturbs ROS homeostasis and regulates survival-associated gene expression to induce apoptosis in intestinal cancer cells |
| - | in-vitro, | Cerv, | INT-407 | - | in-vitro, | CRC, | HCT116 |
| 4847- | Uro, | Metabolite of ellagitannins, urolithin A induces autophagy and inhibits metastasis in human sw620 colorectal cancer cells |
| - | in-vitro, | CRC, | SW-620 |
| 4841- | Uro, | Urolithin A induces cell cycle arrest and apoptosis by inhibiting Bcl-2, increasing p53-p21 proteins and reactive oxygen species production in colorectal cancer cells |
| - | in-vitro, | CRC, | HT29 | - | in-vitro, | CRC, | SW480 | - | in-vitro, | CRC, | SW-620 |
| 1067- | VitC, | Vitamin C activates pyruvate dehydrogenase (PDH) targeting the mitochondrial tricarboxylic acid (TCA) cycle in hypoxic KRAS mutant colon cancer |
| - | in-vivo, | CRC, | NA |
| 3145- | VitC, | Vitamin C inhibits the growth of colorectal cancer cell HCT116 and reverses the glucose‐induced oncogenic effect by downregulating the Warburg effect |
| - | in-vitro, | CRC, | HCT116 |
| 3141- | VitC, | High-dose Vitamin C inhibits PD-L1 expression by activating AMPK in colorectal cancer |
| - | in-vitro, | CRC, | HCT116 |
| 3138- | VitC, | The Hypoxia-inducible Factor Renders Cancer Cells More Sensitive to Vitamin C-induced Toxicity |
| - | in-vitro, | RCC, | RCC4 | - | in-vitro, | CRC, | HCT116 | - | in-vitro, | BC, | MDA-MB-435 | - | in-vitro, | Ovarian, | SKOV3 | - | in-vitro, | Colon, | SW48 | - | in-vitro, | GBM, | U251 |
| 3137- | VitC, | Vitamin C inhibits the growth of colorectal cancer cell HCT116 and reverses the glucose-induced oncogenic effect by downregulating the Warburg effect |
| - | in-vitro, | CRC, | HCT116 |
| 4468- | VitC, | Se, | Selenium modulates cancer cell response to pharmacologic ascorbate |
| - | in-vivo, | GBM, | U87MG | - | in-vitro, | CRC, | HCT116 |
| 2369- | VitD3, | Long Non-coding RNA MEG3 Activated by Vitamin D Suppresses Glycolysis in Colorectal Cancer via Promoting c-Myc Degradation |
| - | in-vitro, | CRC, | DLD1 | - | in-vitro, | CRC, | RKO |
| 1823- | VitK2, | VitK3, | Vitamins K2, K3 and K5 exert antitumor effects on established colorectal cancer in mice by inducing apoptotic death of tumor cells |
| - | in-vitro, | CRC, | NA | - | in-vivo, | NA, | NA |
| 1820- | VitK3, | Vitamin K3 (menadione) suppresses epithelial-mesenchymal-transition and Wnt signaling pathway in human colorectal cancer cells |
| - | in-vitro, | CRC, | SW480 | - | in-vitro, | CRC, | SW-620 |
| 4888- | ZER, | 5-FU, | Modulation of the tumor microenvironment by zerumbone and 5-fluorouracil in colorectal cancer by target in cancer-associated fibroblasts |
| - | in-vitro, | CRC, | CT26 |
| 4889- | ZER, | Zerumbone reduces proliferation of HCT116 colon cancer cells by inhibition of TNF-alpha |
| - | in-vitro, | CRC, | HCT116 |
Query results interpretion may depend on "conditions" listed in the research papers. Such Conditions may include : -low or high Dose -format for product, such as nano of lipid formations -different cell line effects -synergies with other products -if effect was for normal or cancerous cells
Filter Conditions: Pro/AntiFlg:% IllCat:% CanType:6 Cells:% prod#:% Target#:% State#:% Dir#:%
wNotes=0 sortOrder:rid,rpid