Database Query Results : Juglone, ,

JG, Juglone: Click to Expand ⟱
Features:
Found in roots, leaves, nut-hulls, bark and wood of walnut trees.
Juglone (5-hydroxy-1,4-naphthoquinone)
Juglans nigra refers to the black walnut tree, which is one of the most well-known sources of juglone
-Research has focused on the hulls (the green outer covering of the walnut) because they have the highest concentrations.
-Fresh hulls can contain juglone levels in the range of approximately 1–5% of the dry weight

-Juglone can redox cycle to generate reactive oxygen species (ROS).
-Increasing Bax, decreasing Bcl‑2, caspase activation, and MMP depolarization.
-Modulation of MAPK pathways (including ERK, JNK, and p38)
-May inhibit NF‑κB signaling
-Cause DNA damage or stress that, in turn, leads to p53 pathway activation— Pin1 Inhibition
–Pin1, a peptidyl-prolyl cis/trans isomerase, is frequently overexpressed in cancer.

-ic50 maybe 5-10uM
-For matching 5uM, crude estimate is 5mg consumption of juglone required which might be 1.5 g of black walnut hull material


Scientific Papers found: Click to Expand⟱
974- JG,    Juglone down-regulates the Akt-HIF-1α and VEGF signaling pathways and inhibits angiogenesis in MIA Paca-2 pancreatic cancer in vitro
- in-vitro, PC, MIA PaCa-2
Hif1a↓, VEGF↓, p‑Akt↓, TumCP↓, TumCI↓,
1121- JG,    Juglone suppresses epithelial-mesenchymal transition in prostate cancer cells via the protein kinase B/glycogen synthase kinase-3β/Snail signaling pathway
- in-vitro, Pca, LNCaP
E-cadherin↑, N-cadherin↓, Vim↓, Snail↓, GSK‐3β↑,
1917- JG,    Inhibition of human leukemia cells growth by juglone is mediated via autophagy induction, endogenous ROS production, and inhibition of cell migration and invasion
- in-vitro, AML, HL-60
selectivity↑, LC3I↑, LC3II↑, Beclin-1↑, ROS↑, tumCV↓, Dose↝, TumAuto↑,
1918- JG,    ROS -mediated p53 activation by juglone enhances apoptosis and autophagy in vivo and in vitro
- in-vitro, Liver, HepG2 - in-vivo, NA, NA
TumCG↓, TumCP↓, Apoptosis↑, TumAuto↑, AMPK↑, mTOR↑, P53↑, H2O2↑, ROS↑, toxicity↝, p62↓, DR5↑, Casp8↑, PARP↑, cl‑Casp3↑,
1919- JG,    The Anti-Glioma Effect of Juglone Derivatives through ROS Generation
- in-vitro, GBM, U87MG - in-vitro, GBM, U251
ROS↑, Apoptosis↑, eff↓, eff↓,
1920- JG,  TQ,  Plum,    Natural quinones induce ROS-mediated apoptosis and inhibit cell migration in PANC-1 human pancreatic cancer cell line
- in-vitro, PC, PANC1
ROS↑, TumCMig↓, MMP9↓,
1921- JG,    Juglone induces ferroptotic effect on hepatocellular carcinoma and pan-cancer via the FOSL1-HMOX1 axis
- in-vitro, PC, NA - vitro+vivo, PC, NA
TumCG↓, Ferroptosis↑, ROS↑, Iron↑, lipid-P↑, MDA↑, GSH↓, FOSL1↑, HO-1↑,
1922- JG,    Juglone induces apoptosis of tumor stem-like cells through ROS-p38 pathway in glioblastoma
- in-vitro, GBM, U87MG
tumCV↓, TumCP↓, ROS↑, p‑p38↑, eff↓, Apoptosis↑, OS↑,
1923- JG,    Mechanism of Juglone-Induced Cell Cycle Arrest and Apoptosis in Ishikawa Human Endometrial Cancer Cells
- in-vitro, Endo, NA
TumCP↓, TumCCA↑, cycA1/CCNA1↓, ROS↑, P21↑, CDK2↓, CDK1↓, CDC25↓, Bcl-2↓, Bcl-xL↓, BAX↑, BAD↑, Cyt‑c↑,
1924- JG,    Juglone triggers apoptosis of non-small cell lung cancer through the reactive oxygen species -mediated PI3K/Akt pathway
- in-vitro, Lung, A549
TumCMig↓, TumCI↓, TumCCA↑, Apoptosis↑, cl‑Casp3↑, BAX↑, Cyt‑c↑, ROS↑, MDA↑, GPx4↓, SOD↓, PI3K↓, Akt↓, eff↓,
1925- JG,    Redox regulation of mitochondrial functional activity by quinones
- in-vitro, NA, NA
other↓, ROS↑, MMP↓, eff↝,
1926- JG,    Mechanism of juglone-induced apoptosis of MCF-7 cells by the mitochondrial pathway
- in-vitro, BC, MCF-7
TumCG↓, ROS↑, MMP↓, i-Ca+2↑, BAX↑, Bcl-2↓, Cyt‑c↑, Casp3?,
1927- JG,    Juglone-induced apoptosis in human gastric cancer SGC-7901 cells via the mitochondrial pathway
- in-vitro, GC, SGC-7901
Apoptosis↑, ROS↑, Bcl-2↓, BAX↑, MMP↓, Cyt‑c↑, Casp3?, Bax:Bcl2↑,

* indicates research on normal cells as opposed to diseased cells
Total Research Paper Matches: 13

Pathway results for Effect on Cancer / Diseased Cells:


Redox & Oxidative Stress

Ferroptosis↑, 1,   GPx4↓, 1,   GSH↓, 1,   H2O2↑, 1,   HO-1↑, 1,   Iron↑, 1,   lipid-P↑, 1,   MDA↑, 2,   ROS↑, 11,   SOD↓, 1,  

Mitochondria & Bioenergetics

CDC25↓, 1,   MMP↓, 3,  

Core Metabolism/Glycolysis

AMPK↑, 1,  

Cell Death

Akt↓, 1,   p‑Akt↓, 1,   Apoptosis↑, 5,   BAD↑, 1,   BAX↑, 4,   Bax:Bcl2↑, 1,   Bcl-2↓, 3,   Bcl-xL↓, 1,   Casp3?, 2,   cl‑Casp3↑, 2,   Casp8↑, 1,   Cyt‑c↑, 4,   DR5↑, 1,   Ferroptosis↑, 1,   p‑p38↑, 1,  

Transcription & Epigenetics

other↓, 1,   tumCV↓, 2,  

Autophagy & Lysosomes

Beclin-1↑, 1,   LC3I↑, 1,   LC3II↑, 1,   p62↓, 1,   TumAuto↑, 2,  

DNA Damage & Repair

P53↑, 1,   PARP↑, 1,  

Cell Cycle & Senescence

CDK1↓, 1,   CDK2↓, 1,   cycA1/CCNA1↓, 1,   P21↑, 1,   TumCCA↑, 2,  

Proliferation, Differentiation & Cell State

FOSL1↑, 1,   GSK‐3β↑, 1,   mTOR↑, 1,   PI3K↓, 1,   TumCG↓, 3,  

Migration

i-Ca+2↑, 1,   E-cadherin↑, 1,   MMP9↓, 1,   N-cadherin↓, 1,   Snail↓, 1,   TumCI↓, 2,   TumCMig↓, 2,   TumCP↓, 4,   Vim↓, 1,  

Angiogenesis & Vasculature

Hif1a↓, 1,   VEGF↓, 1,  

Drug Metabolism & Resistance

Dose↝, 1,   eff↓, 4,   eff↝, 1,   selectivity↑, 1,  

Functional Outcomes

OS↑, 1,   toxicity↝, 1,  
Total Targets: 64

Pathway results for Effect on Normal Cells:


Total Targets: 0

Query results interpretion may depend on "conditions" listed in the research papers.
Such Conditions may include : 
  -low or high Dose
  -format for product, such as nano of lipid formations
  -different cell line effects
  -synergies with other products 
  -if effect was for normal or cancerous cells
Filter Conditions: Pro/AntiFlg:%  IllCat:%  CanType:%  Cells:%  prod#:105  Target#:%  State#:%  Dir#:%
wNotes=0 sortOrder:rid,rpid

 

Home Page