Database Query Results : Luteolin, ,

LT, Luteolin: Click to Expand ⟱
Features:
Luteolin a Flavonoid found in celery, parsley, broccoli, onion leaves, carrots, peppers, cabbages, apple skins, and chrysanthemum flowers.
-MDR1 expression, MMP-9, IGF-1 and Epithelial to mesenchymal transition.

*** ACTIVE WORK IN PROGRESS**

-Note half-life 2–3 hours
BioAv low, but could be improved with Res, or blend of castor oil, kolliphor and polyethylene glycol
Pathways:
- induce ROS production in cancer cell but a few reports of reduction. Always seems to reduce ROS in normal cells.
- ROS↑ related: MMP↓(ΔΨm), ER Stress↑, UPR↑, GRP78↑, Ca+2↑, Cyt‑c↑, Caspases↑, DNA damage↑, cl-PARP↑, HSP↓
- Lowers AntiOxidant defense in Cancer Cells: NRF2↓, SOD↓, GSH↓ Catalase↓ HO1↓ GPx↓
- Raises AntiOxidant defense in Normal Cells: ROS↓, NRF2↑, SOD↑, GSH↑, Catalase↑,
- lowers Inflammation : NF-kB↓, COX2↓, p38↓, Pro-Inflammatory Cytokines : IL-1β↓, TNF-α↓, IL-6↓,
- inhibit Growth/Metastases : TumMeta↓, TumCG↓, EMT↓, MMP2↓, MMP9↓, TIMP2, IGF-1↓, VEGF↓, FAK↓, RhoA↓, NF-κB↓, CXCR4↓, ERK↓
- reactivate genes thereby inhibiting cancer cell growth : HDAC↓, DNMT1↓, DNMT3A↓, EZH2↓, P53↑, HSP↓,
- cause Cell cycle arrest : TumCCA↑, cyclin D1↓, cyclin E↓, CDK2↓, CDK4↓, CDK6↓,
- inhibits Migration/Invasion : TumCMig↓, FAK↓, ERK↓, EMT↓, TOP1↓, TET1↓,
- inhibits glycolysis and ATP depletion : HIF-1α↓, PKM2↓, cMyc↓, LDHA↓, HK2↓, GRP78↑,
- inhibits angiogenesis↓ : VEGF↓, HIF-1α↓, Notch↓, PDGF↓, EGFR↓, Integrins↓,
- Others: PI3K↓, AKT↓, STAT↓, Wnt↓, β-catenin↓, AMPK, ERK↓, JNK, TrxR**, - Shown to modulate the nuclear translocation of SREBP-2 (related to cholesterol).
- Synergies: chemo-sensitization, chemoProtective, RadioSensitizer, Others(review target notes), Neuroprotective, Renoprotection, Hepatoprotective, CardioProtective,

- Selectivity: Cancer Cells vs Normal Cells


Scientific Papers found: Click to Expand⟱
1539- Api,  LT,    Dietary flavones counteract phorbol 12-myristate 13-acetate-induced SREBP-2 processing in hepatic cells
- in-vitro, Liver, HepG2
SREBP2↓, eff↑, p‑MEK↓, p‑ERK↓,
2596- Api,  LT,    Natural Nrf2 Inhibitors: A Review of Their Potential for Cancer Treatment
- Review, Var, NA
NRF2↓, chemoPv↑, ChemoSen↑,
2625- Ba,  LT,    Baicalein and luteolin inhibit ischemia/reperfusion-induced ferroptosis in rat cardiomyocyte
- in-vivo, Stroke, NA
*lipid-P↓, *ACSL4∅, *NRF2∅, *GPx4∅, *Ferroptosis↓, *ROS↓, *MDA↓, *eff↑, *HO-1∅,
3633- BBR,  LT,  Croc,  QC,    Naturally Occurring Acetylcholinesterase Inhibitors and Their Potential Use for Alzheimer's Disease Therapy
- Review, AD, NA
*AChE↓, *AChE↓,
2919- LT,    Luteolin as a potential therapeutic candidate for lung cancer: Emerging preclinical evidence
- Review, Var, NA
RadioS↑, ChemoSen↑, chemoP↑, *lipid-P↓, *Catalase↑, *SOD↑, *GPx↑, *GSTs↑, *GSH↑, *TNF-α↓, *IL1β↓, *Casp3↓, *IL10↑, NRF2↓, HO-1↓, NQO1↓, GSH↓, MET↓, p‑MET↓, p‑Akt↓, HGF/c-Met↓, NF-kB↓, Bcl-2↓, SOD2↓, Casp8↑, Casp3↑, PARP↑, MAPK↓, NLRP3↓, ASC↓, Casp1↓, IL6↓, IKKα↓, p‑p65↓, p‑p38↑, MMP2↓, ICAM-1↓, EGFR↑, p‑PI3K↓, E-cadherin↓, ZO-1↑, N-cadherin↓, CLDN1↓, β-catenin/ZEB1↓, Snail↓, Vim↑, ITGB1↓, FAK↓, p‑Src↓, Rac1↓, Cdc42↓, Rho↓, PCNA↓, Tyro3↓, AXL↓, CEA↓, NSE↓, SOD↓, Catalase↓, GPx↓, GSR↓, GSTs↓, GSH↓, VitE↓, VitC↓, CYP1A1↓, cFos↑, AR↓, AIF↑, p‑STAT6↓, p‑MDM2↓, NOTCH1↓, VEGF↓, H3↓, H4↓, HDAC↓, SIRT1↓, ROS↑, DR5↑, Cyt‑c↑, p‑JNK↑, PTEN↓, mTOR↓, CD34↓, FasL↑, Fas↑, XIAP↓, p‑eIF2α↑, CHOP↑, LC3II↑, PD-1↓, STAT3↓, IL2↑, EMT↓, cachexia↓, BioAv↑, *Half-Life↝, *eff↑,
2923- LT,    Luteolin induces apoptosis through endoplasmic reticulum stress and mitochondrial dysfunction in Neuro-2a mouse neuroblastoma cells
- in-vitro, NA, NA
Apoptosis↑, TumCD↑, Casp12↑, Casp9↑, Casp3↑, ER Stress↑, CHOP↑, GRP78/BiP↑, GRP94↑, cl‑ATF6↑, p‑eIF2α↑, MMP↓, JNK↓, p38↑, ERK↑, Cyt‑c↑,
2922- LT,    Combination of transcriptomic and proteomic approaches helps unravel the mechanisms of luteolin in inducing liver cancer cell death via targeting AKT1 and SRC
- in-vitro, Liver, HUH7
Half-Life↝, TumCCA↑, AKT1↓, ATF2↓, NF-kB↓, GSK‐3β↓, cMyc↓, GSTs↓, TrxR1↓, ROS↑,
2921- LT,    Luteolin as a potential hepatoprotective drug: Molecular mechanisms and treatment strategies
- Review, Nor, NA
*hepatoP↑, *AMPK↑, *SIRT1↑, *ROS↓, STAT3↓, TNF-α↓, NF-kB↓, *IL2↓, *IFN-γ↓, *GSH↑, *SREBP1↓, *ZO-1↑, *TLR4↓, BAX↑, Bcl-2↓, XIAP↓, Fas↑, Casp8↑, Beclin-1↑, *TXNIP↓, *Casp1↓, *IL1β↓, *IL18↓, *NLRP3↓, *MDA↓, *SOD↑, *NRF2↑, *ER Stress↓, *ALAT↓, *AST↓, *iNOS↓, *IL6↓, *HO-1↑, *NQO1↑, *PPARα↑, *ATF4↓, *CHOP↓, *Inflam↓, *antiOx↑, *GutMicro↑,
2920- LT,    Formulation, characterization, in vitro and in vivo evaluations of self-nanoemulsifying drug delivery system of luteolin
- in-vitro, Nor, NA - in-vivo, Nor, NA
BioAv↑, eff↑,
2925- LT,    Luteolin Induces Carcinoma Cell Apoptosis through Binding Hsp90 to Suppress Constitutive Activation of STAT3
- in-vitro, Cerv, HeLa - in-vitro, Nor, HEK293 - in-vitro, BC, MCF-7
HSP90↓, p‑STAT3↓, Apoptosis↑, selectivity↑,
2918- LT,    Luteolin inhibits melanoma growth in vitro and in vivo via regulating ECM and oncogenic pathways but not ROS
- in-vitro, Melanoma, A375 - in-vivo, Melanoma, NA - in-vitro, Melanoma, SK-MEL-28
TumCG↓, ROS↑, ECM/TCF↓,
2917- LT,  Rad,    Luteolin acts as a radiosensitizer in non‑small cell lung cancer cells by enhancing apoptotic cell death through activation of a p38/ROS/caspase cascade
- in-vitro, Lung, NA
Bcl-2↓, Casp3↑, Casp8↑, Casp9↑, p‑p38↑, ROS↑, RadioS↑,
2916- LT,    Antioxidative and Anticancer Potential of Luteolin: A Comprehensive Approach Against Wide Range of Human Malignancies
- Review, Var, NA - Review, AD, NA - Review, Park, NA
proCasp9↓, CDC2↓, CycB/CCNB1↓, Casp9↑, Casp3↑, Cyt‑c↑, cycA1/CCNA1↑, CDK2↓, APAF1↑, TumCCA↑, P53↑, BAX↑, VEGF↓, Bcl-2↓, Apoptosis↑, p‑Akt↓, p‑EGFR↓, p‑ERK↓, p‑STAT3↓, cardioP↑, Catalase↓, SOD↓, *BioAv↓, *antiOx↑, *ROS↓, *NO↓, *GSTs↑, *GSR↑, *SOD↑, *Catalase↑, *lipid-P↓, PI3K↓, Akt↓, CDK2↓, BNIP3↑, hTERT/TERT↓, DR5↑, Beclin-1↑, TNF-α↓, NF-kB↓, IL1↓, IL6↓, EMT↓, FAK↓, E-cadherin↑, MDM2↓, NOTCH↓, MAPK↑, Vim↓, N-cadherin↓, Snail↓, MMP2↓, Twist↓, MMP9↓, ROS↑, MMP↓, *AChE↓, *MMP↑, *Aβ↓, *neuroP↑, Trx1↑, ROS↓, *NRF2↑, NRF2↓, *BBB↑, ChemoSen↑, GutMicro↑,
2915- LT,    Luteolin promotes apoptotic cell death via upregulation of Nrf2 expression by DNA demethylase and the interaction of Nrf2 with p53 in human colon cancer cells
- in-vitro, Colon, HT29 - in-vitro, CRC, SNU-407 - in-vitro, Nor, FHC
DNMTs↓, TET1↑, NRF2↑, HDAC↓, tumCV↓, BAX↑, Casp9↑, Casp3↑, Bcl-2↓, ROS↓, GSS↑, Catalase↑, HO-1↑, DNMT1↓, DNMT3A↓, TET1↑, TET3↑, TET2↓, P53↑, P21↑,
2914- LT,    Therapeutic Potential of Luteolin on Cancer
- Review, Var, NA
*antiOx↑, *IronCh↑, *toxicity↓, *BioAv↓, *BioAv↑, DNAdam↑, TumCP↓, DR5↑, P53↑, JNK↑, BAX↑, cl‑Casp3↑, cl‑Casp8↑, cl‑Casp9↑, cl‑PARP↑, survivin↓, cycD1/CCND1↓, CycB/CCNB1↓, CDC2↓, P21↑, angioG↓, MMP2↓, AEG1↓, VEGF↓, VEGFR2↓, MMP9↓, CXCR4↓, PI3K↓, Akt↓, ERK↓, TumAuto↑, LC3B-II↑, EMT↓, E-cadherin↑, N-cadherin↓, Wnt↓, ROS↑, NICD↓, p‑GSK‐3β↓, iNOS↓, COX2↓, NRF2↑, Ca+2↑, ChemoSen↑, ChemoSen↓, IFN-γ↓, RadioS↑, MDM2↓, NOTCH1↓, AR↓, TIMP1↑, TIMP2↑, ER Stress↑, CDK2↓, Telomerase↓, p‑NF-kB↑, p‑cMyc↑, hTERT/TERT↓, RAS↓, YAP/TEAD↓, TAZ↓, NF-kB↓, NRF2↓, HO-1↓, MDR1↓,
2913- LT,    Luteolin induces apoptosis by impairing mitochondrial function and targeting the intrinsic apoptosis pathway in gastric cancer cells
- in-vitro, GC, HGC27 - in-vitro, BC, MCF-7 - in-vitro, GC, MKN45
TumCP↓, MMP↓, Apoptosis↑, ROS↑, SOD↓, ATP↓, Bax:Bcl2↑, TumCCA↑,
2912- LT,    Luteolin: a flavonoid with a multifaceted anticancer potential
- Review, Var, NA
ROS↑, TumCCA↑, TumCP↓, angioG↓, ER Stress↑, mtDam↑, PERK↑, ATF4↑, eIF2α↑, cl‑Casp12↑, EMT↓, E-cadherin↑, N-cadherin↓, Vim↓, *neuroP↑, NF-kB↓, PI3K↓, Akt↑, XIAP↓, MMP↓, Ca+2↑, BAX↑, Casp3↑, Casp9↑, Bcl-2↓, Cyt‑c↑, IronCh↑, SOD↓, *ROS↓, *LDHA↑, *SOD↑, *GSH↑, *BioAv↓, Telomerase↓, cMyc↓, hTERT/TERT↓, DR5↑, Fas↑, FADD↑, BAD↑, BOK↑, BID↑, NAIP↓, Mcl-1↓, CDK2↓, CDK4↓, MAPK↓, AKT1↓, Akt2↓, *Beclin-1↓, Hif1a↓, LC3II↑, Beclin-1↑,
2924- LT,    Luteolin selectively kills STAT3 highly activated gastric cancer cells through enhancing the binding of STAT3 to SHP-1
- in-vitro, GC, NA - in-vivo, NA, NA
p‑STAT3↓, STAT3↓, Mcl-1↓, survivin↓, Bcl-xL↓, HSP90↓,
2910- LT,  FA,    Folic acid-modified ROS-responsive nanoparticles encapsulating luteolin for targeted breast cancer treatment
- in-vitro, BC, 4T1 - in-vivo, NA, NA
BioAv↓, BioAv↑, eff↑, tumCV↓, e-H2O2↓, i-H2O2∅,
2926- LT,    Luteolin ameliorates rat myocardial ischemia-reperfusion injury through peroxiredoxin II activation: LUT's cardioprotection through PRX II
- in-vitro, Nor, H9c2
*cardioP↑, *PrxII↑,
2927- LT,    Luteolin Causes 5′CpG Demethylation of the Promoters of TSGs and Modulates the Aberrant Histone Modifications, Restoring the Expression of TSGs in Human Cancer Cells
- in-vitro, Cerv, HeLa
TumCMig↓, DNMTs↓, HDAC↓, HATs↓, ac‑H3↓, ac‑H4↓, MMP2↓, MMP9↓, HO-1↓, E-cadherin↑, EZH2↓, HER2/EBBR2↓, IL18↓, IL8↓, IL2↓,
2928- LT,    Luteolin-mediated increase in miR-26a inhibits prostate cancer cell growth and induces cell cycle arrest targeting EZH2
EZH2↓, cycD1/CCND1↓, cycE/CCNE↓, CDK4↓, CDK6↓,
2929- LT,    Loss of BRCA1 in the cells of origin of ovarian cancer induces glycolysis: A window of opportunity for ovarian cancer chemoprevention
- in-vitro, Ovarian, NA
HK2↓, Myc↓, Glycolysis↓,
2930- LT,    Luteolin confers renoprotection against ischemia–reperfusion injury via involving Nrf2 pathway and regulating miR320
- in-vitro, Nor, NA
*RenoP↑, *ROS↓, *antiOx↑, *NRF2↓,
4292- LT,    Luteolin for neurodegenerative diseases: a review
- Review, AD, NA - Review, Park, NA - Review, MS, NA - Review, Stroke, NA
*Inflam↓, *antiOx↑, *neuroP↑, *BioAv↝, *BBB↑, *TNF-α↓, *IL1β↓, *IL6↓, *IL8↓, *IL33↓, *NF-kB↓, *BACE↓, *ROS↓, *SOD↑, *HO-1↑, *NRF2↑, *Casp3↓, *Casp9↑, *Bax:Bcl2↓, *UPR↑, *GRP78/BiP↑, *Aβ↓, *GSK‐3β↓, *tau↓, *CREB↑, *ATP↑, *cognitive↑, *BloodF↑, *BDNF↑, *TrkB↑, *memory↑, *PPARγ↑, *eff↑,
4293- LT,    Regulatory Role of NF-κB on HDAC2 and Tau Hyperphosphorylation in Diabetic Encephalopathy and the Therapeutic Potential of Luteolin
- in-vivo, Diabetic, NA
*Inflam↓, *antiOx↑, *neuroP↑, *cognitive↑, *p‑mTOR↓, *p‑NF-kB↓, *HDAC2↓, *BDNF↑, *other↓, *p‑tau↓,
4294- LT,    Luteolin reduces zinc-induced tau phosphorylation at Ser262/356 in an ROS-dependent manner in SH-SY5Y cells
- in-vitro, NA, SH-SY5Y
*tau↓, *antiOx↑,
4295- LT,    Luteolin Reduces Alzheimer’s Disease Pathologies Induced by Traumatic Brain Injury
- in-vivo, AD, NA
*Aβ↓, *GSK‐3β↓, *p‑tau↓, *BBB↑,
4338- LT,    Luteolin: a natural product with multiple mechanisms for atherosclerosis
- Review, NA, NA
*Inflam↓, *ROS↓, *PDGF↓, *lipid-P↓, *AMPK↑, *SIRT1↑, *AntiAg↑,
4339- LT,    Luteolin inhibits GPVI-mediated platelet activation, oxidative stress, and thrombosis
- in-vivo, NA, NA
*AntiAg↑, *ROS↓,
4687- LT,  QC,    Dietary Flavonoids Luteolin and Quercetin Suppressed Cancer Stem Cell Properties and Metastatic Potential of Isolated Prostate Cancer Cells
- in-vitro, Pca, DU145
CSCs↓, EMT↓, MMPs↓, TumCMig↓, TumCI↓,
4883- LT,  CHr,  BRU,  VitC,    An update of Nrf2 activators and inhibitors in cancer prevention/promotion
- Review, Var, NA
*NRF2↓,
1534- LT,  Api,  EGCG,  RES,    Plant polyphenol induced cell death in human cancer cells involves mobilization of intracellular copper ions and reactive oxygen species generation: a mechanism for cancer chemopreventive action
- in-vitro, Nor, MCF10 - in-vitro, BC, MDA-MB-231 - in-vitro, BC, MDA-MB-468 - in-vitro, PC, Bxpc-3
TumCP↓, Apoptosis↑, eff↓, *toxicity↑, Dose?, eff↓, eff↓,
979- LT,    Luteolin Regulation of Estrogen Signaling and Cell Cycle Pathway Genes in MCF-7 Human Breast Cancer Cells
- in-vitro, BC, MCF-7
TumCP↓,
982- LT,    Inhibitory effect of luteolin on estrogen biosynthesis in human ovarian granulosa cells by suppression of aromatase (CYP19)
- in-vitro, Ovarian, KGN
CYP19↓,
986- LT,  doxoR,    Luteolin as a glycolysis inhibitor offers superior efficacy and lesser toxicity of doxorubicin in breast cancer cells
- in-vitro, BC, 4T1 - in-vitro, BC, MCF-7
SOD↓, Catalase↓, Glycolysis↓,
1025- LT,  Api,    Luteolin and its derivative apigenin suppress the inducible PD-L1 expression to improve anti-tumor immunity in KRAS-mutant lung cancer
- in-vivo, Lung, NA
TumCG↓, Apoptosis↑, PD-L1↓, p‑STAT3↓,
1060- LT,  BTZ,    Luteolin inhibits the TGF-β signaling pathway to overcome bortezomib resistance in multiple myeloma
- vitro+vivo, Melanoma, NA
ALDH1A1↓, TGF-β↓, ChemoSen↑,
1064- LT,  Cisplatin,    Inhibition of cell survival, invasion, tumor growth and histone deacetylase activity by the dietary flavonoid luteolin in human epithelioid cancer cells
- vitro+vivo, Lung, LNM35 - in-vitro, CRC, HT-29 - in-vitro, Liver, HepG2 - in-vitro, BC, MCF-7 - in-vitro, BC, MDA-MB-231
Casp3↑, Casp7↑, HDAC↓,
1084- LT,  CHr,    Luteolin and chrysin differentially inhibit cyclooxygenase-2 expression and scavenge reactive oxygen species but similarly inhibit prostaglandin-E2 formation in RAW 264.7 cells
- in-vitro, Nor, RAW264.7
*COX2↓, *COX2∅, *PGE2↓, *ROS↓,
1100- LT,    Luteolin, a flavonoid, as an anticancer agent: A review
- Review, NA, NA
TumCP↓, TumCCA↑, Apoptosis↑, EMT↓, E-cadherin↑, N-cadherin↓, Snail↓, Vim↓, ROS↑, ER Stress↑, mtDam↑, p‑eIF2α↝, p‑PERK↝, p‑CHOP↝, p‑ATF4↝, cl‑Casp12↝,
1125- LT,    Luteolin suppresses epithelial-mesenchymal transition and migration of triple-negative breast cancer cells by inhibiting YAP/TAZ activity
- in-vitro, BC, NA
YAP/TEAD↓, TAZ↓, MSCmark↓, EM↑, TumCMig↓,
1171- LT,    The inhibition of β-catenin activity by luteolin isolated from Paulownia flowers leads to growth arrest and apoptosis in cholangiocarcinoma
- in-vitro, CCA, NA
Wnt↓, TumCCA↑, Apoptosis↑, TumCMig↓, β-catenin/ZEB1↓, cMyc↓, cycD1/CCND1↓,
1200- LT,    Inhibition of Fatty Acid Synthase by Luteolin Post-Transcriptionally Downregulates c-Met Expression Independent of Proteosomal/Lysosomal Degradation
- in-vitro, Pca, DU145
FASN↓, cMET↓, HGF/c-Met↓,
1275- LT,    Mechanism of luteolin induces ferroptosis in nasopharyngeal carcinoma cells
- in-vitro, Laryn, NA
Ferroptosis↑, MDA↑, Iron↑, SOD↓, GSH↓, GPx4↓, SOX4↓, GDF15↓,
1317- LT,    Luteolin Suppresses Teratoma Cell Growth and Induces Cell Apoptosis via Inhibiting Bcl-2
- vitro+vivo, Ovarian, PA1
Bcl-2↓, BAX↑, Apoptosis↑, TumCG↓,
2911- LT,    Luteolin targets MKK4 to attenuate particulate matter-induced MMP-1 and inflammation in human keratinocytes
- in-vitro, Nor, HaCaT
*MMP1↓, *COX2↓, *IL6↓, *AP-1↓, *NF-kB↓, *ROS↓, *p‑MKK4↑, *p‑JNK↓, *p‑p38↓,
2346- LT,    Luteolin suppressed PKM2 and promoted autophagy for inducing the apoptosis of hepatocellular carcinoma cells
- in-vitro, HCC, HepG2
TumCP↓, Apoptosis↓, PKM2↓, TumAuto↑,
2587- LT,    Luteolin inhibits Nrf2 leading to negative regulation of the Nrf2/ARE pathway and sensitization of human lung carcinoma A549 cells to therapeutic drugs
- in-vitro, Lung, A549
NRF2↓, GSH↓, ChemoSen↑, HO-1↓,
2588- LT,  Chemo,    Luteolin sensitizes two oxaliplatin-resistant colorectal cancer cell lines to chemotherapeutic drugs via inhibition of the Nrf2 pathway
- in-vitro, CRC, HCT116
NRF2↓, NQO1↓, HO-1↓, GSH↓, ChemoSen↑,
2589- LT,  Chemo,    Luteolin Inhibits Breast Cancer Stemness and Enhances Chemosensitivity through the Nrf2-Mediated Pathway
- in-vitro, BC, MDA-MB-231
NRF2↓, HO-1↓, ChemoSen↑, CSCs↓, SIRT1↓,
2595- LT,    Regulation of Nrf2/ARE Pathway by Dietary Flavonoids: A Friend or Foe for Cancer Management?
- Review, Var, NA
*NRF2↑, NRF2↓, NRF2⇅,
2903- LT,    Luteolin induces apoptosis by ROS/ER stress and mitochondrial dysfunction in gliomablastoma
- in-vitro, GBM, U251 - in-vitro, GBM, U87MG - in-vivo, NA, NA
ER Stress↑, ROS↑, PERK↑, eIF2α↑, ATF4↑, CHOP↑, Casp12↑, eff↓, UPR↑, MMP↓, Cyt‑c↑, Bcl-2↓, BAX↑, TumCG↓, Weight∅, ALAT∅, AST∅,
2904- LT,    Luteolin from Purple Perilla mitigates ROS insult particularly in primary neurons
- in-vitro, Park, SK-N-SH - in-vitro, AD, NA
*ROS↓, *neuroP↑, *MMP↑, *Catalase↑, *GSH↑, selectivity↑, *eff↑, *Cyt‑c↓,
2905- LT,    Luteolin blocks the ROS/PI3K/AKT pathway to inhibit mesothelial-mesenchymal transition and reduce abdominal adhesions
- in-vivo, NA, HMrSV5
*ROS↓, *p‑Akt↓, *Vim↓, *E-cadherin↑, *PI3K↓,
2906- LT,    Luteolin, a flavonoid with potentials for cancer prevention and therapy
- Review, Var, NA
*Inflam↓, AntiCan↑, antiOx⇅, Apoptosis↑, TumCP↓, TumMeta↓, angioG↓, PI3K↓, Akt↓, NF-kB↓, XIAP↓, P53↑, *ROS↓, *GSTA1↑, *GSR↑, *SOD↑, *Catalase↑, *other↓, ROS↑, Dose↝, chemoP↑, NF-kB↓, JNK↑, p27↑, P21↑, DR5↑, Casp↑, Fas↑, BAX↑, MAPK↓, CDK2↓, IGF-1↓, PDGF↓, EGFR↓, PKCδ↓, TOP1↓, TOP2↓, Bcl-xL↓, FASN↓, VEGF↓, VEGFR2↓, MMP9↓, Hif1a↓, FAK↓, MMP1↓, Twist↓, ERK↓, P450↓, CYP1A1↓, CYP1A2↓, TumCCA↑,
2907- LT,    Protective effect of luteolin against oxidative stress‑mediated cell injury via enhancing antioxidant systems
- in-vitro, Nor, NA
*ROS↓, *Casp9↓, *Casp3↓, *Bcl-2↑, *BAX↓, *GSH↑, *SOD↑, *Catalase↑, *GPx↑, *HO-1↑, *antiOx↑, *lipid-P↓, *p‑γH2AX↓, eff↑,
2908- LT,    Luteolin attenuates neutrophilic oxidative stress and inflammatory arthritis by inhibiting Raf1 activity
- in-vitro, Arthritis, NA
*ROS↓, *p‑ERK↓, *p‑MEK↓, *Raf↓,
2909- LT,    Revisiting luteolin: An updated review on its anticancer potential
- Review, Var, NA
Apoptosis↑, TumCCA↑, angioG↓, TumMeta↓, TumCP↓, chemoP↑, MDR1↓,
973- LT,    Luteolin impairs hypoxia adaptation and progression in human breast and colon cancer cells
- in-vitro, CRC, HCT116 - in-vitro, BC, MDA-MB-231
Apoptosis↑, necrosis↑, TumAuto↑, HIF-1↓,
4871- Uro,  DHA,  LT,    A Synergistic Combination of DHA, Luteolin, and Urolithin A Against Alzheimer’s Disease
- in-vitro, AD, NA
*ATP↑, *Apoptosis↓,

* indicates research on normal cells as opposed to diseased cells
Total Research Paper Matches: 61

Pathway results for Effect on Cancer / Diseased Cells:


NA, unassigned

chemoPv↑, 1,  

Redox & Oxidative Stress

antiOx⇅, 1,   Catalase↓, 3,   Catalase↑, 1,   CYP1A1↓, 2,   Ferroptosis↑, 1,   GPx↓, 1,   GPx4↓, 1,   GSH↓, 5,   GSR↓, 1,   GSS↑, 1,   GSTs↓, 2,   e-H2O2↓, 1,   i-H2O2∅, 1,   HO-1↓, 6,   HO-1↑, 1,   Iron↑, 1,   MDA↑, 1,   NQO1↓, 2,   NRF2↓, 8,   NRF2↑, 2,   NRF2⇅, 1,   ROS↓, 2,   ROS↑, 11,   SOD↓, 6,   SOD2↓, 1,   Trx1↑, 1,   TrxR1↓, 1,   VitC↓, 1,   VitE↓, 1,  

Metal & Cofactor Biology

IronCh↑, 1,  

Mitochondria & Bioenergetics

AIF↑, 1,   ATP↓, 1,   BOK↑, 1,   CDC2↓, 2,   p‑MEK↓, 1,   MMP↓, 5,   mtDam↑, 2,   XIAP↓, 4,  

Core Metabolism/Glycolysis

AKT1↓, 2,   ALAT∅, 1,   cMyc↓, 3,   p‑cMyc↑, 1,   FASN↓, 2,   Glycolysis↓, 2,   HK2↓, 1,   PKM2↓, 1,   SIRT1↓, 2,   SREBP2↓, 1,  

Cell Death

Akt↓, 3,   Akt↑, 1,   p‑Akt↓, 2,   APAF1↑, 1,   Apoptosis↓, 1,   Apoptosis↑, 12,   ATF2↓, 1,   BAD↑, 1,   BAX↑, 8,   Bax:Bcl2↑, 1,   Bcl-2↓, 8,   Bcl-xL↓, 2,   BID↑, 1,   Casp↑, 1,   Casp1↓, 1,   Casp12↑, 2,   cl‑Casp12↑, 1,   cl‑Casp12↝, 1,   Casp3↑, 7,   cl‑Casp3↑, 1,   Casp7↑, 1,   Casp8↑, 3,   cl‑Casp8↑, 1,   Casp9↑, 5,   cl‑Casp9↑, 1,   proCasp9↓, 1,   Cyt‑c↑, 5,   DR5↑, 5,   FADD↑, 1,   Fas↑, 4,   FasL↑, 1,   Ferroptosis↑, 1,   HGF/c-Met↓, 2,   hTERT/TERT↓, 3,   iNOS↓, 1,   JNK↓, 1,   JNK↑, 2,   p‑JNK↑, 1,   MAPK↓, 3,   MAPK↑, 1,   Mcl-1↓, 2,   MDM2↓, 2,   p‑MDM2↓, 1,   Myc↓, 1,   NAIP↓, 1,   necrosis↑, 1,   NICD↓, 1,   p27↑, 1,   p38↑, 1,   p‑p38↑, 2,   survivin↓, 2,   Telomerase↓, 2,   TumCD↑, 1,   YAP/TEAD↓, 2,  

Kinase & Signal Transduction

HER2/EBBR2↓, 1,  

Transcription & Epigenetics

EZH2↓, 2,   H3↓, 1,   ac‑H3↓, 1,   H4↓, 1,   ac‑H4↓, 1,   HATs↓, 1,   TET3↑, 1,   tumCV↓, 2,  

Protein Folding & ER Stress

cl‑ATF6↑, 1,   CHOP↑, 3,   p‑CHOP↝, 1,   eIF2α↑, 2,   p‑eIF2α↑, 2,   p‑eIF2α↝, 1,   ER Stress↑, 5,   GRP78/BiP↑, 1,   GRP94↑, 1,   HSP90↓, 2,   PERK↑, 2,   p‑PERK↝, 1,   UPR↑, 1,  

Autophagy & Lysosomes

Beclin-1↑, 3,   BNIP3↑, 1,   LC3B-II↑, 1,   LC3II↑, 2,   TumAuto↑, 3,  

DNA Damage & Repair

DNAdam↑, 1,   DNMT1↓, 1,   DNMT3A↓, 1,   DNMTs↓, 2,   P53↑, 4,   PARP↑, 1,   cl‑PARP↑, 1,   PCNA↓, 1,  

Cell Cycle & Senescence

CDK2↓, 5,   CDK4↓, 2,   cycA1/CCNA1↑, 1,   CycB/CCNB1↓, 2,   cycD1/CCND1↓, 3,   cycE/CCNE↓, 1,   P21↑, 3,   TumCCA↑, 8,  

Proliferation, Differentiation & Cell State

ALDH1A1↓, 1,   CD34↓, 1,   cFos↑, 1,   cMET↓, 1,   CSCs↓, 2,   EMT↓, 6,   ERK↓, 2,   ERK↑, 1,   p‑ERK↓, 2,   GDF15↓, 1,   GSK‐3β↓, 1,   p‑GSK‐3β↓, 1,   HDAC↓, 4,   IGF-1↓, 1,   MSCmark↓, 1,   mTOR↓, 1,   NOTCH↓, 1,   NOTCH1↓, 2,   PI3K↓, 4,   p‑PI3K↓, 1,   PTEN↓, 1,   RAS↓, 1,   p‑Src↓, 1,   STAT3↓, 3,   p‑STAT3↓, 4,   p‑STAT6↓, 1,   TAZ↓, 2,   TOP1↓, 1,   TOP2↓, 1,   TumCG↓, 4,   Wnt↓, 2,  

Migration

AEG1↓, 1,   Akt2↓, 1,   AXL↓, 1,   Ca+2↑, 2,   Cdc42↓, 1,   CEA↓, 1,   CLDN1↓, 1,   E-cadherin↓, 1,   E-cadherin↑, 5,   EM↑, 1,   FAK↓, 3,   ITGB1↓, 1,   MET↓, 1,   p‑MET↓, 1,   MMP1↓, 1,   MMP2↓, 4,   MMP9↓, 4,   MMPs↓, 1,   N-cadherin↓, 5,   PDGF↓, 1,   PKCδ↓, 1,   Rac1↓, 1,   Rho↓, 1,   Snail↓, 3,   SOX4↓, 1,   TET1↑, 2,   TGF-β↓, 1,   TIMP1↑, 1,   TIMP2↑, 1,   TumCI↓, 1,   TumCMig↓, 4,   TumCP↓, 9,   TumMeta↓, 2,   Twist↓, 2,   Tyro3↓, 1,   Vim↓, 3,   Vim↑, 1,   ZO-1↑, 1,   β-catenin/ZEB1↓, 2,  

Angiogenesis & Vasculature

angioG↓, 4,   ATF4↑, 2,   p‑ATF4↝, 1,   ECM/TCF↓, 1,   EGFR↓, 1,   EGFR↑, 1,   p‑EGFR↓, 1,   HIF-1↓, 1,   Hif1a↓, 2,   VEGF↓, 4,   VEGFR2↓, 2,  

Immune & Inflammatory Signaling

ASC↓, 1,   COX2↓, 1,   CXCR4↓, 1,   ICAM-1↓, 1,   IFN-γ↓, 1,   IKKα↓, 1,   IL1↓, 1,   IL18↓, 1,   IL2↓, 1,   IL2↑, 1,   IL6↓, 2,   IL8↓, 1,   NF-kB↓, 8,   p‑NF-kB↑, 1,   p‑p65↓, 1,   PD-1↓, 1,   PD-L1↓, 1,   TNF-α↓, 2,  

Protein Aggregation

NLRP3↓, 1,  

Hormonal & Nuclear Receptors

AR↓, 2,   CDK6↓, 1,   CYP19↓, 1,  

Drug Metabolism & Resistance

BioAv↓, 1,   BioAv↑, 3,   ChemoSen↓, 1,   ChemoSen↑, 8,   CYP1A2↓, 1,   Dose?, 1,   Dose↝, 1,   eff↓, 4,   eff↑, 4,   Half-Life↝, 1,   MDR1↓, 2,   P450↓, 1,   RadioS↑, 3,   selectivity↑, 2,   TET2↓, 1,  

Clinical Biomarkers

ALAT∅, 1,   AR↓, 2,   AST∅, 1,   CEA↓, 1,   EGFR↓, 1,   EGFR↑, 1,   p‑EGFR↓, 1,   EZH2↓, 2,   GutMicro↑, 1,   HER2/EBBR2↓, 1,   hTERT/TERT↓, 3,   IL6↓, 2,   Myc↓, 1,   NSE↓, 1,   PD-L1↓, 1,  

Functional Outcomes

AntiCan↑, 1,   cachexia↓, 1,   cardioP↑, 1,   chemoP↑, 3,   Weight∅, 1,  
Total Targets: 284

Pathway results for Effect on Normal Cells:


Redox & Oxidative Stress

antiOx↑, 8,   Catalase↑, 5,   Ferroptosis↓, 1,   GPx↑, 2,   GPx4∅, 1,   GSH↑, 5,   GSR↑, 2,   GSTA1↑, 1,   GSTs↑, 2,   HO-1↑, 3,   HO-1∅, 1,   lipid-P↓, 5,   MDA↓, 2,   NQO1↑, 1,   NRF2↓, 2,   NRF2↑, 4,   NRF2∅, 1,   PrxII↑, 1,   ROS↓, 15,   SOD↑, 7,  

Metal & Cofactor Biology

IronCh↑, 1,  

Mitochondria & Bioenergetics

ATP↑, 2,   p‑MEK↓, 1,   p‑MKK4↑, 1,   MMP↑, 2,   Raf↓, 1,  

Core Metabolism/Glycolysis

ACSL4∅, 1,   ALAT↓, 1,   AMPK↑, 2,   CREB↑, 1,   LDHA↑, 1,   PPARα↑, 1,   PPARγ↑, 1,   SIRT1↑, 2,   SREBP1↓, 1,  

Cell Death

p‑Akt↓, 1,   Apoptosis↓, 1,   BAX↓, 1,   Bax:Bcl2↓, 1,   Bcl-2↑, 1,   Casp1↓, 1,   Casp3↓, 3,   Casp9↓, 1,   Casp9↑, 1,   Cyt‑c↓, 1,   Ferroptosis↓, 1,   iNOS↓, 1,   p‑JNK↓, 1,   p‑p38↓, 1,  

Transcription & Epigenetics

other↓, 2,  

Protein Folding & ER Stress

CHOP↓, 1,   ER Stress↓, 1,   GRP78/BiP↑, 1,   UPR↑, 1,  

Autophagy & Lysosomes

Beclin-1↓, 1,  

DNA Damage & Repair

p‑γH2AX↓, 1,  

Proliferation, Differentiation & Cell State

p‑ERK↓, 1,   GSK‐3β↓, 2,   HDAC2↓, 1,   p‑mTOR↓, 1,   PI3K↓, 1,  

Migration

AntiAg↑, 2,   AP-1↓, 1,   E-cadherin↑, 1,   MMP1↓, 1,   PDGF↓, 1,   TXNIP↓, 1,   Vim↓, 1,   ZO-1↑, 1,  

Angiogenesis & Vasculature

ATF4↓, 1,   NO↓, 1,  

Barriers & Transport

BBB↑, 3,  

Immune & Inflammatory Signaling

COX2↓, 2,   COX2∅, 1,   IFN-γ↓, 1,   IL10↑, 1,   IL18↓, 1,   IL1β↓, 3,   IL2↓, 1,   IL33↓, 1,   IL6↓, 3,   IL8↓, 1,   Inflam↓, 5,   NF-kB↓, 2,   p‑NF-kB↓, 1,   PGE2↓, 1,   TLR4↓, 1,   TNF-α↓, 2,  

Synaptic & Neurotransmission

AChE↓, 3,   BDNF↑, 2,   tau↓, 2,   p‑tau↓, 2,   TrkB↑, 1,  

Protein Aggregation

Aβ↓, 3,   BACE↓, 1,   NLRP3↓, 1,  

Drug Metabolism & Resistance

BioAv↓, 3,   BioAv↑, 1,   BioAv↝, 1,   eff↑, 4,   Half-Life↝, 1,  

Clinical Biomarkers

ALAT↓, 1,   AST↓, 1,   BloodF↑, 1,   GutMicro↑, 1,   IL6↓, 3,  

Functional Outcomes

cardioP↑, 1,   cognitive↑, 2,   hepatoP↑, 1,   memory↑, 1,   neuroP↑, 5,   RenoP↑, 1,   toxicity↓, 1,   toxicity↑, 1,  
Total Targets: 114

Query results interpretion may depend on "conditions" listed in the research papers.
Such Conditions may include : 
  -low or high Dose
  -format for product, such as nano of lipid formations
  -different cell line effects
  -synergies with other products 
  -if effect was for normal or cancerous cells
Filter Conditions: Pro/AntiFlg:%  IllCat:%  CanType:%  Cells:%  prod#:118  Target#:%  State#:%  Dir#:%
wNotes=0 sortOrder:rid,rpid

 

Home Page