| Features: |
| Red sage, redroot sage, Chinese sage or danshen. Salvianolic Acid A (SAA) is predominantly isolated from Salvia miltiorrhiza, commonly known as Danshen. Tanshinone IIA is the main effective component of Salvia miltiorrhiza known as 'Danshen' Salvianolic Acid A, primarily derived from Salvia miltiorrhiza (Danshen), shows promise in cancer research due to its ability to inhibit cell proliferation, induce apoptosis, reduce angiogenesis, and impact multiple signaling pathways involved in tumor progression. Salvianolic Acid A may impact several intracellular signaling pathways involved in cancer progression: NF-κB Pathway: SAA might inhibit the NF-κB pathway, reducing inflammation and cell proliferation signals. MAPK Pathways (ERK, JNK, p38): By modulating these pathways, SAA can influence cell survival, differentiation, and apoptosis. PI3K/Akt Pathway: Inhibition of this pathway is another mechanism through which SAA can reduce cancer cell survival and proliferation. Oxidative Stress Reduction: SAA’s antioxidant properties may help in reducing oxidative stress, which is implicated in cancer progression and chemoresistance. Synergistic Effects with Conventional Therapies: Preliminary studies suggest that Salvianolic Acid A might enhance the effectiveness of various chemotherapeutic agents. Some studies have observed anti-proliferative effects at concentrations around 10–50 µM. rodent models have been reported in the range of 10–100 mg/kg |
| 1068- | SM, | Danshen Improves Survival of Patients With Breast Cancer and Dihydroisotanshinone I Induces Ferroptosis and Apoptosis of Breast Cancer Cells |
| - | in-vitro, | BC, | MCF-7 | - | in-vitro, | BC, | MDA-MB-231 | - | in-vivo, | BC, | NA | - | Human, | BC, | NA |
| 1133- | SM, | Salvianolic Acid A, a Component of Salvia miltiorrhiza, Attenuates Endothelial-Mesenchymal Transition of HPAECs Induced by Hypoxia |
| - | in-vitro, | Nor, | HPAECs |
| 1191- | SM, | Salvia miltiorrhiza extract inhibits TPA‑induced MMP‑9 expression and invasion through the MAPK/AP‑1 signaling pathw |
| - | in-vitro, | BC, | MCF-7 |
| 1192- | SM, | Abietane diterpenes from Salvia miltiorrhiza inhibit the activation of hypoxia-inducible factor-1 |
| - | in-vitro, | GC, | AGS | - | in-vitro, | Liver, | HepG3 |
| 1193- | SM, | Cryptotanshinone from the Salvia miltiorrhiza Bunge Attenuates Ethanol-Induced Liver Injury by Activation of AMPK/SIRT1 and Nrf2 Signaling Pathways |
| - | in-vivo, | Alcohol, | NA | - | in-vitro, | Liver, | HepG2 |
| 1194- | SM, | Salvia miltiorrhiza protects against diabetic nephropathy through metabolome regulation and wnt/β-catenin and TGF-β signaling inhibition |
| - | in-vivo, | Diabetic, | NA |
| 1195- | SM, | Salvia miltiorrhiza polysaccharide activates T Lymphocytes of cancer patients through activation of TLRs mediated -MAPK and -NF-κB signaling pathways |
| - | in-vitro, | Lung, | A549 | - | in-vitro, | Liver, | HepG2 | - | in-vitro, | CRC, | HCT116 |
| 1291- | SM, | Tanshinone IIA inhibits human breast cancer cells through increased Bax to Bcl-xL ratios |
| - | in-vitro, | BC, | MDA-MB-231 |
Query results interpretion may depend on "conditions" listed in the research papers. Such Conditions may include : -low or high Dose -format for product, such as nano of lipid formations -different cell line effects -synergies with other products -if effect was for normal or cancerous cells
Filter Conditions: Pro/AntiFlg:% IllCat:% CanType:% Cells:% prod#:146 Target#:% State#:% Dir#:%
wNotes=0 sortOrder:rid,rpid