Database Query Results : 5-fluorouracil, ,

5-FU, 5-fluorouracil: Click to Expand ⟱
Features:
5-FU is a chemotherapy medication used to treat various types of cancer, including colorectal, breast, stomach, and pancreatic cancer. It belongs to a class of drugs known as antimetabolites, which work by interfering with the growth and replication of cancer cells.
Mechanisms:
- irreversibly inhibits Thymidylate Synthase (TS), thereby depleting the deoxythymidine monophosphate (dTMP) pool required for DNA synthesis. The resulting “thymineless death” prevents DNA replication and repair, particularly affecting rapidly proliferating tumor cells.

5-FU is a cornerstone in chemotherapy with a dual mechanism of action—primarily inhibiting thymidylate synthase (leading to disruption of DNA synthesis) and interfering with RNA processing by misincorporation. Its metabolism via activation (OPRT) and degradation (DPD) plays a crucial role in both its effectiveness and toxicity. Clinically, 5-FU is extensively used in treating a variety of cancers, most notably colorectal cancer, and remains a mainstay in multi-agent chemotherapeutic regimens due to its proven efficacy across diverse cancer types.

5-FU is one of the most common chemotherapeutic agents worldwide, particularly noted in gastrointestinal (GI) cancers.


Scientific Papers found: Click to Expand⟱
4774- 5-FU,  TQ,  CoQ10,    Exploring potential additive effects of 5-fluorouracil, thymoquinone, and coenzyme Q10 triple therapy on colon cancer cells in relation to glycolysis and redox status modulation
- in-vitro, CRC, NA
AntiCan↑, TumCCA↑, Apoptosis↑, eff↑, Bcl-2↓, survivin↓, P21↑, p27↑, BAX↑, Cyt‑c↑, Casp3↑, PI3K↓, Akt↓, mTOR↓, Hif1a↓, PTEN↑, AMPKα↑, PDH↑, LDHA↓, antiOx↓, ROS↑, AntiCan↑,
233- AL,  5-FU,    Allicin sensitizes hepatocellular cancer cells to anti-tumor activity of 5-fluorouracil through ROS-mediated mitochondrial pathway
- in-vivo, Liver, NA
ROS↑, MMP↓, Casp3↑, PARP↑, Bcl-2↓,
1009- And,  5-FU,    Andrographis-mediated chemosensitization through activation of ferroptosis and suppression of β-catenin/Wnt-signaling pathways in colorectal cancer
- in-vivo, CRC, HCT116 - in-vitro, CRC, SW480
ChemoSen↑, Casp9↑, Ferroptosis↑, Wnt/(β-catenin)↓, FTL↑, TP53↑, ACSL5↑, GCLC↑, GCLM↑, SAT1↑, STEAP3↑, ACSL5↑,
1294- And,  5-FU,    Andrographolide reversed 5-FU resistance in human colorectal cancer by elevating BAX expression
- in-vitro, CRC, HCT116
Apoptosis↑, BAX↑,
586- Api,  5-FU,    5-Fluorouracil combined with apigenin enhances anticancer activity through mitochondrial membrane potential (ΔΨm)-mediated apoptosis in hepatocellular carcinoma
- in-vivo, HCC, NA
ROS↑, MMP↓, Bcl-2↓, Casp3↑, PARP↑,
589- Api,  5-FU,    Interactions between dietary flavonoids apigenin or luteolin and chemotherapeutic drugs to potentiate anti-proliferative effect on human pancreatic cancer cells, in vitro
- in-vitro, PC, Bxpc-3
GSK‐3β↓, NF-kB↓,
1000- AS,  5-FU,    Characterization and anti-tumor bioactivity of astragalus polysaccharides by immunomodulation
- vitro+vivo, BC, 4T1
TumCG↓, TumCCA↑, Apoptosis↑, *IL2↑, *TNF-α↑, *IFN-γ↑,
2295- Ba,  5-FU,    Baicalein reverses hypoxia-induced 5-FU resistance in gastric cancer AGS cells through suppression of glycolysis and the PTEN/Akt/HIF-1α signaling pathway
- in-vitro, GC, AGS
ChemoSen↑, HK2↓, LDHA↓, PDK1↓, Akt↓, PTEN↑, Hif1a↓, Glycolysis↓, ROS↑, CHOP↑,
1385- BBR,  5-FU,    Low-Dose Berberine Attenuates the Anti-Breast Cancer Activity of Chemotherapeutic Agents via Induction of Autophagy and Antioxidation
- in-vitro, BC, MCF-7 - in-vitro, BC, MDA-MB-231
eff↓, ROS↑, TumCP↑, NRF2↑, ChemoSen↓,
751- Bor,  5-FU,    Cytotoxic and Apoptotic Effects of the Combination of Borax (Sodium Tetraborate) and 5-Fluorouracil on DLD-1 Human Colorectal Adenocarcinoma Cell Line
- in-vitro, CRC, DLD1
Apoptosis↑,
939- Catechins,  5-FU,    Targeting Lactate Dehydrogenase A with Catechin Resensitizes SNU620/5FU Gastric Cancer Cells to 5-Fluorouracil
- vitro+vivo, GC, SNU620
lactateProd↓, ROS↑, tumCV↓, LDHA↓, mt-ROS↑, proApCas↑,
2803- CHr,  5-FU,    Potentiating activities of chrysin in the therapeutic efficacy of 5-fluorouracil in gastric cancer cells
- in-vitro, GC, AGS
ChemoSen↑, TumCCA↑, eff↑, MDR1↓,
405- CUR,  5-FU,    Curcumin activates a ROS/KEAP1/NRF2/miR-34a/b/c cascade to suppress colorectal cancer metastasis
- vitro+vivo, CRC, HCT116
Apoptosis↑, TumCMig↓, NRF2↑, ROS↑, MET↑, miR-34a↑,
468- CUR,  5-FU,    Gut microbiota enhances the chemosensitivity of hepatocellular carcinoma to 5-fluorouracil in vivo by increasing curcumin bioavailability
- vitro+vivo, Liver, HepG2 - vitro+vivo, Liver, 402 - vitro+vivo, Liver, Bel7
Apoptosis↑, TumCCA↑, PI3k/Akt/mTOR↓, p‑PI3K↓, Bacteria↑, cl‑Casp3↑,
442- CUR,  5-FU,    Curcumin may reverse 5-fluorouracil resistance on colonic cancer cells by regulating TET1-NKD-Wnt signal pathway to inhibit the EMT progress
- in-vitro, CRC, HCT116
Apoptosis↑, TumCP↓, TumCCA↑, TET1↑, NKD2↑, Wnt↓, EMT↓, Vim↑, E-cadherin↓, β-catenin/ZEB1↓, TCF↓, AXIN1↓,
1878- DCA,  5-FU,    Synergistic Antitumor Effect of Dichloroacetate in Combination with 5-Fluorouracil in Colorectal Cancer
- in-vitro, CRC, LS174T - in-vitro, CRC, LoVo - in-vitro, CRC, SW-620 - in-vitro, CRC, HT-29
tumCV↓, eff↑, PDKs↓, lactateProd↓, Glycolysis↓, mitResp↑, TumCCA↑, Bcl-2↓, BAX↑, Casp3↑,
679- EGCG,  5-FU,    Epigallocatechin-3-gallate targets cancer stem-like cells and enhances 5-fluorouracil chemosensitivity in colorectal cancer
- in-vitro, CRC, NA
NOTCH1↓, BMI1↓, SUZ12↓, EZH2↓, miR-34a↑, miR-200c↑, miR-145↑, CSCs↓,
4781- Lyco,  5-FU,  Chemo,  Cisplatin,    Antioxidant and anti-inflammatory activities of lycopene against 5-fluorouracil-induced cytotoxicity in Caco2 cells
- in-vitro, Colon, Caco-2
chemoP↑, Inflam↓, COX2↓, IL1β↓, IL6↓, TNF-α↓, ROS↑, ChemoSen↑, SOD↓,
4535- MAG,  5-FU,    Magnolol and 5-fluorouracil synergy inhibition of metastasis of cervical cancer cells by targeting PI3K/AKT/mTOR and EMT pathways
- in-vitro, Cerv, NA
ChemoSen↑, TumCP↓, vinculin↓, TumCA↓, TumCMig↓, TumCI↓, p‑Akt↓, p‑PI3K↓, mTOR↓, E-cadherin↑, β-catenin/ZEB1↑, Snail↓, Slug↓,
1678- PBG,  5-FU,  sericin,    In vitro and in vivo anti-colorectal cancer effect of the newly synthesized sericin/propolis/fluorouracil nanoplatform through modulation of PI3K/AKT/mTOR pathway
- in-vitro, CRC, Caco-2 - in-vivo, NA, NA
PI3K↓, Akt↓, mTOR↓, TumCP↓, Bcl-2↓, BAX↑, Casp3↑, Casp9↑, ROS↓, FOXO1↑, *toxicity∅, eff↑,
1952- PL,  5-FU,    Piperlongumine induces ROS accumulation to reverse resistance of 5-FU in human colorectal cancer via targeting TrxR
- in-vivo, CRC, HCT8
ROS↑, TrxR↓, eff↑, p‑Akt↓,
3398- TQ,  5-FU,    Impact of thymoquinone on the Nrf2/HO-1 and MAPK/NF-κB axis in mitigating 5-fluorouracil-induced acute kidney injury in vivo
- in-vivo, Nor, NA
*RenoP↑, *TAC↑, *ROS↓, *lipid-P↓, *p38↓, *MAPK↓, *NF-kB↓, *NRF2↑, *HO-1↑, *MDA↓, *GPx↑, *GSR↑, *Catalase↑, *BUN↓, *LDH↓, *IL1β↓,
4888- ZER,  5-FU,    Modulation of the tumor microenvironment by zerumbone and 5-fluorouracil in colorectal cancer by target in cancer-associated fibroblasts
- in-vitro, CRC, CT26
TumVol↓, *tumCV↓, survivin↓, β-catenin/ZEB1↓, Vim↓,

* indicates research on normal cells as opposed to diseased cells
Total Research Paper Matches: 23

Pathway results for Effect on Cancer / Diseased Cells:


Redox & Oxidative Stress

antiOx↓, 1,   Ferroptosis↑, 1,   GCLC↑, 1,   GCLM↑, 1,   NRF2↑, 2,   ROS↓, 1,   ROS↑, 9,   mt-ROS↑, 1,   SOD↓, 1,   TrxR↓, 1,  

Metal & Cofactor Biology

FTL↑, 1,   STEAP3↑, 1,  

Mitochondria & Bioenergetics

mitResp↑, 1,   MMP↓, 2,  

Core Metabolism/Glycolysis

ACSL5↑, 2,   Glycolysis↓, 2,   HK2↓, 1,   lactateProd↓, 2,   LDHA↓, 3,   PDH↑, 1,   PDK1↓, 1,   PDKs↓, 1,   PI3k/Akt/mTOR↓, 1,   SAT1↑, 1,  

Cell Death

Akt↓, 3,   p‑Akt↓, 2,   Apoptosis↑, 7,   BAX↑, 4,   Bcl-2↓, 5,   Casp3↑, 5,   cl‑Casp3↑, 1,   Casp9↑, 2,   Cyt‑c↑, 1,   Ferroptosis↑, 1,   p27↑, 1,   proApCas↑, 1,   survivin↓, 2,  

Kinase & Signal Transduction

AMPKα↑, 1,  

Transcription & Epigenetics

EZH2↓, 1,   miR-145↑, 1,   tumCV↓, 2,  

Protein Folding & ER Stress

CHOP↑, 1,  

DNA Damage & Repair

PARP↑, 2,   TP53↑, 1,  

Cell Cycle & Senescence

P21↑, 1,   TumCCA↑, 6,  

Proliferation, Differentiation & Cell State

AXIN1↓, 1,   BMI1↓, 1,   CSCs↓, 1,   EMT↓, 1,   FOXO1↑, 1,   GSK‐3β↓, 1,   miR-34a↑, 2,   mTOR↓, 3,   NKD2↑, 1,   NOTCH1↓, 1,   PI3K↓, 2,   p‑PI3K↓, 2,   PTEN↑, 2,   SUZ12↓, 1,   TCF↓, 1,   TumCG↓, 1,   Wnt↓, 1,   Wnt/(β-catenin)↓, 1,  

Migration

E-cadherin↓, 1,   E-cadherin↑, 1,   MET↑, 1,   miR-200c↑, 1,   Slug↓, 1,   Snail↓, 1,   TET1↑, 1,   TumCA↓, 1,   TumCI↓, 1,   TumCMig↓, 2,   TumCP↓, 3,   TumCP↑, 1,   Vim↓, 1,   Vim↑, 1,   vinculin↓, 1,   β-catenin/ZEB1↓, 2,   β-catenin/ZEB1↑, 1,  

Angiogenesis & Vasculature

Hif1a↓, 2,  

Immune & Inflammatory Signaling

COX2↓, 1,   IL1β↓, 1,   IL6↓, 1,   Inflam↓, 1,   NF-kB↓, 1,   TNF-α↓, 1,  

Drug Metabolism & Resistance

ChemoSen↓, 1,   ChemoSen↑, 5,   eff↓, 1,   eff↑, 5,   MDR1↓, 1,  

Clinical Biomarkers

EZH2↓, 1,   IL6↓, 1,   SUZ12↓, 1,   TP53↑, 1,  

Functional Outcomes

AntiCan↑, 2,   chemoP↑, 1,   TumVol↓, 1,  

Infection & Microbiome

Bacteria↑, 1,  
Total Targets: 101

Pathway results for Effect on Normal Cells:


Redox & Oxidative Stress

Catalase↑, 1,   GPx↑, 1,   GSR↑, 1,   HO-1↑, 1,   lipid-P↓, 1,   MDA↓, 1,   NRF2↑, 1,   ROS↓, 1,   TAC↑, 1,  

Core Metabolism/Glycolysis

BUN↓, 1,   LDH↓, 1,  

Cell Death

MAPK↓, 1,   p38↓, 1,  

Transcription & Epigenetics

tumCV↓, 1,  

Immune & Inflammatory Signaling

IFN-γ↑, 1,   IL1β↓, 1,   IL2↑, 1,   NF-kB↓, 1,   TNF-α↑, 1,  

Clinical Biomarkers

LDH↓, 1,  

Functional Outcomes

RenoP↑, 1,   toxicity∅, 1,  
Total Targets: 22

Query results interpretion may depend on "conditions" listed in the research papers.
Such Conditions may include : 
  -low or high Dose
  -format for product, such as nano of lipid formations
  -different cell line effects
  -synergies with other products 
  -if effect was for normal or cancerous cells
Filter Conditions: Pro/AntiFlg:%  IllCat:%  CanType:%  Cells:%  prod#:191  Target#:%  State#:%  Dir#:%
wNotes=0 sortOrder:rid,rpid

 

Home Page