Database Query Results : immunotherapy, ,

immuno, immunotherapy: Click to Expand ⟱
Features:
PD-1 blockade antibody therapy is one of the cornerstone approaches in modern cancer immunotherapy.
Under normal physiological conditions, when PD-1 binds to its ligands (PD-L1 or PD-L2) on other cells, it functions as a "checkpoint" to reduce overly active T cell responses and prevent autoimmunity.
PD-1 blockade therapies involve monoclonal antibodies that target either PD-1 or its ligand PD-L1.
• By blocking the interaction between PD-1 and its ligands, these antibodies effectively release the "brakes" on T cells.
• The re-activated T cells can then recognize and destroy cancer cells more efficiently.


Scientific Papers found: Click to Expand⟱
1161- ACNs,  immuno,    Bilberry anthocyanin extracts enhance anti-PD-L1 efficiency by modulating gut microbiota
- in-vivo, Colon, MC38
GutMicro↑,
542- Akk,  immuno,    Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors
CD4+↑, CXCc↑, PD-1↝,
1360- Ash,  immuno,    Withaferin A Increases the Effectiveness of Immune Checkpoint Blocker for the Treatment of Non-Small Cell Lung Cancer
- in-vitro, Lung, H1650 - in-vitro, Lung, A549 - in-vitro, CRC, HCT116 - in-vitro, BC, MDA-MB-231 - in-vivo, NA, NA
PD-L1↑, eff↓, ROS↑, ER Stress↑, Apoptosis↑, BAX↑, Bak↑, BAD↑, Bcl-2↓, XIAP↓, survivin↓, cl‑PARP↑, CHOP↑, p‑eIF2α↑, ICD↑, eff↑,
1376- BBR,  immuno,    Berberine sensitizes immune checkpoint blockade therapy in melanoma by NQO1 inhibition and ROS activation
- in-vivo, Melanoma, NA
OS↑, ROS↑, NQO1↓, ICD↑,
1205- Caff,  immuno,    Caffeine-enhanced anti-tumor activity of anti-PD1 monoclonal antibody
- in-vivo, Melanoma, B16-F10
OS↑, CD4+↑, CD8+↑, AntiTum↑, TNF-α↑, IFN-γ↑,
1244- CGA,  immuno,    Cancer Differentiation Inducer Chlorogenic Acid Suppresses PD-L1 Expression and Boosts Antitumor Immunity of PD-1 Antibody
- in-vivo, NA, NA
PD-L1↓, T-Cell↑, eff↑,
1034- CUR,  immuno,    Enhanced anti‐tumor effects of the PD‐1 blockade combined with a highly absorptive form of curcumin targeting STAT3
- in-vivo, NA, NA
DCells↑, T-Cell↑,
1856- dietFMD,  immuno,    Targeting the Gut Microbiome to Improve Immunotherapy Outcomes: A Review
- Review, Var, NA
GutMicro↑,
4914- DSF,  immuno,    Disulfiram and cancer immunotherapy: Advanced nano-delivery systems and potential therapeutic strategies
- Review, Var, NA
AntiTum↑, eff↑, ALDH↓, Dose↝, RadioS↑, angioG↓, TumMeta↓, BioAv↝, ROS↑, DNAdam↑, P-gp↓, CSCs↓, EMT↓, Imm↑, SOD↓, MAPK↓, NF-kB↓, ChemoSen↑, eff↑, toxicity↝, BioAv↑, *Inflam↓, Sepsis↓,
1038- F,  immuno,    Fucoidan enhances the anti-tumor effect of anti-PD-1 immunotherapy by regulating gut microbiota.
- in-vivo, BC, NA
GutMicro↑, T-Cell↑, Treg lymp↓,
1283- GA,  immuno,    Gallic acid induces T-helper-1-like Treg cells and strengthens immune checkpoint blockade efficacy
- vitro+vivo, CRC, NA
p‑STAT3↓, Treg lymp↓, FOXP3↓, CD8+↑, IFN-γ↑,
1041- Lyco,  immuno,    Lycopene improves the efficiency of anti-PD-1 therapy via activating IFN signaling of lung cancer cells
- in-vivo, Lung, NA
TumVol↓, TumW↓, eff↑, IL1↑, IFN-γ↑, IL4↓, IL10↓,
1043- MET,  immuno,    Metformin reduces PD-L1 on tumor cells and enhances the anti-tumor immune response generated by vaccine immunotherapy
- in-vitro, NA, NA
eff↑, PD-L1↓, Ki-67↑, TIM-3↑, L-sel↑,
582- MF,  immuno,  VitC,    Magnetic field boosted ferroptosis-like cell death and responsive MRI using hybrid vesicles for cancer immunotherapy
- in-vitro, Pca, TRAMP-C1 - in-vivo, NA, NA
Fenton↑, Ferroptosis↑, ROS↑, TumCG↓, Iron↑, GPx4↓,
537- MF,  immuno,    Integrating electromagnetic cancer stress with immunotherapy: a therapeutic paradigm
- Review, Var, NA
Apoptosis↑, ROS↑, TumAuto↑, Ca+2↑, ATP↓, eff↑, eff↑,
516- MFrot,  immuno,  MF,    Anti-tumor effect of innovative tumor treatment device OM-100 through enhancing anti-PD-1 immunotherapy in glioblastoma growth
- vitro+vivo, GBM, U87MG
TumCP↓, Apoptosis↑, TumCMig↓, ROS↑, PD-L1↑, TumVol↓, eff↑, *toxicity∅, eff↑, *toxicity∅, Dose↝, tumCV↓, TumCI↓,
1046- ProBio,  immuno,    Combination Therapy of Bifidobacterium longum RAPO With Anti-PD-1 Treatment Enhances Anti-tumor Immune Response in Association With Gut Microbiota Modulation
- in-vivo, NA, NA
TumVol↓, GutMicro↑,
4690- PTS,  immuno,    Pterostilbene: Mechanisms of its action as oncostatic agent in cell models and in vivo studies
- Review, Var, NA
eff↑, Half-Life↑, TumCG↓, TumMeta↓, angioG↓, CSCs↓, Apoptosis↑, eff↑, CD44↓, CD24↓,
337- SNP,  immuno,    Silver nanoparticle induced immunogenic cell death can improve immunotherapy
- Review, NA, NA
PD-L1↓,
4893- Sper,  immuno,    Chemoproteomic Identification of Spermidine-Binding Proteins and Antitumor-Immunity Activators
- in-vitro, Var, NA
*mt-FAO↑, eff↑,
4896- Sper,  immuno,    Spermidine potentiates anti-tumor immune responses and immunotherapy sensitivity in breast cancer
- vitro+vivo, BC, NA
eff↑, AntiTum↑,
1051- Taur,  immuno,    Taurine enhances the antitumor efficacy of PD-1 antibody by boosting CD8+ T cell function
- in-vivo, Lung, NA
TumCG↓,
1215- VitC,  immuno,    Metabolomics reveals ascorbic acid inhibits ferroptosis in hepatocytes and boosts the effectiveness of anti-PD1 immunotherapy in hepatocellular carcinoma
- ex-vivo, HCC, NA - in-vivo, HCC, NA
other↓, *GPx4↑, *GSH↑, GPx4↓, GSH↓, selectivity↑,
3121- VitC,  immuno,    Ascorbic acid induced TET2 enzyme activation enhances cancer immunotherapy efficacy in renal cell carcinoma
- in-vivo, RCC, A498 - in-vitro, RCC, 786-O
TET2↑, eff↑, eff↑,

* indicates research on normal cells as opposed to diseased cells
Total Research Paper Matches: 24

Pathway results for Effect on Cancer / Diseased Cells:


Redox & Oxidative Stress

Fenton↑, 1,   Ferroptosis↑, 1,   GPx4↓, 2,   GSH↓, 1,   ICD↑, 2,   Iron↑, 1,   NQO1↓, 1,   ROS↑, 6,   SOD↓, 1,  

Mitochondria & Bioenergetics

ATP↓, 1,   XIAP↓, 1,  

Cell Death

Apoptosis↑, 4,   BAD↑, 1,   Bak↑, 1,   BAX↑, 1,   Bcl-2↓, 1,   Ferroptosis↑, 1,   MAPK↓, 1,   survivin↓, 1,  

Transcription & Epigenetics

other↓, 1,   tumCV↓, 1,  

Protein Folding & ER Stress

CHOP↑, 1,   p‑eIF2α↑, 1,   ER Stress↑, 1,  

Autophagy & Lysosomes

TumAuto↑, 1,  

DNA Damage & Repair

DNAdam↑, 1,   cl‑PARP↑, 1,  

Proliferation, Differentiation & Cell State

ALDH↓, 1,   CD24↓, 1,   CD44↓, 1,   CSCs↓, 2,   EMT↓, 1,   p‑STAT3↓, 1,   TumCG↓, 3,  

Migration

Ca+2↑, 1,   Ki-67↑, 1,   L-sel↑, 1,   Treg lymp↓, 2,   TumCI↓, 1,   TumCMig↓, 1,   TumCP↓, 1,   TumMeta↓, 2,  

Angiogenesis & Vasculature

angioG↓, 2,  

Barriers & Transport

P-gp↓, 1,  

Immune & Inflammatory Signaling

CD4+↑, 2,   CXCc↑, 1,   DCells↑, 1,   FOXP3↓, 1,   IFN-γ↑, 3,   IL1↑, 1,   IL10↓, 1,   IL4↓, 1,   Imm↑, 1,   NF-kB↓, 1,   PD-1↝, 1,   PD-L1↓, 3,   PD-L1↑, 2,   T-Cell↑, 3,   TNF-α↑, 1,  

Cellular Microenvironment

TIM-3↑, 1,  

Drug Metabolism & Resistance

BioAv↑, 1,   BioAv↝, 1,   ChemoSen↑, 1,   Dose↝, 2,   eff↓, 1,   eff↑, 16,   Half-Life↑, 1,   RadioS↑, 1,   selectivity↑, 1,   TET2↑, 1,  

Clinical Biomarkers

GutMicro↑, 4,   Ki-67↑, 1,   PD-L1↓, 3,   PD-L1↑, 2,  

Functional Outcomes

AntiTum↑, 3,   OS↑, 2,   toxicity↝, 1,   TumVol↓, 3,   TumW↓, 1,  

Infection & Microbiome

CD8+↑, 2,   Sepsis↓, 1,  
Total Targets: 81

Pathway results for Effect on Normal Cells:


Redox & Oxidative Stress

GPx4↑, 1,   GSH↑, 1,  

Core Metabolism/Glycolysis

mt-FAO↑, 1,  

Immune & Inflammatory Signaling

Inflam↓, 1,  

Functional Outcomes

toxicity∅, 2,  
Total Targets: 5

Query results interpretion may depend on "conditions" listed in the research papers.
Such Conditions may include : 
  -low or high Dose
  -format for product, such as nano of lipid formations
  -different cell line effects
  -synergies with other products 
  -if effect was for normal or cancerous cells
Filter Conditions: Pro/AntiFlg:%  IllCat:%  CanType:%  Cells:%  prod#:207  Target#:%  State#:%  Dir#:%
wNotes=0 sortOrder:rid,rpid

 

Home Page