Database Query Results : Aflavin-3,3′-digallate, ,

TFdiG, Aflavin-3,3′-digallate: Click to Expand ⟱
Features:
Aflavin-3,3′-digallate (TFdiG) is a natural product. It is a flavonoid derivative that is found in certain plants, including tea plants (Camellia sinensis).

TFdiG is a type of theaflavin, which is a class of flavonoids that are unique to tea plants. Theaflavins are formed during the fermentation process of tea production, and they are responsible for the characteristic astringent taste and dark color of black tea.

TFdiG is one of the most abundant theaflavins found in black tea, and it has been shown to have a range of biological activities, including anti-inflammatory, antioxidant, and anti-cancer effects. Other natural sources of TFdiG include:
Black tea: TFdiG is found in high amounts in black tea, particularly in the leaves and buds of the tea plant.
Green tea: TFdiG is also found in green tea, although in lower amounts than in black tea.
Oolong tea: TFdiG is found in oolong tea, which is a type of tea that is partially fermented.
Aflavin-3,3′-digallate is a naturally derived polyphenolic compound that has shown promise in preclinical studies through its antioxidant, apoptosis-inducing, and cell cycle-arresting effects. Its potential modulation of key oncogenic signaling pathways is an additional point of interest. However, the compound is still in the early phases of research, lacking extensive in vivo validation and clinical trial data.


Scientific Papers found: Click to Expand⟱
695- EGCG,  TFdiG,    The antioxidant and pro-oxidant activities of green tea polyphenols: a role in cancer prevention
- in-vitro, NA, HL-60
ROS↑, IronCh↑, Apoptosis↑,

* indicates research on normal cells as opposed to diseased cells
Total Research Paper Matches: 1

Pathway results for Effect on Cancer / Diseased Cells:


Redox & Oxidative Stress

ROS↑, 1,  

Metal & Cofactor Biology

IronCh↑, 1,  

Cell Death

Apoptosis↑, 1,  
Total Targets: 3

Pathway results for Effect on Normal Cells:


Total Targets: 0

Query results interpretion may depend on "conditions" listed in the research papers.
Such Conditions may include : 
  -low or high Dose
  -format for product, such as nano of lipid formations
  -different cell line effects
  -synergies with other products 
  -if effect was for normal or cancerous cells
Filter Conditions: Pro/AntiFlg:%  IllCat:%  CanType:%  Cells:%  prod#:238  Target#:%  State#:%  Dir#:%
wNotes=0 sortOrder:rid,rpid

 

Home Page