| Features: |
| Baicalein is a flavone, a type of flavonoid, originally isolated from the roots of Scutellaria baicalensis and Scutellaria lateriflora. It is also a constituent of Oroxylum indicum and thyme. Baicalein, a flavonoid found in several medicinal plants (notably Scutellaria baicalensis), has been investigated for its anticancer properties. Its activities involve modulation of multiple cellular pathways, including those that regulate cell proliferation, apoptosis, metastasis, and oxidative stress. Here are some of the key pathways and mechanisms implicated in its anticancer effects: -Apoptosis and Cell Cycle Regulation -Reactive Oxygen Species ROS↑ Generation and Oxidative Stress - ROS↑ related: MMP↓(ΔΨm), ER Stress↑, Ca+2↑, Cyt‑c↑, Caspase-3↑, Caspase-9↑, DNA damage↑, -Baicalein’s effects on ROS are context-dependent. In some cancer cells, it promotes ROS production to a degree that overwhelms the antioxidant defenses. Elevated ROS levels can damage cellular components and promote apoptosis, essentially tipping the balance toward cell death. -Conversely, in normal cells, baicalein may exhibit antioxidant properties and reduce ROS↓ under conditions of oxidative stress, highlighting its dual role. - Lowers AntiOxidant defense in Cancer Cells: NRF2↓, GSH↓, HO-1↓, - Raises AntiOxidant defense in Normal Cells: NRF2↑, SOD↑, GSH↑, Catalase↑, HO-1↑, -MAPK, ERK Pathway: -PI3K/Akt Pathway: Inhibition of the PI3K, Akt pathway by baicalein. -NF-κB Pathway: Baicalein can inhibit -Inhibition of Metastasis and Invasion: Baicalein can downregulate MMPs, MMP2, MMP9 -Angiogenesis Suppression: VEGF -Baicalein is a well-known inhibitor of 12-lipoxygenase -inhibitor of Glycolysis↓ and HIF-1α↓, PKM2↓, cMyc↓, PDK1↓, GLUT1↓, LDHA↓, HK2↓ - promoting PTEN -chemo-sensitization, chemoProtective, RadioSensitizer, RadioProtective, neuroprotective, Cognitive, Renoprotection, Hepatoprotective, cardioProtective, - Selectivity: Cancer Cells vs Normal Cells -low bioavailability but liposomal highly improves bioavailability In summary, baicalein affects cancer cells by modulating multiple pathways—promoting apoptosis, causing cell cycle arrest, generating or modulating ROS levels, inhibiting survival and proliferative signaling (such as MAPK, PI3K/Akt, and NF-κB pathways), and reducing angiogenesis and metastasis. Many animal studies, doses have been reported in the range of approximately 10 to 200 mg/kg body weight. For example, some studies exploring anticancer or anti-inflammatory effects in rodent models have used doses around 50–100 mg/kg. However, these doses do not directly translate to human dosages. Some human studies or formulations (where they are used as nutraceuticals or supplements) may suggest dosing in the range of a few hundred milligrams per day of the extract, but it is often not standardized to a specific amount of baicalein or baicalin. -mix with oil? -ic50 cancer cells 10-30uM, normal cells 50-100uM -Animal studies, 10 to 100 mg/kg. -Reported to induce apoptosis, cause cell cycle arrest, inhibit angiogenesis, and modulate various signaling pathways (e.g., STAT3, NF-κB, MAPK). |
| 2603- | Ba, | Baicalein inhibits prostate cancer cell growth and metastasis via the caveolin-1/AKT/mTOR pathway |
| - | in-vitro, | Pca, | DU145 | - | in-vitro, | Pca, | PC3 |
| 2612- | Ba, | MF, | The effect of a static magnetic field and baicalin or baicalein interactions on amelanotic melanoma cell cultures (C32) |
| - | in-vitro, | Melanoma, | NA |
| 2611- | Ba, | Baicalein as a potent neuroprotective agent: A review |
| - | Review, | Nor, | NA | - | Review, | AD, | NA | - | Review, | Park, | NA |
| 2610- | Ba, | Hepatoprotective effects of baicalein against CCl4-induced acute liver injury in mice |
| - | in-vivo, | Nor, | NA |
| 2609- | Ba, | Baicalein: unveiling the multifaceted marvel of hepatoprotection and beyond |
| - | Review, | NA, | NA |
| 2608- | Ba, | Baicalein sensitizes hepatocellular carcinoma cells to 5-FU and Epirubicin by activating apoptosis and ameliorating P-glycoprotein activity |
| - | in-vitro, | HCC, | Bel-7402 |
| 2607- | Ba, | SIL, | Baicalein Enhances the Oral Bioavailability and Hepatoprotective Effects of Silybin Through the Inhibition of Efflux Transporters BCRP and MRP2 |
| - | in-vivo, | Nor, | NA |
| 2606- | Ba, | Baicalein: A review of its anti-cancer effects and mechanisms in Hepatocellular Carcinoma |
| - | Review, | HCC, | NA |
| 2605- | Ba, | BA, | Potential therapeutic effects of baicalin and baicalein |
| - | Review, | Var, | NA | - | Review, | Stroke, | NA | - | Review, | IBD, | NA | - | Review, | Arthritis, | NA | - | Review, | AD, | NA | - | Review, | Park, | NA |
| 2604- | Ba, | BA, | Comparison of metabolic pharmacokinetics of baicalin and baicalein in rats |
| - | in-vivo, | Nor, | NA |
| 2613- | Ba, | Hepatoprotective Effect of Baicalein Against Acetaminophen-Induced Acute Liver Injury in Mice |
| - | in-vivo, | Nor, | NA |
| 2602- | Ba, | Downregulation of ZFX is associated with inhibition of prostate cancer progression by baicalein |
| - | in-vitro, | Pca, | NA | - | in-vivo, | Pca, | NA |
| 2601- | Ba, | Cardioprotective effects of baicalein on heart failure via modulation of Ca2 + handling proteins in vivo and in vitro |
| - | in-vitro, | Nor, | NA | - | in-vivo, | Nor, | NA |
| 2600- | Ba, | Baicalein Induces Apoptosis and Autophagy via Endoplasmic Reticulum Stress in Hepatocellular Carcinoma Cells |
| - | in-vitro, | HCC, | SMMC-7721 cell | - | in-vitro, | HCC, | Bel-7402 |
| 2599- | Ba, | Baicalein induces apoptosis and autophagy of breast cancer cells via inhibiting PI3K/AKT pathway in vivo and vitro |
| - | in-vitro, | BC, | MCF-7 | - | in-vitro, | BC, | MDA-MB-231 | - | in-vivo, | NA, | NA |
| 2598- | Ba, | Baicalein inhibits melanogenesis through activation of the ERK signaling pathway |
| - | in-vitro, | Melanoma, | B16-F10 |
| 2597- | Ba, | Baicalein – An Intriguing Therapeutic Phytochemical in Pancreatic Cancer |
| - | Review, | PC, | NA |
| 2483- | Ba, | Baicalein and 12/15-Lipoxygenase in the Ischemic Brain |
| - | in-vivo, | Stroke, | NA |
| 2482- | Ba, | Modulation of Neuroinflammation in Poststroke Rehabilitation: The Role of 12/15-Lipoxygenase Inhibition and Baicalein |
| - | Review, | Stroke, | NA |
| 2481- | Ba, | Rad, | Radiotherapy Increases 12-LOX and CCL5 Levels in Esophageal Cancer Cells and Promotes Cancer Metastasis via THP-1-Derived Macrophages |
| - | in-vitro, | ESCC, | Eca109 | - | in-vitro, | ESCC, | KYSE150 |
| 2624- | Ba, | Baicalein inhibition of hydrogen peroxide-induced apoptosis via ROS-dependent heme oxygenase 1 gene expression |
| - | in-vitro, | Nor, | RAW264.7 |
| 4305- | Ba, | Study on the Molecular Mechanism of Baicalin Phosphorylation of Tau Protein Content in a Cell Model of Intervention Cognitive Impairment |
| - | in-vitro, | NA, | SH-SY5Y |
| 4304- | Ba, | Baicalein inhibits heparin-induced Tau aggregation by initializing non-toxic Tau oligomer formation |
| - | in-vitro, | AD, | NA |
| 2769- | Ba, | Rad, | Baicalein ameliorates ionizing radiation-induced injuries by rebalancing gut microbiota and inhibiting apoptosis |
| - | in-vivo, | Nor, | NA |
| 2630- | Ba, | Baicalein decreases uric acid and prevents hyperuricemic nephropathy in mice |
| - | in-vivo, | Nor, | NA |
| 2629- | Ba, | Baicalein, a Component of Scutellaria baicalensis, Attenuates Kidney Injury Induced by Myocardial Ischemia and Reperfusion |
| - | in-vivo, | Nor, | NA |
| 2628- | Ba, | Cisplatin, | Baicalein alleviates cisplatin-induced acute kidney injury by inhibiting ALOX12-dependent ferroptosis |
| - | in-vitro, | Nor, | HK-2 |
| 2627- | Ba, | Cisplatin, | Baicalein, a Bioflavonoid, Prevents Cisplatin-Induced Acute Kidney Injury by Up-Regulating Antioxidant Defenses and Down-Regulating the MAPKs and NF-κB Pathways |
| 2626- | Ba, | Molecular targets and therapeutic potential of baicalein: a review |
| - | Review, | Var, | NA | - | Review, | AD, | NA | - | Review, | Stroke, | NA |
| 2625- | Ba, | LT, | Baicalein and luteolin inhibit ischemia/reperfusion-induced ferroptosis in rat cardiomyocyte |
| - | in-vivo, | Stroke, | NA |
| 996- | Ba, | Tam, | Baicalein resensitizes tamoxifen‐resistant breast cancer cells by reducing aerobic glycolysis and reversing mitochondrial dysfunction via inhibition of hypoxia‐inducible factor‐1α |
| 2623- | Ba, | Activation of the Nrf2/HO-1 signaling pathway contributes to the protective effects of baicalein against oxidative stress-induced DNA damage and apoptosis in HEI193 Schwann cells |
| - | in-vitro, | Nor, | HEI193 |
| 2622- | Ba, | Cisplatin, | Rad, | Natural Baicalein-Rich Fraction as Radiosensitizer in Combination with Bismuth Oxide Nanoparticles and Cisplatin for Clinical Radiotherapy |
| - | in-vitro, | BC, | MDA-MB-231 | - | in-vitro, | BC, | MCF-7 |
| 2620- | Ba, | Natural compounds targeting glycolysis as promising therapeutics for gastric cancer: A review |
| - | Review, | GC, | NA |
| 2619- | Ba, | Tumor cell membrane-coated continuous electrochemical sensor for GLUT1 inhibitor screening |
| - | in-vitro, | HCC, | HepG2 | - | in-vitro, | GBM, | U87MG | - | in-vitro, | BC, | MGC803 | - | in-vitro, | Lung, | A549 |
| 2618- | Ba, | Baicalein induces apoptosis by inhibiting the glutamine-mTOR metabolic pathway in lung cancer |
| - | in-vitro, | Lung, | H1299 | - | in-vivo, | Lung, | A549 |
| 2617- | Ba, | Potential of baicalein in the prevention and treatment of cancer: A scientometric analyses based review |
| - | Review, | Var, | NA |
| 2616- | Ba, | The Role of HK2 in Tumorigenesis and Development: Potential for Targeted Therapy with Natural Products |
| - | Review, | Var, | NA |
| 2615- | Ba, | The Multifaceted Role of Baicalein in Cancer Management through Modulation of Cell Signalling Pathways |
| - | Review, | Var, | NA |
| 2614- | Ba, | Therapeutic potentials of baicalin and its aglycone, baicalein against inflammatory disorders |
| - | Review, | NA, | NA |
| 1523- | Ba, | Baicalein induces human osteosarcoma cell line MG-63 apoptosis via ROS-induced BNIP3 expression |
| - | in-vitro, | OS, | MG63 | - | in-vitro, | Nor, | hFOB1.19 |
| 1532- | Ba, | Baicalein as Promising Anticancer Agent: A Comprehensive Analysis on Molecular Mechanisms and Therapeutic Perspectives |
| - | Review, | NA, | NA |
| 1531- | Ba, | Proteomic analysis of the effects of baicalein on colorectal cancer cells |
| - | in-vitro, | CRC, | DLD1 | - | in-vitro, | CRC, | SW48 |
| 1530- | Ba, | Baicalein Decreases Hydrogen Peroxide‐Induced Damage to NG108‐15 Cells via Upregulation of Nrf2 |
| - | in-vitro, | Nor, | NG108-15 |
| 1529- | Ba, | Studies on the Inhibitory Mechanisms of Baicalein in B16F10 Melanoma Cell Proliferation |
| - | in-vitro, | Melanoma, | B16-F10 |
| 1528- | Ba, | Inhibiting reactive oxygen species-dependent autophagy enhanced baicalein-induced apoptosis in oral squamous cell carcinoma |
| - | in-vitro, | OS, | CAL27 |
| 1527- | Ba, | Baicalein Alleviates Arsenic-induced Oxidative Stress through Activation of the Keap1/Nrf2 Signalling Pathway in Normal Human Liver Cells |
| - | in-vitro, | Nor, | MIHA |
| 1526- | Ba, | Baicalein induces apoptosis through ROS-mediated mitochondrial dysfunction pathway in HL-60 cells |
| - | in-vitro, | AML, | HL-60 |
| - | in-vitro, | Lung, | H1975 | - | in-vivo, | Lung, | NA |
| 1524- | Ba, | Baicalein Induces Caspase‐dependent Apoptosis Associated with the Generation of ROS and the Activation of AMPK in Human Lung Carcinoma A549 Cells |
| - | in-vitro, | Lung, | A549 |
| 2479- | Ba, | Baicalein Overcomes Tumor Necrosis Factor–Related Apoptosis-Inducing Ligand Resistance via Two Different Cell-Specific Pathways in Cancer Cells but not in Normal Cells |
| - | in-vitro, | HCC, | SW480 | - | in-vitro, | Pca, | PC3 |
| 1522- | Ba, | Baicalein reduces lipopolysaccharide-induced inflammation via suppressing JAK/STATs activation and ROS production |
| - | in-vitro, | Nor, | RAW264.7 |
| 1521- | Ba, | Baicalein induces apoptosis via ROS-dependent activation of caspases in human bladder cancer 5637 cells |
| - | in-vitro, | Bladder, | 5637 |
| 1520- | Ba, | Baicalein Induces G2/M Cell Cycle Arrest Associated with ROS Generation and CHK2 Activation in Highly Invasive Human Ovarian Cancer Cells |
| - | in-vitro, | Ovarian, | SKOV3 | - | in-vitro, | Ovarian, | TOV-21G |
| 1519- | Ba, | Baicalein inhibits KB oral cancer cells by inducing apoptosis via modulation of ROS |
| - | in-vitro, | Oral, | KB |
| 1288- | Ba, | The Traditional Chinese Medicine Baicalein Potently Inhibits Gastric Cancer Cells |
| - | in-vitro, | GC, | SGC-7901 |
| - | in-vivo, | BC, | 4T1 |
| 1029- | Ba, | BA, | Baicalein and baicalin promote antitumor immunity by suppressing PD-L1 expression in hepatocellular carcinoma cells |
| - | vitro+vivo, | HCC, | NA |
| 999- | Ba, | Baicalin Inhibits EMT through PDK1/AKT Signaling in Human Nonsmall Cell Lung Cancer |
| - | in-vitro, | Lung, | H460 |
| 6- | Ba, | Common Botanical Compounds Inhibit the Hedgehog Signaling Pathway in Prostate Cancer |
| - | in-vitro, | Pca, | NA |
| 1535- | Ba, | Baicalein May Act as a Caloric Restriction Mimetic Candidate to Improve the Antioxidant Profile in a Natural Rodent Model of Aging |
| - | in-vivo, | Nor, | NA |
| 2480- | Ba, | Inhibition of 12/15 lipoxygenase by baicalein reduces myocardial ischemia/reperfusion injury via modulation of multiple signaling pathways |
| - | in-vivo, | Stroke, | NA |
| 2478- | Ba, | The role of Ca2+ in baicalein-induced apoptosis in human breast MDA-MB-231 cancer cells through mitochondria- and caspase-3-dependent pathway |
| - | in-vitro, | BC, | MDA-MB-231 |
| 2477- | Ba, | Baicalein induces apoptosis via a mitochondrial-dependent caspase activation pathway in T24 bladder cancer cells |
| - | in-vitro, | CRC, | T24 |
| 2476- | Ba, | Baicalein Induces Caspase-dependent Apoptosis Associated with the Generation of ROS and the Activation of AMPK in Human Lung Carcinoma A549 Cells |
| - | in-vitro, | Lung, | A549 |
| 2475- | Ba, | Baicalein triggers ferroptosis in colorectal cancer cells via blocking the JAK2/STAT3/GPX4 axis |
| - | in-vitro, | CRC, | HCT116 | - | in-vitro, | CRC, | DLD1 | - | in-vivo, | NA, | NA |
| 2474- | Ba, | Anticancer properties of baicalein: a review |
| - | Review, | Var, | NA | - | in-vitro, | Nor, | BV2 |
| 2391- | Ba, | Scutellaria baicalensis and its flavonoids in the treatment of digestive system tumors |
| - | Review, | GC, | NA |
| 2298- | Ba, | Flavonoids Targeting HIF-1: Implications on Cancer Metabolism |
| - | Review, | Var, | NA |
| 2297- | Ba, | Significance of flavonoids targeting PI3K/Akt/HIF-1α signaling pathway in therapy-resistant cancer cells – A potential contribution to the predictive, preventive, and personalized medicine |
| - | Review, | Var, | NA |
| 2296- | Ba, | The most recent progress of baicalein in its anti-neoplastic effects and mechanisms |
| - | Review, | Var, | NA |
| 2295- | Ba, | 5-FU, | Baicalein reverses hypoxia-induced 5-FU resistance in gastric cancer AGS cells through suppression of glycolysis and the PTEN/Akt/HIF-1α signaling pathway |
| - | in-vitro, | GC, | AGS |
| 2294- | Ba, | Baicalein attenuates cardiac hypertrophy in mice via suppressing oxidative stress and activating autophagy in cardiomyocytes |
| - | in-vivo, | Nor, | NA |
| 2293- | Ba, | Baicalein suppresses inflammation and attenuates acute lung injury by inhibiting glycolysis via HIF‑1α signaling |
| - | in-vitro, | Nor, | MH-S | - | in-vivo, | NA, | NA |
| 2292- | Ba, | BA, | Baicalin and baicalein in modulating tumor microenvironment for cancer treatment: A comprehensive review with future perspectives |
| - | Review, | Var, | NA |
| 2291- | Ba, | BA, | Baicalein and Baicalin Promote Melanoma Apoptosis and Senescence via Metabolic Inhibition |
| - | in-vitro, | Melanoma, | SK-MEL-28 | - | in-vitro, | Melanoma, | A375 |
| 2290- | Ba, | Research Progress of Scutellaria baicalensis in the Treatment of Gastrointestinal Cancer |
| - | Review, | GI, | NA |
| 2289- | Ba, | Rad, | Baicalein Inhibits the Progression and Promotes Radiosensitivity of Esophageal Squamous Cell Carcinoma by Targeting HIF-1A |
| - | in-vitro, | ESCC, | KYSE150 |
| 1533- | Ba, | Baicalein, as a Prooxidant, Triggers Mitochondrial Apoptosis in MCF-7 Human Breast Cancer Cells Through Mobilization of Intracellular Copper and Reactive Oxygen Species Generation |
| - | in-vitro, | BrCC, | MCF-7 | - | in-vitro, | Nor, | MCF10 |
| 4962- | PEITC, | Ba, | PSO, | Targeting Breast Cancer Stem Cells |
| - | Review, | BC, | NA |
| 3034- | RosA, | RES, | Ba, | The effect of dietary polyphenols on the epigenetic regulation of gene expression in MCF7 breast cancer cells |
| - | in-vitro, | BC, | MCF-7 |
Query results interpretion may depend on "conditions" listed in the research papers. Such Conditions may include : -low or high Dose -format for product, such as nano of lipid formations -different cell line effects -synergies with other products -if effect was for normal or cancerous cells
Filter Conditions: Pro/AntiFlg:% IllCat:% CanType:% Cells:% prod#:38 Target#:% State#:% Dir#:%
wNotes=0 sortOrder:rid,rpid