Database Query Results : Baicalin, ,

BA, Baicalin: Click to Expand ⟱
Features:
Baicalin is a flavone glycoside, it is a flavonoid. It is the glucuronide of baicalein. Baicalin is a flavonoid glycoside derived from plants in the genus Scutellaria. It has anxiolytic, anti-cancer and anti-viral properties, and is used in traditional Chinese medicine.

Baicalein and baicalin are chemically related, with baicalin being essentially a conjugated (sugar-attached) form of baicalein. This conjugation can modify their biological functions and impacts, making them distinct in certain aspects even though they share several pharmacological properties.

Baicalein appears to be antioxidant in normal cells (low Cu), but prooxidant in Cancer cells (higher Cu levels) (Applies to other plant polyphenols as well: Ex apigenin, luteolin, EGCG, and resveratrol).

Pathways:
Apoptosis Pathways (Intrinsic/Mitochondrial):
NF-κB Inhibition :
PI3K/Akt/mTOR Signaling Pathway downregulate :
MAPK/ERK and JNK Signaling Pathways:
STAT3 Signaling: (inhibit)
Wnt/β-Catenin Signaling Pathway: (suppress)
Other Pathways and Effects:
• Cell Cycle Arrests (commonly G0/G1 or G2/M)
• Anti-angiogenic Effects: By inhibitins VEGF
• Modulation of Oxidative Stress: Balancing reactive oxygen species (ROS) levels in cancer cells can also contribute to its antitumor effects.

• In normal cells or under conditions of oxidative stress, baicalin has been shown to act as an antioxidant.
• In cancer cells, baicalin may increase ROS levels, triggering apoptosis. Lower doses of baicalin might favor antioxidant responses, whereas higher concentrations could lead to ROS accumulation in cancer cells.

• If copper levels are elevated in a cancer cell, the additional ROS generated via copper-mediated reactions may synergize with baicalin’s pro-oxidant effects (if observed at higher doses) to exceed the threshold for cancer cell survival.
• Conversely, in normal cells with tightly regulated copper levels, baicalin’s antioxidant properties may help in quenching excess ROS or maintaining redox balance.

-IC50 in cancer cell lines: Approximately 50–200 µM (with some variability depending on the cell type).

• IC50 in normal cell lines: Generally higher, often exceeding 200 µM, though values will vary with experimental conditions.


Scientific Papers found: Click to Expand⟱
1029- Ba,  BA,    Baicalein and baicalin promote antitumor immunity by suppressing PD-L1 expression in hepatocellular carcinoma cells
- vitro+vivo, HCC, NA
PD-L1↓, T-Cell↑, STAT3↓,
1098- BA,    Baicalein inhibits fibronectin-induced epithelial–mesenchymal transition by decreasing activation and upregulation of calpain-2
- in-vitro, Nor, MCF10 - in-vivo, NA, NA
*TumCMig↓, *F-actin↓, *E-cadherin↑, *ZO-1↑, *N-cadherin↓, *Vim↓, *Snail↓, *cal2↓, *Ca+2↝,
2291- Ba,  BA,    Baicalein and Baicalin Promote Melanoma Apoptosis and Senescence via Metabolic Inhibition
- in-vitro, Melanoma, SK-MEL-28 - in-vitro, Melanoma, A375
LDHA↓, ENO1↓, PKM2↓, GLUT1↓, GLUT3↓, HK2↓, PFK1↓, GPI↓, TPI↓, GlucoseCon↓, TumCG↓, TumCP↓, mTORC1↓, Hif1a↓, Ki-67↓,
2292- Ba,  BA,    Baicalin and baicalein in modulating tumor microenvironment for cancer treatment: A comprehensive review with future perspectives
- Review, Var, NA
AntiCan↑, *toxicity↓, BioAv↝, BioAv↓, *ROS↓, *TLR2↓, *NF-kB↓, *NRF2↑, *antiOx↑, *Inflam↓, HDAC1↓, HDAC8↓, Wnt↓, β-catenin/ZEB1↓, PD-L1↓, Sepsis↓, NF-kB↓, LOX1↓, COX2↓, VEGF↑, PI3K↓, Akt↓, mTOR↓, MMP2↓, MMP9↓, SIRT1↑, AMPK↑,
2389- BA,    Baicalin alleviates lipid accumulation in adipocytes via inducing metabolic reprogramming and targeting Adenosine A1 receptor
- in-vitro, Obesity, 3T3
*ECAR↑, *OCR↓, *p‑AMPK↑, *p‑ACC↑, *Glycolysis↑, *lipidDe↓, *SREBP1↓, *FAO↑, *HK2↑, *PKM2↑, *LDHA↑, *PDKs↓, *ACC↓,
2473- BA,    Baicalin Inhibits EMT through PDK1/AKT Signaling in Human Nonsmall Cell Lung Cancer
- in-vitro, Lung, A549 - in-vitro, Nor, BEAS-2B - in-vitro, Lung, H460
EMT↓, PDK1↓, Akt↓, TumCMig↓, E-cadherin↑, Vim↓,
2604- Ba,  BA,    Comparison of metabolic pharmacokinetics of baicalin and baicalein in rats
- in-vivo, Nor, NA
*BioAv↝, *BioAv↝,
2605- Ba,  BA,    Potential therapeutic effects of baicalin and baicalein
- Review, Var, NA - Review, Stroke, NA - Review, IBD, NA - Review, Arthritis, NA - Review, AD, NA - Review, Park, NA
cardioP↑, Inflam↓, cognitive↑, *hepatoP↑, *ROS?, *SOD↑, *GSH↑, *MMP↑, *GutMicro↑, ChemoSen↑, *TNF-α↓, *IL10↑, *IL6↓, *eff↑, *ROS↓, *COX2↓, *NF-kB↓, *STAT3↓, *PGE2↓, *MPO↓, *IL1β↓, *MMP2↓, *MMP9↓, *β-Amyloid↓, *neuroP↑, *Dose↝, *BioAv↝, *BioAv↝, *BBB↑, *BDNF↑,
4276- BA,    Baicalin Attenuates Oxygen–Glucose Deprivation/Reoxygenation–Induced Injury by Modulating the BDNF-TrkB/PI3K/Akt and MAPK/Erk1/2 Signaling Axes in Neuron–Astrocyte Cocultures
- in-vivo, Stroke, NA
*BDNF↑, *neuroP↑, *TrkB↑, *PI3K↑, *Akt↑, *MAPK↑, *ERK↑, *NO↓, *MDA↓, *SOD↑, *TNF-α↓, *IL1β↓, *IL6?,
4523- HNK,  MAG,  BA,    Honokiol-Magnolol-Baicalin Possesses Synergistic Anticancer Potential and Enhances the Efficacy of Anti-PD-1 Immunotherapy in Colorectal Cancer by Triggering GSDME-Dependent Pyroptosis
- in-vitro, CRC, HCT116 - in-vitro, CRC, LoVo - in-vivo, CRC, HCT116
AntiCan↑, eff↑, TumCP↓, TumCCA↓, cycD1/CCND1↓, Pyro↑, Apoptosis↑, cl‑GSDME↑, Bcl-2↓, Cyt‑c↑, Casp9↑, TumCG↓,

* indicates research on normal cells as opposed to diseased cells
Total Research Paper Matches: 10

Pathway results for Effect on Cancer / Diseased Cells:


Core Metabolism/Glycolysis

AMPK↑, 1,   ENO1↓, 1,   GlucoseCon↓, 1,   GPI↓, 1,   HK2↓, 1,   LDHA↓, 1,   PDK1↓, 1,   PFK1↓, 1,   PKM2↓, 1,   SIRT1↑, 1,   TPI↓, 1,  

Cell Death

Akt↓, 2,   Apoptosis↑, 1,   Bcl-2↓, 1,   Casp9↑, 1,   Cyt‑c↑, 1,   cl‑GSDME↑, 1,   Pyro↑, 1,  

Cell Cycle & Senescence

cycD1/CCND1↓, 1,   TumCCA↓, 1,  

Proliferation, Differentiation & Cell State

EMT↓, 1,   HDAC1↓, 1,   HDAC8↓, 1,   mTOR↓, 1,   mTORC1↓, 1,   PI3K↓, 1,   STAT3↓, 1,   TumCG↓, 2,   Wnt↓, 1,  

Migration

E-cadherin↑, 1,   Ki-67↓, 1,   MMP2↓, 1,   MMP9↓, 1,   TumCMig↓, 1,   TumCP↓, 2,   Vim↓, 1,   β-catenin/ZEB1↓, 1,  

Angiogenesis & Vasculature

Hif1a↓, 1,   LOX1↓, 1,   VEGF↑, 1,  

Barriers & Transport

GLUT1↓, 1,   GLUT3↓, 1,  

Immune & Inflammatory Signaling

COX2↓, 1,   Inflam↓, 1,   NF-kB↓, 1,   PD-L1↓, 2,   T-Cell↑, 1,  

Drug Metabolism & Resistance

BioAv↓, 1,   BioAv↝, 1,   ChemoSen↑, 1,   eff↑, 1,  

Clinical Biomarkers

Ki-67↓, 1,   PD-L1↓, 2,  

Functional Outcomes

AntiCan↑, 2,   cardioP↑, 1,   cognitive↑, 1,  

Infection & Microbiome

Sepsis↓, 1,  
Total Targets: 57

Pathway results for Effect on Normal Cells:


Redox & Oxidative Stress

antiOx↑, 1,   GSH↑, 1,   lipidDe↓, 1,   MDA↓, 1,   MPO↓, 1,   NRF2↑, 1,   ROS?, 1,   ROS↓, 2,   SOD↑, 2,  

Mitochondria & Bioenergetics

MMP↑, 1,   OCR↓, 1,  

Core Metabolism/Glycolysis

ACC↓, 1,   p‑ACC↑, 1,   p‑AMPK↑, 1,   ECAR↑, 1,   FAO↑, 1,   Glycolysis↑, 1,   HK2↑, 1,   LDHA↑, 1,   PDKs↓, 1,   PKM2↑, 1,   SREBP1↓, 1,  

Cell Death

Akt↑, 1,   MAPK↑, 1,  

Proliferation, Differentiation & Cell State

ERK↑, 1,   PI3K↑, 1,   STAT3↓, 1,  

Migration

Ca+2↝, 1,   cal2↓, 1,   E-cadherin↑, 1,   F-actin↓, 1,   MMP2↓, 1,   MMP9↓, 1,   N-cadherin↓, 1,   Snail↓, 1,   TumCMig↓, 1,   Vim↓, 1,   ZO-1↑, 1,  

Angiogenesis & Vasculature

NO↓, 1,  

Barriers & Transport

BBB↑, 1,  

Immune & Inflammatory Signaling

COX2↓, 1,   IL10↑, 1,   IL1β↓, 2,   IL6?, 1,   IL6↓, 1,   Inflam↓, 1,   NF-kB↓, 2,   PGE2↓, 1,   TLR2↓, 1,   TNF-α↓, 2,  

Synaptic & Neurotransmission

BDNF↑, 2,   TrkB↑, 1,  

Protein Aggregation

β-Amyloid↓, 1,  

Drug Metabolism & Resistance

BioAv↝, 4,   Dose↝, 1,   eff↑, 1,  

Clinical Biomarkers

GutMicro↑, 1,   IL6?, 1,   IL6↓, 1,  

Functional Outcomes

hepatoP↑, 1,   neuroP↑, 2,   toxicity↓, 1,  
Total Targets: 62

Query results interpretion may depend on "conditions" listed in the research papers.
Such Conditions may include : 
  -low or high Dose
  -format for product, such as nano of lipid formations
  -different cell line effects
  -synergies with other products 
  -if effect was for normal or cancerous cells
Filter Conditions: Pro/AntiFlg:%  IllCat:%  CanType:%  Cells:%  prod#:39  Target#:%  State#:%  Dir#:%
wNotes=0 sortOrder:rid,rpid

 

Home Page