| Features: |
| Capsaicin is a chemical compound that gives chili peppers their spicy flavor and heat. Biological activity, capsaicin has been reported to exhibit a range of effects, including: Pain relief: 10-50 μM Anti-inflammatory activity: 20-50 μM Antioxidant activity: 10-100 μM Anti-cancer activity: 50-100 μM Cardiovascular health: 20-50 μM Approximate μM concentrations of capsaicin, the active compound in chili peppers, that can be achieved with different amounts of chili peppers: 1 teaspoon of dried chili pepper flakes (5g):~10-50 μM of capsaicin 1 tablespoon of dried chili pepper flakes (15g): ~30-150 μM of capsaicin 1 cup of fresh chili peppers (100g): ~100-500 μM of capsaicin 1 teaspoon of chili pepper extract (5g): ~100-500 μM of capsaicin 1 tablespoon of chili pepper extract (15g): ~300-1500 μM of capsaicin Approximate μM concentrations of capsaicin in various foods that contain capsaicin: Jalapeño peppers: 1 pepper (20g): ~20-100 μM of capsaicin 2–8 mg/100g of fresh Jalapeño Serrano peppers: 1 pepper (10g): ~10-50 μM of capsaicin 5–15 mg/100g Cayenne peppers: 1 pepper (10g): ~50-200 μM of capsaicin Habanero peppers: 1 pepper (20g): ~100-500 μM of capsaicin 15–30 mg/100g Ghost peppers: 1 pepper (20g): ~200-1000 μM of capsaicin Hot sauce: 1 teaspoon (5g): ~10-50 μM of capsaicin Chili flakes: 1 teaspoon (5g): ~10-50 μM of capsaicin Spicy sauces and marinades: 1 tablespoon (15g): ~10-50 μM of capsaicin Cayenne Pepper Powder – Approximate capsaicin content: roughly 5–20 mg/g (15-30g human for 100uM?) -IC50 in Cancer Cell Lines: Approximately 50–300 µM (consume 150mg of capsaican not possible?) -IC50 in Normal Cell Lines: Generally higher—often 2–3 times greater Pathways: -disrupting mitochondrial membrane potential, leading to cytochrome c release and subsequent activation of caspases -Activation of TRPV1: resulting in increased intracellular calcium levels -capsaicin can lead to increased production of ROS within cancer cells -Inhibition of NF-κB -Inhibit PI3K/AKT/mTOR signaling -STAT3 Inhibition -Cell Cycle Arrest -reduce the expression of vascular endothelial growth factor (VEGF) -COX-2 -capsaicin is a natural ADAM10 activator and shows potential to attenuate amyloid pathology and protect against AD |
| 288- | ALA, | HCA, | CAP, | Octr, | Tumor regression with a combination of drugs interfering with the tumor metabolism: efficacy of hydroxycitrate, lipoic acid and capsaicin |
| 2015- | CAP, | CUR, | urea, | Anti-cancer Activity of Sustained Release Capsaicin Formulations |
| - | Review, | Var, | NA |
| 4266- | CAP, | Capsaicin effects on brain-derived neurotrophic factor in rat dorsal root ganglia and spinal cord |
| - | in-vivo, | NA, | NA |
| 3855- | CAP, | Capsaicin consumption reduces brain amyloid-beta generation and attenuates Alzheimer’s disease-type pathology and cognitive deficits in APP/PS1 mice |
| - | in-vivo, | AD, | NA |
| 3854- | CAP, | Capsaicin consumption reduces brain amyloid-beta generation and attenuates Alzheimer’s disease-type pathology and cognitive deficits in APP/PS1 mice |
| - | in-vivo, | AD, | NA |
| 2652- | CAP, | Oxidative Stress Inducers in Cancer Therapy: Preclinical and Clinical Evidence |
| - | Review, | Var, | NA |
| 2394- | CAP, | Capsaicin acts as a novel NRF2 agonist to suppress ethanol induced gastric mucosa oxidative damage by directly disrupting the KEAP1-NRF2 interaction |
| - | in-vitro, | Nor, | GES-1 |
| 2349- | CAP, | The TRPV1-PKM2-SREBP1 axis maintains microglial lipid homeostasis in Alzheimer’s disease |
| - | in-vivo, | AD, | NA |
| 2348- | CAP, | Recent advances in analysis of capsaicin and its effects on metabolic pathways by mass spectrometry |
| - | Analysis, | Nor, | NA |
| 2347- | CAP, | Capsaicin ameliorates inflammation in a TRPV1-independent mechanism by inhibiting PKM2-LDHA-mediated Warburg effect in sepsis |
| - | in-vivo, | Nor, | NA | - | in-vitro, | Nor, | RAW264.7 |
| 2020- | CAP, | Capsaicinoids and Their Effects on Cancer: The “Double-Edged Sword” Postulate from the Molecular Scale |
| - | Review, | Var, | NA |
| 2019- | CAP, | Capsaicin: A Two-Decade Systematic Review of Global Research Output and Recent Advances Against Human Cancer |
| - | Review, | Var, | NA |
| 2018- | CAP, | MF, | Capsaicin: Effects on the Pathogenesis of Hepatocellular Carcinoma |
| - | Review, | HCC, | NA |
| 2017- | CAP, | Spice Up Your Kidney: A Review on the Effects of Capsaicin in Renal Physiology and Disease |
| - | Review, | Var, | NA |
| 2016- | CAP, | Capsaicin binds the N-terminus of Hsp90, induces lysosomal degradation of Hsp70, and enhances the anti-tumor effects of 17-AAG (Tanespimycin) |
| 2014- | CAP, | Role of Mitochondrial Electron Transport Chain Complexes in Capsaicin Mediated Oxidative Stress Leading to Apoptosis in Pancreatic Cancer Cells |
| - | in-vitro, | PC, | Bxpc-3 | - | in-vitro, | Nor, | HPDE-6 | - | in-vivo, | PC, | AsPC-1 |
| 2013- | CAP, | Capsaicin, a component of red peppers, inhibits the growth of androgen-independent, p53 mutant prostate cancer cells |
| - | in-vitro, | Pca, | PC3 | - | in-vitro, | Pca, | LNCaP | - | in-vitro, | Pca, | DU145 | - | in-vivo, | NA, | NA |
| 2012- | CAP, | Capsaicin induces cytotoxicity in human osteosarcoma MG63 cells through TRPV1-dependent and -independent pathways |
| - | NA, | OS, | MG63 |
| 1518- | CAP, | Capsaicin-mediated tNOX (ENOX2) up-regulation enhances cell proliferation and migration in vitro and in vivo |
| - | in-vitro, | CRC, | HCT116 |
| 1517- | CAP, | Capsaicin Inhibits Multiple Bladder Cancer Cell Phenotypes by Inhibiting Tumor-Associated NADH Oxidase (tNOX) and Sirtuin1 (SIRT1) |
| - | in-vitro, | Bladder, | TSGH8301 | - | in-vitro, | CRC, | T24 |
| 1265- | CAP, | Capsaicin shapes gut microbiota and pre-metastatic niche to facilitate cancer metastasis to liver |
| - | in-vivo, | CRC, | NA |
| 1264- | CAP, | Capsaicin modulates proliferation, migration, and activation of hepatic stellate cells |
| - | in-vitro, | HCC, | NA |
| 1263- | CAP, | Capsaicin inhibits the migration and invasion via the AMPK/NF-κB signaling pathway in esophagus sequamous cell carcinoma by decreasing matrix metalloproteinase-9 expression |
| - | in-vitro, | ESCC, | Eca109 |
| 1262- | CAP, | Capsaicin Inhibits Proliferation and Induces Apoptosis in Breast Cancer by Down-Regulating FBI-1-Mediated NF-κB Pathway |
| - | vitro+vivo, | BC, | NA |
| 1261- | CAP, | Capsaicin inhibits glycolysis in esophageal squamous cell carcinoma by regulating hexokinase‑2 expression |
| - | in-vitro, | ESCC, | KYSE150 |
| 1260- | CAP, | Capsaicin inhibits in vitro and in vivo angiogenesis |
| - | vitro+vivo, | NA, | NA |
| 1259- | CAP, | Capsaicin inhibits HIF-1α accumulation through suppression of mitochondrial respiration in lung cancer cells |
| - | in-vitro, | Lung, | H1299 | - | in-vitro, | Lung, | A549 | - | in-vitro, | Lung, | H23 | - | in-vitro, | Lung, | H2009 |
| 3760- | CUR, | GI, | CAP, | RosA, | PI | Extending the lore of curcumin as dipteran Butyrylcholine esterase (BChE) inhibitor: A holistic molecular interplay assessment |
| 693- | EGCG, | CAP, | Phen, | Metabolite modulation of HeLa cell response to ENOX2 inhibitors EGCG and phenoxodiol |
| - | in-vitro, | Cerv, | HeLa |
| 637- | EGCG, | CAP, | Cancer prevention trial of a synergistic mixture of green tea concentrate plus Capsicum (CAPSOL-T) in a random population of subjects ages 40-84 |
| - | Human, | NA, | NA |
| 2446- | SFN, | CAP, | The Molecular Effects of Sulforaphane and Capsaicin on Metabolism upon Androgen and Tip60 Activation of Androgen Receptor |
| - | in-vitro, | Pca, | LNCaP |
Query results interpretion may depend on "conditions" listed in the research papers. Such Conditions may include : -low or high Dose -format for product, such as nano of lipid formations -different cell line effects -synergies with other products -if effect was for normal or cancerous cells
Filter Conditions: Pro/AntiFlg:% IllCat:% CanType:% Cells:% prod#:55 Target#:% State#:% Dir#:%
wNotes=0 sortOrder:rid,rpid