| Features: |
| Phenolic acid found in gallnuts, sumac, witch hazel, tea leaves, oak bark. Has anitoxidant, antimicrobial and anti-obesity properties. The GA derivatives include two types: ester and catechin derivatives. The most common ester derivatives of GA are alkyl esters, which are composed mainly of methyl gallate (MG), propyl gallate (PG), octyl gallate (OG), dodecyl gallate (DG), tetradecyl gallate (TG), and hexadecyl gallate (HG), and some of the main catechin derivatives are epicatechin (EC), epicatechin gallate (ECG), epigallocatechin (EGC), gallocatechin gallate (GCG), and epigallocatechin gallate (EGCG) Gallic acid is a naturally occurring polyphenol found in a variety of plant-based foods. Some of the best dietary sources include: Fruits: Berries (strawberries, blackberries, blueberries) Grapes, including red wine (grapes are rich in polyphenols) Pomegranates and apples Nuts and Seeds: Walnuts and almonds have been noted to contain GA in their skins Herbs and Spices: Tea (especially green tea), Sumac and other spices Other Plants: Gallnuts (from oak trees) Pathways: -Apoptosis Induction: Activating caspase cascades, Shifting Bax versus Bcl-2, MMP, cyt-c release -Cell Cycle Arrest: typ @ G1 or G2/M checkpoints. -Anti-inflammatory Effects: inhibiting NF-κB -Angiogenesis Inhibition: -Modulation of Signaling Pathways: MAPK Pathway, PI3K/Akt Pathway Inhibition, p53 Pathway Gallic acid exhibits a complex behavior with ROS in cancer cells, acting as both an antioxidant and a pro-oxidant depending on the context and its concentration: Antioxidant Effects at Low Doses: -At lower concentrations, gallic acid is typically characterized by its ability to scavenge free radicals, thus reducing oxidative stress. This antioxidant property may help protect normal cells from DNA damage, reducing the risk of mutations that could lead to cancer. Pro-oxidant Effects at High Doses: >50-100uM? -At higher concentrations, GA can exert pro-oxidant effects, generating ROS within cancer cells. Elevated ROS levels can overwhelm the cellular antioxidant defenses of cancer cells, leading to oxidative stress, mitochondrial dysfunction, and ultimately cell death. |
| 947- | GA, | Gallic acid, a phenolic compound, exerts anti-angiogenic effects via the PTEN/AKT/HIF-1α/VEGF signaling pathway in ovarian cancer cells |
| - | in-vitro, | Ovarian, | OVCAR-3 | - | in-vitro, | Melanoma, | A2780S | - | in-vitro, | Nor, | IOSE364 | - | Human, | NA, | NA |
| 987- | GA, | Targeting Aerobic Glycolysis: Gallic Acid as Promising Anticancer Drug |
| - | in-vitro, | GBM, | AMGM | - | in-vitro, | Cerv, | HeLa | - | in-vitro, | BC, | MCF-7 |
| 997- | GA, | The Inhibitory Mechanisms of Tumor PD-L1 Expression by Natural Bioactive Gallic Acid in Non-Small-Cell Lung Cancer (NSCLC) Cells |
| - | in-vitro, | Lung, | A549 | - | in-vitro, | Lung, | H292 | - | in-vitro, | Nor, | HUVECs |
| 1065- | GA, | Gallic acid, a phenolic acid, hinders the progression of prostate cancer by inhibition of histone deacetylase 1 and 2 expression |
| - | vitro+vivo, | Pca, | NA |
| 1086- | GA, | Anti-leukemic effects of gallic acid on human leukemia K562 cells: downregulation of COX-2, inhibition of BCR/ABL kinase and NF-κB inactivation |
| - | in-vitro, | AML, | K562 |
| 1091- | GA, | Gallic acid reduces cell viability, proliferation, invasion and angiogenesis in human cervical cancer cells |
| - | in-vitro, | Cerv, | HeLa | - | in-vitro, | Cerv, | HTB-35 |
| 1115- | GA, | Gallic acid alleviates gastric precancerous lesions through inhibition of epithelial mesenchymal transition via Wnt/β-catenin signaling pathway |
| - | in-vivo, | GC, | GES-1 |
| 1283- | GA, | immuno, | Gallic acid induces T-helper-1-like Treg cells and strengthens immune checkpoint blockade efficacy |
| - | vitro+vivo, | CRC, | NA |
| 1300- | GA, | PacT, | carbop, | Gallic acid potentiates the apoptotic effect of paclitaxel and carboplatin via overexpression of Bax and P53 on the MCF-7 human breast cancer cell line |
| - | in-vitro, | BC, | MCF-7 |
| 1624- | GA, | Anticancer Effect of Pomegranate Peel Polyphenols against Cervical Cancer |
| - | in-vitro, | Cerv, | NA |
| 1773- | GA, | Impact of Gallic Acid on Gut Health: Focus on the Gut Microbiome, Immune Response, and Mechanisms of Action |
| - | Review, | Var, | NA |
Query results interpretion may depend on "conditions" listed in the research papers. Such Conditions may include : -low or high Dose -format for product, such as nano of lipid formations -different cell line effects -synergies with other products -if effect was for normal or cancerous cells
Filter Conditions: Pro/AntiFlg:% IllCat:% CanType:% Cells:% prod#:82 Target#:% State#:% Dir#:%
wNotes=0 sortOrder:rid,rpid