Database Query Results : , , ER Stress

ER Stress, endoplasmic reticulum (ER) stress signaling pathway: Click to Expand ⟱
Source:
Type:
Protein expression of ATF, GRP78, and GADD153 which is a hall marker of ER stress.
The endoplasmic reticulum (ER) stress signaling pathway plays a crucial role in maintaining cellular homeostasis and responding to various stressors, including those encountered in cancer. When cells experience stress, such as the accumulation of misfolded proteins, they activate a series of signaling pathways collectively known as the unfolded protein response (UPR). The UPR aims to restore normal function by enhancing the protein-folding capacity of the ER, degrading misfolded proteins, and, if the stress is unresolved, triggering apoptosis.
The activation of ER stress pathways can contribute to resistance against chemotherapy and targeted therapies. Cancer cells may utilize the UPR to survive treatment-induced stress, making it challenging to achieve effective therapeutic outcomes.

-ER stress-associated proteins include: phosphorylation of PERK, eIF2α, ATF4, CHOP and cleaved-caspase 12



Scientific Papers found: Click to Expand⟱
2655- AL,    Allicin and Digestive System Cancers: From Chemical Structure to Its Therapeutic Opportunities
- Review, GC, NA
TGF-β↓, cycD1/CCND1↓, cycE/CCNE↓, CDK1↓, DNAdam↑, ROS↑, BAX↑, JNK↑, MMP↓, p38↑, MAPK↑, Fas↑, Cyt‑c↑, Casp8↑, PARP↑, Casp3↑, Casp9↑, Ca+2↑, ER Stress↑, P21↑, CDK2↓, CDK6↑, TumCCA↑, CDK4↓,
2646- AL,    Anti-Cancer Potential of Homemade Fresh Garlic Extract Is Related to Increased Endoplasmic Reticulum Stress
- in-vitro, Pca, DU145 - in-vitro, Melanoma, RPMI-8226
AntiCan↑, eff↓, ChemoSen↑, ER Stress↑, tumCV↓, DNAdam↑, GSH∅, HSP70/HSPA5↓, UPR↑, β-catenin/ZEB1↓, ROS↑, HO-2↑, SIRT1↑, GlucoseCon∅, lactateProd∅, chemoP↑,
2647- AL,    The Mechanism in Gastric Cancer Chemoprevention by Allicin
- Review, GC, NA
ChemoSen↓, TumCG↓, TumCCA↑, ER Stress↑, Apoptosis↑, Casp↑, DR5↑,
2657- AL,    Allicin pharmacology: Common molecular mechanisms against neuroinflammation and cardiovascular diseases
- Review, CardioV, NA - Review, AD, NA
*Inflam↓, *antiOx↑, *neuroP↑, *cardioP↑, *AntiTum↑, *mtDam↑, *HSP70/HSPA5↑, *NRF2↑, *RAAS↓, *cognitive↑, *SOD↑, *ROS↓, *NRF2↑, *ER Stress↓, *neuroP↑, *memory↑, *TBARS↓, *MPO↓, *SOD↑, *GSH↑, *iNOS↓, *p‑eNOS↑, *HO-1↑,
264- ALA,    α-Lipoic acid induces Endoplasmic Reticulum stress-mediated apoptosis in hepatoma cells
- in-vitro, HCC, FaO
ROS↑, P53↑, ER Stress↑, UPR↑, CHOP↑, PDI↑, GRP78/BiP↑, GRP58↓,
1351- And,  MEL,    Impact of Andrographolide and Melatonin Combinatorial Drug Therapy on Metastatic Colon Cancer Cells and Organoids
- in-vitro, CRC, T84 - in-vitro, CRC, COLO205 - in-vitro, CRC, HT-29 - in-vitro, CRC, DLD1
eff↑, Ki-67↓, Casp3↑, ER Stress↑, ROS↑, BAX↑, XBP-1↑, CHOP↑, eff↑,
1350- And,  Cisplatin,    Synergistic antitumor effect of Andrographolide and cisplatin through ROS-mediated ER stress and STAT3 inhibition in colon cancer
- in-vitro, Colon, NA
ChemoSen↑, ER Stress↑, STAT3↓, ROS↑,
2637- Api,    Apigenin Alleviates Endoplasmic Reticulum Stress-Mediated Apoptosis in INS-1 β-Cells
- in-vitro, Diabetic, NA
*other↝, *Insulin↑, ER Stress↓, *CHOP↓, *cl‑Casp3↓, *ROS↓, *Inflam↓, *TXNIP↓,
2632- Api,    Apigenin inhibits migration and induces apoptosis of human endometrial carcinoma Ishikawa cells via PI3K-AKT-GSK-3β pathway and endoplasmic reticulum stress
- in-vitro, EC, NA
TumCP↓, TumCCA↑, Apoptosis↑, Bcl-2↓, BAX↑, Bak↑, Casp↑, ER Stress↑, Ca+2↑, ATF4↑, CHOP↑, ROS↑, MMP↓, TumCMig↓, TumCI↓, eff↑, P53↑, P21↑, Cyt‑c↑, Casp9↑, Casp3↑, Bcl-xL↓,
2635- Api,  CUR,    Synergistic Effect of Apigenin and Curcumin on Apoptosis, Paraptosis and Autophagy-related Cell Death in HeLa Cells
- in-vitro, Cerv, HeLa
TumCD↑, eff↑, TumAuto↑, ER Stress↑, Paraptosis↑, GRP78/BiP↓, Dose↝,
2634- Api,    Apigenin induces both intrinsic and extrinsic pathways of apoptosis in human colon carcinoma HCT-116 cells
- in-vitro, CRC, HCT116
TumCG↓, TumCCA↑, MMP↓, ROS↑, Ca+2↑, ER Stress↑, mtDam↑, CHOP↑, DR5↑, cl‑BID↑, BAX↑, Cyt‑c↑, cl‑Casp3↑, cl‑Casp8↑, cl‑Casp9↑, Apoptosis↑,
2633- Api,    Apigenin induces ROS-dependent apoptosis and ER stress in human endometriosis cells
- in-vitro, EC, NA
TumCP↓, TumCCA↑, MMP↓, Ca+2↑, BAX↑, Cyt‑c↑, ROS↑, lipid-P↑, ER Stress↑, UPR↑, p‑ERK↓, ERK↓, JNK↑,
2631- Api,    Apigenin Induces Autophagy and Cell Death by Targeting EZH2 under Hypoxia Conditions in Gastric Cancer Cells
- in-vivo, GC, NA - in-vitro, GC, AGS
ER Stress↑, Hif1a↓, EZH2↓, HDAC↓, TumAuto↑, p‑mTOR↓, AMPKα↑, GRP78/BiP↑, ROS↑, MMP↓, Ca+2↑, ATF4↑, CHOP↑,
3345- ART/DHA,    Dihydroartemisinin-induced unfolded protein response feedback attenuates ferroptosis via PERK/ATF4/HSPA5 pathway in glioma cells
- in-vitro, GBM, NA
ROS↑, Ferroptosis↑, lipid-P↑, HSP70/HSPA5↑, ER Stress↑, ATF4↑, GRP78/BiP↑, MDA↑, GSH↓, eff↑, GPx4↑,
3383- ART/DHA,    Dihydroartemisinin: A Potential Natural Anticancer Drug
- Review, Var, NA
TumCP↓, Apoptosis↑, TumMeta↓, angioG↓, TumAuto↑, ER Stress↑, ROS↑, Ca+2↑, p38↑, HSP70/HSPA5↓, PPARγ↑, GLUT1↓, Glycolysis↓, PI3K↓, Akt↓, Hif1a↓, PKM2↓, lactateProd↓, GlucoseCon↓, EMT↓, Slug↓, Zeb1↓, ZEB2↓, Twist↓, Snail?, CAFs/TAFs↓, TGF-β↓, p‑STAT3↓, M2 MC↓, uPA↓, HH↓, AXL↓, VEGFR2↓, JNK↑, Beclin-1↑, GRP78/BiP↑, eff↑, eff↑, eff↑, eff↑, eff↑, eff↑, IL4↓, DR5↑, Cyt‑c↑, Fas↑, FADD↑, cl‑PARP↑, cycE/CCNE↓, CDK2↓, CDK4↓, Mcl-1↓, Ki-67↓, Bcl-2↓, CDK6↓, VEGF↓, COX2↓, MMP9↓,
3391- ART/DHA,    Antitumor Activity of Artemisinin and Its Derivatives: From a Well-Known Antimalarial Agent to a Potential Anticancer Drug
- Review, Var, NA
TumCP↓, TumMeta↓, angioG↓, TumVol↓, BioAv↓, Half-Life↓, BioAv↑, eff↑, eff↓, ROS↑, selectivity↑, TumCCA↑, survivin↓, BAX↑, Casp3↓, Casp8↑, Casp9↑, CDC25↓, CycB/CCNB1↓, NF-kB↓, cycD1/CCND1↓, cycE/CCNE↓, E2Fs↓, P21↑, p27↑, ADP:ATP↑, MDM2↓, VEGF↓, IL8↓, COX2↓, MMP9↓, ER Stress↓, cMyc↓, GRP78/BiP↑, DNAdam↑, AP-1↓, MMP2↓, PKCδ↓, Raf↓, ERK↓, JNK↓, PCNA↓, CDK2↓, CDK4↓, TOP2↓, uPA↓, MMP7↓, TIMP2↑, Cdc42↑, E-cadherin↑,
3387- ART/DHA,    Ferroptosis: A New Research Direction of Artemisinin and Its Derivatives in Anti-Cancer Treatment
- Review, Var, NA
BioAv↓, lipid-P↑, Ferroptosis↑, Iron↑, GPx4↓, GSH↓, P53↑, ER Stress↑, PERK↑, ATF4↑, GRP78/BiP↑, CHOP↑, ROS↑, NRF2↑,
1076- ART/DHA,    The Potential Mechanisms by which Artemisinin and Its Derivatives Induce Ferroptosis in the Treatment of Cancer
- Review, NA, NA
Ferroptosis↑, ROS↑, ER Stress↑, i-Iron↓, TumAuto↑, AMPK↑, mTOR↑, P70S6K↑, Fenton↑, lipid-P↑, ROS↑, ChemoSen↑, NRF2↑, NRF2↓,
1361- Ash,  SRF,    Withaferin A, a natural thioredoxin reductase 1 (TrxR1) inhibitor, synergistically enhances the antitumor efficacy of sorafenib through ROS-mediated ER stress and DNA damage in hepatocellular carcinoma cells
- in-vitro, Liver, HUH7 - in-vivo, Liver, HUH7
TrxR↓, ROS↑, DNA-PK↑, ER Stress↑, Apoptosis↑, eff↓,
1360- Ash,  immuno,    Withaferin A Increases the Effectiveness of Immune Checkpoint Blocker for the Treatment of Non-Small Cell Lung Cancer
- in-vitro, Lung, H1650 - in-vitro, Lung, A549 - in-vitro, CRC, HCT116 - in-vitro, BC, MDA-MB-231 - in-vivo, NA, NA
PD-L1↑, eff↓, ROS↑, ER Stress↑, Apoptosis↑, BAX↑, Bak↑, BAD↑, Bcl-2↓, XIAP↓, survivin↓, cl‑PARP↑, CHOP↑, p‑eIF2α↑, ICD↑, eff↑,
1359- Ash,    Withaferin A Induces ROS-Mediated Paraptosis in Human Breast Cancer Cell-Lines MCF-7 and MDA-MB-231
- in-vitro, BC, MCF-7 - in-vitro, BC, MDA-MB-231
MMP↓, Alix/AIP‑1↓, ROS↑, Paraptosis↑, ER Stress↝,
1373- Ash,    Endoplasmic reticulum stress mediates withaferin A-induced apoptosis in human renal carcinoma cells
- in-vitro, Kidney, Caki-1
ER Stress↑, p‑eIF2α↑, XBP-1↑, GRP78/BiP↑, CHOP↑, eff↓,
2003- Ash,    Withaferin A Induces Cell Death Selectively in Androgen-Independent Prostate Cancer Cells but Not in Normal Fibroblast Cells
- in-vitro, Pca, PC3 - in-vitro, Pca, DU145 - in-vitro, Nor, TIG-1 - in-vitro, PC, LNCaP
TumCD↑, selectivity↑, cFos↑, ROS↑, *ROS∅, HSP70/HSPA5↑, Apoptosis↑, ER Stress↑, TumCCA↑,
3160- Ash,    Withaferin A: A Pleiotropic Anticancer Agent from the Indian Medicinal Plant Withania somnifera (L.) Dunal
- Review, Var, NA
TumCCA↑, H3↑, P21↑, cycA1/CCNA1↓, CycB/CCNB1↓, cycE/CCNE↓, CDC2↓, CHK1↓, Chk2↓, p38↑, MAPK↑, E6↓, E7↓, P53↑, Akt↓, FOXO3↑, ROS↑, γH2AX↑, MMP↓, mitResp↓, eff↑, TumCD↑, Mcl-1↓, ER Stress↑, ATF4↑, ATF3↑, CHOP↑, NOTCH↓, NF-kB↓, Bcl-2↓, STAT3↓, CDK1↓, β-catenin/ZEB1↓, N-cadherin↓, EMT↓, Cyt‑c↑, eff↑, CDK4↓, p‑RB1↓, PARP↑, cl‑Casp3↑, cl‑Casp9↑, NRF2↑, ER-α36↓, LDHA↓, lipid-P↑, AP-1↓, COX2↓, RenoP↑, PDGFR-BB↓, SIRT3↑, MMP2↓, MMP9↓, NADPH↑, NQO1↑, GSR↑, HO-1↑, *SOD2↑, *Prx↑, *Casp3?, eff↑, Snail↓, Slug↓, Vim↓, CSCs↓, HEY1↓, MMPs↓, VEGF↓, uPA↓, *toxicity↓, CDK2↓, CDK4↓, HSP90↓,
3177- Ash,    Emerging Role of Hypoxia-Inducible Factors (HIFs) in Modulating Autophagy: Perspectives on Cancer Therapy
- Review, Var, NA
Hif1a↓, ROS↑, ER Stress↑,
1532- Ba,    Baicalein as Promising Anticancer Agent: A Comprehensive Analysis on Molecular Mechanisms and Therapeutic Perspectives
- Review, NA, NA
ROS↑, ER Stress↑, Ca+2↑, MMPs↓, Cyt‑c↑, Casp3↑, ROS↑, DR5↑, ROS↑, BAX↑, Bcl-2↓, MMP↓, Casp3↑, Casp9↑, P53↑, p16↑, P21↑, p27↑, HDAC10↑, MDM2↓, Apoptosis↑, PI3K↓, Akt↓, p‑Akt↓, p‑mTOR↓, NF-kB↓, p‑IκB↓, IκB↑, BAX↑, Bcl-2↓, ROS⇅, BNIP3↑, p38↑, 12LOX↓, Mcl-1↓, Wnt?, GLI2↓, AR↓, eff↑,
2600- Ba,    Baicalein Induces Apoptosis and Autophagy via Endoplasmic Reticulum Stress in Hepatocellular Carcinoma Cells
- in-vitro, HCC, SMMC-7721 cell - in-vitro, HCC, Bel-7402
ER Stress↑, Bcl-2↓, Ca+2↑, JNK↑, CHOP↑, Casp9↑, Casp3↑, PARP↑, Apoptosis↑, UPR↑,
2606- Ba,    Baicalein: A review of its anti-cancer effects and mechanisms in Hepatocellular Carcinoma
- Review, HCC, NA
ChemoSen↑, TumCP↓, TumCCA↑, TumCMig↓, TumCI↓, MMPs↓, MAPK↓, TGF-β↓, ZFX↓, p‑MEK↓, ERK↓, MMP2↓, MMP9↓, uPA↓, TIMP1↓, TIMP2↓, NF-kB↓, p65↓, p‑IKKα↓, Fas↑, Casp2↑, Casp3↑, Casp8↑, Casp9↑, Bcl-xL↓, BAX↑, ER Stress↑, Ca+2↑, JNK↑, P53↑, ROS↑, H2O2↑, cMyc↓, CD24↓, 12LOX↓,
2474- Ba,    Anticancer properties of baicalein: a review
- Review, Var, NA - in-vitro, Nor, BV2
ROS⇅, ROS↑, ER Stress↑, Ca+2↑, Apoptosis↑, eff↑, DR5↑, 12LOX↓, Cyt‑c↑, Casp7↑, Casp9↑, Casp3↑, cl‑PARP↑, TumCCA↑, cycE/CCNE↑, CDK4↓, cycD1/CCND1↓, VEGF↓, cMyc↓, Hif1a↓, NF-kB↓, BioEnh↑, BioEnh↑, P450↓, *Hif1a↓, *iNOS↓, *COX2↓, *VEGF↓, *ROS↓, *PI3K↓, *Akt↓,
1402- BBR,    Berberine-induced apoptosis in human glioblastoma T98G cells is mediated by endoplasmic reticulum stress accompanying reactive oxygen species and mitochondrial dysfunction
- in-vitro, GBM, T98G
tumCV↓, ROS↑, Ca+2↑, ER Stress↑, eff↓, Bax:Bcl2↑, MMP↓, Casp9↑, Casp3↑, cl‑PARP↑,
2698- BBR,    A gene expression signature-based approach reveals the mechanisms of action of the Chinese herbal medicine berberine
- Analysis, BC, MDA-MB-231
HDAC↓, Akt↓, mTOR↓, ER Stress↑, TumAuto↑, AMPK↑, mTOR∅, HDAC∅, ac‑α-tubulin↑,
2675- BBR,    The therapeutic effects of berberine against different diseases: A review on the involvement of the endoplasmic reticulum stress
- Review, Var, NA
*Inflam↓, *antiOx↑, *ER Stress↓, *cardioP↑, *RenoP↑, *hepatoP↑,
2676- BBR,    Berberine protects rat heart from ischemia/reperfusion injury via activating JAK2/STAT3 signaling and attenuating endoplasmic reticulum stress
- in-vivo, Nor, NA - in-vivo, CardioV, NA
*cardioP↑, *ROS↓, *ER Stress↓, *p‑PERK↓, *p‑eIF2α↓, *ATF4↓, CHOP↓, *JAK2↑, *STAT3↑, *UPR↓,
2677- BBR,    Liposome-Encapsulated Berberine Alleviates Liver Injury in Type 2 Diabetes via Promoting AMPK/mTOR-Mediated Autophagy and Reducing ER Stress: Morphometric and Immunohistochemical Scoring
- in-vivo, Diabetic, NA
*hepatoP↑, *LC3II↑, *Beclin-1↑, *AMPK↑, *mTOR↑, *ER Stress↓, *CHOP↓, *JNK↓, *ROS↓, *Inflam↓, *BG↓, *SOD↑, *GPx↑, *Catalase↑, *IL10↑, *IL6↓, *TNF-α↓, *ALAT↓, *AST↓, *ALP↓,
2679- BBR,    Berberine Improves Behavioral and Cognitive Deficits in a Mouse Model of Alzheimer’s Disease via Regulation of β-Amyloid Production and Endoplasmic Reticulum Stress
- in-vivo, AD, NA
*cognitive↑, PERK↓, *eIF2α↓, *neuroP↑, *ER Stress↓, *ROS↓,
2680- BBR,  PDT,    Photodynamic therapy-triggered nuclear translocation of berberine from mitochondria leads to liver cancer cell death
- in-vitro, Liver, HUH7
TumCD↑, ROS↑, TumCCA↑, ER Stress↑,
2681- BBR,  PDT,    Berberine-photodynamic induced apoptosis by activating endoplasmic reticulum stress-autophagy pathway involving CHOP in human malignant melanoma cells
- in-vitro, Melanoma, NA
Apoptosis↑, cl‑Casp3↑, LC3s↑, ER Stress↑, ROS↑, CHOP↑,
2683- BBR,    Berberine reduces endoplasmic reticulum stress and improves insulin signal transduction in Hep G2 cells
- in-vitro, Liver, HepG2
JNK↓, p‑PERK↓, p‑eIF2α↓, *ER Stress↓,
3681- BBR,    The efficacy and mechanism of berberine in improving aging-related cognitive dysfunction: A study based on network pharmacology
- in-vivo, AD, NA
*memory↑, *cognitive↑, MAPK↑, *Akt↑, *PI3K↑, *TP53↑, *Jun↓, *HSP90↑, *neuroP↑, *Inflam↓, *antiOx↑, *p16↓, *ER Stress↓,
2721- BetA,    Proteomic Investigation into Betulinic Acid-Induced Apoptosis of Human Cervical Cancer HeLa Cells
- in-vitro, Cerv, HeLa
ROS↑, Dose↝, Bcl-2↓, BAX↑, ER Stress↑,
2738- BetA,    Betulinic Acid Suppresses Breast Cancer Metastasis by Targeting GRP78-Mediated Glycolysis and ER Stress Apoptotic Pathway
- in-vitro, BC, MDA-MB-231 - in-vitro, BC, BT549 - in-vivo, NA, NA
TumCI↓, TumCMig↓, Glycolysis↓, lactateProd↓, GRP78/BiP↑, ER Stress↑, PERK↑, p‑eIF2α↑, β-catenin/ZEB1↓, cMyc↓, ROS↑, angioG↓, Sp1/3/4↓, DNAdam↑, TOP1↓, TumMeta↓, MMP2↓, MMP9↓, N-cadherin↓, Vim↓, E-cadherin↑, EMT↓, LDHA↓, p‑PDK1↓, PDK1↓, ECAR↓, OCR↓, Hif1a↓, STAT3↓,
2732- BetA,  Chemo,    Betulinic acid chemosensitizes breast cancer by triggering ER stress-mediated apoptosis by directly targeting GRP78
- in-vitro, BC, MCF-7 - in-vitro, BC, MDA-MB-231 - in-vitro, Nor, MCF10
ChemoSen↑, selectivity↑, GRP78/BiP↑, ER Stress↑, PERK↑, Ca+2↑, Cyt‑c↑, BAX↑, Bcl-2↓,
3695- BM,    Bacopa monnieri (L.) wettst. Extract protects against glutamate toxicity and increases the longevity of Caenorhabditis elegans
- in-vitro, AD, HT22
*OS↑, *mt-ROS↓, *ROS↓, *neuroP↑, *ER Stress↓,
3508- Bor,    The Effect of Boron on the UPR in Prostate Cancer Cells is Biphasic
- in-vitro, Pca, LNCaP - in-vitro, Pca, DU145
ER Stress↑, GRP78/BiP↑, p‑eIF2α↑, UPR↑, eff↓,
767- Bor,    Boric acid induces cytoplasmic stress granule formation, eIF2α phosphorylation, and ATF4 in prostate DU-145 cells
- in-vitro, Pca, DU145
ER Stress↑, eIF2α↑, GRP78/BiP↑, ATF4↑,
744- Bor,    Borax affects cellular viability by inducing ER stress in hepatocellular carcinoma cells by targeting SLC12A5
- in-vitro, HCC, HepG2 - in-vitro, Nor, HL7702
TumCCA↑, SLC12A5↓, ATF6↑, CHOP↑, GRP78/BiP↑, Casp3↑, ER Stress↝, *toxicity↓, *eff↓,
2776- Bos,    Anti-inflammatory and anti-cancer activities of frankincense: Targets, treatments and toxicities
- Review, Var, NA
*5LO↓, *TNF-α↓, *MMP3↓, *COX1↓, *COX2↓, *PGE2↓, *Th2↑, *Catalase↑, *SOD↑, *NO↑, *PGE2↑, *IL1β↓, *IL6↓, *Th1 response↓, *Th2↑, *iNOS↓, *NO↓, *p‑JNK↓, *p38↓, GutMicro↑, p‑Akt↓, GSK‐3β↓, cycD1/CCND1↓, Akt↓, STAT3↓, CSCs↓, AR↓, P21↑, DR5↑, CHOP↑, Casp3↑, Casp8↑, cl‑PARP↑, DNAdam↑, p‑RB1↓, FOXM1↓, TOP2↓, CDC25↓, p‑CDK1↓, p‑ERK↓, MMP9↓, VEGF↓, angioG↓, ROS↑, Cyt‑c↑, AIF↑, Diablo↑, survivin↓, ICAD↓, ChemoSen↑, SOX9↓, ER Stress↑, GRP78/BiP↑, cal2↓, AMPK↓, mTOR↓, ROS↓,
2775- Bos,    The journey of boswellic acids from synthesis to pharmacological activities
- Review, Var, NA - Review, AD, NA - Review, PSA, NA
ROS↑, ER Stress↑, TumCG↓, Apoptosis↑, Inflam↓, ChemoSen↑, Casp↑, ERK↓, cl‑PARP↑, AR↓, cycD1/CCND1↓, VEGFR2↓, CXCR4↓, radioP↑, NF-kB↓, VEGF↓, P21↑, Wnt↓, β-catenin/ZEB1↓, Cyt‑c↑, MMP2↓, MMP1↓, MMP9↓, PI3K↓, MAPK↓, JNK↑, *5LO↓, *NRF2↑, *HO-1↑, *MDA↓, *SOD↑, *hepatoP↑, *ALAT↓, *AST↓, *LDH↑, *CRP↓, *COX2↓, *GSH↑, *ROS↓, *Imm↑, *Dose↝, *eff↑, *neuroP↑, *cognitive↑, *IL6↓, *TNF-α↓,
3032- CA,    Carnosic Acid Induces Apoptosis Through Reactive Oxygen Species-mediated Endoplasmic Reticulum Stress Induction in Human Renal Carcinoma Caki Cells
- in-vitro, Kidney, Caki-1
cl‑PARP↑, ROS↑, ER Stress↑, ATF4↑, CHOP↑, selectivity↑,
2018- CAP,  MF,    Capsaicin: Effects on the Pathogenesis of Hepatocellular Carcinoma
- Review, HCC, NA
TRPV1↑, eff↑, Akt↓, mTOR↓, p‑STAT3↑, MMP2↑, ER Stress↑, Ca+2↑, ROS↑, selectivity↑, MMP↓, eff↑,
2020- CAP,    Capsaicinoids and Their Effects on Cancer: The “Double-Edged Sword” Postulate from the Molecular Scale
- Review, Var, NA
AntiTum↑, selectivity↑, TRPV1↑, MMP↓, Ca+2↑, ER Stress↑, angioG↓, Casp3?, cl‑PARP↑, selectivity↑, ROS↑, *ROS∅, selectivity↑,
2653- Cela,    Oxidative Stress Inducers in Cancer Therapy: Preclinical and Clinical Evidence
- Review, Var, NA
chemoPv↑, Catalase↑, ROS↑, HSP90↓, Sp1/3/4↓, AMPK↑, P53↑, JNK↑, ER Stress↑, MMP↓, TumCCA↑, TumAuto↑, Hif1a↑, Akt↑, other↓, Prx↓,
2781- CHr,  PBG,    Chrysin a promising anticancer agent: recent perspectives
- Review, Var, NA
PI3K↓, Akt↓, mTOR↓, MMP9↑, uPA↓, VEGF↓, AR↓, Casp↑, TumMeta↓, TumCCA↑, angioG↓, BioAv↓, *hepatoP↑, *neuroP↑, *SOD↑, *GPx↑, *ROS↓, *Inflam↓, *Catalase↑, *MDA↓, ROS↓, BBB↑, Half-Life↓, BioAv↑, ROS↑, eff↑, ROS↑, ROS↑, lipid-P↑, ER Stress↑, NOTCH1↑, NRF2↓, p‑FAK↓, Rho↓, PCNA↓, COX2↓, NF-kB↓, PDK1↓, PDK3↑, GLUT1↓, Glycolysis↓, mt-ATP↓, Ki-67↓, cMyc↓, ROCK1↓, TOP1↓, TNF-α↓, IL1β↓, CycB/CCNB1↓, CDK2↓, EMT↓, STAT3↓, PD-L1↓, IL2↑,
2792- CHr,    Chrysin induces death of prostate cancer cells by inducing ROS and ER stress
- in-vitro, Pca, DU145 - in-vitro, Pca, PC3
DNAdam↑, TumCCA↑, MMP↓, ROS↑, lipid-P↑, ER Stress↑, UPR↑, PERK↑, eIF2α↑, GRP78/BiP↑, PI3K↓, Akt↓, p70S6↓, MAPK↑,
2782- CHr,    Broad-Spectrum Preclinical Antitumor Activity of Chrysin: Current Trends and Future Perspectives
- Review, Var, NA - Review, Stroke, NA - Review, Park, NA
*antiOx↑, *Inflam↓, *hepatoP↑, *neuroP↑, *BioAv↓, *cardioP↑, *lipidLev↓, *RenoP↑, *TNF-α↓, *IL2↓, *PI3K↓, *Akt↓, *ROS↓, *cognitive↑, eff↑, cycD1/CCND1↓, hTERT/TERT↓, VEGF↓, p‑STAT3↓, TumMeta↓, TumCP↓, eff↑, eff↑, IL1β↓, IL6↓, NF-kB↓, ROS↑, MMP↓, Cyt‑c↑, Apoptosis↑, ER Stress↑, Ca+2↑, TET1↑, Let-7↑, Twist↓, EMT↓, TumCCA↑, Casp3↑, Casp9↑, BAX↑, HK2↓, GlucoseCon↓, lactateProd↓, Glycolysis↓, SHP1↑, N-cadherin↓, E-cadherin↑, UPR↑, PERK↑, ATF4↑, eIF2α↑, RadioS↑, NOTCH1↑, NRF2↓, BioAv↑, eff↑,
2785- CHr,    Emerging cellular and molecular mechanisms underlying anticancer indications of chrysin
- Review, Var, NA
*NF-kB↓, *COX2↓, *iNOS↓, angioG↓, TOP1↓, HDAC↓, TNF-α↓, IL1β↓, cardioP↑, RenoP↑, neuroP↑, LDL↓, BioAv↑, eff↑, cycD1/CCND1↓, hTERT/TERT↓, MMP-10↓, Akt↓, STAT3↓, VEGF↓, EGFR↓, Snail↓, Slug↓, Vim↓, E-cadherin↑, eff↑, TET1↑, ROS↑, mTOR↓, PPARα↓, ER Stress↑, Ca+2↑, ERK↓, MMP↑, Cyt‑c↑, Casp3↑, HK2↓, NRF2↓, HO-1↓, MMP2↓, MMP9↓, Fibronectin↓, GRP78/BiP↑, XBP-1↓, p‑eIF2α↑, *AST↓, ALAT↓, ALP↓, LDH↓, COX2↑, Bcl-xL↓, IL6↓, PGE2↓, iNOS↓, DNAdam↑, UPR↑, Hif1a↓, EMT↓, Twist↓, lipid-P↑, CLDN1↓, PDK1↓, IL10↓, TLR4↓, NOTCH1↑, PARP↑, Mcl-1↓, XIAP↓,
2790- CHr,    Chrysin: Pharmacological and therapeutic properties
- Review, Var, NA
*hepatoP↑, *neuroP↓, *ROS↓, *cardioP↑, *Inflam↓, eff↑, hTERT/TERT↓, cycD1/CCND1↓, MMP9↓, MMP2↓, TIMP1↑, TIMP2↑, BioAv↑, HK2↓, ROS↑, MMP↓, Casp3↑, ADP:ATP↑, Apoptosis↑, ER Stress↑, UPR↑, GRP78/BiP↝, eff↑, Ca+2↑,
3890- Cin,    The Therapeutic Roles of Cinnamaldehyde against Cardiovascular Diseases
- Review, NA, NA
*cardioP↑, *Inflam↓, *ROS↓, *lipid-P↓, *AntiAg↑, *angioG↑, *GutMicro↑, *ER Stress↓,
3997- CoQ10,    Coenzyme Q and Its Role in the Dietary Therapy against Aging
- Review, AD, NA
*AntiAge↑, *Inflam↓, *antiOx↑, *Apoptosis↓, *BioAv↑, *other↝, *cognitive↑, *DNAdam↓, *ER Stress↓,
3832- Croc,    Traditional Chinese Medicine: Role in Reducing β-Amyloid, Apoptosis, Autophagy, Neuroinflammation, Oxidative Stress, and Mitochondrial Dysfunction of Alzheimer’s Disease
- Review, AD, NA
*neuroP↑, *memory↑, *Apoptosis↓, *cognitive↑, *ER Stress↓,
3627- Croc,    The effects of Crocus sativus (saffron) and its constituents on nervous system: A review
- Review, AD, NA - Review, Stroke, NA
*other↑, *monoA↑, *Aβ↓, *AChE↓, *cognitive↑, *neuroP↑, *lipid-P↓, *SOD↑, *ROS↓, *GPx↑, *MDA↓, *memory↑, *antiOx↑, *Inflam↓, *other↓, *ER Stress↓,
1600- Cu,    Cu(II) complex that synergistically potentiates cytotoxicity and an antitumor immune response by targeting cellular redox homeostasis
- Review, NA, NA
ER Stress↑, ROS↑, AntiTum↑, GSH↓, Ferroptosis↑, selectivity↑, GSH/GSSG↓, *ROS∅, eff↑,
1601- Cu,    The copper (II) complex of salicylate phenanthroline induces immunogenic cell death of colorectal cancer cells through inducing endoplasmic reticulum stress
- in-vitro, CRC, NA
i-CRT↓, ICD↑, i-ATP↓, i-HMGB1↓, ER Stress↑, ROS↑, DCells↑, CD8+↑, IL12↑, IFN-γ↑, TGF-β↓,
1572- Cu,    Recent Advances in Cancer Therapeutic Copper-Based Nanomaterials for Antitumor Therapy
- Review, NA, NA
eff↑, Fenton↑, ROS↑, eff↑, mtDam↑, BAX↑, Bcl-2↓, MMP↓, Cyt‑c↑, Casp3↑, ER Stress↑, CHOP↑, Apoptosis↑, selectivity↑, eff↑, Pyro↑, Paraptosis↑, Cupro↑, ChemoSen↑, eff↑,
2821- CUR,    Antioxidant curcumin induces oxidative stress to kill tumor cells (Review)
- Review, Var, NA
*antiOx↑, *NRF2↑, *ROS↓, *Inflam↓, ROS↑, p‑ERK↑, ER Stress↑, mtDam↑, Apoptosis↑, Akt↓, mTOR↓, HO-1↑, Fenton↑, GSH↓, Iron↑, p‑JNK↑, Cyt‑c↑, ATF6↑, CHOP↑,
2654- CUR,    Oxidative Stress Inducers in Cancer Therapy: Preclinical and Clinical Evidence
- Review, Var, NA
ROS↑, Catalase↓, SOD1↓, GLO-I↓, NADPH↓, TumCCA↑, Apoptosis↑, Akt↓, ER Stress↑, JNK↑, STAT3↓, BioAv↑,
143- CUR,    Nonautophagic cytoplasmic vacuolation death induction in human PC-3M prostate cancer by curcumin through reactive oxygen species -mediated endoplasmic reticulum stress
- in-vitro, Pca, LNCaP - in-vitro, Pca, DU145 - in-vitro, Pca, PC3
ER Stress↑, CHOP↑, GRP78/BiP↑, ROS↑,
4901- DCA,  Sal,    Dichloroacetate and Salinomycin as Therapeutic Agents in Cancer
- Review, NSCLC, NA
Glycolysis↓, OXPHOS↑, PDKs↓, ROS↑, Apoptosis↑, GlucoseCon↓, lactateProd↓, RadioS↑, TumAuto↑, mTOR↓, LC3s↓, p62↑, TumCG↓, OS↑, toxicity↝, ChemoSen↑, eff↑, eff↑, Ferritin↓, CSCs↓, EMT↓, ROS↑, Cyt‑c↑, Casp3↑, ER Stress↑, selectivity↑, eff↑, TumCG↓,
1621- EA,    The multifaceted mechanisms of ellagic acid in the treatment of tumors: State-of-the-art
- Review, Var, NA
AntiCan↑, Apoptosis↑, TumCP↓, TumMeta↓, TumCI↓, TumAuto↑, VEGFR2↓, MAPK↓, PI3K↓, Akt↓, PD-1↓, NOTCH↓, PCNA↓, Ki-67↓, cycD1/CCND1↓, CDK2↑, CDK6↓, Bcl-2↓, cl‑PARP↑, BAX↑, Casp3↑, DR4↑, DR5↑, Snail↓, MMP2↓, MMP9↓, TGF-β↑, PKCδ↓, β-catenin/ZEB1↓, SIRT1↓, HO-1↓, ROS↑, CHOP↑, Cyt‑c↑, MMP↓, OCR↓, AMPK↑, Hif1a↓, NF-kB↓, E-cadherin↑, Vim↓, EMT↓, LC3II↑, CIP2A↓, GLUT1↓, PDH↝, MAD↓, LDH↓, GSTs↑, NOTCH↓, survivin↓, XIAP↓, ER Stress↑, ChemoSideEff↓, ChemoSen↑,
677- EGCG,    Induction of Endoplasmic Reticulum Stress Pathway by Green Tea Epigallocatechin-3-Gallate (EGCG) in Colorectal Cancer Cells: Activation of PERK/p-eIF2 α /ATF4 and IRE1 α
- in-vitro, CRC, HT-29
ER Stress↑, GRP78/BiP↑, PERK↑, eIF2α↑, ATF4↑, IRE1↑, Apoptosis↑,
3208- EGCG,    Induction of Endoplasmic Reticulum Stress Pathway by Green Tea Epigallocatechin-3-Gallate (EGCG) in Colorectal Cancer Cells: Activation of PERK/p-eIF2α/ATF4 and IRE1α
- in-vitro, Colon, HT29 - in-vitro, Nor, 3T3
TumCD↓, ER Stress↑, GRP78/BiP↑, PERK↑, eIF2α↑, ATF4↑, IRE1↑, Apoptosis↑, Casp3↑, Casp7↑, Wnt↓, β-catenin/ZEB1↓, *toxicity∅, UPR↑,
3207- EGCG,    EGCG Enhances the Chemosensitivity of Colorectal Cancer to Irinotecan through GRP78-MediatedEndoplasmic Reticulum Stress
- in-vitro, CRC, RKO - in-vitro, CRC, HCT116
GRP78/BiP↑, MMP↓, ER Stress↑, ROS↓, UPR↑,
3206- EGCG,    Insights on the involvement of (-)-epigallocatechin gallate in ER stress-mediated apoptosis in age-related macular degeneration
- Review, AMD, NA
*Ca+2↓, *ROS↓, *Apoptosis↓, *GRP78/BiP↓, *CHOP↓, *PERK↓, *IRE1↓, *p‑PARP↓, *Casp3↓, *Casp12↓, *ER Stress↓, *UPR↓,
3205- EGCG,    The Role of Epigallocatechin-3-Gallate in Autophagy and Endoplasmic Reticulum Stress (ERS)-Induced Apoptosis of Human Diseas
- Review, Var, NA - Review, AD, NA
Beclin-1↑, ROS↑, Apoptosis↑, ER Stress↑, *Inflam↓, *cardioP↑, *antiOx↑, *LDL↓, *NF-kB↓, *MPO↓, *glucose↓, *ROS↓, ATG5↑, LC3B↑, MMP↑, lactateProd↓, VEGF↓, Zeb1↑, Wnt↑, IGF-1R↑, Fas↑, Bak↑, BAD↑, TP53↓, Myc↓, Casp8↓, LC3II↑, NOTCH3↓, eff↑, p‑Akt↓, PARP↑, *Cyt‑c↓, *BAX↓, *memory↑, *neuroP↑, *Ca+2?, GRP78/BiP↑, CHOP↑, ATF4↑, Casp3↑, Casp8↑, UPR↑,
3204- EGCG,    The Role of ER Stress and the Unfolded Protein Response in Cancer
- Review, Var, NA
BID↓, UPR↑, ER Stress↑,
3202- EGCG,    Epigallocatechin-3-gallate enhances ER stress-induced cancer cell apoptosis by directly targeting PARP16 activity
- in-vitro, Cerv, HeLa - in-vitro, HCC, QGY-7703
PARP16↓, p‑PERK↓, Apoptosis↑, eIF2α↓, UPR↓, ER Stress↑, eff↑, GRP78/BiP↓,
1322- EMD,    The versatile emodin: A natural easily acquired anthraquinone possesses promising anticancer properties against a variety of cancers
- Review, Var, NA
Apoptosis↑, TumCP↓, ROS↑, TumAuto↑, EMT↓, TGF-β↓, DNAdam↑, ER Stress↑, TumCCA↑, ATP↓, NF-kB↓, CYP1A1↑, STAC2↓, JAK↓, PI3K↓, Akt↓, MAPK↓, FASN↓, HER2/EBBR2↓, ChemoSen↑, eff↑, ChemoSen↑, angioG↓, VEGF↓, MMP2↓, eNOS↓, FOXD3↑, MMP9↓, TIMP1↑,
1323- EMD,    Anticancer action of naturally occurring emodin for the controlling of cervical cancer
- Review, Cerv, NA
TumCCA↑, DNAdam↑, mTOR↓, Casp3↑, Casp8↑, Casp9↑, TGF-β↑, SMAD3↓, p‑SMAD4↓, ROS↑, MMP↓, CXCR4↓, HER2/EBBR2↓, ER Stress↓, TumAuto↑, NOTCH1↓,
1328- EMD,    Emodin induces apoptosis of human tongue squamous cancer SCC-4 cells through reactive oxygen species and mitochondria-dependent pathways
- in-vitro, Tong, SCC4
TumCCA↑, P21↑, Chk2↑, CycB/CCNB1↓, cDC2↓, Apoptosis↑, Cyt‑c↑, Casp9↑, Casp3↑, ROS↑, MMP↓, Bax:Bcl2↑, ER Stress↑,
3460- EP,    Picosecond pulsed electric fields induce apoptosis in HeLa cells via the endoplasmic reticulum stress and caspase-dependent signaling pathways
- in-vitro, Cerv, HeLa
tumCV↓, Apoptosis↑, TumCCA↑, GRP78/BiP↑, GRP94↑, CEBPA↑, CHOP↑, Ca+2↑, Casp12↑, Casp9↑, Casp3↑, Cyt‑c↑, BAX↑, Bcl-2↓, ER Stress↑, MMP↓,
3716- FA,    Ferulic Acid as a Protective Antioxidant of Human Intestinal Epithelial Cells
- in-vitro, IBD, NA - in-vivo, NA, NA
*antiOx↑, *Inflam↓, *ER Stress↓, *other↑, *angioG↑, *Hif1a↑, *VEGF↑, *NO↓, *SIRT1↑, *PERK↓, *ATF4↓, *CHOP↓, *GutMicro↑,
2496- Fenb,    Impairment of the Ubiquitin-Proteasome Pathway by Methyl N-(6-Phenylsulfanyl-1H-benzimidazol-2-yl)carbamate Leads to a Potent Cytotoxic Effect in Tumor Cells
- in-vitro, NSCLC, A549 - in-vitro, NSCLC, H460
TumCG↓, selectivity↑, P53↑, IKKα↑, ER Stress↑, GRP78/BiP↑, CHOP↑, ATF3↑, IRE1↑, NOXA↑, ROS↑, MMP↓, Cyt‑c↑, selectivity↑, eff↝,
2847- FIS,    Fisetin-induced cell death, apoptosis, and antimigratory effects in cholangiocarcinoma cells
- in-vitro, CCA, NA
tumCV↓, ChemoSen↑, TumCMig↓, ROS↑, TumCI↓, angioG↓, CDK2↓, PI3K↓, Akt↓, mTOR↓, EGFR↓, Casp↑, mTORC1↓, mTORC2↑, cycD1/CCND1↓, cycE/CCNE↓, MMP2↓, MMP9↓, ER Stress↑, Ca+2↑, eff↓,
2855- FIS,    Fisetin Induces Apoptosis Through p53-Mediated Up-Regulation of DR5 Expression in Human Renal Carcinoma Caki Cells
- in-vitro, RCC, Caki-1
TumCCA↑, cl‑PARP↑, Apoptosis↑, Casp↑, P53↑, DR5↑, CHOP↑, ROS↑, ER Stress↑, ATF4↑, XBP-1↑, eff∅,
2860- FIS,    Fisetin induces autophagy in pancreatic cancer cells via endoplasmic reticulum stress- and mitochondrial stress-dependent pathways
- in-vitro, PC, PANC1 - in-vitro, PC, Bxpc-3 - in-vitro, Nor, hTERT-HPNE - in-vivo, NA, NA
AMPK↑, mTOR↑, UPR↑, ER Stress↑, selectivity↑, TumCP↓, PERK↑, ATF4↑, ATF6↑,
2825- FIS,    Exploring the molecular targets of dietary flavonoid fisetin in cancer
- Review, Var, NA
*Inflam↓, *antiOx↓, *ERK↑, *p‑cMyc↑, *NRF2↑, *GSH↑, *HO-1↑, mTOR↓, PI3K↓, Akt↓, TumCCA↑, cycD1/CCND1↓, cycE/CCNE↓, CDK2↓, CDK4↓, CDK6↓, P21↑, p27↑, JNK↑, MMP2↓, MMP9↓, uPA↓, NF-kB↓, cFos↓, cJun↓, E-cadherin↑, Vim↓, N-cadherin↓, EMT↓, MMP↓, Cyt‑c↑, Diablo↑, Casp↑, cl‑PARP↑, P53↑, COX2↓, PGE2↓, HSP70/HSPA5↓, HSP27↓, DNAdam↑, Casp3↑, Casp9↑, ROS↑, AMPK↑, NO↑, Ca+2↑, mTORC1↓, p70S6↓, ROS↓, ER Stress↑, IRE1↑, ATF4↑, GRP78/BiP↑, eff↑, eff↑, eff↑, RadioS↑, ChemoSen↑, Half-Life↝,
2830- FIS,    Biological effects and mechanisms of fisetin in cancer: a promising anti-cancer agent
- Review, Var, NA
TumCG↓, angioG↓, *ROS↓, TumCMig↓, VEGF↓, MAPK↑, NF-kB↓, PI3K↓, Akt↓, mTOR↓, NRF2↑, HO-1↑, ROS↓, Inflam↓, ER Stress↑, ROS↑, TumCP↓, ChemoSen↑, PTEN↑, P53↑, Casp3↑, Casp8↑, Casp9↑, COX2↓, Wnt↓, EGFR↓, Mcl-1↓, survivin↓, IAP1↓, IAP2↓, PGE2↓, β-catenin/ZEB1↓, DR5↑, MMP2↓, MMP9↓, FAK↓, uPA↓, EMT↓, ERK↓, JNK↑, p38↑, PKCδ↓, BioAv↓, BioAv↑, BioAv↑,
2831- FIS,    Fisetin as a chemoprotective and chemotherapeutic agent: mechanistic insights and future directions in cancer therapy
- Review, Var, NA
TumCG↓, ER Stress↑, antiOx↓, ROS↓, ChemoSen↑,
2832- FIS,    Fisetin's Promising Antitumor Effects: Uncovering Mechanisms and Targeting for Future Therapies
- Review, Var, NA
MMP↓, mtDam↑, Cyt‑c↑, Diablo↑, Casp↑, cl‑PARP↑, Bak↑, BIM↑, Bcl-xL↓, Bcl-2↓, P53↑, ROS↑, AMPK↑, Casp9↑, Casp3↑, BID↑, AIF↑, Akt↓, mTOR↓, MAPK↓, Wnt↓, β-catenin/ZEB1↓, TumCCA↑, P21↑, p27↑, cycD1/CCND1↓, cycE/CCNE↓, CDK2↓, CDK4↓, CDK6↓, TumMeta↓, uPA↓, E-cadherin↑, Vim↓, EMT↓, Twist↓, DNAdam↑, ROS↓, COX2↓, PGE2↓, HSF1↓, cFos↓, cJun↓, AP-1↓, Mcl-1↓, NF-kB↓, IRE1↑, ER Stress↑, ATF4↑, GRP78/BiP↑, MMP2↓, MMP9↓, TCF-4↓, MMP7↓, RadioS↑, TOP1↓, TOP2↓,
2839- FIS,    Dietary flavonoid fisetin for cancer prevention and treatment
- Review, Var, NA
DNAdam↑, ROS↑, Apoptosis↑, Bcl-2↓, BAX↑, cl‑Casp9↑, cl‑Casp3↑, Cyt‑c↑, lipid-P↓, TumCG↓, TumCA↓, TumCMig↓, TumCI↓, uPA↓, ERK↓, MMP9↓, NF-kB↓, cFos↓, cJun↓, AP-1↓, TumCCA↑, AR↓, mTORC1↓, mTORC2↓, TSC2↑, EGF↓, TGF-β↓, EMT↓, P-gp↓, PI3K↓, Akt↓, mTOR↓, eff↑, ROS↓, ER Stress↑, IRE1↑, ATF4↑, GRP78/BiP↑, ChemoSen↑, CDK2↓, CDK4↓, cycE/CCNE↓, cycD1/CCND1↓, P21↑, COX2↓, Wnt↓, EGFR↓, β-catenin/ZEB1↓, TCF-4↓, MMP7↓, RadioS↑, eff↑,
2841- FIS,    Fisetin, an Anti-Inflammatory Agent, Overcomes Radioresistance by Activating the PERK-ATF4-CHOP Axis in Liver Cancer
- in-vitro, Nor, RAW264.7 - in-vitro, Liver, HepG2 - in-vitro, Liver, Hep3B - in-vitro, Liver, HUH7
*Inflam↓, *TNF-α↓, *IL1β↓, *IL6↓, Apoptosis↓, ER Stress↑, Ca+2↑, PERK↑, ATF4↑, CHOP↑, GRP78/BiP↑, tumCV↓, LDH↑, Casp3↑, cl‑Casp3↑, cl‑Casp8↑, cl‑Casp9↑, p‑eIF2α↑, RadioS↑,
1971- GamB,    Gambogic acid triggers vacuolization-associated cell death in cancer cells via disruption of thiol proteostasis
- in-vitro, Nor, MCF10 - in-vitro, BC, MDA-MB-435 - in-vitro, BC, MDA-MB-468 - in-vivo, NA, NA
Paraptosis↑, ER Stress↑, MMP↓, eff↓, selectivity↑, p‑ERK↑, p‑JNK↑, eff↓,
2060- GamB,    Gambogenic acid induces apoptosis and autophagy through ROS-mediated endoplasmic reticulum stress via JNK pathway in prostate cancer cells
- in-vitro, Pca, NA
TumCP↓, TumAuto↑, eff↑, ROS↑, ER Stress↑, JNK↑,
1958- GamB,    Gambogenic acid induces apoptosis and autophagy through ROS-mediated endoplasmic reticulum stress via JNK pathway in prostate cancer cells
- in-vitro, Pca, NA - in-vivo, NA, NA
AntiCan↑, TumCP↓, TumAuto↑, eff↑, JNK↑, ROS↑, ER Stress↑, eff↓, TumCG↓,
1960- GamB,  Vem,    Calcium channel blocker verapamil accelerates gambogic acid-induced cytotoxicity via enhancing proteasome inhibition and ROS generation
- in-vitro, Liver, HepG2 - in-vitro, AML, K562
Proteasome↓, eff↑, Casp↑, ER Stress↑, ROS↑, eff↑,
4506- GLA,    A basal level of γ-linolenic acid depletes Ca2+ stores and induces endoplasmic reticulum and oxidative stresses to cause death of breast cancer BT-474 cells
- in-vitro, BC, BT474
Apoptosis↓, Ca+2↑, MMP↓, p‑eIF2α↑, CHOP↑, ER Stress↑, ROS↑,
839- Gra,    Functional proteomic analysis revels that the ethanol extract of Annona muricata L. induces liver cancer cell apoptosis through endoplasmic reticulum stress pathway
- in-vitro, Liver, HepG2
tumCV↓, Apoptosis↑, HSP70/HSPA5↑, GRP94↑, ER Stress↑, p‑PERK↑, p‑eIF2α↑, GRP78/BiP↑, CHOP↑,
2507- H2,    Hydrogen protects against chronic intermittent hypoxia induced renal dysfunction by promoting autophagy and alleviating apoptosis
- in-vivo, NA, NA
*RenoP↑, *ROS↓, *Apoptosis↓, *ER Stress↓, *CHOP↓, *Casp12↓, *GRP78/BiP↓, *LC3‑Ⅱ/LC3‑Ⅰ↑, *Beclin-1↑, *p62↓, *mTOR↓,
2514- H2,    Hydrogen: A Novel Option in Human Disease Treatment
- Review, NA, NA
*Inflam↓, *IL1β↓, *IL6↓, *IL8↓, *IL10↓, *TNF-α↓, *ROS↓, *HO-1↓, *NRF2↑, *ER Stress↓, H2O2↑,
3769- H2S,    Research progress of hydrogen sulfide in Alzheimer's disease from laboratory to hospital: a narrative review
- Review, AD, NA
*APP↓, *Apoptosis↓, *Inflam↓, *antiOx↑, *BP↓, *NLRP3↓, *ROS↓, *Aβ↓, *ER Stress↓,
2883- HNK,    Honokiol targets mitochondria to halt cancer progression and metastasis
- Review, Var, NA
ChemoSen↑, BBB↓, Ca+2↑, Cyt‑c↑, Casp3↑, chemoPv↑, OCR↓, mitResp↓, Apoptosis↑, RadioS↑, NF-kB↓, Akt↓, TNF-α↓, PGE2↓, VEGF↓, NO↝, COX2↓, RAS↓, EMT↓, Snail↓, N-cadherin↓, β-catenin/ZEB1↓, E-cadherin↑, ER Stress↑, p‑STAT3↓, EGFR↓, mTOR↓, mt-ROS↑, PI3K↓, Wnt↓,
2863- HNK,    Honokiol induces paraptosis-like cell death through mitochondrial ROS-dependent endoplasmic reticulum stress in hepatocellular carcinoma Hep3B cells
- in-vitro, Liver, Hep3B
ER Stress↑, Ca+2↑, mtDam↑, PTEN↑, PARK2↑, Alix/AIP‑1↓, ROS↑, mt-ROS↑,
2864- HNK,    Honokiol: A Review of Its Anticancer Potential and Mechanisms
- Review, Var, NA
TumCCA↑, CDK2↓, EMT↓, MMPs↓, AMPK↑, TumCI↓, TumCMig↓, TumMeta↓, VEGFR2↓, *antiOx↑, *Inflam↓, *BBB↑, *neuroP↑, *ROS↓, Dose↝, selectivity↑, Casp3↑, Casp9↑, NOTCH1↓, cycD1/CCND1↓, cMyc↓, P21?, DR5↑, cl‑PARP↑, P53↑, Mcl-1↑, p65↓, NF-kB↓, ROS↑, JNK↑, NRF2↑, cJun↑, EF-1α↓, MAPK↓, PI3K↓, mTORC1↓, CSCs↓, OCT4↓, Nanog↓, SOX4↓, STAT3↓, CDK4↓, p‑RB1↓, PGE2↓, COX2↓, β-catenin/ZEB1↑, IKKα↓, HDAC↓, HATs↑, H3↑, H4↑, LC3II↑, c-Raf↓, SIRT3↑, Hif1a↓, ER Stress↑, GRP78/BiP↑, cl‑CHOP↑, MMP↓, PCNA↓, Zeb1↓, NOTCH3↓, CD133↓, Nestin↓, ATG5↑, ATG7↑, survivin↓, ChemoSen↑, SOX2↓, OS↑, P-gp↓, Half-Life↓, Half-Life↝, eff↑, BioAv↓,
2868- HNK,    Honokiol: A review of its pharmacological potential and therapeutic insights
- Review, Var, NA - Review, Sepsis, NA
*P-gp↓, *ROS↓, *TNF-α↓, *IL10↓, *IL6↓, eIF2α↑, CHOP↑, GRP78/BiP↑, BAX↑, cl‑Casp9↑, p‑PERK↑, ER Stress↑, Apoptosis↑, MMPs↓, cFLIP↓, CXCR4↓, Twist↓, HDAC↓, BMPs↑, p‑STAT3↓, mTOR↓, EGFR↓, NF-kB↓, Shh↓, VEGF↓, tumCV↓, TumCMig↓, TumCI↓, ERK↓, Akt↓, Bcl-2↓, Nestin↓, CD133↓, p‑cMET↑, RAS↑, chemoP↑, *NRF2↑, *NADPH↓, *p‑Rac1↓, *ROS↓, *IKKα↑, *NF-kB↓, *COX2↓, *PGE2↓, *Casp3↓, *hepatoP↑, *antiOx↑, *GSH↑, *Catalase↑, *RenoP↑, *ALP↓, *AST↓, *ALAT↓, *neuroP↑, *cardioP↑, *HO-1↑, *Inflam↓,
2877- HNK,    Targeting histone deacetylase-3 blocked epithelial-mesenchymal plasticity and metastatic dissemination in gastric cancer
- in-vitro, GC, AGS
HDAC3↓, NF-kB↓, CEBPB↓, ER Stress↑, EMT↓, Wnt↓, β-catenin/ZEB1↓,
2073- HNK,    Honokiol induces apoptosis and autophagy via the ROS/ERK1/2 signaling pathway in human osteosarcoma cells in vitro and in vivo
- in-vitro, OS, U2OS - in-vivo, NA, NA
TumCD↑, TumAuto↑, Apoptosis↑, TumCCA↑, GRP78/BiP↑, ROS↑, eff↓, p‑ERK↑, selectivity↑, Ca+2↑, MMP↓, Casp3↑, Casp9↑, cl‑PARP↑, Bcl-2↓, Bcl-xL↓, survivin↓, LC3B-II↑, ATG5↑, TumVol↓, TumW↓, ER Stress↑,
4633- HT,    Unlocking the effective alliance of β-lapachone and hydroxytyrosol against triple-negative breast cancer cells
- in-vitro, BC, NA
AntiCan↑, CSCs↓, antiOx↑, NQO1↑, TumCCA↑, ER Stress↑, Apoptosis↑, UPR↑,
601- HTyr,    Dihydroxyphenylethanol induces apoptosis by activating serine/threonine protein phosphatase PP2A and promotes the endoplasmic reticulum stress response in human colon carcinoma cells
- in-vivo, NA, HT-29
TumCG↓, Apoptosis↑, ER Stress↑, UPR↑, CHOP↑, JNK↑, TNF-α↓, PPP2R1A↑,
1100- LT,    Luteolin, a flavonoid, as an anticancer agent: A review
- Review, NA, NA
TumCP↓, TumCCA↑, Apoptosis↑, EMT↓, E-cadherin↑, N-cadherin↓, Snail↓, Vim↓, ROS↑, ER Stress↑, mtDam↑, p‑eIF2α↝, p‑PERK↝, p‑CHOP↝, p‑ATF4↝, cl‑Casp12↝,
2921- LT,    Luteolin as a potential hepatoprotective drug: Molecular mechanisms and treatment strategies
- Review, Nor, NA
*hepatoP↑, *AMPK↑, *SIRT1↑, *ROS↓, STAT3↓, TNF-α↓, NF-kB↓, *IL2↓, *IFN-γ↓, *GSH↑, *SREBP1↓, *ZO-1↑, *TLR4↓, BAX↑, Bcl-2↓, XIAP↓, Fas↑, Casp8↑, Beclin-1↑, *TXNIP↓, *Casp1↓, *IL1β↓, *IL18↓, *NLRP3↓, *MDA↓, *SOD↑, *NRF2↑, *ER Stress↓, *ALAT↓, *AST↓, *iNOS↓, *IL6↓, *HO-1↑, *NQO1↑, *PPARα↑, *ATF4↓, *CHOP↓, *Inflam↓, *antiOx↑, *GutMicro↑,
2923- LT,    Luteolin induces apoptosis through endoplasmic reticulum stress and mitochondrial dysfunction in Neuro-2a mouse neuroblastoma cells
- in-vitro, NA, NA
Apoptosis↑, TumCD↑, Casp12↑, Casp9↑, Casp3↑, ER Stress↑, CHOP↑, GRP78/BiP↑, GRP94↑, cl‑ATF6↑, p‑eIF2α↑, MMP↓, JNK↓, p38↑, ERK↑, Cyt‑c↑,
2914- LT,    Therapeutic Potential of Luteolin on Cancer
- Review, Var, NA
*antiOx↑, *IronCh↑, *toxicity↓, *BioAv↓, *BioAv↑, DNAdam↑, TumCP↓, DR5↑, P53↑, JNK↑, BAX↑, cl‑Casp3↑, cl‑Casp8↑, cl‑Casp9↑, cl‑PARP↑, survivin↓, cycD1/CCND1↓, CycB/CCNB1↓, CDC2↓, P21↑, angioG↓, MMP2↓, AEG1↓, VEGF↓, VEGFR2↓, MMP9↓, CXCR4↓, PI3K↓, Akt↓, ERK↓, TumAuto↑, LC3B-II↑, EMT↓, E-cadherin↑, N-cadherin↓, Wnt↓, ROS↑, NICD↓, p‑GSK‐3β↓, iNOS↓, COX2↓, NRF2↑, Ca+2↑, ChemoSen↑, ChemoSen↓, IFN-γ↓, RadioS↑, MDM2↓, NOTCH1↓, AR↓, TIMP1↑, TIMP2↑, ER Stress↑, CDK2↓, Telomerase↓, p‑NF-kB↑, p‑cMyc↑, hTERT/TERT↓, RAS↓, YAP/TEAD↓, TAZ↓, NF-kB↓, NRF2↓, HO-1↓, MDR1↓,
2903- LT,    Luteolin induces apoptosis by ROS/ER stress and mitochondrial dysfunction in gliomablastoma
- in-vitro, GBM, U251 - in-vitro, GBM, U87MG - in-vivo, NA, NA
ER Stress↑, ROS↑, PERK↑, eIF2α↑, ATF4↑, CHOP↑, Casp12↑, eff↓, UPR↑, MMP↓, Cyt‑c↑, Bcl-2↓, BAX↑, TumCG↓, Weight∅, ALAT∅, AST∅,
2912- LT,    Luteolin: a flavonoid with a multifaceted anticancer potential
- Review, Var, NA
ROS↑, TumCCA↑, TumCP↓, angioG↓, ER Stress↑, mtDam↑, PERK↑, ATF4↑, eIF2α↑, cl‑Casp12↑, EMT↓, E-cadherin↑, N-cadherin↓, Vim↓, *neuroP↑, NF-kB↓, PI3K↓, Akt↑, XIAP↓, MMP↓, Ca+2↑, BAX↑, Casp3↑, Casp9↑, Bcl-2↓, Cyt‑c↑, IronCh↑, SOD↓, *ROS↓, *LDHA↑, *SOD↑, *GSH↑, *BioAv↓, Telomerase↓, cMyc↓, hTERT/TERT↓, DR5↑, Fas↑, FADD↑, BAD↑, BOK↑, BID↑, NAIP↓, Mcl-1↓, CDK2↓, CDK4↓, MAPK↓, AKT1↓, Akt2↓, *Beclin-1↓, Hif1a↓, LC3II↑, Beclin-1↑,
4231- Lut,    Luteolin and its antidepressant properties: From mechanism of action to potential therapeutic application
- Review, AD, NA
*PSD95↑, *BDNF↑, *SOD↑, *GSTA1↑, *MDA↑, *Casp3↓, *Mood↑, *antiOx↑, *Apoptosis↓, *Inflam↓, *ER Stress↓,
3261- Lyco,    Lycopene and Vascular Health
- Review, Stroke, NA
*Inflam↓, *antiOx↑, *AntiAg↑, *cardioP↑, *SOD↑, *Catalase↑, *ROS↓, *mtDam↓, *cardioP↑, *NF-kB↓, *NO↓, *COX2↓, *LDL↓, *eff↑, *ER Stress↓, *BioAv↑, *eff↑, *MMPs↓, *COX2↓, *RAGE↓,
4517- MAG,    Mitochondrion-targeted magnolol derivatives exert synergistic anticancer activity by modulating energy metabolism and tumor microenvironment
- vitro+vivo, Var, NA
eff↑, AntiCan↑, ROS↑, ER Stress↑, Apoptosis↑,
3457- MF,    Cellular stress response to extremely low‐frequency electromagnetic fields (ELF‐EMF): An explanation for controversial effects of ELF‐EMF on apoptosis
- Review, Var, NA
Apoptosis↑, H2O2↑, ROS↑, eff↑, eff↑, Ca+2↑, MAPK↑, *Catalase↑, *SOD1↑, *GPx1↑, *GPx4↑, *NRF2↑, TumAuto↑, ER Stress↑, HSPs↑, SIRT3↑, ChemoSen↑, UPR↑, other↑, PI3K↓, JNK↑, p38↑, eff↓, *toxicity?,
3458- MF,    Magnetic Control of Protein Expression via Magneto-mechanical Actuation of ND-PEGylated Iron Oxide Nanocubes for Cell Therapy
- in-vitro, GBM, NA
ER Stress↑, UPR↑, Ca+2↑, TRAIL↓, GRP78/BiP↑,
3459- MF,    EFFECT OF PULSED ELECTROMAGNETIC FIELDS ON ENDOPLASMIC RETICULUM STRESS
- in-vitro, Cerv, HeLa
GRP78/BiP↑, GRP94↑, CHOP↑, ER Stress↓,
3499- MFrot,  MF,    Rotating magnetic field delays human umbilical vein endothelial cell aging and prolongs the lifespan of Caenorhabditis elegans
- in-vitro, Nor, HUVECs
*AntiAge↑, *AMPK↑, *mPGES-1↓, *Ca+2↑, *ER Stress↑, *OS↑, *ROS↓,
773- Mg,    Methyl Jasmonate-induced Increase in Intracellular Magnesium Promotes Apoptosis in Breast Cancer Cells
- in-vitro, BC, MCF-7
TRPM7↓, ROS↑, ER Stress↑, MAPK↑, ATP↓,
1015- NarG,    Naringin induces endoplasmic reticulum stress-mediated apoptosis, inhibits β-catenin pathway and arrests cell cycle in cervical cancer cells
- in-vitro, Cerv, SiHa - in-vitro, Cerv, HeLa - in-vitro, Cerv, C33A
ER Stress↑, p‑eIF2α↑, CHOP↑, PARP1↑, Casp3↑, β-catenin/ZEB1↓, GSK‐3β↓, p‑β-catenin/ZEB1↓, p‑GSK‐3β↓, TumCCA↑, P21↑, p27↑,
4975- Nimb,    Nimbolide Induces Cell Apoptosis via Mediating ER Stress-Regulated Apoptotic Signaling in Human Oral Squamous Cell Carcinoma
- in-vitro, Oral, NA
Apoptosis↑, ROS↑, Ca+2↑, ER Stress↑, Casp↑, MMP↓, tumCV↓,
4974- Nimb,    Nimbolide Induces ROS-Regulated Apoptosis and Inhibits Cell Migration in Osteosarcoma
- in-vitro, OS, NA
Apoptosis↑, ER Stress↑, mtDam↑, ROS↑, Casp↑, TumCMig↓, TumMeta↓,
4973- Nimb,    Nimbolide Exhibits Potent Anticancer Activity Through ROS-Mediated ER Stress and DNA Damage in Human Non-small Cell Lung Cancer Cells
- in-vitro, NSCLC, A549
tumCV↓, ROS↑, ER Stress↑, DNAdam↑, Apoptosis↑, eff↓,
150- NRF,  CUR,  docx,    Subverting ER-Stress towards Apoptosis by Nelfinavir and Curcumin Coexposure Augments Docetaxel Efficacy in Castration Resistant Prostate Cancer Cells
- in-vitro, Pca, C4-2B
p‑Akt↓, p‑eIF2α↑, ER Stress↑, ATFs↑, CHOP↑, TRIB3↑,
1229- OA,    Review of the Clinical Effect of Orlistat
- Review, NA, NA
NPC1L1↓, FASN↓, ER Stress↑, angioG↓, TumCG↓,
4643- OLE,  HT,    Use of Oleuropein and Hydroxytyrosol for Cancer Prevention and Treatment: Considerations about How Bioavailability and Metabolism Impact Their Adoption in Clinical Routine
- Review, Var, NA
TumCCA↑, Apoptosis↑, ER Stress↑, UPR↑, CHOP↑, ROS↑, Bcl-2↓, NOX4↑, Hif1a↓, MMP2↓, MMP↓, VEGF↓, Akt↓, NF-kB↓, p65↓, SIRT3↓, mTOR↓, Catalase↓, SOD2↓, FASN↓, STAT3↓, HDAC2↓, HDAC3↓, BAD↑, BAX↑, Bak↑, Casp3↑, Casp9↑, PARP↑, P53↑, P21↑, p27↑, Half-Life↝, BioAv↓, BioAv↓, selectivity↑, RadioS↑, *ROS↓, *GSH↑, *MDA↓, *SOD↑, *Catalase↑, *NRF2↑, *chemoP↑, *Inflam↓, PPARγ↑,
1996- Part,    Critical roles of intracellular thiols and calcium in parthenolide-induced apoptosis in human colorectal cancer cells
- in-vitro, CRC, COLO205
Apoptosis↑, GSH↓, ROS↑, Ca+2↑, GRP78/BiP↑, ER Stress↑, eff↓, eff↑, Thiols↓,
2034- PB,    Protective effects of 4-phenylbutyrate derivatives on the neuronal cell death and endoplasmic reticulum stress
- in-vitro, Nor, SH-SY5Y
*ER Stress↓, *ChemChap↓, *cytoP↑, *cellD↓, *neuroP↑,
2058- PB,    Induction of Human-Lung-Cancer-A549-Cell Apoptosis by 4-Hydroperoxy-2-decenoic Acid Ethyl Ester through Intracellular ROS Accumulation and the Induction of Proapoptotic CHOP Expression
- in-vitro, Lung, A549
ER Stress↓,
2057- PB,    Trichomonas vaginalis induces apoptosis via ROS and ER stress response through ER–mitochondria crosstalk in SiHa cells
- in-vitro, Cerv, SiHa
ROS↓, tumCV∅, cl‑PARP↓, cl‑Casp3↓, MMP∅, ER Stress↓,
2056- PB,    Endoplasmic Reticulum Stress Induces ROS Production and Activates NLRP3 Inflammasome Via the PERK-CHOP Signaling Pathway in Dry Eye Disease
- in-vitro, Nor, HCE-2
*ROS↓, *NLRP3↓, *IL1β↓, *TXNIP↑, *ER Stress↓,
2053- PB,    4-Phenyl butyric acid prevents glucocorticoid-induced osteoblast apoptosis by attenuating endoplasmic reticulum stress
- in-vitro, ostP, 3T3
*ER Stress↓, *mtDam↓, *Apoptosis↓, eff↑,
2052- PB,    Lipid-regulating properties of butyric acid and 4-phenylbutyric acid: Molecular mechanisms and therapeutic applications
- Review, NA, NA
*HDAC↓, *Half-Life↑, *Half-Life↑, *lipoGen↓, *ER Stress↓, *FAO↑, *ROS↓, *BioAv↑,
2051- PB,    Beneficial Effects of Sodium Phenylbutyrate Administration during Infection with Salmonella enterica Serovar Typhimurium
- in-vivo, Inf, NA
*Inf↓, *GutMicro↑, *IL17↑, *Inflam↓, *ER Stress↓, *ROS↓, *OS↑, *Bacteria↓, *Neut↑, *toxicity↓,
2048- PB,    Sodium Phenylbutyrate Inhibits Tumor Growth and the Epithelial-Mesenchymal Transition of Oral Squamous Cell Carcinoma In Vitro and In Vivo
- in-vitro, OS, CAL27 - in-vitro, Oral, HSC3 - in-vitro, OS, SCC4 - in-vivo, NA, NA
*NH3↓, *HDAC↓, *ER Stress↓, Apoptosis?, Bcl-2↓, cl‑Casp3↑, TGF-β↑, N-cadherin↓, E-cadherin↑, TumVol↓, eff↑,
2041- PB,    The Effect of Glucose Concentration and Sodium Phenylbutyrate Treatment on Mitochondrial Bioenergetics and ER Stress in 3T3-L1 Adipocytes
- in-vitro, Nor, 3T3
*mitResp↓, *ER Stress↓, MMP↓, GlucoseCon↓, OCR↓, CHOP↑,
2076- PB,    Sodium Butyrate Induces Endoplasmic Reticulum Stress and Autophagy in Colorectal Cells: Implications for Apoptosis
- in-vitro, CRC, HCT116 - in-vitro, CRC, HT29
TumCP↓, TumAuto↑, Apoptosis↑, ER Stress↑, BID↑, CHOP↑, PDI↑, IRE1↓, LC3‑Ⅱ/LC3‑Ⅰ↑, LC3B↑, Beclin-1↑, other↝, other↝,
2065- PB,  TMZ,    Inhibition of Mitochondria- and Endoplasmic Reticulum Stress-Mediated Autophagy Augments Temozolomide-Induced Apoptosis in Glioma Cells
- in-vitro, GBM, NA
eff↑, ROS↑, MMP↓, ER Stress↑, CHOP↑, GRP78/BiP↑, pro‑Casp12↓, eff↝, Ca+2↝,
2028- PB,    Potential of Phenylbutyrate as Adjuvant Chemotherapy: An Overview of Cellular and Molecular Anticancer Mechanisms
- Review, Var, NA
HDAC↓, TumCCA↑, P21↑, Dose↝, Telomerase↓, IGFBP3↑, p‑p38↑, JNK↑, ERK↑, BAX↑, Casp3↑, Bcl-2↓, Cyt‑c↝, FAK↓, survivin↓, VEGF↓, angioG↓, DNArepair↓, TumMeta↓, HSP27↑, ASK1↑, ROS↑, eff↑, ER Stress↓, GRP78/BiP↓, CHOP↑, AR↓, other?,
2078- PB,    Butyrate-induced apoptosis in HCT116 colorectal cancer cells includes induction of a cell stress response
- in-vitro, CRC, HCT116
p38↑, ER Stress↑, Casp3↑, Casp7↑, TumCD↑, Apoptosis↑, TumCP↑, HSP27↓,
1664- PBG,    Anticancer Activity of Propolis and Its Compounds
- Review, Var, NA
Apoptosis↑, TumCMig↓, TumCCA↑, TumCP↓, angioG↓, P21↑, p27↑, CDK1↓, p‑CDK1↓, cycA1/CCNA1↓, CycB/CCNB1↓, P70S6K↓, CLDN2↓, HK2↓, PFK↓, PKM2↓, LDHA↓, TLR4↓, H3↓, α-tubulin↓, ROS↑, Akt↓, GSK‐3β↓, FOXO3↓, NF-kB↓, cycD1/CCND1↓, MMP↓, ROS↑, i-Ca+2↑, lipid-P↑, ER Stress↑, UPR↑, PERK↑, eIF2α↑, GRP78/BiP↑, BAX↑, PUMA↑, ROS↑, MMP↓, Cyt‑c↑, cl‑Casp8↑, cl‑Casp8↑, cl‑Casp3↑, cl‑PARP↑, eff↑, eff↑, RadioS↑, ChemoSen↑, eff↑,
1672- PBG,    The Potential Use of Propolis as an Adjunctive Therapy in Breast Cancers
- Review, BC, NA
ChemoSen↓, RadioS↑, Inflam↓, AntiCan↑, Dose∅, mtDam↑, Apoptosis?, OCR↓, ATP↓, ROS↑, ROS↑, LDH↓, TP53↓, Casp3↓, BAX↓, P21↓, ROS↑, eNOS↑, iNOS↑, eff↑, hTERT/TERT↓, cycD1/CCND1↓, eff↑, eff↑, eff↑, eff↑, STAT3↓, TIMP1↓, IL4↓, IL10↓, OS↑, Dose∅, ER Stress↑, ROS↑, NF-kB↓, p65↓, MMP↓, TumAuto↑, LC3II↑, p62↓, TLR4↓, mtDam↑, LDH↓, ROS↑, Glycolysis↓, HK2↓, PFK↓, PKM2↓, LDH↓, IL10↓, HDAC8↓, eff↑, eff↑, P21↑,
1660- PBG,    Emerging Adjuvant Therapy for Cancer: Propolis and its Constituents
- Review, Var, NA
MMPs↓, angioG↓, TumMeta↓, TumCCA↑, Apoptosis↑, ChemoSideEff↓, eff∅, HDAC↓, PTEN↑, p‑PTEN↓, p‑Akt↓, Casp3↑, p‑ERK↑, p‑FAK↑, Dose?, Akt↓, GSK‐3β↓, FOXO3↓, eff↑, IL2↑, IL10↑, NF-kB↓, VEGF↓, mtDam↑, ER Stress↑, AST↓, ALAT↓, ALP↓, COX2↓, eff↑, Bax:Bcl2↑,
4951- PEITC,    ROS accumulation by PEITC selectively kills ovarian cancer cells via UPR-mediated apoptosis
- in-vitro, Ovarian, PA1 - in-vitro, Ovarian, SKOV3
ROS↑, TumCP↓, GSH↓, selectivity↑, UPR↑, CHOP↑, ER Stress↑, GRP78/BiP↑, PERK↑, ATF6↑, eff↓, TumCG↓, Apoptosis↑, toxicity↓,
1939- PL,    Piperlongumine selectively kills hepatocellular carcinoma cells and preferentially inhibits their invasion via ROS-ER-MAPKs-CHOP
- in-vitro, HCC, HepG2 - in-vitro, HCC, HUH7 - in-vivo, NA, NA
TumCMig↓, TumCI↓, ER Stress↑, selectivity↑, tumCV↓, ROS↑, GSH↓, eff↓, Ca+2↑, MAPK↑, CHOP↑, Dose↝,
1943- PL,    Piperlongumine treatment inactivates peroxiredoxin 4, exacerbates endoplasmic reticulum stress, and preferentially kills high-grade glioma cells
- in-vitro, GBM, NA - in-vivo, NA, NA
selectivity↑, ROS↑, selectivity↑, Prx4↓, *Prx4∅, ER Stress↑, CHOP↑, UPR↑,
1944- PL,    Piperlongumine, a Novel TrxR1 Inhibitor, Induces Apoptosis in Hepatocellular Carcinoma Cells by ROS-Mediated ER Stress
- in-vitro, HCC, HUH7 - in-vitro, HCC, HepG2
ER Stress↑, TrxR1↓, ROS↑, eff↓, Bcl-2↓, proCasp3↓, BAX↓, cl‑Casp3↑, TumCCA↑, p‑PERK↑, ATF4↑, TumCG↓, lipid-P↑, selectivity↑,
1947- PL,    Piperlongumine as a direct TrxR1 inhibitor with suppressive activity against gastric cancer
- in-vitro, GC, SGC-7901 - in-vitro, GC, NA
TrxR1↓, ROS↑, ER Stress↑, mtDam↑, selectivity↑, NO↑, TumCCA↑, mt-ROS↑, Casp9↑, Bcl-2↓, Bcl-xL↓, cl‑PARP↑, eff↓, lipid-P↑,
2954- PL,    The metabolites from traditional Chinese medicine targeting ferroptosis for cancer therapy
- Review, Var, NA
NRF2↑, ROS↑, ER Stress↑, MAPK↑, CHOP↑, selectivity↑, Keap1↝, HO-1↑, Ferroptosis↑,
2946- PL,    Piperlongumine, a potent anticancer phytotherapeutic: Perspectives on contemporary status and future possibilities as an anticancer agent
- Review, Var, NA
ROS↑, GSH↓, DNAdam↑, ChemoSen↑, RadioS↑, BioEnh↑, selectivity↑, BioAv↓, eff↑, p‑Akt↓, mTOR↓, GSK‐3β↓, β-catenin/ZEB1↓, HK2↓, Glycolysis↓, Cyt‑c↑, Casp9↑, Casp3↑, Casp7↑, cl‑PARP↑, TrxR↓, ER Stress↑, ATF4↝, CHOP↑, Prx4↑, NF-kB↓, cycD1/CCND1↓, CDK4↓, CDK6↓, p‑RB1↓, RAS↓, cMyc↓, TumCCA↑, selectivity↑, STAT3↓, NRF2↑, HO-1↑, PTEN↑, P-gp↓, MDR1↓, MRP1↓, survivin↓, Twist↓, AP-1↓, Sp1/3/4↓, STAT1↓, STAT6↓, SOX4↑, XBP-1↑, P21↑, eff↑, Inflam↓, COX2↓, IL6↓, MMP9↓, TumMeta↓, TumCI↓, ICAM-1↓, CXCR4↓, VEGF↓, angioG↓, Half-Life↝, BioAv↑,
2649- PL,    Oxidative Stress Inducers in Cancer Therapy: Preclinical and Clinical Evidence
- Review, Var, NA
AntiCan↑, ROS↑, GSH↓, TrxR↓, Trx↓, Apoptosis↑, TumCCA↑, ER Stress↑, DNAdam↑, ChemoSen↑, BioAv↓,
2651- Plum,    Oxidative Stress Inducers in Cancer Therapy: Preclinical and Clinical Evidence
- Review, Var, NA
ROS↑, TrxR↓, GSR↓, ER Stress↓, TumCCA↑, MMP↓, NF-kB↓, PI3K↓, Akt↓, mTOR↓, MKP1↓, MKP2↓, ChemoSen↑,
2006- Plum,    Plumbagin induces apoptosis in human osteosarcoma through ROS generation, endoplasmic reticulum stress and mitochondrial apoptosis pathway
- in-vitro, OS, MG63 - in-vitro, Nor, hFOB1.19
tumCV↓, selectivity↑, mtDam↑, Ca+2↓, ER Stress↑, ROS↑, Casp3↑, Casp9↑, Apoptosis↑, eff↓,
5033- PTS,    Involvement of the Nrf2 Pathway in the Regulation of Pterostilbene-Induced Apoptosis in HeLa Cells via ER Stress
- in-vitro, Cerv, HeLa
ER Stress↑, ROS↑, NRF2↑, TumCP↓, GSH/GSSG↓,
4693- PTS,    Pterostilbene in the treatment of inflammatory and oncological diseases
BioAv↑, *Inflam↓, *antiOx↑, AntiTum↑, BBB↑, Half-Life↝, *ROS↓, *NRF2↑, *NQO1↑, *HO-1↑, PTEN↑, miR-19b↓, TumCCA↑, ER Stress↑, PERK↑, ATF4↑, CHOP↑, Ca+2↝, EMT↓, NF-kB↓, Twist↓, Vim↓, E-cadherin↑, ChemoSen↑, toxicity∅, toxicity↝,
3361- QC,    Quercetin ameliorates testosterone secretion disorder by inhibiting endoplasmic reticulum stress through the miR-1306-5p/HSD17B7 axis in diabetic rats
- in-vivo, Nor, NA - in-vitro, NA, NA
*BG↓, *ROS↓, *SOD↑, *MDA↓, *ER Stress↓, *iNOS↓, *CHOP↓, *GRP78/BiP↓, *antiOx↓, *Inflam↓, *JAK2↑, *STAT3?,
3354- QC,    Quercetin: Its Main Pharmacological Activity and Potential Application in Clinical Medicine
- Review, Var, NA
*ROS↓, *IronCh↓, *lipid-P↓, *GSH↑, *NRF2↑, TumCCA↑, ER Stress↑, P53↑, CDK2↓, cycA1/CCNA1↓, CycB/CCNB1↓, cycE/CCNE↓, cycD1/CCND1↓, PCNA↓, P21↑, p27↑, PI3K↓, Akt↓, mTOR↓, STAT3↓, cFLIP↓, cMyc↓, survivin↓, DR5↓, *Inflam↓, *IL6↓, *IL8↓, COX2↓, 5LO↓, *cardioP↑, *FASN↓, *AntiAg↑, *MDA↓,
3362- QC,    The effect of quercetin on cervical cancer cells as determined by inducing tumor endoplasmic reticulum stress and apoptosis and its mechanism of action
- in-vitro, Cerv, HeLa
Apoptosis↑, cycD1/CCND1↓, Casp3↑, GRP78/BiP↑, CHOP↑, tumCV↓, IRE1↑, p‑PERK↑, c-ATF6↑, ER Stress↑,
3368- QC,    The potential anti-cancer effects of quercetin on blood, prostate and lung cancers: An update
- Review, Var, NA
*Inflam↓, *antiOx↑, *AntiCan↑, Casp3↓, p‑Akt↓, p‑mTOR↓, p‑ERK↓, β-catenin/ZEB1↓, Hif1a↓, AntiAg↓, VEGFR2↓, EMT↓, EGFR↓, MMP2↓, MMP↓, TumMeta↓, MMPs↓, Akt↓, Snail↓, N-cadherin↓, Vim↓, E-cadherin↑, STAT3↓, TGF-β↓, ROS↓, P53↑, BAX↑, PKCδ↓, PI3K↓, COX2↓, cFLIP↓, cycD1/CCND1↓, cMyc↓, IL6↓, IL10↓, Cyt‑c↑, TumCCA↑, DNMTs↓, HDAC↓, ac‑H3↑, ac‑H4↑, Diablo↑, Casp3↑, Casp9↑, PARP1↑, eff↑, PTEN↑, VEGF↓, NO↓, iNOS↓, ChemoSen↑, eff↑, eff↑, eff↑, uPA↓, CXCR4↓, CXCL12↓, CLDN2↓, CDK6↓, MMP9↓, TSP-1↑, Ki-67↓, PCNA↓, ROS↑, ER Stress↑,
3366- QC,    Quercetin Attenuates Endoplasmic Reticulum Stress and Apoptosis in TNBS-Induced Colitis by Inhibiting the Glucose Regulatory Protein 78 Activation
- in-vivo, IBD, NA
*Apoptosis↓, *Inflam↓, *ROS↓, *ER Stress↓, *TNF-α↓, *MPO↓, *p‑JNK↓, *Casp12↓, *GRP78/BiP↓, *antiOx↑, *NF-kB↓,
3365- QC,    Quercetin attenuates sepsis-induced acute lung injury via suppressing oxidative stress-mediated ER stress through activation of SIRT1/AMPK pathways
- in-vivo, Sepsis, NA
*ER Stress↓, *PDI↓, *CHOP↓, *GRP78/BiP↓, *ATF6↓, *PERK↓, *IRE1↓, *MMP↑, *SOD↑, *ROS↓, *MDA↓, *SIRT1↑, *AMPK↑, *Sepsis↓,
3363- QC,    The Protective Effect of Quercetin on Endothelial Cells Injured by Hypoxia and Reoxygenation
- in-vitro, Nor, HBMECs
*Apoptosis↓, *angioG↑, *NRF2↑, *Keap1↓, *ATF6↓, *GRP78/BiP↓, *CLDN5↑, *ZO-1↑, *MMP↑, *BBB↑, *ROS↓, *ER Stress↓,
3337- QC,    Endoplasmic Reticulum Stress-Relieving Effect of Quercetin in Thapsigargin-Treated Hepatocytes
- in-vitro, NA, HepG2
*Inflam↓, *UPR↓, *GRP58↓, *XBP-1↓, *ER Stress↓, *antiOx↑, TNF-α↓, p‑eIF2α↓, p‑IRE1↓, p‑JNK↓, CHOP↓,
88- QC,  PacT,    Quercetin Enhanced Paclitaxel Therapeutic Effects Towards PC-3 Prostate Cancer Through ER Stress Induction and ROS Production
- vitro+vivo, Pca, PC3
ROS↑, ER Stress↑,
91- QC,    The roles of endoplasmic reticulum stress and mitochondrial apoptotic signaling pathway in quercetin-mediated cell death of human prostate cancer PC-3 cells
- in-vitro, Pca, PC3
CDK2↓, cycE/CCNE↓, cycD1/CCND1↓, ATFs↑, GRP78/BiP↑, Bcl-2↓, BAX↑, Casp3↑, Casp8↑, Casp9↑, ER Stress↑, CHOP↑,
916- QC,    Quercetin and cancer: new insights into its therapeutic effects on ovarian cancer cells
- Review, Ovarian, NA
COX2↓, CRP↓, ER Stress↑, Apoptosis↑, GRP78/BiP↑, CHOP↑, p‑STAT3↓, PI3K↓, Akt↓, mTOR↓, cMyc↓, cycD1/CCND1↓, cFLIP↓, IL6↓, IL10↓,
4297- QC,    Quercetin attenuates tau hyperphosphorylation and improves cognitive disorder via suppression of ER stress in a manner dependent on AMPK pathway
- in-vitro, AD, SH-SY5Y
*AMPK↑, *IRE1↓, *p‑PERK↓, *p‑tau↓, *cognitive↑, *antiOx↑, *ER Stress↓, *Inflam↓, *neuroP↑, *TXNIP↓, *NLRP3↓,
2330- RES,    Resveratrol Induces Cancer Cell Apoptosis through MiR-326/PKM2-Mediated ER Stress and Mitochondrial Fission
- in-vitro, CRC, DLD1 - in-vitro, Cerv, HeLa - in-vitro, BC, MCF-7
TumCP↓, Apoptosis↑, PKM2↓, ER Stress↑,
2332- RES,    Resveratrol’s Anti-Cancer Effects through the Modulation of Tumor Glucose Metabolism
- Review, Var, NA
Glycolysis↓, GLUT1↓, PFK1↓, Hif1a↓, ROS↑, PDH↑, AMPK↑, TumCG↓, TumCI↓, TumCP↓, p‑NF-kB↓, SIRT1↑, SIRT3↑, LDH↓, PI3K↓, mTOR↓, PKM2↓, R5P↝, G6PD↓, TKT↝, talin↓, HK2↓, GRP78/BiP↑, GlucoseCon↓, ER Stress↑, Warburg↓, PFK↓,
3066- RES,    Resveratrol triggers ER stress-mediated apoptosis by disrupting N-linked glycosylation of proteins in ovarian cancer cells
GSK‐3β↑, Akt↓, CHOP↑, ER Stress↑, PERK↑, ATF6↑, UPR↑, GlucoseCon↓,
3065- RES,    Resveratrol-induced cytotoxicity in human Burkitt's lymphoma cells is coupled to the unfolded protein response
- in-vitro, lymphoma, NA
UPR↑, IRE1↑, p‑eIF2α↑, PERK↑, ATF6↑, GRP78/BiP↑, GRP94↑, CHOP↑, GADD34↑, ATF4↑, XBP-1↑, Ca+2↑, ER Stress↑,
3054- RES,    Resveratrol induced reactive oxygen species and endoplasmic reticulum stress-mediated apoptosis, and cell cycle arrest in the A375SM malignant melanoma cell line
- in-vitro, Melanoma, A375
TumCG↓, P21↑, p27↑, CycB/CCNB1↓, ROS↑, ER Stress↑, p‑p38↑, P53↑, p‑eIF2α↑, EP4↑, CHOP↑, Bcl-2↓, BAX↓, TumCCA↑, NRF2↓, ChemoSen↑, GSH↓,
3033- RosA,    Rosemary (Rosmarinus officinalis) Extract Modulates CHOP/GADD153 to Promote Androgen Receptor Degradation and Decreases Xenograft Tumor Growth
- in-vitro, Pca, 22Rv1 - in-vitro, Pca, LNCaP - vitro+vivo, NA, NA
ER Stress↑, selectivity↑, AR↓, TumCG↓, TumCCA↑, CHOP↑, PERK↓, GRP78/BiP↑, PSA↓,
3020- RosA,    Protective Effect of Rosmarinic Acid on Endotoxin-Induced Neuronal Damage Through Modulating GRP78/PERK/MANF Pathway
- in-vivo, Nor, NA - in-vitro, NA, SH-SY5Y
*cognitive↑, *PERK↓, *GRP78/BiP↓, *ER Stress↓,
3025- RosA,    Rosmarinic acid alleviates intestinal inflammatory damage and inhibits endoplasmic reticulum stress and smooth muscle contraction abnormalities in intestinal tissues by regulating gut microbiota
- in-vivo, IBD, NA
*GutMicro↑, *ROCK1↓, *Rho↓, *CaMKII ↓, *Zeb1↓, *ZO-1↓, *E-cadherin↓, *IL1β↓, *IL6↓, *TNF-α↓, *GRP78/BiP↓, *PERK↓, *IRE1↓, *ATF6↓, *CHOP↓, *Casp12↓, *Casp9↓, *BAX↓, *Casp3↓, *Cyt‑c↓, *RIP1↓, *MLKL↓, *IL10↑, *Bcl-2↑, *ER Stress↓,
3023- RosA,    Rosmarinic acid alleviates septic acute respiratory distress syndrome in mice by suppressing the bronchial epithelial RAS-mediated ferroptosis
- in-vivo, Sepsis, NA
*GPx4↑, *Inflam↓, *ER Stress↓, *Ferroptosis↓, *Sepsis↓, *GRP78/BiP↓, *IRE1↓, JNK↓,
3002- RosA,    Anticancer Effects of Rosemary (Rosmarinus officinalis L.) Extract and Rosemary Extract Polyphenols
- Review, Var, NA
TumCG↓, TumCP↓, TumCCA↑, ChemoSen↑, NRF2↑, PERK↑, SESN2↑, HO-1↑, cl‑Casp3↑, ROS↑, UPR↑, ER Stress↑, CHOP↑, HER2/EBBR2↓, ER-α36↓, PSA↓, BAX↑, AR↓, P-gp↓, Cyt‑c↑, HSP70/HSPA5↑, eff↑, p‑Akt↓, p‑mTOR↓, p‑P70S6K↓, cl‑PARP↑, eff↑,
4912- Sal,    Salinomycin induces cell death with autophagy through activation of endoplasmic reticulum stress in human cancer cells
- in-vitro, Lung, A549 - in-vitro, Lung, H460 - in-vitro, Lung, Calu-1 - in-vitro, Lung, H157
CSCs↓, TumAuto↑, ER Stress↑, TumCD↑, ATF4↑, CHOP↑, AKT1↓, mTOR↓,
4898- Sal,    Salinomycin as a potent anticancer stem cell agent: State of the art and future directions
- Review, Var, NA
CSCs↓, AntiCan↑, ChemoSen↑, RadioS↑, Wnt↓, MAPK↓, TumAuto↑, ATP↓, ROS↑, DNAdam↑, ER Stress↑, CSCsMark↓, Iron↑, *toxicity↝,
4908- Sal,    Salinomycin triggers prostate cancer cell apoptosis by inducing oxidative and endoplasmic reticulum stress via suppressing Nrf2 signaling
- in-vitro, Pca, PC3 - in-vitro, Pca, DU145
tumCV↓, ROS↑, lipid-P↑, UPR↑, ER Stress↑, NRF2↓, NADPH↓, HO-1↓, SOD↓, Catalase↓, GPx↓, eff↓, TumCP↓,
5003- Sal,    Salinomycin, as an autophagy modulator-- a new avenue to anticancer: a review
- Review, Var, NA
CSCs↓, TumAuto↑, selectivity↑, DNAdam↑, TumCCA↑, P-gp↓, Wnt↓, β-catenin/ZEB1↓, RadioS↑, ChemoSen↑, Shh↓, eff↓, ROS↑, AMPK↑, JNK↑, ER Stress↑,
4999- Sal,    Salinomycin triggers endoplasmic reticulum stress through ATP2A3 upregulation in PC-3 cells
- in-vitro, Pca, PC3
Bacteria↓, CSCs↓, ER Stress↑,
1388- Sco,    Scoulerine promotes cell viability reduction and apoptosis by activating ROS-dependent endoplasmic reticulum stress in colorectal cancer cells
- in-vitro, CRC, NA
tumCV↓, Apoptosis↑, Casp3↑, Casp7↑, BAX↑, Bcl-2↓, ROS↑, GSH↓, SOD↓, ER Stress↑, GRP78/BiP↑, CHOP↑, eff↓,
2549- SDT,    Landscape of Cellular Bioeffects Triggered by Ultrasound-Induced Sonoporation
- Review, Var, NA
sonoP↑, tumCV↓, MMP↓, ROS↑, Ca+2↑, eff↝, eff↑, selectivity↑, Half-Life↝, Dose↝, P-gp↓, ER Stress↑, other↑,
4603- Se,    Therapeutic applications of selenium nanoparticles
- Review, Var, NA
AntiCan↑, Imm↑, *AntiDiabetic↑, *antiOx↑, *Inflam↓, ROS↑, ER Stress↑, DNAdam↑, *toxicity↓, *eff↑, *BioAv↑, selectivity↑, TumCCA↑, Risk↓, *lipid-P↓, *TNF-α↓, *CRP↓, TumMeta↓, angioG↓, selectivity↑, eff↑, *eff↑,
4605- Se,    Selenium nanoparticles: An insight on its Pro-oxidant andantioxidant properties
- Review, NA, NA
*antiOx↑, *selenoP↑, *Dose↝, *toxicity↓, ROS↑, ER Stress↑,
4453- Se,    Selenium Nanoparticles: Green Synthesis and Biomedical Application
- Review, NA, NA
*toxicity↓, *Bacteria↓, ROS↑, MMP↓, ER Stress↑, P53↑, Apoptosis↑, Casp9↑, DNAdam↑, TumCCA↑, eff↑, Catalase↓, SOD↓, GSH↓, selectivity↓, selectivity↑, PCNA↓, eff↑, *ALAT↓, *AST↓, *ALP↓, *creat↓, *Inflam↓, *toxicity↓, selectivity↑,
1002- Sel,  Osi,  Adag,    Selenite as a dual apoptotic and ferroptotic agent synergizes with EGFR and KRAS inhibitors with epigenetic interference
- in-vitro, Lung, H1975 - in-vitro, Lung, H385
Apoptosis↑, Ferroptosis↑, DNMT1↓, TET1↑, TumCCA↑, cl‑PARP↑, cl‑Casp3↑, Cyt‑c↑, BIM↑, NOXA↑, Apoptosis↑, ROS↑, ER Stress↑, UPR↑,
3180- SFN,    Exploring the therapeutic effects of sulforaphane: an in-depth review on endoplasmic reticulum stress modulation across different disease contexts
- Review, Var, NA
*cardioP↑, *ER Stress↓, GRP78/BiP↑, XBP-1↑, Apoptosis↑, *NRF2↑, UPR↑,
3181- SFN,    Effect of sulforaphane on protein expression of Bip/GRP78 and caspase-12 in human hapetocelluar carcinoma HepG-2 cells
- in-vitro, HCC, HepG2
GRP78/BiP↑, Casp12↑, Apoptosis↑, ER Stress↑,
1482- SFN,    Sulforaphane induces apoptosis in T24 human urinary bladder cancer cells through a reactive oxygen species-mediated mitochondrial pathway: the involvement of endoplasmic reticulum stress and the Nrf2 signaling pathway
- in-vitro, Bladder, T24
tumCV↓, Apoptosis↑, Cyt‑c↑, Bax:Bcl2↑, Casp9↑, Casp3↑, Casp8∅, cl‑PARP↑, ROS↑, MMP↓, eff↓, ER Stress↑, p‑NRF2↑, HO-1↑,
1458- SFN,    Sulforaphane Impact on Reactive Oxygen Species (ROS) in Bladder Carcinoma
- Review, Bladder, NA
HDAC↓, eff↓, TumW↓, TumW↓, angioG↓, *toxicity↓, GutMicro↝, AntiCan↑, ROS↑, MMP↓, Cyt‑c↑, Bax:Bcl2↑, Casp3↑, Casp9↑, Casp8∅, cl‑PARP↑, TRAIL↑, DR5↑, eff↓, NRF2↑, ER Stress↑, COX2↓, EGFR↓, HER2/EBBR2↓, ChemoSen↑, NF-kB↓, TumCCA?, p‑Akt↓, p‑mTOR↓, p70S6↓, p19↑, P21↑, CD44↓, CSCs↓,
1480- SFN,    Sulforaphane Induces Cell Death Through G2/M Phase Arrest and Triggers Apoptosis in HCT 116 Human Colon Cancer Cells
- in-vitro, CRC, HCT116
tumCV↓, TumCCA↑, Apoptosis↑, cycA1/CCNA1↑, CycB/CCNB1↑, CDC25↓, CDK1↓, ROS↑, eff↓, Cyt‑c↑, AIF↑, ER Stress↑,
2217- SK,    Shikonin Inhibits Endoplasmic Reticulum Stress-Induced Apoptosis to Attenuate Renal Ischemia/Reperfusion Injury by Activating the Sirt1/Nrf2/HO-1 Pathway
- in-vivo, Nor, NA - in-vitro, Nor, HK-2
*ER Stress↓, *SIRT1↑, *NRF2↑, *HO-1↑, *eff↓, *RenoP↑, *GRP78/BiP↓, *CHOP↓, *Casp12↓, *BAX↓, *cl‑Casp3↓,
2231- SK,    Shikonin Exerts Cytotoxic Effects in Human Colon Cancers by Inducing Apoptotic Cell Death via the Endoplasmic Reticulum and Mitochondria-Mediated Pathways
- in-vitro, CRC, SNU-407
Apoptosis↑, ER Stress↑, PERK↑, eIF2α↑, CHOP↑, mt-Ca+2↑, MMP↓, Bcl-2↓, Casp3↑, Casp9↑, ERK↑, JNK↑, p38↓,
2229- SK,    Shikonin induces apoptosis and prosurvival autophagy in human melanoma A375 cells via ROS-mediated ER stress and p38 pathways
- in-vitro, Melanoma, A375
Apoptosis↑, TumAuto↑, TumCP↓, TumCCA↑, P21↑, cycD1/CCND1↓, ER Stress↑, p‑eIF2α↑, CHOP↑, cl‑Casp3↑, p38↑, LC3B-II↑, Beclin-1↑, ROS↑, eff↓,
2228- SK,    Shikonin induced Apoptosis Mediated by Endoplasmic Reticulum Stress in Colorectal Cancer Cells
- in-vitro, CRC, HCT116 - in-vitro, CRC, HCT15 - in-vivo, NA, NA
Apoptosis↑, Bcl-2↓, Casp3↑, Casp9↑, cl‑PARP↑, GRP78/BiP↑, PERK↑, eIF2α↑, ATF4↑, CHOP↑, JNK↑, eff↓, ER Stress↑, ROS↑, TumCG↓,
347- SNP,    The Role of Silver Nanoparticles in the Diagnosis and Treatment of Cancer: Are There Any Perspectives for the Future?
- Review, NA, NA
ROS↑, Apoptosis↑, ER Stress↑,
354- SNP,    Silver nanoparticles induce SH-SY5Y cell apoptosis via endoplasmic reticulum- and mitochondrial pathways that lengthen endoplasmic reticulum-mitochondria contact sites and alter inositol-3-phosphate receptor function
- in-vitro, neuroblastoma, SH-SY5Y
TumCD↑, ER Stress↑, GRP78/BiP↑, p‑PERK↑, CHOP↑, Ca+2↑, XBP-1↑, p‑IRE1↑,
306- SNP,    Cancer Therapy by Silver Nanoparticles: Fiction or Reality?
- Analysis, NA, NA
EPR↝, ROS↑, IL1↑, IL8↑, ER Stress↑, MMP9↑, MMP↓, Cyt‑c↑, Apoptosis↑, Hif1a↑, BBB↑, GutMicro↝, eff↑, eff↑, RadioS↑,
316- SNP,    Endoplasmic reticulum stress: major player in size-dependent inhibition of P-glycoprotein by silver nanoparticles in multidrug-resistant breast cancer cells
- in-vitro, BC, MCF-7
GRP78/BiP↑, ER Stress↑, ROS↑, mtDam↑,
319- SNP,    Endoplasmic reticulum stress signaling is involved in silver nanoparticles-induced apoptosis
Apoptosis↑, Ca+2↑, ER Stress↑, PERK↑, IRE1↑, cl‑ATF6↑,
320- SNP,    Silver nanoparticles induce endoplasmatic reticulum stress response in zebrafish
- vitro+vivo, NA, HUH7
ROS↑, ER Stress↑, TNF-α↑,
374- SNP,    Silver nanoparticles selectively treat triple‐negative breast cancer cells without affecting non‐malignant breast epithelial cells in vitro and in vivo
- in-vitro, BC, MCF-7 - in-vitro, BC, MDA-MB-231 - in-vivo, NA, NA
ER Stress↑, DNAdam↑, ROS↑, Apoptosis↑, GSH/GSSG↓, NADPH/NADP+↓, TumCG↓, UPR↑,
1908- SNP,    Exposure to Silver Nanoparticles Inhibits Selenoprotein Synthesis and the Activity of Thioredoxin Reductase
- in-vitro, Lung, A549
TrxR↓, TrxR1↓, ROS↑, ER Stress↑, TumCP↓, selenoP↓,
2288- SNP,    Silver Nanoparticle-Mediated Cellular Responses in Various Cell Lines: An in Vitro Model
- Review, Var, NA
*ROS↑, Akt↓, ERK↓, DNAdam↑, Ca+2↑, ROS↑, MMP↓, Cyt‑c↑, TumCCA↑, DNAdam↑, Apoptosis↑, P53↑, p‑ERK↑, ER Stress↑, cl‑ATF6↑, GRP78/BiP↑, CHOP↑, UPR↑,
4563- SNP,  Rad,    Silver nanoparticles enhance neutron radiation sensitivity in cancer cells: An in vitro study
- in-vitro, BC, MCF-7 - in-vitro, Ovarian, SKOV3 - in-vitro, GBM, U87MG - in-vitro, Melanoma, A431
RadioS↑, ROS↑, TumCCA↑, Apoptosis↑, ER Stress↑,
4559- SNP,    Anticancer activity of biogenerated silver nanoparticles: an integrated proteomic investigation
- in-vitro, BC, SkBr3 - in-vitro, CRC, HT-29 - in-vitro, CRC, HCT116 - in-vitro, Colon, Caco-2
MMP2↓, MMP9↓, ROS↑, TumAuto↑, Apoptosis↑, ER Stress↑,
3950- Taur,    Taurine Supplementation as a Neuroprotective Strategy upon Brain Dysfunction in Metabolic Syndrome and Diabetes
- Review, Diabetic, NA - Review, Stroke, NA - Review, AD, NA
*Ca+2↝, *neuroP↑, *other↝, *pH↝, *ROS∅, eff↑, *MMP↑, *Apoptosis↓, *other↝, *ER Stress↓, *Bcl-xL↓, *BAX↑, *Cyt‑c↑, *cal2↓, *Casp3↓, *UPR↓, *other↝, *NF-kB↓, *NRF2↑, *GLUT1↑, *GLUT3↑, *memory↑,
3417- TQ,    Antiproliferative Effects of Thymoquinone in MCF-7 Breast and HepG2 Liver Cancer Cells: Possible Role of Ceramide and ER Stress
- in-vitro, BC, MCF-7 - in-vitro, Liver, HepG2
TumCP↓, NF-kB↓, cl‑Casp3↑, GRP78/BiP↑, ER Stress↑, Apoptosis↑,
3416- TQ,    Thymoquinone induces apoptosis in bladder cancer cell via endoplasmic reticulum stress-dependent mitochondrial pathway
- in-vitro, Bladder, T24 - in-vitro, Bladder, 253J - in-vitro, Nor, SV-HUC-1
TumCP↓, Apoptosis↑, ER Stress↑, cl‑Casp3↑, cl‑Casp8↑, cl‑Casp7↑, cl‑PARP↑, Cyt‑c↑, PERK↑, IRE1↑, ATF6↑, p‑eIF2α↑, ATF4↑, GRP78/BiP↑, CHOP↑,
4835- Uro,    Urolithin A, induces apoptosis and autophagy crosstalk in Oral Squamous Cell Carcinoma via mTOR /AKT/ERK1/2 pathway
- in-vitro, SCC, NA
TumCD↑, ER Stress↑, Akt↓, mtDam↓, p‑mTOR↓, *BioAv↝, ROS↑, TumCCA↑, Apoptosis↑, ERK↓,
3110- VitC,    Vitamin C Attenuates Oxidative Stress, Inflammation, and Apoptosis Induced by Acute Hypoxia through the Nrf2/Keap1 Signaling Pathway in Gibel Carp (Carassius gibelio)
- in-vivo, Nor, NA
*IL2↑, *IL6↑, *IL12↑, *NRF2↑, *Catalase↑, *SOD↑, *GPx↑, *GRP78/BiP↓, *ER Stress↓,
3107- VitC,    Repurposing Vitamin C for Cancer Treatment: Focus on Targeting the Tumor Microenvironment
- Review, Var, NA
Risk↓, *ROS↓, ROS↑, VEGF↓, COX2↓, ER Stress↑, IRE1↑, JNK↑, CHOP↑, Hif1a↓, eff↑, Glycolysis↓, MMPs↓, TumMeta↓, YAP/TEAD↓, eff↑, TET1↑,
3149- VitC,    Hepatoprotective benefits of vitamin C against perfluorooctane sulfonate-induced liver damage in mice through suppressing inflammatory reaction and ER stress
- in-vivo, Nor, NA
*hepatoP↑, *ALAT↓, *AST↓, *TNF-α↓, *IL6↓, *ER Stress↓, *ATF6↓, *eIF2α↓, *GRP78/BiP↓, *XBP-1↓, *Inflam↓,
3147- VitC,    Vitamin C modulates the metabolic and cytokine profiles, alleviates hepatic endoplasmic reticulum stress, and increases the life span of Gulo−/− mice
- in-vivo, Nor, NA
*OS↑, *ER Stress↓, *GRP78/BiP↓,
3146- VitC,    Vitamin C protects against hypoxia, inflammation, and ER stress in primary human preadipocytes and adipocytes
- in-vivo, Nor, NA
*Obesity↓, *ER Stress↓, *Inflam↓, Hif1a↓, VEGF↓, GLUT1↓, GRP78/BiP↓,
2283- VitK2,    Vitamin K Contribution to DNA Damage—Advantage or Disadvantage? A Human Health Response
- Review, Var, NA
*ER Stress↓, *toxicity↓, *toxicity↑, ROS↑, PI3K↑, Akt↑, Hif1a↑, GlucoseCon↑, lactateProd↑, ChemoSen↑, eff↑, eff↑,

* indicates research on normal cells as opposed to diseased cells
Total Research Paper Matches: 221

Pathway results for Effect on Cancer / Diseased Cells:


NA, unassigned

chemoPv↑, 2,  

Redox & Oxidative Stress

antiOx↓, 1,   antiOx↑, 1,   ATF3↑, 2,   Catalase↓, 4,   Catalase↑, 1,   CYP1A1↑, 1,   Fenton↑, 3,   Ferroptosis↑, 6,   GPx↓, 1,   GPx4↓, 1,   GPx4↑, 1,   GSH↓, 12,   GSH∅, 1,   GSH/GSSG↓, 3,   GSR↓, 1,   GSR↑, 1,   GSTs↑, 1,   H2O2↑, 3,   HO-1↓, 4,   HO-1↑, 7,   HO-2↑, 1,   ICD↑, 2,   Iron↑, 3,   i-Iron↓, 1,   Keap1↝, 1,   lipid-P↓, 1,   lipid-P↑, 12,   MAD↓, 1,   MDA↑, 1,   NADPH/NADP+↓, 1,   NOX4↑, 1,   NQO1↑, 2,   NRF2↓, 7,   NRF2↑, 11,   p‑NRF2↑, 1,   OXPHOS↑, 1,   PARK2↑, 1,   Prx↓, 1,   Prx4↓, 1,   Prx4↑, 1,   ROS↓, 10,   ROS↑, 135,   ROS⇅, 2,   mt-ROS↑, 3,   selenoP↓, 1,   SIRT3↓, 1,   SIRT3↑, 4,   SOD↓, 4,   SOD1↓, 1,   SOD2↓, 1,   Thiols↓, 1,   TKT↝, 1,   Trx↓, 1,   TrxR↓, 5,   TrxR1↓, 3,  

Metal & Cofactor Biology

Ferritin↓, 1,   IronCh↑, 1,  

Mitochondria & Bioenergetics

ADP:ATP↑, 2,   AIF↑, 3,   ATP↓, 4,   i-ATP↓, 1,   mt-ATP↓, 1,   BOK↑, 1,   CDC2↓, 2,   CDC25↓, 3,   EGF↓, 1,   p‑MEK↓, 1,   mitResp↓, 2,   MMP↓, 47,   MMP↑, 2,   MMP∅, 1,   mtDam↓, 1,   mtDam↑, 14,   OCR↓, 5,   Raf↓, 1,   c-Raf↓, 1,   XIAP↓, 5,  

Core Metabolism/Glycolysis

12LOX↓, 3,   AKT1↓, 2,   ALAT↓, 2,   ALAT∅, 1,   AMPK↓, 1,   AMPK↑, 10,   ATG7↑, 1,   cMyc↓, 11,   p‑cMyc↑, 1,   ECAR↓, 1,   FASN↓, 3,   G6PD↓, 1,   GLO-I↓, 1,   GlucoseCon↓, 6,   GlucoseCon↑, 1,   GlucoseCon∅, 1,   Glycolysis↓, 9,   HK2↓, 7,   lactateProd↓, 5,   lactateProd↑, 1,   lactateProd∅, 1,   LDH↓, 6,   LDH↑, 1,   LDHA↓, 3,   LDL↓, 1,   NADPH↓, 2,   NADPH↑, 1,   NPC1L1↓, 1,   PDH↑, 1,   PDH↝, 1,   PDK1↓, 3,   p‑PDK1↓, 1,   PDK3↑, 1,   PDKs↓, 1,   PFK↓, 3,   PFK1↓, 1,   PKM2↓, 5,   PPARα↓, 1,   PPARγ↑, 2,   R5P↝, 1,   SIRT1↓, 1,   SIRT1↑, 2,   Warburg↓, 1,  

Cell Death

Akt↓, 31,   Akt↑, 3,   p‑Akt↓, 9,   Apoptosis?, 2,   Apoptosis↓, 2,   Apoptosis↑, 74,   ASK1↑, 1,   BAD↑, 4,   Bak↑, 5,   BAX↓, 3,   BAX↑, 29,   Bax:Bcl2↑, 5,   Bcl-2↓, 29,   Bcl-xL↓, 6,   BID↓, 1,   BID↑, 3,   cl‑BID↑, 1,   BIM↑, 2,   Casp↑, 11,   Casp12↑, 4,   cl‑Casp12↑, 1,   cl‑Casp12↝, 1,   pro‑Casp12↓, 1,   Casp2↑, 1,   Casp3?, 1,   Casp3↓, 3,   Casp3↑, 46,   cl‑Casp3↓, 1,   cl‑Casp3↑, 14,   proCasp3↓, 1,   Casp7↑, 5,   cl‑Casp7↑, 1,   Casp8↓, 1,   Casp8↑, 9,   Casp8∅, 2,   cl‑Casp8↑, 6,   Casp9↑, 30,   cl‑Casp9↑, 6,   cFLIP↓, 4,   Chk2↓, 1,   Chk2↑, 1,   Cupro↑, 1,   Cyt‑c↑, 38,   Cyt‑c↝, 1,   Diablo↑, 4,   DR4↑, 1,   DR5↓, 1,   DR5↑, 13,   FADD↑, 2,   Fas↑, 6,   Ferroptosis↑, 6,   GADD34↑, 1,   GRP58↓, 1,   HEY1↓, 1,   hTERT/TERT↓, 6,   IAP1↓, 1,   IAP2↓, 1,   ICAD↓, 1,   iNOS↓, 3,   iNOS↑, 1,   JNK↓, 4,   JNK↑, 21,   p‑JNK↓, 1,   p‑JNK↑, 2,   MAPK↓, 8,   MAPK↑, 9,   Mcl-1↓, 7,   Mcl-1↑, 1,   MDM2↓, 3,   MKP1↓, 1,   MKP2↓, 1,   Myc↓, 1,   NAIP↓, 1,   NICD↓, 1,   NOXA↑, 2,   p27↑, 9,   p38↓, 1,   p38↑, 9,   p‑p38↑, 2,   Paraptosis↑, 4,   PPP2R1A↑, 1,   Proteasome↓, 1,   PUMA↑, 1,   Pyro↑, 1,   survivin↓, 11,   Telomerase↓, 3,   TRAIL↓, 1,   TRAIL↑, 1,   TRPV1↑, 2,   TumCD↓, 1,   TumCD↑, 10,   YAP/TEAD↓, 2,  

Kinase & Signal Transduction

AMPKα↑, 1,   EF-1α↓, 1,   FOXD3↑, 1,   HER2/EBBR2↓, 4,   p70S6↓, 3,   SOX9↓, 1,   Sp1/3/4↓, 3,   TSC2↑, 1,  

Transcription & Epigenetics

cJun↓, 3,   cJun↑, 1,   EZH2↓, 1,   H3↓, 1,   H3↑, 2,   ac‑H3↑, 1,   H4↑, 1,   ac‑H4↑, 1,   HATs↑, 1,   other?, 1,   other↓, 1,   other↑, 2,   other↝, 2,   tumCV↓, 17,   tumCV∅, 1,  

Protein Folding & ER Stress ER Stress / UPR group captures protein folding, quality control, unfolded protein response signaling, and chaperone systems. It includes ER stress sensors, translational control during stress, and proteasome-linked degradatio" style="cursor:help;color:#555;font-weight:normal;">ⓘ

ATF6↑, 7,   cl‑ATF6↑, 3,   c-ATF6↑, 1,   ATFs↑, 2,   CHOP↓, 2,   CHOP↑, 60,   p‑CHOP↝, 1,   cl‑CHOP↑, 1,   i-CRT↓, 1,   eIF2α↓, 1,   eIF2α↑, 11,   p‑eIF2α↓, 2,   p‑eIF2α↑, 15,   p‑eIF2α↝, 1,   ER Stress↓, 8,   ER Stress↑, 166,   ER Stress↝, 2,   GRP78/BiP↓, 4,   GRP78/BiP↑, 52,   GRP78/BiP↝, 1,   GRP94↑, 5,   HSF1↓, 1,   HSP27↓, 2,   HSP27↑, 1,   HSP70/HSPA5↓, 3,   HSP70/HSPA5↑, 4,   HSP90↓, 2,   HSPs↑, 1,   IRE1↓, 1,   IRE1↑, 11,   p‑IRE1↓, 1,   p‑IRE1↑, 1,   PERK↓, 2,   PERK↑, 21,   p‑PERK↓, 2,   p‑PERK↑, 5,   p‑PERK↝, 1,   UPR↓, 1,   UPR↑, 31,   XBP-1↓, 1,   XBP-1↑, 7,  

Autophagy & Lysosomes

ATG5↑, 3,   Beclin-1↑, 6,   BNIP3↑, 1,   LC3‑Ⅱ/LC3‑Ⅰ↑, 1,   LC3B↑, 2,   LC3B-II↑, 3,   LC3II↑, 5,   LC3s↓, 1,   LC3s↑, 1,   p62↓, 1,   p62↑, 1,   SESN2↑, 1,   TumAuto↑, 22,  

DNA Damage & Repair

CHK1↓, 1,   DNA-PK↑, 1,   DNAdam↑, 23,   DNArepair↓, 1,   DNMT1↓, 1,   DNMTs↓, 1,   p16↑, 1,   P53↑, 20,   PARP↑, 6,   cl‑PARP↓, 1,   cl‑PARP↑, 24,   PARP1↑, 2,   PCNA↓, 7,   TP53↓, 2,   γH2AX↑, 1,  

Cell Cycle & Senescence

CDK1↓, 4,   p‑CDK1↓, 2,   CDK2↓, 14,   CDK2↑, 1,   CDK4↓, 12,   cycA1/CCNA1↓, 3,   cycA1/CCNA1↑, 1,   CycB/CCNB1↓, 8,   CycB/CCNB1↑, 1,   cycD1/CCND1↓, 24,   cycE/CCNE↓, 10,   cycE/CCNE↑, 1,   E2Fs↓, 1,   p19↑, 1,   P21?, 1,   P21↓, 1,   P21↑, 22,   p‑RB1↓, 4,   TumCCA?, 1,   TumCCA↑, 55,  

Proliferation, Differentiation & Cell State

CD133↓, 2,   CD24↓, 1,   CD44↓, 1,   cDC2↓, 1,   CEBPA↑, 1,   CEBPB↓, 1,   cFos↓, 3,   cFos↑, 1,   CIP2A↓, 1,   p‑cMET↑, 1,   CSCs↓, 10,   CSCsMark↓, 1,   EMT↓, 21,   EP4↑, 1,   ERK↓, 11,   ERK↑, 3,   p‑ERK↓, 3,   p‑ERK↑, 5,   FOXM1↓, 1,   FOXO3↓, 2,   FOXO3↑, 1,   GSK‐3β↓, 5,   GSK‐3β↑, 1,   p‑GSK‐3β↓, 2,   HDAC↓, 9,   HDAC∅, 1,   HDAC10↑, 1,   HDAC2↓, 1,   HDAC3↓, 2,   HDAC8↓, 1,   HH↓, 1,   IGF-1R↑, 1,   IGFBP3↑, 1,   Let-7↑, 1,   mTOR↓, 22,   mTOR↑, 2,   mTOR∅, 1,   p‑mTOR↓, 6,   mTORC1↓, 4,   mTORC2↓, 1,   mTORC2↑, 1,   Nanog↓, 1,   Nestin↓, 2,   NOTCH↓, 3,   NOTCH1↓, 3,   NOTCH1↑, 3,   NOTCH3↓, 2,   OCT4↓, 1,   P70S6K↓, 1,   P70S6K↑, 1,   p‑P70S6K↓, 1,   PI3K↓, 21,   PI3K↑, 1,   PTEN↑, 6,   p‑PTEN↓, 1,   RAS↓, 3,   RAS↑, 1,   Shh↓, 2,   SHP1↑, 1,   SOX2↓, 1,   STAT1↓, 1,   STAT3↓, 14,   p‑STAT3↓, 5,   p‑STAT3↑, 1,   STAT6↓, 1,   TAZ↓, 1,   TCF-4↓, 2,   TOP1↓, 4,   TOP2↓, 3,   TRPM7↓, 1,   TumCG↓, 21,   Wnt?, 1,   Wnt↓, 10,   Wnt↑, 1,   ZFX↓, 1,  

Migration

5LO↓, 1,   AEG1↓, 1,   Akt2↓, 1,   Alix/AIP‑1↓, 2,   AntiAg↓, 1,   AP-1↓, 5,   AXL↓, 1,   Ca+2↓, 1,   Ca+2↑, 37,   Ca+2↝, 2,   i-Ca+2↑, 1,   mt-Ca+2↑, 1,   CAFs/TAFs↓, 1,   cal2↓, 1,   Cdc42↑, 1,   CLDN1↓, 1,   CLDN2↓, 2,   CXCL12↓, 1,   E-cadherin↑, 14,   ER-α36↓, 2,   FAK↓, 2,   p‑FAK↓, 1,   p‑FAK↑, 1,   Fibronectin↓, 1,   GLI2↓, 1,   Ki-67↓, 5,   miR-19b↓, 1,   MMP-10↓, 1,   MMP1↓, 1,   MMP2↓, 17,   MMP2↑, 1,   MMP7↓, 3,   MMP9↓, 20,   MMP9↑, 2,   MMPs↓, 8,   N-cadherin↓, 10,   PKCδ↓, 4,   Rho↓, 1,   ROCK1↓, 1,   Slug↓, 3,   SMAD3↓, 1,   p‑SMAD4↓, 1,   Snail?, 1,   Snail↓, 6,   SOX4↓, 1,   SOX4↑, 1,   STAC2↓, 1,   talin↓, 1,   TET1↑, 4,   TGF-β↓, 7,   TGF-β↑, 3,   TIMP1↓, 2,   TIMP1↑, 3,   TIMP2↓, 1,   TIMP2↑, 3,   TRIB3↑, 1,   TSP-1↑, 1,   TumCA↓, 1,   TumCI↓, 11,   TumCMig↓, 11,   TumCP↓, 27,   TumCP↑, 1,   TumMeta↓, 15,   Twist↓, 7,   uPA↓, 10,   Vim↓, 10,   Zeb1↓, 2,   Zeb1↑, 1,   ZEB2↓, 1,   α-tubulin↓, 1,   ac‑α-tubulin↑, 1,   β-catenin/ZEB1↓, 15,   β-catenin/ZEB1↑, 1,   p‑β-catenin/ZEB1↓, 1,  

Angiogenesis & Vasculature

angioG↓, 19,   ATF4↑, 25,   ATF4↝, 1,   p‑ATF4↝, 1,   EGFR↓, 8,   eNOS↓, 1,   eNOS↑, 1,   EPR↝, 1,   Hif1a↓, 14,   Hif1a↑, 3,   NO↓, 1,   NO↑, 2,   NO↝, 1,   PDGFR-BB↓, 1,   PDI↑, 2,   VEGF↓, 22,   VEGFR2↓, 6,  

Barriers & Transport

BBB↓, 1,   BBB↑, 3,   GLUT1↓, 5,   P-gp↓, 6,   SLC12A5↓, 1,   sonoP↑, 1,  

Immune & Inflammatory Signaling

COX2↓, 18,   COX2↑, 1,   CRP↓, 1,   CXCR4↓, 6,   DCells↑, 1,   i-HMGB1↓, 1,   ICAM-1↓, 1,   IFN-γ↓, 1,   IFN-γ↑, 1,   IKKα↓, 1,   IKKα↑, 1,   p‑IKKα↓, 1,   IL1↑, 1,   IL10↓, 5,   IL10↑, 1,   IL12↑, 1,   IL1β↓, 3,   IL2↑, 2,   IL4↓, 2,   IL6↓, 5,   IL8↓, 1,   IL8↑, 1,   Imm↑, 1,   Inflam↓, 4,   IκB↑, 1,   p‑IκB↓, 1,   JAK↓, 1,   M2 MC↓, 1,   NF-kB↓, 30,   p‑NF-kB↓, 1,   p‑NF-kB↑, 1,   p65↓, 4,   PD-1↓, 1,   PD-L1↓, 1,   PD-L1↑, 1,   PGE2↓, 6,   PSA↓, 2,   TLR4↓, 3,   TNF-α↓, 6,   TNF-α↑, 1,  

Hormonal & Nuclear Receptors

AR↓, 9,   CDK6↓, 6,   CDK6↑, 1,  

Drug Metabolism & Resistance

BioAv↓, 9,   BioAv↑, 10,   BioEnh↑, 3,   ChemoSen↓, 3,   ChemoSen↑, 33,   Dose?, 1,   Dose↝, 6,   Dose∅, 2,   eff↓, 30,   eff↑, 89,   eff↝, 3,   eff∅, 2,   Half-Life↓, 3,   Half-Life↝, 6,   MDR1↓, 2,   MRP1↓, 1,   P450↓, 1,   RadioS↑, 16,   selectivity↓, 1,   selectivity↑, 35,  

Clinical Biomarkers

ALAT↓, 2,   ALAT∅, 1,   ALP↓, 2,   AR↓, 9,   AST↓, 1,   AST∅, 1,   BMPs↑, 1,   CRP↓, 1,   E6↓, 1,   E7↓, 1,   EGFR↓, 8,   EZH2↓, 1,   Ferritin↓, 1,   FOXM1↓, 1,   GutMicro↑, 1,   GutMicro↝, 2,   HER2/EBBR2↓, 4,   hTERT/TERT↓, 6,   IL6↓, 5,   Ki-67↓, 5,   LDH↓, 6,   LDH↑, 1,   Myc↓, 1,   PD-L1↓, 1,   PD-L1↑, 1,   PSA↓, 2,   TP53↓, 2,   TRIB3↑, 1,  

Functional Outcomes

AntiCan↑, 10,   AntiTum↑, 3,   cardioP↑, 1,   chemoP↑, 2,   ChemoSideEff↓, 2,   neuroP↑, 1,   OS↑, 3,   PARP16↓, 1,   radioP↑, 1,   RenoP↑, 2,   Risk↓, 2,   toxicity↓, 1,   toxicity↝, 2,   toxicity∅, 1,   TumVol↓, 3,   TumW↓, 3,   Weight∅, 1,  

Infection & Microbiome

Bacteria↓, 1,   CD8+↑, 1,  
Total Targets: 607

Pathway results for Effect on Normal Cells:


Redox & Oxidative Stress

antiOx↓, 2,   antiOx↑, 23,   Catalase↑, 8,   Ferroptosis↓, 1,   GPx↑, 4,   GPx1↑, 1,   GPx4↑, 2,   GSH↑, 8,   GSTA1↑, 1,   HO-1↓, 1,   HO-1↑, 7,   Keap1↓, 1,   lipid-P↓, 4,   MDA↓, 8,   MDA↑, 1,   MPO↓, 3,   NQO1↑, 2,   NRF2↑, 17,   Prx↑, 1,   Prx4∅, 1,   ROS↓, 38,   ROS↑, 1,   ROS∅, 4,   mt-ROS↓, 1,   selenoP↑, 1,   SOD↑, 15,   SOD1↑, 1,   SOD2↑, 1,   TBARS↓, 1,  

Metal & Cofactor Biology

IronCh↓, 1,   IronCh↑, 1,  

Mitochondria & Bioenergetics

Insulin↑, 1,   mitResp↓, 1,   MMP↑, 3,   mtDam↓, 2,   mtDam↑, 1,  

Core Metabolism/Glycolysis

ALAT↓, 6,   AMPK↑, 5,   p‑cMyc↑, 1,   FAO↑, 1,   FASN↓, 1,   glucose↓, 1,   LDH↑, 1,   LDHA↑, 1,   LDL↓, 2,   lipidLev↓, 1,   lipoGen↓, 1,   NADPH↓, 1,   NH3↓, 1,   PPARα↑, 1,   SIRT1↑, 4,   SREBP1↓, 1,  

Cell Death

Akt↓, 2,   Akt↑, 1,   Apoptosis↓, 10,   BAX↓, 3,   BAX↑, 1,   Bcl-2↑, 1,   Bcl-xL↓, 1,   Casp1↓, 1,   Casp12↓, 5,   Casp3?, 1,   Casp3↓, 5,   cl‑Casp3↓, 2,   Casp9↓, 1,   cellD↓, 1,   Cyt‑c↓, 2,   Cyt‑c↑, 1,   Ferroptosis↓, 1,   GRP58↓, 1,   iNOS↓, 6,   JNK↓, 1,   p‑JNK↓, 2,   MLKL↓, 1,   p38↓, 1,   RIP1↓, 1,  

Kinase & Signal Transduction

CaMKII ↓, 1,  

Transcription & Epigenetics

other↓, 1,   other↑, 2,   other↝, 5,  

Protein Folding & ER Stress ER Stress / UPR group captures protein folding, quality control, unfolded protein response signaling, and chaperone systems. It includes ER stress sensors, translational control during stress, and proteasome-linked degradatio" style="cursor:help;color:#555;font-weight:normal;">ⓘ

ATF6↓, 4,   ChemChap↓, 1,   CHOP↓, 10,   eIF2α↓, 2,   p‑eIF2α↓, 1,   ER Stress↓, 44,   ER Stress↑, 1,   GRP78/BiP↓, 13,   HSP70/HSPA5↑, 1,   HSP90↑, 1,   IRE1↓, 5,   PERK↓, 5,   p‑PERK↓, 2,   UPR↓, 4,   XBP-1↓, 2,  

Autophagy & Lysosomes

Beclin-1↓, 1,   Beclin-1↑, 2,   LC3‑Ⅱ/LC3‑Ⅰ↑, 1,   LC3II↑, 1,   p62↓, 1,  

DNA Damage & Repair

DNAdam↓, 1,   p16↓, 1,   p‑PARP↓, 1,   TP53↑, 1,  

Proliferation, Differentiation & Cell State

ERK↑, 1,   HDAC↓, 2,   Jun↓, 1,   mTOR↓, 1,   mTOR↑, 1,   PI3K↓, 2,   PI3K↑, 1,   STAT3?, 1,   STAT3↑, 1,  

Migration

5LO↓, 2,   AntiAg↑, 3,   APP↓, 1,   Ca+2?, 1,   Ca+2↓, 1,   Ca+2↑, 1,   Ca+2↝, 1,   cal2↓, 1,   E-cadherin↓, 1,   MMP3↓, 1,   MMPs↓, 1,   p‑Rac1↓, 1,   RAGE↓, 1,   Rho↓, 1,   ROCK1↓, 1,   TXNIP↓, 3,   TXNIP↑, 1,   Zeb1↓, 1,   ZO-1↓, 1,   ZO-1↑, 2,  

Angiogenesis & Vasculature

angioG↑, 3,   ATF4↓, 3,   CLDN5↑, 1,   p‑eNOS↑, 1,   Hif1a↓, 1,   Hif1a↑, 1,   NO↓, 3,   NO↑, 1,   PDI↓, 1,   VEGF↓, 1,   VEGF↑, 1,  

Barriers & Transport

BBB↑, 2,   GLUT1↑, 1,   GLUT3↑, 1,   P-gp↓, 1,  

Immune & Inflammatory Signaling

COX1↓, 1,   COX2↓, 7,   CRP↓, 2,   IFN-γ↓, 1,   IKKα↑, 1,   IL10↓, 2,   IL10↑, 2,   IL12↑, 1,   IL17↑, 1,   IL18↓, 1,   IL1β↓, 6,   IL2↓, 2,   IL2↑, 1,   IL6↓, 10,   IL6↑, 1,   IL8↓, 2,   Imm↑, 1,   Inflam↓, 37,   JAK2↑, 2,   mPGES-1↓, 1,   Neut↑, 1,   NF-kB↓, 6,   PGE2↓, 2,   PGE2↑, 1,   Th1 response↓, 1,   Th2↑, 2,   TLR4↓, 1,   TNF-α↓, 11,  

Cellular Microenvironment

pH↝, 1,  

Synaptic & Neurotransmission

AChE↓, 1,   BDNF↑, 1,   monoA↑, 1,   PSD95↑, 1,   p‑tau↓, 1,  

Protein Aggregation

Aβ↓, 2,   NLRP3↓, 4,  

Hormonal & Nuclear Receptors

RAAS↓, 1,  

Drug Metabolism & Resistance

BioAv↓, 3,   BioAv↑, 5,   BioAv↝, 1,   Dose↝, 2,   eff↓, 2,   eff↑, 5,   Half-Life↑, 2,  

Clinical Biomarkers

ALAT↓, 6,   ALP↓, 3,   AST↓, 7,   BG↓, 2,   BP↓, 1,   creat↓, 1,   CRP↓, 2,   GutMicro↑, 5,   IL6↓, 10,   IL6↑, 1,   LDH↑, 1,   RAGE↓, 1,   TP53↑, 1,  

Functional Outcomes

AntiAge↑, 2,   AntiCan↑, 1,   AntiDiabetic↑, 1,   AntiTum↑, 1,   cardioP↑, 12,   chemoP↑, 1,   cognitive↑, 10,   cytoP↑, 1,   hepatoP↑, 9,   memory↑, 6,   Mood↑, 1,   neuroP↓, 1,   neuroP↑, 17,   Obesity↓, 1,   OS↑, 4,   RenoP↑, 5,   toxicity?, 1,   toxicity↓, 10,   toxicity↑, 1,   toxicity↝, 1,   toxicity∅, 1,  

Infection & Microbiome

Bacteria↓, 2,   Inf↓, 1,   Sepsis↓, 2,  
Total Targets: 229

Scientific Paper Hit Count for: ER Stress, endoplasmic reticulum (ER) stress signaling pathway
13 Phenylbutyrate
12 Quercetin
11 Silver-NanoParticles
10 Berberine
9 Fisetin
7 Ashwagandha(Withaferin A)
7 EGCG (Epigallocatechin Gallate)
7 Piperlongumine
6 Apigenin (mainly Parsley)
6 salinomycin
6 Honokiol
6 Luteolin
5 Curcumin
5 Artemisinin
5 Magnetic Fields
5 Chrysin
5 Resveratrol
5 Rosmarinic acid
5 Sulforaphane (mainly Broccoli)
5 Vitamin C (Ascorbic Acid)
4 Allicin (mainly Garlic)
4 Baicalein
4 Propolis -bee glue
4 Gambogic Acid
4 Shikonin
3 Betulinic acid
3 Boron
3 Copper and Cu NanoParticlex
3 Emodin
3 Nimbolide
3 Selenium
2 Andrographis
2 Photodynamic Therapy
2 Boswellia (frankincense)
2 Capsaicin
2 Crocetin
2 Hydrogen Gas
2 HydroxyTyrosol
2 Plumbagin
2 Pterostilbene
2 Thymoquinone
1 Alpha-Lipoic-Acid
1 Melatonin
1 Cisplatin
1 Sorafenib (brand name Nexavar)
1 immunotherapy
1 Chemotherapy
1 Bacopa monnieri
1 Carnosic acid
1 Celastrol
1 Cinnamon
1 Coenzyme Q10
1 Dichloroacetate
1 Ellagic acid
1 Electrical Pulses
1 Ferulic acid
1 Fenbendazole
1 verapamil
1 γ-linolenic acid (Borage Oil)
1 Graviola
1 hydrogen sulfide
1 Hydroxytyrosol
1 Lutein
1 Lycopene
1 Magnolol
1 Magnetic Field Rotating
1 Magnesium
1 Naringin
1 nelfinavir/Viracept
1 Docetaxel
1 Oroxylin-A
1 Oleuropein
1 Parthenolide
1 temozolomide
1 Phenethyl isothiocyanate
1 Paclitaxel
1 Scoulerine
1 SonoDynamic Therapy UltraSound
1 Selenite
1 Osimertinib
1 Adagrasib
1 Radiotherapy/Radiation
1 Taurine
1 Urolithin
1 Vitamin K2
Query results interpretion may depend on "conditions" listed in the research papers.
Such Conditions may include : 
  -low or high Dose
  -format for product, such as nano of lipid formations
  -different cell line effects
  -synergies with other products 
  -if effect was for normal or cancerous cells
Filter Conditions: Pro/AntiFlg:%  IllCat:%  CanType:%  Cells:%  prod#:%  Target#:103  State#:%  Dir#:%
wNotes=0 sortOrder:rid,rpid

 

Home Page