Database Query Results : , , ADP:ATP

ADP:ATP, ADP/ATP ratio: Click to Expand ⟱
Source:
Type:
ADP/ATP ratio is a key indicator of a cell’s energy state and mitochondrial function. In the context of cancer, shifts in the ADP/ATP ratio reflect changes in metabolic activity, mitochondrial efficiency, and overall cellular bioenergetics.
The ADP/ATP ratio reflects the balance between energy consumption and production. A high ADP/ATP ratio indicates lower energy reserves (or higher energy consumption), while a low ratio suggests abundant ATP availability.
• Mitochondrial Function and Metabolism:
– Cancer cells often reprogram their metabolism (the “Warburg effect”) to favor glycolysis even in the presence of oxygen. This metabolic shift can affect the ADP/ATP ratio.
– Mitochondrial dysfunction, commonly observed in tumors, may also lead to altered ADP/ATP ratios, impacting how cells respond to metabolic stress.

• Elevated ADP/ATP Ratio:
– In some aggressive tumors, an elevated ADP/ATP ratio can be a sign of mitochondrial stress or increased energy turnover.
– This state may result from rapid proliferation, increased energy demand, or inefficient ATP production.

• Reduced ADP/ATP Ratio:
– Alternatively, some cancer cells may maintain a lower ADP/ATP ratio by upregulating glycolysis or oxidative phosphorylation, ensuring a steady ATP supply to fuel growth and survival.
– Tumors with a robust bioenergetic capacity may display lower ratios, possibly correlating with resistance to energetic stress.

An elevated or imbalanced ADP/ATP ratio has been associated with aggressive tumor behavior and may predict poor prognosis in certain contexts, although its exact role can vary by tumor type.


Scientific Papers found: Click to Expand⟱
3391- ART/DHA,    Antitumor Activity of Artemisinin and Its Derivatives: From a Well-Known Antimalarial Agent to a Potential Anticancer Drug
- Review, Var, NA
TumCP↓, TumMeta↓, angioG↓, TumVol↓, BioAv↓, Half-Life↓, BioAv↑, eff↑, eff↓, ROS↑, selectivity↑, TumCCA↑, survivin↓, BAX↑, Casp3↓, Casp8↑, Casp9↑, CDC25↓, CycB/CCNB1↓, NF-kB↓, cycD1/CCND1↓, cycE/CCNE↓, E2Fs↓, P21↑, p27↑, ADP:ATP↑, MDM2↓, VEGF↓, IL8↓, COX2↓, MMP9↓, ER Stress↓, cMyc↓, GRP78/BiP↑, DNAdam↑, AP-1↓, MMP2↓, PKCδ↓, Raf↓, ERK↓, JNK↓, PCNA↓, CDK2↓, CDK4↓, TOP2↓, uPA↓, MMP7↓, TIMP2↑, Cdc42↑, E-cadherin↑,
1249- CHr,    Chrysin as an Anti-Cancer Agent Exerts Selective Toxicity by Directly Inhibiting Mitochondrial Complex II and V in CLL B-lymphocytes
- in-vitro, CLL, NA
ROS↑, MMP↓, ADP:ATP↑, Casp3↑, Apoptosis↑,
2790- CHr,    Chrysin: Pharmacological and therapeutic properties
- Review, Var, NA
*hepatoP↑, *neuroP↓, *ROS↓, *cardioP↑, *Inflam↓, eff↑, hTERT/TERT↓, cycD1/CCND1↓, MMP9↓, MMP2↓, TIMP1↑, TIMP2↑, BioAv↑, HK2↓, ROS↑, MMP↓, Casp3↑, ADP:ATP↑, Apoptosis↑, ER Stress↑, UPR↑, GRP78/BiP↝, eff↑, Ca+2↑,
2245- MF,    Quantum based effects of therapeutic nuclear magnetic resonance persistently reduce glycolysis
- in-vitro, Nor, NIH-3T3
Warburg↓, Hif1a↓, *Hif1a∅, Glycolysis↓, *lactateProd↓, *ADP:ATP↓, Pyruv↓, ADP:ATP↓, *PPP↓, *mt-ROS↑, *ROS↓, RPM↑, *ECAR↓,
2251- MF,  Rad,    BEMER Electromagnetic Field Therapy Reduces Cancer Cell Radioresistance by Enhanced ROS Formation and Induced DNA Damage
- in-vitro, Lung, A549 - in-vitro, HNSCC, UTSCC15 - in-vitro, CRC, DLD1 - in-vitro, PC, MIA PaCa-2
RadioS↑, DNAdam↑, ROS↑, ChemoSen∅, Pyruv↓, ADP:ATP↓, ROS↑,

* indicates research on normal cells as opposed to diseased cells
Total Research Paper Matches: 5

Pathway results for Effect on Cancer / Diseased Cells:


Redox & Oxidative Stress

ROS↑, 5,   RPM↑, 1,  

Mitochondria & Bioenergetics

ADP:ATP↓, 2,   ADP:ATP↑, 3,   CDC25↓, 1,   MMP↓, 2,   Raf↓, 1,  

Core Metabolism/Glycolysis

cMyc↓, 1,   Glycolysis↓, 1,   HK2↓, 1,   Pyruv↓, 2,   Warburg↓, 1,  

Cell Death

Apoptosis↑, 2,   BAX↑, 1,   Casp3↓, 1,   Casp3↑, 2,   Casp8↑, 1,   Casp9↑, 1,   hTERT/TERT↓, 1,   JNK↓, 1,   MDM2↓, 1,   p27↑, 1,   survivin↓, 1,  

Protein Folding & ER Stress

ER Stress↓, 1,   ER Stress↑, 1,   GRP78/BiP↑, 1,   GRP78/BiP↝, 1,   UPR↑, 1,  

DNA Damage & Repair

DNAdam↑, 2,   PCNA↓, 1,  

Cell Cycle & Senescence

CDK2↓, 1,   CDK4↓, 1,   CycB/CCNB1↓, 1,   cycD1/CCND1↓, 2,   cycE/CCNE↓, 1,   E2Fs↓, 1,   P21↑, 1,   TumCCA↑, 1,  

Proliferation, Differentiation & Cell State

ERK↓, 1,   TOP2↓, 1,  

Migration

AP-1↓, 1,   Ca+2↑, 1,   Cdc42↑, 1,   E-cadherin↑, 1,   MMP2↓, 2,   MMP7↓, 1,   MMP9↓, 2,   PKCδ↓, 1,   TIMP1↑, 1,   TIMP2↑, 2,   TumCP↓, 1,   TumMeta↓, 1,   uPA↓, 1,  

Angiogenesis & Vasculature

angioG↓, 1,   Hif1a↓, 1,   VEGF↓, 1,  

Immune & Inflammatory Signaling

COX2↓, 1,   IL8↓, 1,   NF-kB↓, 1,  

Drug Metabolism & Resistance

BioAv↓, 1,   BioAv↑, 2,   ChemoSen∅, 1,   eff↓, 1,   eff↑, 3,   Half-Life↓, 1,   RadioS↑, 1,   selectivity↑, 1,  

Clinical Biomarkers

hTERT/TERT↓, 1,  

Functional Outcomes

TumVol↓, 1,  
Total Targets: 69

Pathway results for Effect on Normal Cells:


Redox & Oxidative Stress

ROS↓, 2,   mt-ROS↑, 1,  

Mitochondria & Bioenergetics

ADP:ATP↓, 1,  

Core Metabolism/Glycolysis

ECAR↓, 1,   lactateProd↓, 1,   PPP↓, 1,  

Angiogenesis & Vasculature

Hif1a∅, 1,  

Immune & Inflammatory Signaling

Inflam↓, 1,  

Functional Outcomes

cardioP↑, 1,   hepatoP↑, 1,   neuroP↓, 1,  
Total Targets: 11

Scientific Paper Hit Count for: ADP:ATP, ADP/ATP ratio
2 Chrysin
2 Magnetic Fields
1 Artemisinin
1 Radiotherapy/Radiation
Query results interpretion may depend on "conditions" listed in the research papers.
Such Conditions may include : 
  -low or high Dose
  -format for product, such as nano of lipid formations
  -different cell line effects
  -synergies with other products 
  -if effect was for normal or cancerous cells
Filter Conditions: Pro/AntiFlg:%  IllCat:%  CanType:%  Cells:%  prod#:%  Target#:1054  State#:%  Dir#:%
wNotes=0 sortOrder:rid,rpid

 

Home Page