| Source: |
| Type: |
| Glutathione S-transferases (GSTs) are a family of phase II detoxification enzymes that play key roles in catalyzing the conjugation of glutathione (GSH) to a wide range of electrophilic compounds. This family includes multiple isoenzymes (e.g., GST-α, GST-μ, GST-π) with tissue-specific expression patterns and overlapping as well as distinct substrate specificities. -GSTs are important for detoxifying potentially harmful compounds, including products of oxidative stress, environmental toxins, and chemotherapeutic agents. -They contribute to the cellular defense mechanism against oxidative damage and help maintain cellular redox balance. -Beyond detoxification, GSTs can modulate cell signaling pathways, potentially affecting cell proliferation, apoptosis, and drug resistance. -GST-π is commonly upregulated in several cancers such as breast, lung, colorectal, and hematologic malignancies. -Elevated expression of specific GST isoenzymes—most notably GST-π—has been associated with a poorer prognosis in several cancer types. This is often linked to resistance to chemo- or radiotherapy, as higher GST activity can lead to more efficient detoxification of these agents, reducing their cytotoxic effects. -In contrast, reduced GST expression in some contexts might indicate a less robust detoxification system, which can correlate with increased sensitivity to oxidative stress and possibly a less aggressive tumor phenotype. |
| 2660- | AL, | Allicin: A review of its important pharmacological activities |
| - | Review, | AD, | NA | - | Review, | Var, | NA | - | Review, | Park, | NA | - | Review, | Stroke, | NA |
| 3269- | ALA, | Sulfur-containing therapeutics in the treatment of Alzheimer’s disease |
| - | NA, | AD, | NA |
| 3676- | Ash, | Effect of Withania somnifera (Ashwagandha) root extract on amelioration of oxidative stress and autoantibodies production in collagen-induced arthritic rats |
| - | in-vivo, | Arthritis, | NA |
| 4303- | Ash, | Ashwagandha (Withania somnifera)—Current Research on the Health-Promoting Activities: A Narrative Review |
| - | Review, | AD, | NA |
| 2717- | BetA, | Betulinic Acid Induces ROS-Dependent Apoptosis and S-Phase Arrest by Inhibiting the NF-κB Pathway in Human Multiple Myeloma |
| - | in-vitro, | Melanoma, | U266 | - | in-vivo, | Melanoma, | NA | - | in-vitro, | Melanoma, | RPMI-8226 |
| 2784- | CHr, | Chrysin targets aberrant molecular signatures and pathways in carcinogenesis (Review) |
| - | Review, | Var, | NA |
| 2786- | CHr, | Chemopreventive and therapeutic potential of chrysin in cancer: mechanistic perspectives |
| - | Review, | Var, | NA |
| 2819- | CUR, | Chemo, | Curcumin as a hepatoprotective agent against chemotherapy-induced liver injury |
| - | Review, | Var, | NA |
| 2272- | dietMet, | Methionine restriction - Association with redox homeostasis and implications on aging and diseases |
| - | Review, | Nor, | NA |
| 1621- | EA, | The multifaceted mechanisms of ellagic acid in the treatment of tumors: State-of-the-art |
| - | Review, | Var, | NA |
| 1617- | EA, | CUR, | The inhibition of human glutathione S-transferases activity by plant polyphenolic compounds ellagic acid and curcumin |
| - | in-vitro, | Nor, | NA |
| 3222- | EGCG, | Epigallocatechin gallate and mitochondria—A story of life and death |
| - | Review, | Nor, | NA |
| 2845- | FIS, | Fisetin: A bioactive phytochemical with potential for cancer prevention and pharmacotherapy |
| - | Review, | Var, | NA |
| 2852- | FIS, | A comprehensive view on the fisetin impact on colorectal cancer in animal models: Focusing on cellular and molecular mechanisms |
| - | Review, | CRC, | NA |
| 2859- | FIS, | The Natural Flavonoid Fisetin Inhibits Cellular Proliferation of Hepatic, Colorectal, and Pancreatic Cancer Cells through Modulation of Multiple Signaling Pathways |
| - | in-vitro, | Liver, | HepG2 | - | NA, | Colon, | Caco-2 |
| 2861- | FIS, | The neuroprotective effects of fisetin, a natural flavonoid in neurodegenerative diseases: Focus on the role of oxidative stress |
| - | Review, | Nor, | NA | - | Review, | Stroke, | NA | - | Review, | Park, | NA |
| 2862- | FIS, | Fisetin averts oxidative stress in pancreatic tissues of streptozotocin-induced diabetic rat |
| - | in-vivo, | Diabetic, | NA |
| 2916- | LT, | Antioxidative and Anticancer Potential of Luteolin: A Comprehensive Approach Against Wide Range of Human Malignancies |
| - | Review, | Var, | NA | - | Review, | AD, | NA | - | Review, | Park, | NA |
| 2919- | LT, | Luteolin as a potential therapeutic candidate for lung cancer: Emerging preclinical evidence |
| - | Review, | Var, | NA |
| 2922- | LT, | Combination of transcriptomic and proteomic approaches helps unravel the mechanisms of luteolin in inducing liver cancer cell death via targeting AKT1 and SRC |
| - | in-vitro, | Liver, | HUH7 |
| 3264- | Lyco, | Pharmacological potentials of lycopene against aging and aging‐related disorders: A review |
| - | Review, | Var, | NA | - | Review, | AD, | NA | - | Review, | Stroke, | NA |
| 3528- | Lyco, | The Importance of Antioxidant Activity for the Health-Promoting Effect of Lycopene |
| - | Review, | Nor, | NA | - | Review, | AD, | NA | - | Review, | Park, | NA |
| 4797- | Lyco, | A mechanistic updated overview on lycopene as potential anticancer agent |
| - | Review, | Var, | NA |
| 4794- | Lyco, | Anticancer Effect of Lycopene in Gastric Carcinogenesis |
| - | Review, | GC, | NA |
| 3844- | Moringa, | Review of the Safety and Efficacy of Moringa oleifera |
| - | Review, | NA, | NA |
| 3595- | PI, | Black pepper and health claims: a comprehensive treatise |
| - | Review, | Var, | NA | - | Review, | AD, | NA |
| 3596- | PI, | Antioxidant efficacy of black pepper (Piper nigrum L.) and piperine in rats with high fat diet induced oxidative stress |
| - | in-vivo, | Nor, | NA |
| 2942- | PL, | Piperlongumine increases sensitivity of colorectal cancer cells to radiation: Involvement of ROS production via dual inhibition of glutathione and thioredoxin systems |
| - | in-vitro, | CRC, | CT26 | - | in-vitro, | CRC, | DLD1 | - | in-vivo, | CRC, | CT26 |
| 3079- | RES, | Therapeutic role of resveratrol against hepatocellular carcinoma: A review on its molecular mechanisms of action |
| - | Review, | Var, | NA |
| 3001- | RosA, | Therapeutic Potential of Rosmarinic Acid: A Comprehensive Review |
| - | Review, | Var, | NA |
| 4735- | Se, | Selenium triggers Nrf2-AMPK crosstalk to alleviate cadmium-induced autophagy in rabbit cerebrum |
| - | in-vivo, | Nor, | NA |
| 4190- | Sesame, | Sesame Seeds: A Nutrient-Rich Superfood |
| - | Review, | NA, | NA |
| 4199- | SFN, | Sulforaphane and Brain Health: From Pathways of Action to Effects on Specific Disorders |
| - | Review, | AD, | NA | - | Review, | Park, | NA |
| 1726- | SFN, | Sulforaphane: A Broccoli Bioactive Phytocompound with Cancer Preventive Potential |
| - | Review, | Var, | NA |
| 3300- | SIL, | Toward the definition of the mechanism of action of silymarin: activities related to cellular protection from toxic damage induced by chemotherapy |
| - | Review, | Var, | NA |
| 3293- | SIL, | Silymarin (milk thistle extract) as a therapeutic agent in gastrointestinal cancer |
| - | Review, | Var, | NA |
| 3313- | SIL, | Silymarin attenuates post-weaning bisphenol A-induced renal injury by suppressing ferroptosis and amyloidosis through Kim-1/Nrf2/HO-1 signaling modulation in male Wistar rats |
| - | in-vivo, | NA, | NA |
| 2205- | SNP, | Potential protective efficacy of biogenic silver nanoparticles synthesised from earthworm extract in a septic mice model |
| - | in-vivo, | Nor, | NA |
| 3571- | TQ, | The Role of Thymoquinone in Inflammatory Response in Chronic Diseases |
| - | Review, | Var, | NA | - | Review, | Stroke, | NA |
| 3407- | TQ, | Thymoquinone and its pharmacological perspective: A review |
| - | Review, | NA, | NA |
| 2088- | TQ, | Nigella sativa L. and Its Bioactive Constituents as Hepatoprotectant: A Review |
| - | Review, | Nor, | NA |
| 5024- | TQ, | Thymoquinone: A Tie-Breaker in SARS-CoV2-Infected Cancer Patients? |
| - | Review, | Covid, | NA |
| 2411- | UA, | Ursolic acid in health and disease |
| - | Review, | Var, | NA |
Query results interpretion may depend on "conditions" listed in the research papers. Such Conditions may include : -low or high Dose -format for product, such as nano of lipid formations -different cell line effects -synergies with other products -if effect was for normal or cancerous cells
Filter Conditions: Pro/AntiFlg:% IllCat:% CanType:% Cells:% prod#:% Target#:1153 State#:% Dir#:%
wNotes=0 sortOrder:rid,rpid