Database Query Results : , , Diff

Diff, differentiation: Click to Expand ⟱
Source:
Type:
Differentiation refers to the process by which cells become specialized in structure and function.
-In healthy tissues, cells undergo differentiation to become specialized types (e.g., muscle cells, neurons, blood cells) that perform specific functions. This process is tightly regulated by genetic and epigenetic factors.
-In some cases, cells can lose their specialized characteristics, a process known as dedifferentiation. This is often seen in cancer, where tumor cells revert to a more primitive, less differentiated state.


Scientific Papers found: Click to Expand⟱
3396- ART/DHA,    Progress on the study of the anticancer effects of artesunate
- Review, Var, NA
TumCP↓, TumCI↓, TumCMig↓, Apoptosis↑, Diff↑, TumAuto↑, angioG↓, TumCCA↑, ROS↑, AMPK↑, mTOR↑, ChemoSen↑, Tf↑, Ferroptosis↑, Ferritin↓, lipid-P↑, CDK1↑, CDK2↑, CDK4↑, CDK6↑, SIRT1↑, COX2↓, IL1β↓, survivin↓, DNAdam↑, RadioS↑,
4992- ART/DHA,    Dihydroartemisinin Increases the Sensitivity of Acute Myeloid Leukemia Cells to Cytarabine via the Nrf2/HO-1 Anti-Oxidant Signaling Pathway
- in-vitro, AML, HL-60
Apoptosis↑, Diff↑, ROS↓, HO-1↓, NRF2∅,
2686- BBR,    Effects of resveratrol, curcumin, berberine and other nutraceuticals on aging, cancer development, cancer stem cells and microRNAs
- Review, Nor, NA
Inflam↓, IL6↓, MCP1↓, COX2↓, PGE2↓, MMP2↓, MMP9↓, DNAdam↑, eff↝, Telomerase↓, Bcl-2↓, AMPK↑, ROS↑, MMP↓, ATP↓, p‑mTORC1↓, p‑S6K↓, ERK↓, PI3K↓, PTEN↑, Akt↓, Raf↓, MEK↓, Dose↓, Dose↑, selectivity↑, TumCCA↑, eff↑, EGFR↓, Glycolysis↓, Dose?, p27↑, CDK2↓, CDK4↓, cycD1/CCND1↓, cycE/CCNE↓, Bax:Bcl2↑, Casp3↑, Casp9↑, VEGFR2↓, ChemoSen↑, eff↑, eff↑, PGE2↓, JAK2↓, STAT3↓, CXCR4↓, CCR7↓, uPA↓, CSCs↓, EMT↓, Diff↓, CD133↓, Nestin↓, n-MYC↓, NOTCH↓, SOX2↓, Hif1a↓, VEGF↓, RadioS↑,
2798- CHr,    Chrysin: a histone deacetylase 8 inhibitor with anticancer activity and a suitable candidate for the standardization of Chinese propolis
- in-vitro, BC, MDA-MB-231 - in-vivo, NA, NA
HDAC↓, HDAC8↓, TumCG↓, Diff↑,
2511- H2,    Molecular hydrogen suppresses glioblastoma growth via inducing the glioma stem-like cell differentiation
- in-vivo, GBM, U87MG
TumCG↓, OS↑, CD133↓, Ki-67↓, angioG↓, Diff↑, TumCMig↓, TumCI↓, Dose↝, BBB↑, mt-ROS↑,
4233- LEC,    Lecithinized brain-derived neurotrophic factor promotes the differentiation of embryonic stem cells in vitro and in vivo
- in-vitro, Nor, NA
*BDNF↑, *motorD↑, *Diff↑,
2243- MF,    Pulsed electromagnetic fields increase osteogenetic commitment of MSCs via the mTOR pathway in TNF-α mediated inflammatory conditions: an in-vitro study
- in-vitro, Nor, NA
*eff↑, *mTOR↑, *Akt↑, *PKA↑, *MAPK↑, *ERK↑, *BMP2↑, *Diff↑, *PKCδ↓, *VEGF↑, *IL10↑,
2242- MF,    Electromagnetic stimulation increases mitochondrial function in osteogenic cells and promotes bone fracture repair
- in-vitro, Nor, NA
*MMP↑, *Diff↑, *OXPHOS↑, *BMD↑, ATP∅,
2240- MF,    Pulsed electromagnetic field induces Ca2+-dependent osteoblastogenesis in C3H10T1/2 mesenchymal cells through the Wnt-Ca2+/Wnt-β-catenin signaling pathway
- in-vitro, Nor, C3H10T1/2
*Ca+2↑, *Diff↑, *BMD↑, *Wnt↑, *β-catenin/ZEB1↑, *eff↝,
2255- MF,    Pulsed Electromagnetic Fields Induce Skeletal Muscle Cell Repair by Sustaining the Expression of Proteins Involved in the Response to Cellular Damage and Oxidative Stress
- in-vitro, Nor, SkMC
*HSP70/HSPA5↑, *Apoptosis↓, *Inflam↓, *Trx↓, *PONs↓, *SOD2↓, *TumCG↑, *Diff↑, *HIF2a↑, *Cyt‑c↑, P21↑,
4356- MF,    Pulsed electromagnetic fields synergize with graphene to enhance dental pulp stem cell-derived neurogenesis by selectively targeting TRPC1 channels
- in-vitro, Nor, NA
*Diff↑, *TRPC1↑, *ROS↑,
3536- MF,    Targeting Mesenchymal Stromal Cells/Pericytes (MSCs) With Pulsed Electromagnetic Field (PEMF) Has the Potential to Treat Rheumatoid Arthritis
- Review, Arthritis, NA - Review, Stroke, NA
*Inflam↓, *Diff↑, *toxicity∅, *other↑, *SOX9↑, *COL2A1↑, *NO↓, *PGE2↓, *NF-kB↓, *TNF-α↓, *IL1β↓, *IL6↓, *IL10↑, *angioG↑, *MSCs↑, *VEGF↑, *TGF-β↑, *angioG↝, *VEGF↓, Ca+2↝,
3464- MF,    Progressive Study on the Non-thermal Effects of Magnetic Field Therapy in Oncology
- Review, Var, NA
AntiTum↑, TumCG↓, TumCCA↑, Apoptosis↑, TumAuto↑, Diff↑, angioG↓, TumMeta↓, EPR↑, ChemoSen↑, ROS↑, DNAdam↑, P53↑, Akt↓, MAPK↑, Casp9↑, VEGFR2↓, P-gp↓,
530- MF,    Low frequency sinusoidal electromagnetic fields promote the osteogenic differentiation of rat bone marrow mesenchymal stem cells by modulating miR-34b-5p/STAC2
- in-vivo, Nor, NA
*miR-34b-5p↓, *ALP↑, *RUNX2↑, *BMP2↑, *OCN↑, *OPN↑, *β-catenin/ZEB1↑, *STAC2↑, *Diff↑, *BMD↑,
218- MFrot,  MF,    Extremely low frequency magnetic fields inhibit adipogenesis of human mesenchymal stem cells
- in-vitro, Nor, NA
*PPARγ↓, *p‑JNK↑, *Wnt↑, *ALP∅, *COL1∅, *RUNX2∅, *OCN∅, *FABP4↓, *p‑JNK↑, *Diff↓,
3535- MFrot,  MF,    Pulsed Electromagnetic Field Stimulation in Osteogenesis and Chondrogenesis: Signaling Pathways and Therapeutic Implications
- Review, Nor, NA
*eff↑, *COL2A1↑, *SOX9↑, *Ca+2↑, *FAK↑, *F-actin↑, *Inflam↓, *other↑, *Diff↑, *BMD↑,
2311- MFrot,  MF,    Magnetic fields as a potential therapy for diabetic wounds based on animal experiments and clinical trials
- in-vivo, Nor, HaCaT
*COX2↓, *Inflam↓, *MMP9↑, *GPx↑, *Diff↑,
2036- PB,    Phenylbutyrate induces apoptosis in human prostate cancer and is more potent than phenylacetate
- in-vitro, Pca, NA - in-vivo, NA, NA
TumCG↓, eff↑, Diff↑,
2055- PB,    The Effects of Butyric Acid on the Differentiation, Proliferation, Apoptosis, and Autophagy of IPEC-J2 Cells
- in-vitro, Nor, IPEC-J2
*Diff↑, *TumCP↓, *TumCCA↑, *ROS↑, *Casp3↑, *TNF-α↑,
2064- PB,  Rad,    Phenylbutyrate Attenuates the Expression of Bcl-XL, DNA-PK, Caveolin-1, and VEGF in Prostate Cancer Cells
- in-vitro, Pca, PC3 - in-vitro, Pca, DU145 - in-vitro, Pca, LNCaP
Bcl-xL↓, Cav1↓, VEGF↓, RadioS↑, chemoP↑, HDAC↓, *toxicity↓, Diff↑, Prot↓,
5016- PEITC,    Phenethyl Isothiocyanate (PEITC) interaction with Keap1 activates the Nrf2 pathway and inhibits lipid accumulation in adipocytes
- in-vitro, Nor, NA
*NRF2↑, *Diff↓, *Weight↓, *lipid-P↓,
3380- QC,    Quercetin as a JAK–STAT inhibitor: a potential role in solid tumors and neurodegenerative diseases
- Review, Var, NA - Review, Park, NA - Review, AD, NA
JAK↓, STAT↓, Inflam↓, NO↓, COX2↓, CRP↓, selectivity↑, *neuroP↑, STAT3↓, cycD1/CCND1↓, MMP2↓, STAT4↓, JAK2↓, TumCP↓, Diff↓, *eff↑, *IL6↓, *TNF-α↓, *IL1β↓, *Aβ↓,
2040- SAHA,    The histone deacetylase inhibitor SAHA arrests cancer cell growth, up-regulates thioredoxin-binding protein-2, and down-regulates thioredoxin
- in-vitro, Pca, LNCaP - in-vitro, CRC, T24 - in-vitro, BC, MCF-7
HDAC↓, TumCG↓, Diff↑, Apoptosis↑, TXNIP↑,
4905- Sal,    Salinomycin as a drug for targeting human cancer stem cells
- Review, Var, NA
CSCs↓, selectivity↑, Apoptosis↑, Casp3↑, ROS↑, Wnt↓, cycD1/CCND1↓, Fibronectin↓, OXPHOS↓, Diff↑, Dose↝,
5004- Sal,    Targeting Telomerase Enhances Cytotoxicity of Salinomycin in Cancer Cells
- in-vitro, BC, MCF-7 - in-vitro, BC, MDA-MB-231
eff↑, AntiCan↑, CSCs↑, Wnt↓, β-catenin/ZEB1↓, Diff↑, ROS↑, toxicity↝, selectivity↝, eff↑,
3198- SFN,    Sulforaphane and TRAIL induce a synergistic elimination of advanced prostate cancer stem-like cells
- in-vitro, Pca, NA
Nanog↓, SOX2↓, E-cadherin↓, Snail↓, VEGFR2↓, Diff↓, TumCMig↓, EMT↓, CXCR4↓, NOTCH1↓, ALDH1A1↓, CSCs↓, eff↑,
1345- SK,    The Critical Role of Redox Homeostasis in Shikonin-Induced HL-60 Cell Differentiation via Unique Modulation of the Nrf2/ARE Pathway
- in-vitro, AML, HL-60
CD14↑, CD11b↑, ROS↑, GSH↓, GSH/GSSG↓, GPx↑, Catalase↓, Diff↑,
2212- SK,    Shikonin Exerts an Antileukemia Effect against FLT3-ITD Mutated Acute Myeloid Leukemia Cells via Targeting FLT3 and Its Downstream Pathways
- in-vitro, AML, NA
FLT3↓, NF-kB↓, miR-155↓, Diff↑, TumCG↓,
4365- SNP,    Biomedical Applications of Silver Nanoparticles: An Up-to-Date Overview
- Review, Var, NA
ROS↑, *toxicity↓, *Bacteria↓, *Inf↓, *Diff↑, *eff↑, RadioS↑, selectivity↑,
2132- TQ,    Thymoquinone treatment modulates the Nrf2/HO-1 signaling pathway and abrogates the inflammatory response in an animal model of lung fibrosis
- in-vivo, Nor, NA
*Weight∅, *antiOx↑, *lipid-P↓, *MMP7↓, *Casp3↓, *BAX↓, *TGF-β↓, *Diff↑, *NRF2↓, *HO-1↓, *NF-kB↓, *IκB↑,
5019- UA,    Ursolic acid in colorectal cancer: mechanisms, current status, challenges, and future research directions
- Review, Var, NA
TumCP↓, Diff↑, Apoptosis↑, TumCI↓, angioG↓,

* indicates research on normal cells as opposed to diseased cells
Total Research Paper Matches: 31

Pathway results for Effect on Cancer / Diseased Cells:


Redox & Oxidative Stress

Catalase↓, 1,   Ferroptosis↑, 1,   GPx↑, 1,   GSH↓, 1,   GSH/GSSG↓, 1,   HO-1↓, 1,   lipid-P↑, 1,   NRF2∅, 1,   OXPHOS↓, 1,   ROS↓, 1,   ROS↑, 7,   mt-ROS↑, 1,  

Metal & Cofactor Biology

Ferritin↓, 1,   Tf↑, 1,  

Mitochondria & Bioenergetics

ATP↓, 1,   ATP∅, 1,   MEK↓, 1,   MMP↓, 1,   Raf↓, 1,  

Core Metabolism/Glycolysis

AMPK↑, 2,   Cav1↓, 1,   Glycolysis↓, 1,   p‑S6K↓, 1,   SIRT1↑, 1,  

Cell Death

Akt↓, 2,   Apoptosis↑, 6,   Bax:Bcl2↑, 1,   Bcl-2↓, 1,   Bcl-xL↓, 1,   Casp3↑, 2,   Casp9↑, 2,   Ferroptosis↑, 1,   MAPK↑, 1,   p27↑, 1,   survivin↓, 1,   Telomerase↓, 1,  

Transcription & Epigenetics

Prot↓, 1,  

Autophagy & Lysosomes

TumAuto↑, 2,  

DNA Damage & Repair

DNAdam↑, 3,   P53↑, 1,  

Cell Cycle & Senescence

CDK1↑, 1,   CDK2↓, 1,   CDK2↑, 1,   CDK4↓, 1,   CDK4↑, 1,   cycD1/CCND1↓, 3,   cycE/CCNE↓, 1,   P21↑, 1,   TumCCA↑, 3,  

Proliferation, Differentiation & Cell State Differentiation & Cell-State Programs group includes pathways that determine cell fate, differentiation status, stem cells, stemness, and phenotypic plasticity. It covers developmental signaling cascades and tr" style="cursor:help;color:#555;font-weight:normal;">ⓘ

ALDH1A1↓, 1,   CD133↓, 2,   CSCs↓, 3,   CSCs↑, 1,   Diff↓, 3,   Diff↑, 13,   EMT↓, 2,   ERK↓, 1,   FLT3↓, 1,   HDAC↓, 3,   HDAC8↓, 1,   mTOR↑, 1,   p‑mTORC1↓, 1,   n-MYC↓, 1,   Nanog↓, 1,   Nestin↓, 1,   NOTCH↓, 1,   NOTCH1↓, 1,   PI3K↓, 1,   PTEN↑, 1,   SOX2↓, 2,   STAT↓, 1,   STAT3↓, 2,   STAT4↓, 1,   TumCG↓, 6,   Wnt↓, 2,  

Migration

Ca+2↝, 1,   CD11b↑, 1,   E-cadherin↓, 1,   Fibronectin↓, 1,   Ki-67↓, 1,   miR-155↓, 1,   MMP2↓, 2,   MMP9↓, 1,   Snail↓, 1,   TumCI↓, 3,   TumCMig↓, 3,   TumCP↓, 3,   TumMeta↓, 1,   TXNIP↑, 1,   uPA↓, 1,   β-catenin/ZEB1↓, 1,  

Angiogenesis & Vasculature

angioG↓, 4,   EGFR↓, 1,   EPR↑, 1,   Hif1a↓, 1,   NO↓, 1,   VEGF↓, 2,   VEGFR2↓, 3,  

Barriers & Transport

BBB↑, 1,   P-gp↓, 1,  

Immune & Inflammatory Signaling

CCR7↓, 1,   CD14↑, 1,   COX2↓, 3,   CRP↓, 1,   CXCR4↓, 2,   IL1β↓, 1,   IL6↓, 1,   Inflam↓, 2,   JAK↓, 1,   JAK2↓, 2,   MCP1↓, 1,   NF-kB↓, 1,   PGE2↓, 2,  

Hormonal & Nuclear Receptors

CDK6↑, 1,  

Drug Metabolism & Resistance

ChemoSen↑, 3,   Dose?, 1,   Dose↓, 1,   Dose↑, 1,   Dose↝, 2,   eff↑, 7,   eff↝, 1,   RadioS↑, 4,   selectivity↑, 4,   selectivity↝, 1,  

Clinical Biomarkers

CRP↓, 1,   EGFR↓, 1,   Ferritin↓, 1,   IL6↓, 1,   Ki-67↓, 1,  

Functional Outcomes

AntiCan↑, 1,   AntiTum↑, 1,   chemoP↑, 1,   OS↑, 1,   toxicity↝, 1,  
Total Targets: 134

Pathway results for Effect on Normal Cells:


Redox & Oxidative Stress

antiOx↑, 1,   GPx↑, 1,   HO-1↓, 1,   lipid-P↓, 2,   NRF2↓, 1,   NRF2↑, 1,   OXPHOS↑, 1,   ROS↑, 2,   SOD2↓, 1,   Trx↓, 1,  

Mitochondria & Bioenergetics

MMP↑, 1,  

Core Metabolism/Glycolysis

FABP4↓, 1,   PONs↓, 1,   PPARγ↓, 1,  

Cell Death

Akt↑, 1,   Apoptosis↓, 1,   BAX↓, 1,   BMP2↑, 2,   Casp3↓, 1,   Casp3↑, 1,   Cyt‑c↑, 1,   p‑JNK↑, 2,   MAPK↑, 1,  

Kinase & Signal Transduction

OCN↑, 1,   OCN∅, 1,   SOX9↑, 2,  

Transcription & Epigenetics

other↑, 2,  

Protein Folding & ER Stress

HSP70/HSPA5↑, 1,  

Cell Cycle & Senescence

TumCCA↑, 1,  

Proliferation, Differentiation & Cell State Differentiation & Cell-State Programs group includes pathways that determine cell fate, differentiation status, stem cells, stemness, and phenotypic plasticity. It covers developmental signaling cascades and tr" style="cursor:help;color:#555;font-weight:normal;">ⓘ

Diff↓, 2,   Diff↑, 13,   ERK↑, 1,   MSCs↑, 1,   mTOR↑, 1,   RUNX2↑, 1,   RUNX2∅, 1,   TumCG↑, 1,   Wnt↑, 2,  

Migration

Ca+2↑, 2,   COL1∅, 1,   COL2A1↑, 2,   F-actin↑, 1,   FAK↑, 1,   MMP7↓, 1,   MMP9↑, 1,   OPN↑, 1,   PKA↑, 1,   PKCδ↓, 1,   STAC2↑, 1,   TGF-β↓, 1,   TGF-β↑, 1,   TRPC1↑, 1,   TumCP↓, 1,   β-catenin/ZEB1↑, 2,  

Angiogenesis & Vasculature

angioG↑, 1,   angioG↝, 1,   HIF2a↑, 1,   miR-34b-5p↓, 1,   NO↓, 1,   VEGF↓, 1,   VEGF↑, 2,  

Immune & Inflammatory Signaling

COX2↓, 1,   IL10↑, 2,   IL1β↓, 2,   IL6↓, 2,   Inflam↓, 4,   IκB↑, 1,   NF-kB↓, 2,   PGE2↓, 1,   TNF-α↓, 2,   TNF-α↑, 1,  

Synaptic & Neurotransmission

BDNF↑, 1,  

Protein Aggregation

Aβ↓, 1,  

Drug Metabolism & Resistance

eff↑, 4,   eff↝, 1,  

Clinical Biomarkers

ALP↑, 1,   ALP∅, 1,   BMD↑, 4,   IL6↓, 2,  

Functional Outcomes

motorD↑, 1,   neuroP↑, 1,   toxicity↓, 2,   toxicity∅, 1,   Weight↓, 1,   Weight∅, 1,  

Infection & Microbiome

Bacteria↓, 1,   Inf↓, 1,  
Total Targets: 87

Scientific Paper Hit Count for: Diff, differentiation
11 Magnetic Fields
3 Magnetic Field Rotating
3 Phenylbutyrate
2 Artemisinin
2 salinomycin
2 Shikonin
1 Berberine
1 Chrysin
1 Hydrogen Gas
1 Lecithin
1 Radiotherapy/Radiation
1 Phenethyl isothiocyanate
1 Quercetin
1 Vorinostat
1 Sulforaphane (mainly Broccoli)
1 Silver-NanoParticles
1 Thymoquinone
1 Ursolic acid
Query results interpretion may depend on "conditions" listed in the research papers.
Such Conditions may include : 
  -low or high Dose
  -format for product, such as nano of lipid formations
  -different cell line effects
  -synergies with other products 
  -if effect was for normal or cancerous cells
Filter Conditions: Pro/AntiFlg:%  IllCat:%  CanType:%  Cells:%  prod#:%  Target#:1235  State#:%  Dir#:%
wNotes=0 sortOrder:rid,rpid

 

Home Page