Database Query Results : , , HDAC

HDAC, Histone deacetylases: Click to Expand ⟱
Source:
Type:
Enzymes involved in regulating gene expression by removing acetyl groups from histones, the proteins around which DNA is wrapped.
-Many cancers exhibit altered expression levels of HDACs, which can contribute to the dysregulation of genes involved in cell growth, survival, and differentiation.
-HDACs can repress the expression of tumor suppressor genes, leading to uncontrolled cell proliferation and survival. This repression can be a key factor in the development and progression of cancer.
-HDAC inhibitors (HDACi) have been developed and are being investigated for their ability to reactivate silenced genes, induce cell cycle arrest, and promote apoptosis in cancer cells.
-HDAC1, HDAC2): Often overexpressed in various cancers, including breast, prostate, and colorectal cancers. Their overexpression is associated with poor prognosis.
-HDAC4, HDAC5): These may have both oncogenic and tumor-suppressive roles depending on the context and cancer type.
-While HDACs are not classified as traditional oncogenes, their overexpression and activity can contribute to oncogenic processes.
-HDAC inhibitor works by preventing the removal of acetyl groups from histones, thereby modulating gene expression, influencing cell behavior, and potentially reversing aberrant gene silencing seen in various diseases.
-HDAC inhibitors can help reactivate these genes, thereby inhibiting growth and inducing apoptosis in cancer cells.


Scientific Papers found: Click to Expand⟱
2663- AL,    Therapeutic Effect of Allicin on Glioblastoma
- in-vitro, GBM, U251 - in-vitro, GBM, U87MG
BioAv↝, TumCCA↑, P53↑, HDAC↓, CSCs↓, ROS↑, ChemoSen↑, MGMT↓,
3435- aLinA,    Alpha-linolenic acid-mediated epigenetic reprogramming of cervical cancer cell lines
- in-vitro, Cerv, HeLa - in-vitro, Cerv, SiHa - in-vitro, Cerv, C33A
DNMTs↓, HDAC↓, HATs↑, hTERT/TERT↓, CDH1↑, RARβ↑, DNMT1↓, DNMT3A↓, TET2↑, HDAC1↓, HDAC8↓, SIRT1↓, HMTs↑, EZH2↓,
1156- And,    Exploring the potential of Andrographis paniculata for developing novel HDAC inhibitors: an in silico approach
- Analysis, NA, NA
HDAC↓,
1151- Api,    Plant flavone apigenin inhibits HDAC and remodels chromatin to induce growth arrest and apoptosis in human prostate cancer cells: In vitro and in vivo study
- in-vitro, Pca, PC3 - in-vitro, Pca, 22Rv1 - in-vivo, NA, NA
TumCCA↑, Apoptosis↑, HDAC↓, P21↑, BAX↑, TumCG↓, Bcl-2↓, Bax:Bcl2↑, HDAC1↓, HDAC3↓,
177- Api,    Inhibition of MDA-MB-231 breast cancer cell proliferation and tumor growth by apigenin through induction of G2/M arrest and histone H3 acetylation-mediated p21WAF1/CIP1 expression
- in-vitro, BC, MDA-MB-231
Cyc↓, CycB/CCNB1↓, CDK1↓, P21↑, PCNA↝, HDAC↓,
1547- Api,    Apigenin: Molecular Mechanisms and Therapeutic Potential against Cancer Spreading
- Review, NA, NA
angioG↓, EMT↓, CSCs↓, TumCCA↑, Dose∅, ROS↑, MMP↓, Catalase↓, GSH↓, PI3K↓, Akt↓, NF-kB↓, OCT4↓, Nanog↓, SIRT3↓, SIRT6↓, eff↑, eff↑, Cyt‑c↑, Bax:Bcl2↑, p‑GSK‐3β↓, FOXO3↑, p‑STAT3↓, MMP2↓, MMP9↓, COX2↓, MMPs↓, NRF2↓, HDAC↓, Telomerase↓, eff↑, eff↑, eff↑, eff↑, eff↑, XIAP↓, survivin↓, CK2↓, HSP90↓, Hif1a↓, FAK↓, EMT↓,
1561- Api,    Apigenin Reactivates Nrf2 Anti-oxidative Stress Signaling in Mouse Skin Epidermal JB6 P + Cells Through Epigenetics Modifications
- in-vivo, Nor, JB6
*NRF2↑, *DNMT1↓, *DNMT3A↓, *HDAC↓, *AntiCan↑,
2664- Api,    Progress in discovery and development of natural inhibitors of histone deacetylases (HDACs) as anti-cancer agents
- Review, Var, NA
HDAC↓,
2639- Api,    Plant flavone apigenin: An emerging anticancer agent
- Review, Var, NA
*antiOx↑, *Inflam↓, AntiCan↑, ChemoSen↑, BioEnh↑, chemoPv↑, IL6↓, STAT3↓, NF-kB↓, IL8↓, eff↝, Akt↓, PI3K↓, HER2/EBBR2↓, cycD1/CCND1↓, CycD3↓, p27↑, FOXO3↑, STAT3↓, MMP2↓, MMP9↓, VEGF↓, Twist↓, MMP↓, ROS↑, NADPH↑, NRF2↓, SOD↓, COX2↓, p38↑, Telomerase↓, HDAC↓, HDAC1↓, HDAC3↓, Hif1a↓, angioG↓, uPA↓, Ca+2↑, Bax:Bcl2↑, Cyt‑c↑, Casp9↑, Casp12↑, Casp3↑, cl‑PARP↑, E-cadherin↑, β-catenin/ZEB1↓, cMyc↓, CDK4↓, CDK2↓, CDK6↓, IGF-1↓, CK2↓, CSCs↓, FAK↓, Gli↓, GLUT1↓,
2631- Api,    Apigenin Induces Autophagy and Cell Death by Targeting EZH2 under Hypoxia Conditions in Gastric Cancer Cells
- in-vivo, GC, NA - in-vitro, GC, AGS
ER Stress↑, Hif1a↓, EZH2↓, HDAC↓, TumAuto↑, p‑mTOR↓, AMPKα↑, GRP78/BiP↑, ROS↑, MMP↓, Ca+2↑, ATF4↑, CHOP↑,
1433- Ash,  SFN,    A Novel Combination of Withaferin A and Sulforaphane Inhibits Epigenetic Machinery, Cellular Viability and Induces Apoptosis of Breast Cancer Cells
- in-vitro, BC, MCF-7 - in-vitro, BC, MDA-MB-231
eff↑, Bcl-2↓, BAX↑, tumCV↓, DNMT1↓, DNMT3A↓, HDAC↓,
3175- Ash,  SFN,    Withaferin A and sulforaphane regulate breast cancer cell cycle progression through epigenetic mechanisms
- in-vitro, BC, MDA-MB-231 - in-vitro, BC, MCF-7
DNMTs↓, HDAC↓, eff↑,
4981- ATV,    Crosstalk between Statins and Cancer Prevention and Therapy: An Update
Apoptosis↑, selectivity↑, eff↑, HMG-CoA↓, *cardioP↑, OS↑, IL1β↓, IL6↓, IL8↓, TNF-α↓, TumAuto↑, Histones↝, ac‑H3↑, ac‑H4↑, HDAC↓,
1080- BA,    Butyrate suppresses Cox-2 activation in colon cancer cells through HDAC inhibition
- in-vitro, CRC, HT-29
HDAC↓, TNF-α↓, COX2↓,
2047- BA,    Sodium butyrate inhibits migration and induces AMPK-mTOR pathway-dependent autophagy and ROS-mediated apoptosis via the miR-139-5p/Bmi-1 axis in human bladder cancer cells
- in-vitro, CRC, T24 - in-vitro, Nor, SV-HUC-1 - in-vitro, Bladder, 5637 - in-vivo, NA, NA
HDAC↓, AntiTum↑, TumCMig↓, AMPK↑, mTOR↑, TumAuto↑, ROS↑, miR-139-5p↑, BMI1↓, TumCI?, E-cadherin↑, N-cadherin↓, Vim↓, Snail↓, cl‑PARP↑, cl‑Casp3↑, BAX↑, Bcl-2↓, Bcl-xL↓, MMP↓, PINK1↑, PARK2↑, TumMeta↓, TumCG↓, LC3II↑, p62↓, eff↓,
2050- BA,    The Role of Sodium Phenylbutyrate in Modifying the Methylome of Breast Cancer Cells
- in-vitro, BC, MCF-7
eff↑, HDAC↓, TumCG↓,
2697- BBR,    Structural exploration of common pharmacophore based berberine derivatives as novel histone deacetylase inhibitor targeting HDACs enzymes
- Analysis, Var, NA
HDAC↓,
2698- BBR,    A gene expression signature-based approach reveals the mechanisms of action of the Chinese herbal medicine berberine
- Analysis, BC, MDA-MB-231
HDAC↓, Akt↓, mTOR↓, ER Stress↑, TumAuto↑, AMPK↑, mTOR∅, HDAC∅, ac‑α-tubulin↑,
2699- BBR,    Plant Isoquinoline Alkaloid Berberine Exhibits Chromatin Remodeling by Modulation of Histone Deacetylase To Induce Growth Arrest and Apoptosis in the A549 Cell Line
- in-vitro, Lung, A549
HDAC↓, TumCCA↑, TNF-α↓, COX2↓, MMP2↓, MMP9↓, P21↑, P53↑, Casp↑, ac‑H3↑, ac‑H4↑, ROS↑, MMP↓,
2764- BetA,    In silico profiling of histone deacetylase inhibitory activity of compounds isolated from Cajanus cajan
- Analysis, Var, NA
HDAC↓,
3522- Bor,    The Boron Advantage: The Evolution and Diversification of Boron’s Applications in Medicinal Chemistry
- Review, Var, NA
Hif1a↓, HDAC↓, *CXCR2↑, ROS↑,
3523- Bor,    Design, Synthesis, and Biological Activity of Boronic Acid-Based Histone Deacetylase Inhibitors
- in-vitro, Var, NA
HDAC↓,
696- Bor,    Nothing Boring About Boron
- Review, Var, NA
*hs-CRP↓, *TNF-α↓, *SOD↑, *Catalase↑, *GPx↑, *cognitive↑, *memory↑, *Risk↓, *SAM-e↑, *NAD↝, *ATP↝, *Ca+2↝, HDAC↓, TumVol↓, IGF-1↓, PSA↓, Cyc↓, TumCMig↓, *serineP↓, HIF-1↓, *ChemoSideEff↓, *VitD↑, *Mag↑, *eff↑, Risk↓, *Inflam↓, *neuroP↑, *Calcium↑, *BMD↑, *chemoP↑, AntiCan↑, *Dose↑, *Dose↝, *BMPs↑, *testos↑, angioG↓, Apoptosis↑, *selectivity↑, *chemoPv↑,
2794- CHr,    An updated review on the versatile role of chrysin in neurological diseases: Chemistry, pharmacology, and drug delivery approaches
- Review, Park, NA - Review, Stroke, NA
*neuroP↑, *ROS↓, *Inflam↓, *Apoptosis↓, *IL1β↓, *TNF-α↓, *COX2↓, *iNOS↓, *NF-kB↓, *JNK↓, *HDAC↓, *GSK‐3β↓, *IFN-γ↓, *IL17↓, *GSH↑, *NRF2↑, *HO-1↑, *SOD↑, *MDA↓, *NO↓, *GPx↑, *TBARS↓, *AChE↓, *GR↑, *Catalase↑, *VitC↑, *memory↑, *lipid-P↓, *ROS↓,
2798- CHr,    Chrysin: a histone deacetylase 8 inhibitor with anticancer activity and a suitable candidate for the standardization of Chinese propolis
- in-vitro, BC, MDA-MB-231 - in-vivo, NA, NA
HDAC↓, HDAC8↓, TumCG↓, Diff↑,
2784- CHr,    Chrysin targets aberrant molecular signatures and pathways in carcinogenesis (Review)
- Review, Var, NA
Apoptosis↑, TumCMig↓, *toxicity↝, ChemoSen↑, *BioAv↓, Dose↝, neuroP↑, *P450↓, *ROS↓, *HDL↑, *GSTs↑, *SOD↑, *Catalase↑, *MAPK↓, *NF-kB↓, *PTEN↑, *VEGF↑, ROS↑, MMP↓, Ca+2↑, selectivity↑, PCNA↓, Twist↓, EMT↓, CDKN1C↑, p‑STAT3↑, MMP2↓, MMP9↓, eff↑, cycD1/CCND1↓, hTERT/TERT↓, CLDN1↓, TumVol↓, OS↑, COX2↓, eff↑, CDK2↓, CDK4↓, selectivity↑, TumCCA↑, E-cadherin↑, HK2↓, HDAC↓,
2785- CHr,    Emerging cellular and molecular mechanisms underlying anticancer indications of chrysin
- Review, Var, NA
*NF-kB↓, *COX2↓, *iNOS↓, angioG↓, TOP1↓, HDAC↓, TNF-α↓, IL1β↓, cardioP↑, RenoP↑, neuroP↑, LDL↓, BioAv↑, eff↑, cycD1/CCND1↓, hTERT/TERT↓, MMP-10↓, Akt↓, STAT3↓, VEGF↓, EGFR↓, Snail↓, Slug↓, Vim↓, E-cadherin↑, eff↑, TET1↑, ROS↑, mTOR↓, PPARα↓, ER Stress↑, Ca+2↑, ERK↓, MMP↑, Cyt‑c↑, Casp3↑, HK2↓, NRF2↓, HO-1↓, MMP2↓, MMP9↓, Fibronectin↓, GRP78/BiP↑, XBP-1↓, p‑eIF2α↑, *AST↓, ALAT↓, ALP↓, LDH↓, COX2↑, Bcl-xL↓, IL6↓, PGE2↓, iNOS↓, DNAdam↑, UPR↑, Hif1a↓, EMT↓, Twist↓, lipid-P↑, CLDN1↓, PDK1↓, IL10↓, TLR4↓, NOTCH1↑, PARP↑, Mcl-1↓, XIAP↓,
1505- CUR,    Epigenetic targets of bioactive dietary components for cancer prevention and therapy
- Review, NA, NA
TumCCA↑, Apoptosis↑, DNMTs↓, HDAC↓, HATs↓, TumCP↓, p300↓, HDAC1↓, HDAC3↓, HDAC8↓, NF-kB↓,
2816- CUR,    NEUROPROTECTIVE EFFECTS OF CURCUMIN
- Review, AD, NA - Review, Park, NA
*neuroP↑, *Inflam↓, *antiOx↑, *BioAv↓, *AP-1↓, *NF-kB↓, *HATs↓, *HDAC↑, Dose↑, *ROS↓, *cognitive↑, *Aβ↓,
4826- CUR,    The Bright Side of Curcumin: A Narrative Review of Its Therapeutic Potential in Cancer Management
- Review, Var, NA
*antiOx↑, *Inflam↑, *ROS↓, Apoptosis↑, TumCP↓, BioAv↓, Half-Life↓, eff↑, TumCCA↑, BAX↑, Bak↑, PUMA↑, BIM↑, NOXA↑, TRAIL↑, Bcl-2↓, Bcl-xL↓, survivin↓, XIAP↓, cMyc↓, Casp↑, NF-kB↓, STAT3↓, AP-1↓, angioG↓, TumMeta↑, VEGF↓, MMPs↓, DNMTs↓, HDAC↓, ROS↑,
163- CUR,    Epigenetic CpG Demethylation of the Promoter and Reactivation of the Expression of Neurog1 by Curcumin in Prostate LNCaP Cells
- in-vitro, Pca, LNCaP
MeCP2↓, Neurog1↑, HDAC↓,
1863- dietFMD,  Chemo,    Effect of fasting on cancer: A narrative review of scientific evidence
- Review, Var, NA
eff↑, ChemoSideEff↓, ChemoSen↑, Insulin↓, HDAC↓, IGF-1↓, STAT5↓, BG↓, MAPK↓, HO-1↓, ATG3↑, Beclin-1↑, p62↑, SIRT1↑, LAMP2↑, OXPHOS↑, ROS↑, P53↑, DNAdam↑, TumCD↑, ATP↑, Treg lymp↓, M2 MC↓, CD8+↑, Glycolysis↓, GutMicro↑, GutMicro↑, Warburg↓, Dose↝,
672- EGCG,    Molecular Targets of Epigallocatechin—Gallate (EGCG): A Special Focus on Signal Transduction and Cancer
- Review, NA, NA
DNMT1↓, HDAC↓, G9a↓, PRC2↓, DNMT3A↓, 67LR↓, Apoptosis↑, TumCCA↑,
3201- EGCG,    Epigallocatechin Gallate (EGCG): Pharmacological Properties, Biological Activities and Therapeutic Potential
- Review, NA, NA
*AntiCan↑, *cardioP↑, *neuroP↑, *BioAv↝, *BioAv↓, *BioAv↓, *Dose↝, *Half-Life↝, *BioAv↑, *BBB↑, *hepatoP↓, *other↓, *Inflam↓, *NF-kB↓, *AP-1↓, *iNOS↓, *COX2↓, *ROS↓, *RNS↓, *IL8↓, *JAK↓, *PDGFR-BB↓, *IGF-1R↓, *MMP2↓, *P53↓, *NRF2↑, *TNF-α↓, *IL6↓, *E2Fs↑, *SOD1↑, *SOD2↑, Casp3↑, Cyt‑c↑, PARP↑, DNMTs↓, Telomerase↓, Hif1a↓, MMPs↓, BAX↑, Bak↑, Bcl-2↓, Bcl-xL↓, P53↑, PTEN↑, TumCP↓, MAPK↓, HGF/c-Met↓, TIMP1↑, HDAC↓, MMP9↓, uPA↓, GlutMet↓, ChemoSen↑, chemoP↑,
3238- EGCG,    Green tea catechin, epigallocatechin-3-gallate (EGCG): mechanisms, perspectives and clinical applications
- Review, Var, NA
Telomerase↓, DNMTs↓, cycD1/CCND1↓, cycE/CCNE↓, CDK2↓, CDK4↓, CDK6↓, HATs↓, HDAC↓, selectivity↑, uPA↓, NF-kB↓, TNF-α↓, *ROS↓, *antiOx↑, Hif1a↓, VEGF↓, MMP2↓, MMP9↓, FAK↓, TIMP2↑, Mcl-1↓, survivin↓, XIAP↓, PCNA↓, p16↑, P21↑, p27↑, pRB↑, P53↑, MDM2↑, ROS↑, Casp3↑, Casp8↑, Casp9↑, Cyt‑c↑, Diablo↑, BAX⇅, cl‑PPARα↓, PDGF↓, EGFR↓, FOXO↑, AP-1↓, JNK↓, COX2↓, angioG↓,
3229- EGCG,    Epigallocatechin-3-gallate (EGCG) Alters Histone Acetylation and Methylation and Impacts Chromatin Architecture Profile in Human Endothelial Cells
- in-vitro, Nor, HMEC - in-vitro, Nor, HUVECs
HDAC↓,
3230- EGCG,    Green Tea Polyphenol Epigallocatechin 3-Gallate, Contributes to the Degradation of DNMT3A and HDAC3 in HCT 116 Human Colon Cancer Cells
- in-vitro, CRC, HCT116 - in-vitro, CRC, HT29
HDAC↓, DNMTs↓,
3231- EGCG,    Epigallocatechin-3-gallate restores mitochondrial homeostasis impairment by inhibiting HDAC1-mediated NRF1 histone deacetylation in cardiac hypertrophy
- in-vitro, Nor, NA
*HDAC↓, *cardioP↑, *Nrf1↑, *PGC-1α↓,
3234- EGCG,  Rad,    EGCG, a tea polyphenol, as a potential mitigator of hematopoietic radiation injury in mice
- in-vivo, Nor, NA
*DNMTs↓, *radioP↑, *HDAC↑,
3235- EGCG,    (-)-Epigallocatechin-3-gallate reverses the expression of various tumor-suppressor genes by inhibiting DNA methyltransferases and histone deacetylases in human cervical cancer cells
- in-vivo, Cerv, HeLa
DNMTs↓, HDAC↓,
3236- EGCG,  BA,    Molecular mechanisms for inhibition of colon cancer cells by combined epigenetic-modulating epigallocatechin gallate and sodium butyrate
- in-vitro, Colon, RKO - in-vitro, Colon, HCT116 - in-vitro, Colon, HT29
Apoptosis↑, TumCCA?, HDAC1↓, DNMT1↓, survivin↓, HDAC↓, P21↑, NF-kB↑, γH2AX↑, ac‑H3↑, DNAdam↑,
3237- EGCG,    (-)-Epigallocatechin-3-gallate attenuates cognitive deterioration in Alzheimer's disease model mice by upregulating neprilysin expression
- in-vivo, AD, NA
*HDAC↓, *Aβ↓, cognitive↑,
1435- GEN,  SFN,    The Effects of Combinatorial Genistein and Sulforaphane in Breast Tumor Inhibition: Role in Epigenetic Regulation
- in-vitro, BC, MDA-MB-231 - in-vitro, BC, MCF-7
DNMTs↓, HDAC↓, eff↑, TumCCA↑, HMTs↓, HDAC2↓, HDAC3↓, KLF4↓, hTERT/TERT↓,
2864- HNK,    Honokiol: A Review of Its Anticancer Potential and Mechanisms
- Review, Var, NA
TumCCA↑, CDK2↓, EMT↓, MMPs↓, AMPK↑, TumCI↓, TumCMig↓, TumMeta↓, VEGFR2↓, *antiOx↑, *Inflam↓, *BBB↑, *neuroP↑, *ROS↓, Dose↝, selectivity↑, Casp3↑, Casp9↑, NOTCH1↓, cycD1/CCND1↓, cMyc↓, P21?, DR5↑, cl‑PARP↑, P53↑, Mcl-1↑, p65↓, NF-kB↓, ROS↑, JNK↑, NRF2↑, cJun↑, EF-1α↓, MAPK↓, PI3K↓, mTORC1↓, CSCs↓, OCT4↓, Nanog↓, SOX4↓, STAT3↓, CDK4↓, p‑RB1↓, PGE2↓, COX2↓, β-catenin/ZEB1↑, IKKα↓, HDAC↓, HATs↑, H3↑, H4↑, LC3II↑, c-Raf↓, SIRT3↑, Hif1a↓, ER Stress↑, GRP78/BiP↑, cl‑CHOP↑, MMP↓, PCNA↓, Zeb1↓, NOTCH3↓, CD133↓, Nestin↓, ATG5↑, ATG7↑, survivin↓, ChemoSen↑, SOX2↓, OS↑, P-gp↓, Half-Life↓, Half-Life↝, eff↑, BioAv↓,
2868- HNK,    Honokiol: A review of its pharmacological potential and therapeutic insights
- Review, Var, NA - Review, Sepsis, NA
*P-gp↓, *ROS↓, *TNF-α↓, *IL10↓, *IL6↓, eIF2α↑, CHOP↑, GRP78/BiP↑, BAX↑, cl‑Casp9↑, p‑PERK↑, ER Stress↑, Apoptosis↑, MMPs↓, cFLIP↓, CXCR4↓, Twist↓, HDAC↓, BMPs↑, p‑STAT3↓, mTOR↓, EGFR↓, NF-kB↓, Shh↓, VEGF↓, tumCV↓, TumCMig↓, TumCI↓, ERK↓, Akt↓, Bcl-2↓, Nestin↓, CD133↓, p‑cMET↑, RAS↑, chemoP↑, *NRF2↑, *NADPH↓, *p‑Rac1↓, *ROS↓, *IKKα↑, *NF-kB↓, *COX2↓, *PGE2↓, *Casp3↓, *hepatoP↑, *antiOx↑, *GSH↑, *Catalase↑, *RenoP↑, *ALP↓, *AST↓, *ALAT↓, *neuroP↑, *cardioP↑, *HO-1↑, *Inflam↓,
2875- HNK,    Inhibition of class I histone deacetylases in non-small cell lung cancer by honokiol leads to suppression of cancer cell growth and induction of cell death in vitro and in vivo
- in-vitro, Lung, A549 - in-vitro, Lung, H1299 - in-vitro, Lung, H460 - in-vitro, SCC, H226
HDAC↓, tumCV↓, TumCCA↑, cycD1/CCND1↓, ac‑H3↑, ac‑H4↑, selectivity↑, CDK2↓, CDK4↓,
1064- LT,  Cisplatin,    Inhibition of cell survival, invasion, tumor growth and histone deacetylase activity by the dietary flavonoid luteolin in human epithelioid cancer cells
- vitro+vivo, Lung, LNM35 - in-vitro, CRC, HT-29 - in-vitro, Liver, HepG2 - in-vitro, BC, MCF-7 - in-vitro, BC, MDA-MB-231
Casp3↑, Casp7↑, HDAC↓,
2915- LT,    Luteolin promotes apoptotic cell death via upregulation of Nrf2 expression by DNA demethylase and the interaction of Nrf2 with p53 in human colon cancer cells
- in-vitro, Colon, HT29 - in-vitro, CRC, SNU-407 - in-vitro, Nor, FHC
DNMTs↓, TET1↑, NRF2↑, HDAC↓, tumCV↓, BAX↑, Casp9↑, Casp3↑, Bcl-2↓, ROS↓, GSS↑, Catalase↑, HO-1↑, DNMT1↓, DNMT3A↓, TET1↑, TET3↑, TET2↓, P53↑, P21↑,
2919- LT,    Luteolin as a potential therapeutic candidate for lung cancer: Emerging preclinical evidence
- Review, Var, NA
RadioS↑, ChemoSen↑, chemoP↑, *lipid-P↓, *Catalase↑, *SOD↑, *GPx↑, *GSTs↑, *GSH↑, *TNF-α↓, *IL1β↓, *Casp3↓, *IL10↑, NRF2↓, HO-1↓, NQO1↓, GSH↓, MET↓, p‑MET↓, p‑Akt↓, HGF/c-Met↓, NF-kB↓, Bcl-2↓, SOD2↓, Casp8↑, Casp3↑, PARP↑, MAPK↓, NLRP3↓, ASC↓, Casp1↓, IL6↓, IKKα↓, p‑p65↓, p‑p38↑, MMP2↓, ICAM-1↓, EGFR↑, p‑PI3K↓, E-cadherin↓, ZO-1↑, N-cadherin↓, CLDN1↓, β-catenin/ZEB1↓, Snail↓, Vim↑, ITGB1↓, FAK↓, p‑Src↓, Rac1↓, Cdc42↓, Rho↓, PCNA↓, Tyro3↓, AXL↓, CEA↓, NSE↓, SOD↓, Catalase↓, GPx↓, GSR↓, GSTs↓, GSH↓, VitE↓, VitC↓, CYP1A1↓, cFos↑, AR↓, AIF↑, p‑STAT6↓, p‑MDM2↓, NOTCH1↓, VEGF↓, H3↓, H4↓, HDAC↓, SIRT1↓, ROS↑, DR5↑, Cyt‑c↑, p‑JNK↑, PTEN↓, mTOR↓, CD34↓, FasL↑, Fas↑, XIAP↓, p‑eIF2α↑, CHOP↑, LC3II↑, PD-1↓, STAT3↓, IL2↑, EMT↓, cachexia↓, BioAv↑, *Half-Life↝, *eff↑,
2927- LT,    Luteolin Causes 5′CpG Demethylation of the Promoters of TSGs and Modulates the Aberrant Histone Modifications, Restoring the Expression of TSGs in Human Cancer Cells
- in-vitro, Cerv, HeLa
TumCMig↓, DNMTs↓, HDAC↓, HATs↓, ac‑H3↓, ac‑H4↓, MMP2↓, MMP9↓, HO-1↓, E-cadherin↑, EZH2↓, HER2/EBBR2↓, IL18↓, IL8↓, IL2↓,
1196- MAG,    2-O-Methylmagnolol, a Magnolol Derivative, Suppresses Hepatocellular Carcinoma Progression via Inhibiting Class I Histone Deacetylase Expression
- in-vitro, HCC, NA
TumCG↓, TumCMig↓, TumCI↓, TumCCA↑, HDAC↓,
2031- PB,    Phenylbutyrate is a multifaceted drug that exerts neuroprotective effects and reverses the Alzheimer´s disease-like phenotype of a commonly used mouse model
- in-vivo, AD, NA
*neuroP↑, *HDAC↓, *ChemChap↑,
2035- PB,    Sodium Phenylbutyrate Controls Neuroinflammatory and Antioxidant Activities and Protects Dopaminergic Neurons in Mouse Models of Parkinson’s Disease
- in-vitro, Nor, glial - in-vivo, NA, NA
*ROS↓, *Inflam↑, *P21↓, *antiOx↑, *GSH↑, *NF-kB↓, *neuroP↑, *HDAC↓, *iNOS↓, *TNF-α↓, *IL1β↓, *LDL↓, ROS↓,
2049- PB,    Modifying histones to tame cancer: clinical development of sodium phenylbutyrate and other histone deacetylase inhibitors
- Review, Var, NA
HDAC↓, ac‑H3↑, ac‑H4↑, ac‑H3↑, eff↝, toxicity↓,
2061- PB,  Chemo,    Complementary effects of HDAC inhibitor 4-PB on gap junction communication and cellular export mechanisms support restoration of chemosensitivity of PDAC cells
- in-vitro, PC, PANC1 - in-vitro, PC, COLO357 - in-vitro, PC, Bxpc-3
HDAC↓, Apoptosis↑, eff↑, selectivity↑, TumCCA↑, eff↑, selectivity↑,
2054- PB,    Sodium butyrate induces ferroptosis in endometrial cancer cells via the RBM3/SLC7A11 axis
- in-vitro, EC, ISH - in-vitro, EC, HEC1B
Ferroptosis↑, xCT↓, RBM3↑, HDAC↓, ROS↑,
2052- PB,    Lipid-regulating properties of butyric acid and 4-phenylbutyric acid: Molecular mechanisms and therapeutic applications
- Review, NA, NA
*HDAC↓, *Half-Life↑, *Half-Life↑, *lipoGen↓, *ER Stress↓, *FAO↑, *ROS↓, *BioAv↑,
2048- PB,    Sodium Phenylbutyrate Inhibits Tumor Growth and the Epithelial-Mesenchymal Transition of Oral Squamous Cell Carcinoma In Vitro and In Vivo
- in-vitro, OS, CAL27 - in-vitro, Oral, HSC3 - in-vitro, OS, SCC4 - in-vivo, NA, NA
*NH3↓, *HDAC↓, *ER Stress↓, Apoptosis?, Bcl-2↓, cl‑Casp3↑, TGF-β↑, N-cadherin↓, E-cadherin↑, TumVol↓, eff↑,
2046- PB,    Sodium butyrate promotes apoptosis in breast cancer cells through reactive oxygen species (ROS) formation and mitochondrial impairment
- in-vitro, BC, MCF-7 - in-vitro, BC, MDA-MB-468 - in-vitro, Nor, MCF10
Apoptosis↑, i-ROS?, Casp↑, MMP?, selectivity↑, *ROS∅, HDAC↓, DNArepair↓, Casp3↑, Casp8↑, *toxicity↓, TumCCA↑,
2045- PB,    Phenylbutyrate—a pan-HDAC inhibitor—suppresses proliferation of glioblastoma LN-229 cell line
- in-vitro, GBM, LN229 - in-vitro, GBM, LN-18
HDAC↓, TumCG↓, TumCCA↑, P21↑, Bcl-2↓, Bcl-xL↓, BioAv↑,
2043- PB,  Cisplatin,    Phenylbutyrate interferes with the Fanconi anemia and BRCA pathway and sensitizes head and neck cancer cells to cisplatin
- in-vitro, HNSCC, UM-SCC-1
ChemoSen↑, eff↑, HDAC↓, BRCA1↓, RadioS↑,
2042- PB,    Phenylbutyrate, a histone deacetylase inhibitor, protects against Adriamycin-induced cardiac injury
- in-vitro, Nor, NA
*HDAC↓, *toxicity↓, *LDH↓, *SOD2↑, *ROS↓, *cardioP↑, *antiOx↑,
2039- PB,    TXNIP mediates the differential responses of A549 cells to sodium butyrate and sodium 4‐phenylbutyrate treatment
- in-vitro, Lung, A549 - in-vitro, Nor, HEK293
TXNIP↑, Casp3↑, Casp7↑, mt-ROS↑, GlucoseCon↓, TumCP↓, TumCD↑, IGF-2↑, HDAC↓, ROS⇅,
2029- PB,    Phenylbutyric Acid: simple structure - multiple effects
- Review, Var, NA
NH3↓, HDAC↓, ChemChap↑,
2030- PB,    4-Phenylbutyric acid protects against neuronal cell death by primarily acting as a chemical chaperone rather than histone deacetylase inhibitor
- Review, Nor, NA
*HDAC↓, *neuroP↑, *ChemChap↑,
2074- PB,  Chemo,    The effect of combined treatment with sodium phenylbutyrate and cisplatin, erlotinib, or gefitinib on resistant NSCLC cells
- in-vitro, Lung, A549 - in-vitro, Lung, Calu-6 - in-vitro, Lung, H1650
TumCG↓, eff↑, ChemoSen↑, HDAC↓,
2075- PB,  Chemo,    Preliminary Findings on the Use of Targeted Therapy in Combination with Sodium Phenylbutyrate in Colorectal Cancer after Failure of Second-Line Therapy—A Potential Strategy for Improved Survival
- Trial, CRC, NA
OS↑, HDAC↓,
2067- PB,    Histone Deacetylase (HDAC) Inhibitors: Current Evidence for Therapeutic Activities in Pancreatic Cancer
- in-vitro, PC, NA
HDAC↓, HATs↑,
2064- PB,  Rad,    Phenylbutyrate Attenuates the Expression of Bcl-XL, DNA-PK, Caveolin-1, and VEGF in Prostate Cancer Cells
- in-vitro, Pca, PC3 - in-vitro, Pca, DU145 - in-vitro, Pca, LNCaP
Bcl-xL↓, Cav1↓, VEGF↓, RadioS↑, chemoP↑, HDAC↓, *toxicity↓, Diff↑, Prot↓,
2026- PB,    Oral sodium phenylbutyrate in patients with recurrent malignant gliomas: A dose escalation and pharmacologic study
- Trial, GBM, NA
Dose↝, Dose↑, Dose↝, OS↑, HDAC↓, TumCCA↑, P21↑, other↝, BioAv↑, eff↑,
2027- PB,    Phase I dose escalation clinical trial of phenylbutyrate sodium administered twice daily to patients with advanced solid tumors
- Trial, Var, NA
TumCG↓, Dose↝, toxicity↓, Dose↝, HDAC↓, OS↑,
2028- PB,    Potential of Phenylbutyrate as Adjuvant Chemotherapy: An Overview of Cellular and Molecular Anticancer Mechanisms
- Review, Var, NA
HDAC↓, TumCCA↑, P21↑, Dose↝, Telomerase↓, IGFBP3↑, p‑p38↑, JNK↑, ERK↑, BAX↑, Casp3↑, Bcl-2↓, Cyt‑c↝, FAK↓, survivin↓, VEGF↓, angioG↓, DNArepair↓, TumMeta↓, HSP27↑, ASK1↑, ROS↑, eff↑, ER Stress↓, GRP78/BiP↓, CHOP↑, AR↓, other?,
2077- PB,    Butyrate induces ROS-mediated apoptosis by modulating miR-22/SIRT-1 pathway in hepatic cancer cells
- in-vitro, Liver, HUH7
miR-22↑, SIRT1↓, ROS↑, Cyt‑c↑, Casp3↑, eff↓, TumCG↓, TumCP↓, HDAC↓, SIRT1↓, CD44↓, proMMP2↓, MMP↓, SOD↓,
998- PB,    Phenyl butyrate inhibits pyruvate dehydrogenase kinase 1 and contributes to its anti-cancer effect
- in-vivo, NA, NA
p‑PDH↓, PDH↑, PDK1↓, HDAC↓, Glycolysis↓, MMP↓, Apoptosis↑,
1666- PBG,    Molecular and Cellular Mechanisms of Propolis and Its Polyphenolic Compounds against Cancer
- Review, Var, NA
ChemoSen↑, TumCCA↑, TumCP↓, Apoptosis↑, antiOx↓, ROS↑, COX2↑, ER(estro)↓, cycA1/CCNA1↓, CycB/CCNB1↓, CDK2↓, P21↑, p27↑, hTERT/TERT↓, HDAC↓, ROS⇅, Dose?, ROS↓, ROS↑, DNAdam↑, ChemoSen↑, LOX1↓, lipid-P↓, NO↑, Igs↑, NK cell↑, MMPs↓, VEGF↓, Hif1a↓, GLUT1↓, HK2↓, selectivity↑, RadioS↑, GlucoseCon↓, lactateProd↓, eff↓, *BioAv↓,
1660- PBG,    Emerging Adjuvant Therapy for Cancer: Propolis and its Constituents
- Review, Var, NA
MMPs↓, angioG↓, TumMeta↓, TumCCA↑, Apoptosis↑, ChemoSideEff↓, eff∅, HDAC↓, PTEN↑, p‑PTEN↓, p‑Akt↓, Casp3↑, p‑ERK↑, p‑FAK↑, Dose?, Akt↓, GSK‐3β↓, FOXO3↓, eff↑, IL2↑, IL10↑, NF-kB↓, VEGF↓, mtDam↑, ER Stress↑, AST↓, ALAT↓, ALP↓, COX2↓, eff↑, Bax:Bcl2↑,
4928- PEITC,    Dietary phytochemical PEITC restricts tumor development via modulation of epigenetic writers and erasers
- vitro+vivo, Colon, SW-620
Risk↓, HDAC↓, TumW↓, TumCG↓, AP-1↓, cAMP↓, NF-kB↓, BMI1↓, SUZ12↓, EZH2↓, selectivity↑,
4921- PEITC,    The Potential Use of Phenethyl Isothiocyanate for Cancer Prevention
- Review, Var, NA
antiOx↑, Inflam↓, AntiCan↑, TumCP↓, TumCCA↑, Apoptosis↑, TumAuto↑, HDAC↓, Risk↓,
1938- PL,    Piperlongumine regulates epigenetic modulation and alleviates psoriasis-like skin inflammation via inhibition of hyperproliferation and inflammation
- Study, PSA, NA - in-vivo, NA, NA
ROS↑, Apoptosis↑, MMP↓, TumCCA↑, DNAdam↑, STAT3↓, Akt↓, PCNA↓, Ki-67↓, cycD1/CCND1↓, Bcl-2↓, K17↓, HDAC↓, ROS↑, *IL1β↓, *IL6↓, *TNF-α↓, *IL17↓, *IL22↓,
3357- QC,    The polyphenol quercetin induces cell death in leukemia by targeting epigenetic regulators of pro-apoptotic genes
- in-vitro, AML, HL-60 - NA, NA, U937
DNMT1↓, DNMT3A↓, HDAC↓, ac‑H3↑, ac‑H4↑, BAX↑, APAF1↑, BNIP3↑, STAT3↑,
3359- QC,    Quercetin modifies 5′CpG promoter methylation and reactivates various tumor suppressor genes by modulating epigenetic marks in human cervical cancer cells
- in-vitro, Cerv, HeLa
DNMTs↓, HDAC↓, HMTs↓, DNMT3A↓, EZH2↓, HDAC1↓, HDAC2↓, HDAC6↓, HDAC11↓, G9a↓, TIMP3↑, PTEN↑, SOCS1↑,
3360- QC,    Role of Flavonoids as Epigenetic Modulators in Cancer Prevention and Therapy
- Review, Var, NA
HDAC↓, DNMTs↓, HMTs↓, Let-7↑, NOTCH↓,
3368- QC,    The potential anti-cancer effects of quercetin on blood, prostate and lung cancers: An update
- Review, Var, NA
*Inflam↓, *antiOx↑, *AntiCan↑, Casp3↓, p‑Akt↓, p‑mTOR↓, p‑ERK↓, β-catenin/ZEB1↓, Hif1a↓, AntiAg↓, VEGFR2↓, EMT↓, EGFR↓, MMP2↓, MMP↓, TumMeta↓, MMPs↓, Akt↓, Snail↓, N-cadherin↓, Vim↓, E-cadherin↑, STAT3↓, TGF-β↓, ROS↓, P53↑, BAX↑, PKCδ↓, PI3K↓, COX2↓, cFLIP↓, cycD1/CCND1↓, cMyc↓, IL6↓, IL10↓, Cyt‑c↑, TumCCA↑, DNMTs↓, HDAC↓, ac‑H3↑, ac‑H4↑, Diablo↑, Casp3↑, Casp9↑, PARP1↑, eff↑, PTEN↑, VEGF↓, NO↓, iNOS↓, ChemoSen↑, eff↑, eff↑, eff↑, uPA↓, CXCR4↓, CXCL12↓, CLDN2↓, CDK6↓, MMP9↓, TSP-1↑, Ki-67↓, PCNA↓, ROS↑, ER Stress↑,
882- RES,    Resveratrol: A Double-Edged Sword in Health Benefits
- Review, NA, NA
AntiTum↑, Casp3↑, Casp9↑, BAX↑, Bcl-2↓, Bcl-xL↓, P53↑, NAF1↓, NRF2↑, ROS↑, Apoptosis↑, HDAC↓, TumCCA↑, TumAuto↑, angioG↓, iNOS↓,
883- RES,    Targeting Histone Deacetylases with Natural and Synthetic Agents: An Emerging Anticancer Strategy
HDAC↓, TumCCA↑, Apoptosis↑, angioG↓, ROS↑,
1506- RES,    Epigenetic targets of bioactive dietary components for cancer prevention and therapy
- Review, NA, NA
DNMTs↓, BRCA1↑, HDAC↓, SIRT1↑, p300↓, survivin↓, HDAC1↓, HDAC3↓, HDAC8↓,
2040- SAHA,    The histone deacetylase inhibitor SAHA arrests cancer cell growth, up-regulates thioredoxin-binding protein-2, and down-regulates thioredoxin
- in-vitro, Pca, LNCaP - in-vitro, CRC, T24 - in-vitro, BC, MCF-7
HDAC↓, TumCG↓, Diff↑, Apoptosis↑, TXNIP↑,
1062- Sel,    Sodium Selenite Decreased HDAC Activity, Cell Proliferation and Induced Apoptosis in Three Human Glioblastoma Cells
- in-vitro, GBM, LN229 - in-vitro, GBM, T98G - in-vitro, GBM, U87MG
HDAC↓, TumCP↓, TumCCA↑, Apoptosis↑, Casp3↝, MMP2↓, *BioAv↝,
4198- SFN,    Sulforaphane epigenetically enhances neuronal BDNF expression and TrkB signaling pathways
- vitro+vivo, AD, NA
*TrkB↑, *CREB↑, CaMKII ↑, *ERK↑, *ac‑H3↑, *ac‑H4↑, *HDAC↓, *HDAC2↓, *BDNF↑,
3660- SFN,    Sulforaphane - role in aging and neurodegeneration
- Review, AD, NA
*antiOx↑, *Inflam↓, *NRF2↑, *NF-kB↓, *HDAC↓, *DNMTs↓, *neuroP↑, *AntiAge↑, *DNMT1↓, *DNMT3A↓, *memory↑, *HO-1↑, *ROS↓, *NO↓, *GSH↑, *NF-kB↓, *TNF-α↓, *IL10↑,
1061- SFN,    Relevance of the natural HDAC inhibitor sulforaphane as a chemopreventive agent in urologic tumors
- vitro+vivo, NA, NA
AntiTum↑, HDAC↓,
2554- SFN,    Sulforaphane (SFN): An Isothiocyanate in a Cancer Chemoprevention Paradigm
- Review, Var, NA
Dose↝, chemoPv↑, *NQO1↑, *GSTA1↑, HDAC↓, NF-kB↓,
2555- SFN,    Chemopreventive functions of sulforaphane: A potent inducer of antioxidant enzymes and apoptosis
- Review, Var, NA
chemoPv↑, HDAC↓, TumCCA↑, Apoptosis↑, Mets↑, *NRF2↑, ROS⇅,
2556- SFN,    The role of Sulforaphane in cancer chemoprevention and health benefits: a mini-review
- Review, Var, NA
chemoPv↑, HDAC↓, Hif1a↓, angioG↓, CYP1A1↓, eff↑, BioAv↑,
3193- SFN,    Epigenetic Therapeutics Targeting NRF2/KEAP1 Signaling in Cancer Oxidative Stress
- Review, Var, NA
DNMTs↓, HDAC↑, NRF2↑, DNMT1↓, DNMT3A↓, NQO1↑, COMT↑, TumCG↓, *toxicity↓,
3192- SFN,    Transcriptome analysis reveals a dynamic and differential transcriptional response to sulforaphane in normal and prostate cancer cells and suggests a role for Sp1 in chemoprevention
- in-vitro, Pca, PC3
Sp1/3/4↓, selectivity↑, NRF2↑, HDAC↓, DNMTs↓, TumCCA↑, selectivity↑, HO-1↑, NQO1↑, CDK2↓, TumCP↓, BID↑, Smad1↑, Diablo↑, ICAD↑, Cyt‑c↑, IAP1↑, HSP27↑, *Cyt‑c↓, *IAP1↓, *HSP27↓, survivin↓, CDK4↓, VEGF↓, AR↓,
2448- SFN,    Sulforaphane and bladder cancer: a potential novel antitumor compound
- Review, Bladder, NA
Apoptosis↑, TumCG↓, TumCI↓, TumMeta↓, glucoNG↓, ChemoSen↑, TumCCA↑, Casp3↑, Casp7↑, cl‑PARP↑, survivin↓, EGFR↓, HER2/EBBR2↓, ATP↓, Glycolysis↓, mt-OXPHOS↓, AKT1↓, HK2↓, Hif1a↓, ROS↑, NRF2↑, EMT↓, COX2↓, MMP2↓, MMP9↓, Zeb1↓, Snail↓, HDAC↓, HATs↓, MMP↓, Cyt‑c↓, Shh↓, Smo↓, Gli1↓, BioAv↝, BioAv↝, Dose↝,
1722- SFN,    Sulforaphane as an anticancer molecule: mechanisms of action, synergistic effects, enhancement of drug safety, and delivery systems
- Review, Var, NA
TumCCA↑, CYP1A1↓, CYP3A4↓, Cyt‑c↑, Casp9↑, Apoptosis↑, ROS↑, MAPK↑, P53↑, BAX↑, ChemoSen↑, HDAC↓, GSH↓, HO-1↑,
1725- SFN,    Anticancer Activity of Sulforaphane: The Epigenetic Mechanisms and the Nrf2 Signaling Pathway
- Review, Var, NA
*toxicity∅, AntiCan↑, antiOx↑, NRF2↑, DNMTs↓, HDAC↓, Hif1a↓, VEGF↓, P21↑, TumCCA↑, ac‑H3↑, ac‑H4↑, DNAdam↑, Dose↝,
1730- SFN,    Sulforaphane: An emergent anti-cancer stem cell agent
- Review, Var, NA
BioAv↓, BioAv↑, GSTA1↑, P450↓, TumCCA↑, HDAC↓, P21↑, p27↑, DNMT1↓, DNMT3A↓, cycD1/CCND1↑, DNAdam↑, BAX↑, Cyt‑c↑, Apoptosis↑, ROS↑, AIF↑, CDK1↑, Casp3↑, Casp8↑, Casp9↑, NRF2↑, NF-kB↓, TNF-α↓, IL1β↓, CSCs↓, CD133↓, CD44↓, ALDH↓, Nanog↓, OCT4↓, hTERT/TERT↓, MMP2↓, EMT↓, ALDH1A1↓, Wnt↓, NOTCH↓, ChemoSen↑, *Ki-67↓, *HDAC3↓, *HDAC↓,
1724- SFN,    Sulforaphane: A review of its therapeutic potentials, advances in its nanodelivery, recent patents, and clinical trials
- Review, Var, NA
antiOx↑, NRF2↑, HDAC↓, neuroP↑,
1494- SFN,  doxoR,    Sulforaphane potentiates anticancer effects of doxorubicin and attenuates its cardiotoxicity in a breast cancer model
- in-vivo, BC, NA - in-vitro, BC, MCF-7 - in-vitro, Nor, MCF10
CardioT↓, *GSH↑, *ROS↓, *NRF2↑, NRF2∅, HDAC↓, DNMTs↓, Casp3↑, ER-α36↓, Remission↑, eff↑, ROS↑, selectivity?,
1484- SFN,    Sulforaphane’s Multifaceted Potential: From Neuroprotection to Anticancer Action
- Review, Var, NA - Review, AD, NA
neuroP↑, AntiCan↑, NRF2↑, HDAC↓, eff↑, *ROS↓, neuroP↑, HDAC↓, *toxicity∅, BioAv↑, eff↓, cycD1/CCND1↓, CDK4↓, p‑RB1↓, Glycolysis↓, miR-30a-5p↑, TumCCA↑, TumCG↓, TumMeta↓, eff↑, ChemoSen↑, RadioS↑, CardioT↓, angioG↓, Hif1a↓, VEGF↓, *BioAv?, *Half-Life∅,
1430- SFN,    Sulforaphane bioavailability and chemopreventive activity in women scheduled for breast biopsy
- Trial, BC, NA
*HDAC3↓, HDAC↓, *toxicity↓,
1428- SFN,    Broccoli or Sulforaphane: Is It the Source or Dose That Matters?
- Review, NA, NA
HDAC↓, NRF2↑,
1454- SFN,    Absorption and chemopreventive targets of sulforaphane in humans following consumption of broccoli sprouts or a myrosinase-treated broccoli sprout extract
- Human, Nor, NA
*HDAC↓, *eff↑, *eff↑, *eff↑, *BioAv↑, *BioAv↑,
1453- SFN,    Sulforaphane Reduces Prostate Cancer Cell Growth and Proliferation In Vitro by Modulating the Cdk-Cyclin Axis and Expression of the CD44 Variants 4, 5, and 7
- in-vitro, Pca, DU145 - in-vitro, Pca, PC3
TumCG↓, TumCP↓, TumCCA↑, H3↑, H4↑, HDAC↓, CDK1↑, CDK2↑, p19↑, *BioAv↑,
1452- SFN,    Sulforaphane Suppresses the Nicotine-Induced Expression of the Matrix Metalloproteinase-9 via Inhibiting ROS-Mediated AP-1 and NF-κB Signaling in Human Gastric Cancer Cells
- in-vitro, GC, AGS
MMP9↓, p38↓, ERK↓, AP-1↓, ROS↓, NF-kB↓, TumCI↓, MMP9↓, HDAC↓, Glycolysis↓, Hif1a↓, *memory↑, *cognitive↑,
1434- SFN,  GEM,    Sulforaphane Potentiates Gemcitabine-Mediated Anti-Cancer Effects against Intrahepatic Cholangiocarcinoma by Inhibiting HDAC Activity
- in-vitro, CCA, HuCCT1 - in-vitro, CCA, HuH28 - in-vivo, NA, NA
HDAC↓, ac‑H3↑, ChemoSen↑, tumCV↓, TumCP↓, TumCCA↑, Apoptosis↑, cl‑Casp3↑, TumCI↓, VEGF↓, VEGFR2↓, Hif1a↓, eNOS↓, EMT?, TumCG↓, Ki-67↓, TUNEL↑, P21↑, p‑Chk2↑, CDC25↓, BAX↑, *ROS↓, NQO1?,
1496- SFN,  VitD3,    Association between histone deacetylase activity and vitamin D-dependent gene expressions in relation to sulforaphane in human colorectal cancer cells
- in-vitro, CRC, Caco-2
eff↑, VDR↑, CYP11A1↓, HDAC↓,
1497- SFN,    Differential effects of sulforaphane on histone deacetylases, cell cycle arrest and apoptosis in normal prostate cells versus hyperplastic and cancerous prostate cells
- in-vitro, Nor, PrEC - in-vitro, Pca, LNCaP - in-vitro, Pca, PC3
HDAC↓, selectivity↑, TumCCA↑, Apoptosis↑, selectivity↑, H3↑, P21↑, selectivity↑,
1500- SFN,    A novel mechanism of chemoprotection by sulforaphane: inhibition of histone deacetylase
- in-vitro, Nor, HEK293 - in-vitro, CRC, HCT116
HDAC↓, P21↑, TOPflash↑,
1502- SFN,    Epigenetic targets of bioactive dietary components for cancer prevention and therapy
- Review, NA, NA
HDAC↓, AntiCan↑, DNMTs↓, hTERT/TERT↓, selectivity↑,
1437- SFN,    Dietary Sulforaphane in Cancer Chemoprevention: The Role of Epigenetic Regulation and HDAC Inhibition
- Review, NA, NA
HDAC↓, HDAC1↓, HDAC2↓, HDAC3↓, HDAC8↓, eff↑, ac‑HSP90↑, DNMT1↓, DNMT3A↓, hTERT/TERT↓, NRF2↑, HO-1↑, NQO1↑, miR-155↓, miR-200c↑, SOX9↓, *toxicity↓,
1458- SFN,    Sulforaphane Impact on Reactive Oxygen Species (ROS) in Bladder Carcinoma
- Review, Bladder, NA
HDAC↓, eff↓, TumW↓, TumW↓, angioG↓, *toxicity↓, GutMicro↝, AntiCan↑, ROS↑, MMP↓, Cyt‑c↑, Bax:Bcl2↑, Casp3↑, Casp9↑, Casp8∅, cl‑PARP↑, TRAIL↑, DR5↑, eff↓, NRF2↑, ER Stress↑, COX2↓, EGFR↓, HER2/EBBR2↓, ChemoSen↑, NF-kB↓, TumCCA?, p‑Akt↓, p‑mTOR↓, p70S6↓, p19↑, P21↑, CD44↓, CSCs↓,
2164- SFN,  dietP,    Broccoli Sprouts Delay Prostate Cancer Formation and Decrease Prostate Cancer Severity with a Concurrent Decrease in HDAC3 Protein Expression in Transgenic Adenocarcinoma of the Mouse Prostate (TRAMP) Mice
- in-vitro, Pca, NA
HDAC↓, Dose↝, Risk↓, TumCP↓, H3↓,
1508- SFN,    Nrf2 targeting by sulforaphane: A potential therapy for cancer treatment
- Review, Var, NA
*BioAv↑, HDAC↓, TumCCA↓, eff↓, Wnt↓, β-catenin/ZEB1↓, Casp12?, Bcl-2↓, cl‑PARP↑, Bax:Bcl2↑, IAP1↓, Casp3↑, Casp9↑, Telomerase↓, hTERT/TERT↓, ROS?, DNMTs↓, angioG↓, VEGF↓, Hif1a↓, cMYB↓, MMP1↓, MMP2↓, MMP9↓, ERK↑, E-cadherin↑, CD44↓, MMP2↓, eff↑, IL2↑, IFN-γ↑, IL1β↓, IL6↓, TNF-α↓, NF-kB↓, ERK↓, NRF2↑, RadioS↑, ChemoSideEff↓,
1507- SFN,    Sulforaphane retards the growth of human PC-3 xenografts and inhibits HDAC activity in human subjects
- in-vivo, Colon, NA - Human, Nor, NA
TumCG↓, HDAC↓, *BioAv↑, Dose∅, Half-Life∅,
3282- SIL,    Role of Silymarin in Cancer Treatment: Facts, Hypotheses, and Questions
- Review, NA, NA
hepatoP↑, AntiCan↑, TumCMig↓, Hif1a↓, selectivity↑, toxicity∅, *antiOx↑, *Inflam↓, TumCCA↑, P21↑, CDK4↓, NF-kB↓, ERK↓, PSA↓, TumCG↓, p27↑, COX2↓, IL1↓, VEGF↓, IGFBP3↑, AR↓, STAT3↓, Telomerase↓, Cyt‑c↑, Casp↑, eff↝, HDAC↓, HATs↑, Zeb1↓, E-cadherin↑, miR-203↑, NHE1↓, MMP2↓, MMP9↓, PGE2↓, Vim↓, Wnt↓, angioG↓, VEGF↓, *TIMP1↓, EMT↓, TGF-β↓, CD44↓, EGFR↓, PDGF↓, *IL8↓, SREBP1↓, MMP↓, ATP↓, uPA↓, PD-L1↓, NOTCH↓, *SIRT1↑, SIRT1↓, CA↓, Ca+2↑, chemoP↑, cardioP↑, Dose↝, Half-Life↝, BioAv↓, BioAv↓, BioAv↓, toxicity↝, Half-Life↓, ROS↓, FAK↓,
3288- SIL,    Silymarin in cancer therapy: Mechanisms of action, protective roles in chemotherapy-induced toxicity, and nanoformulations
- Review, Var, NA
Inflam↓, lipid-P↓, TumMeta↓, angioG↓, chemoP↑, EMT↓, HDAC↓, HATs↑, MMPs↓, uPA↓, PI3K↓, Akt↓, VEGF↓, CD31↓, Hif1a↓, VEGFR2↓, Raf↓, MEK↓, ERK↓, BIM↓, BAX↑, Bcl-2↓, Bcl-xL↓, Casp↑, MAPK↓, P53↑, LC3II↑, mTOR↓, YAP/TEAD↓, *BioAv↓, MMP↓, Cyt‑c↑, PCNA↓, cMyc↓, cycD1/CCND1↓, β-catenin/ZEB1↓, survivin↓, APAF1↑, Casp3↑, MDSCs↓, IL10↓, IL2↑, IFN-γ↑, hepatoP↑, cardioP↑, GSH↑, neuroP↑,
3322- SIL,    Therapeutic intervention of silymarin on the migration of non-small cell lung cancer cells is associated with the axis of multiple molecular targets including class 1 HDACs, ZEB1 expression, and restoration of miR-203 and E-cadherin expression
- in-vitro, Lung, A549 - in-vitro, Lung, H1299 - in-vitro, Lung, H460
HDAC↓, HDAC1↓, HDAC2↓, HDAC3↓, HDAC8↓, HATs↑, Zeb1↓, E-cadherin↑, TumCMig↓,
3421- TQ,    Insights into the molecular interactions of thymoquinone with histone deacetylase: evaluation of the therapeutic intervention potential against breast cancer
- Analysis, Nor, NA - in-vivo, Nor, NA - in-vitro, BC, MCF-7 - in-vitro, Nor, HaCaT
HDAC↓, P21↑, Maspin↑, BAX↑, B2M↓, TumCCA↑, selectivity↑, *toxicity↓, TumCMig↓, TumCP↓,
3426- TQ,    Thymoquinone-Induced Reactivation of Tumor Suppressor Genes in Cancer Cells Involves Epigenetic Mechanisms
- in-vitro, BC, MDA-MB-468 - in-vitro, AML, JK
UHRF1↓, DNMT1↓, DNMT3A↓, DNMTs↓, HDAC1↓, HDAC4↓, HDAC↓, DLC1↑, PPARγ↑, FOXO↑, TET2↑, CYP1B1↑, G9a↓,
3425- TQ,    Advances in research on the relationship between thymoquinone and pancreatic cancer
Apoptosis↑, TumCP↓, TumCI↓, TumMeta↓, ChemoSen↑, angioG↓, Inflam↓, NF-kB↓, PI3K↓, Akt↓, TGF-β↓, Jun↓, p38↑, MAPK↑, MMP9↓, PKM2↓, ROS↑, JNK↑, MUC4↓, TGF-β↑, Dose↝, FAK↓, NOTCH↓, PTEN↑, mTOR↓, Warburg↓, XIAP↓, COX2↓, Casp9↑, Ki-67↓, CD34↓, VEGF↓, MCP1↓, survivin↓, Cyt‑c↑, Casp3↑, H4↑, HDAC↓,
3423- TQ,    Epigenetic role of thymoquinone: impact on cellular mechanism and cancer therapeutics
- Review, Var, NA
AntiCan↑, Inflam↓, hepatoP↑, RenoP↑, BAX↑, Bak↑, Bcl-2↓, Bcl-xL↓, ROS↑, P53↑, PTEN↑, P21↑, p27↑, BRCA1↑, PI3K↓, Akt↓, MAPK↓, ERK↓, p‑ERK↓, MMPs↓, FAK↓, Twist↓, Zeb1↓, EMT↓, TumMeta↓, angioG↓, VEGF↓, HDAC↓, Maspin↑, SIRT1↑, DNMT1↓, DNMT3A↓, HDAC1↓, HDAC4↓,
3422- TQ,    Thymoquinone, as a Novel Therapeutic Candidate of Cancers
- Review, Var, NA
selectivity↑, P53↑, PTEN↑, NF-kB↓, PPARγ↓, cMyc↓, Casp↑, *BioAv↓, BioAv↝, eff↑, survivin↓, Bcl-xL↓, Bcl-2↓, Akt↓, BAX↑, cl‑PARP↑, CXCR4↓, MMP9↓, VEGFR2↓, Ki-67↓, COX2↓, JAK2↓, cSrc↓, Apoptosis↑, p‑STAT3↓, cycD1/CCND1↓, Casp3↑, Casp7↑, Casp9↑, N-cadherin↓, Vim↓, Twist↓, E-cadherin↑, ChemoSen↑, eff↑, EMT↓, ROS↑, DNMT1↓, eff↑, EZH2↓, hepatoP↑, Zeb1↓, RadioS↑, HDAC↓, HDAC1↓, HDAC2↓, HDAC3↓, *NAD↑, *SIRT1↑, SIRT1↓, *Inflam↓, *CRP↓, *TNF-α↓, *IL6↓, *IL1β↓, *eff↑, *MDA↓, *NO↓, *GSH↑, *SOD↑, *Catalase↑, *GPx↑, PI3K↓, mTOR↓,
3407- TQ,    Thymoquinone and its pharmacological perspective: A review
- Review, NA, NA
*antiOx↑, *ROS↓, *GSTs↑, *GSR↑, *GSH↑, *RenoP↑, *IL1β↓, *TNF-α↓, *MMP13↓, *COX2↓, *PGE2↓, *radioP↑, Twist↓, EMT↓, NF-kB↓, p‑PI3K↓, p‑Akt↓, p‑GSK‐3β↓, DNMT1↓, HDAC↓,
2119- TQ,    Dual properties of Nigella Sativa: anti-oxidant and pro-oxidant
- Review, Var, NA
*ROS↓, ROS↑, chemoP↑, RenoP↑, hepatoP↑, NLRP3↓, neuroP↑, NF-kB↓, P21↑, HDAC↓, Apoptosis↑, TumCP↓, GSH↓, GADD45A↑, GSK‐3β↑,
2103- TQ,    Anti-inflammatory effects of the Nigella sativa seed extract, thymoquinone, in pancreatic cancer cells
- in-vitro, PC, Hs766t - in-vitro, PC, MIA PaCa-2
MCP1↓, TNF-α↓, IL1β↓, COX2↓, NF-kB↓, HDAC↓, P21↑,
2102- TQ,    A review on therapeutic potential of Nigella sativa: A miracle herb
- Review, Var, NA
angioG↓, NF-kB↓, PPARγ↓, Bcl-2↓, Bcl-xL↓, MUC4↓, cJun↑, p38↑, P21↑, HDAC↓, *radioP↑, hepatoP↑,
2101- TQ,    HDAC inhibition by Nigella sativa L. sprouts extract in hepatocellular carcinoma: an approach to study anti-cancer potential
- Study, HCC, NA
HDAC↓, eff↑, eff↑, AntiCan↑,
2100- TQ,    Dual properties of Nigella Sative: Anti-oxidant and Pro-oxidant
- Review, NA, NA
ROS⇅, *antiOx↑, *SOD↑, *MPO↑, *neuroP↑, *chemoP↑, *radioP↑, NF-kB↓, IAP1↓, IAP2↓, XIAP↓, Bcl-xL↓, survivin↓, COX2↓, MMP9↓, VEGF↓, ROS↑, P21↑, HDAC↓, GSH↓, GADD45A↑, AIF↑, STAT3↓,
2105- TQ,    Thymoquinone Promotes Pancreatic Cancer Cell Death and Reduction of Tumor Size through Combined Inhibition of Histone Deacetylation and Induction of Histone Acetylation
- in-vitro, PC, AsPC-1 - in-vitro, PC, MIA PaCa-2 - in-vitro, PC, Hs766t - in-vivo, NA, NA
tumCV↓, TumCP↓, TumCCA↑, Apoptosis↑, P53↑, Bcl-2↓, P21↑, ac‑H4↑, HDAC↓, HDAC1↓, HDAC2↓, HDAC3↓, TumVol↓,
2108- TQ,    Anti-cancer properties and mechanisms of action of thymoquinone, the major active ingredient of Nigella sativa
- Review, Var, NA
HDAC↓, TumCCA↑, cycD1/CCND1↓, p16↑, P53↑, Bax:Bcl2↑, Bcl-xL↓, NF-kB↓, IAP1↓, IAP2↓, XIAP↓, survivin↓, COX2↓, cMyc↓, ROS↑, Casp3↑, cl‑PARP↑, Cyt‑c↑, STAT3↓,
2353- TQ,    The effects of thymoquinone on pancreatic cancer: Evidence from preclinical studies
- Review, PC, NA
BioAv↝, BioAv↑, MUC4↓, PKM2↓, eff↑, TumVol↓, HDAC↓, NF-kB↓, Bcl-2↓, Bcl-xL↓, survivin↓, XIAP↓, COX2↓, PGE1↓,

* indicates research on normal cells as opposed to diseased cells
Total Research Paper Matches: 135

Pathway results for Effect on Cancer / Diseased Cells:


NA, unassigned

chemoPv↑, 4,  

Redox & Oxidative Stress

antiOx↓, 1,   antiOx↑, 3,   Catalase↓, 2,   Catalase↑, 1,   CYP1A1↓, 3,   Ferroptosis↑, 1,   GPx↓, 1,   GSH↓, 6,   GSH↑, 1,   GSR↓, 1,   GSS↑, 1,   GSTA1↑, 1,   GSTs↓, 1,   HO-1↓, 4,   HO-1↑, 4,   lipid-P↓, 2,   lipid-P↑, 1,   Mets↑, 1,   NAF1↓, 1,   NQO1?, 1,   NQO1↓, 1,   NQO1↑, 3,   NRF2↓, 4,   NRF2↑, 14,   NRF2∅, 1,   OXPHOS↑, 1,   mt-OXPHOS↓, 1,   PARK2↑, 1,   ROS?, 1,   ROS↓, 6,   ROS↑, 35,   ROS⇅, 4,   i-ROS?, 1,   mt-ROS↑, 1,   SIRT3↓, 1,   SIRT3↑, 1,   SOD↓, 3,   SOD2↓, 1,   VitC↓, 1,   VitE↓, 1,   xCT↓, 1,  

Mitochondria & Bioenergetics

AIF↑, 3,   ATP↓, 2,   ATP↑, 1,   CDC25↓, 1,   Insulin↓, 1,   MEK↓, 1,   MMP?, 1,   MMP↓, 15,   MMP↑, 1,   mtDam↑, 1,   PINK1↑, 1,   Raf↓, 1,   c-Raf↓, 1,   XIAP↓, 9,  

Core Metabolism/Glycolysis

AKT1↓, 1,   ALAT↓, 2,   AMPK↑, 3,   ATG7↑, 1,   cAMP↓, 1,   Cav1↓, 1,   cMyc↓, 7,   CYP3A4↓, 1,   glucoNG↓, 1,   GlucoseCon↓, 2,   GlutMet↓, 1,   Glycolysis↓, 5,   Histones↝, 1,   HK2↓, 4,   HMG-CoA↓, 1,   lactateProd↓, 1,   LDH↓, 1,   LDL↓, 1,   NADPH↑, 1,   NH3↓, 1,   PDH↑, 1,   p‑PDH↓, 1,   PDK1↓, 2,   PKM2↓, 2,   PPARα↓, 1,   cl‑PPARα↓, 1,   PPARγ↓, 2,   PPARγ↑, 1,   RARβ↑, 1,   SIRT1↓, 6,   SIRT1↑, 3,   SREBP1↓, 1,   Warburg↓, 2,  

Cell Death

Akt↓, 12,   p‑Akt↓, 5,   APAF1↑, 2,   Apoptosis?, 1,   Apoptosis↑, 30,   ASK1↑, 1,   Bak↑, 3,   BAX↑, 18,   BAX⇅, 1,   Bax:Bcl2↑, 7,   Bcl-2↓, 20,   Bcl-xL↓, 14,   BID↑, 1,   BIM↓, 1,   BIM↑, 1,   Casp↑, 6,   Casp1↓, 1,   Casp12?, 1,   Casp12↑, 1,   Casp3↓, 1,   Casp3↑, 24,   Casp3↝, 1,   cl‑Casp3↑, 3,   Casp7↑, 4,   Casp8↑, 4,   Casp8∅, 1,   Casp9↑, 12,   cl‑Casp9↑, 1,   cFLIP↓, 2,   p‑Chk2↑, 1,   CK2↓, 2,   Cyt‑c↓, 1,   Cyt‑c↑, 16,   Cyt‑c↝, 1,   Diablo↑, 3,   DR5↑, 3,   Fas↑, 1,   FasL↑, 1,   Ferroptosis↑, 1,   HGF/c-Met↓, 2,   hTERT/TERT↓, 9,   IAP1↓, 3,   IAP1↑, 1,   IAP2↓, 2,   ICAD↑, 1,   iNOS↓, 3,   JNK↓, 1,   JNK↑, 3,   p‑JNK↑, 1,   MAPK↓, 6,   MAPK↑, 2,   Mcl-1↓, 2,   Mcl-1↑, 1,   MDM2↑, 1,   p‑MDM2↓, 1,   NOXA↑, 1,   p27↑, 6,   p38↓, 1,   p38↑, 3,   p‑p38↑, 2,   PUMA↑, 1,   survivin↓, 15,   Telomerase↓, 7,   TRAIL↑, 2,   TumCD↑, 2,   TUNEL↑, 1,   YAP/TEAD↓, 1,  

Kinase & Signal Transduction

AMPKα↑, 1,   CaMKII ↑, 1,   cSrc↓, 1,   EF-1α↓, 1,   HER2/EBBR2↓, 4,   p70S6↓, 1,   SOX9↓, 1,   Sp1/3/4↓, 1,  

Transcription & Epigenetics

cJun↑, 2,   EZH2↓, 6,   H3↓, 2,   H3↑, 3,   ac‑H3↓, 1,   ac‑H3↑, 10,   H4↓, 1,   H4↑, 3,   ac‑H4↓, 1,   ac‑H4↑, 8,   HATs↓, 4,   HATs↑, 6,   MeCP2↓, 1,   miR-30a-5p↑, 1,   other?, 1,   other↝, 1,   pRB↑, 1,   PRC2↓, 1,   Prot↓, 1,   TET3↑, 1,   tumCV↓, 6,  

Protein Folding & ER Stress

ChemChap↑, 1,   CHOP↑, 4,   cl‑CHOP↑, 1,   eIF2α↑, 1,   p‑eIF2α↑, 2,   ER Stress↓, 1,   ER Stress↑, 8,   GRP78/BiP↓, 1,   GRP78/BiP↑, 4,   HSP27↑, 2,   HSP90↓, 1,   ac‑HSP90↑, 1,   p‑PERK↑, 1,   UPR↑, 1,   XBP-1↓, 1,  

Autophagy & Lysosomes

ATG3↑, 1,   ATG5↑, 1,   Beclin-1↑, 1,   BNIP3↑, 1,   LAMP2↑, 1,   LC3II↑, 4,   p62↓, 1,   p62↑, 1,   TumAuto↑, 6,  

DNA Damage & Repair

BRCA1↓, 1,   BRCA1↑, 2,   CYP1B1↑, 1,   DNAdam↑, 7,   DNArepair↓, 2,   DNMT1↓, 13,   DNMT3A↓, 11,   DNMTs↓, 22,   G9a↓, 3,   GADD45A↑, 2,   MGMT↓, 1,   p16↑, 2,   P53↑, 15,   PARP↑, 3,   cl‑PARP↑, 8,   PARP1↑, 1,   PCNA↓, 7,   PCNA↝, 1,   SIRT6↓, 1,   UHRF1↓, 1,   γH2AX↑, 1,  

Cell Cycle & Senescence

CDK1↓, 1,   CDK1↑, 2,   CDK2↓, 7,   CDK2↑, 1,   CDK4↓, 8,   Cyc↓, 2,   cycA1/CCNA1↓, 1,   CycB/CCNB1↓, 2,   cycD1/CCND1↓, 12,   cycD1/CCND1↑, 1,   CycD3↓, 1,   cycE/CCNE↓, 1,   p19↑, 2,   P21?, 1,   P21↑, 24,   p‑RB1↓, 2,   TumCCA?, 2,   TumCCA↓, 1,   TumCCA↑, 39,  

Proliferation, Differentiation & Cell State

ALDH↓, 1,   ALDH1A1↓, 1,   BMI1↓, 2,   CD133↓, 3,   CD34↓, 2,   CD44↓, 5,   cFos↑, 1,   p‑cMET↑, 1,   cMYB↓, 1,   CSCs↓, 6,   Diff↑, 3,   EMT?, 1,   EMT↓, 14,   ERK↓, 7,   ERK↑, 2,   p‑ERK↓, 2,   p‑ERK↑, 1,   FOXO↑, 2,   FOXO3↓, 1,   FOXO3↑, 2,   Gli↓, 1,   Gli1↓, 1,   GSK‐3β↓, 1,   GSK‐3β↑, 1,   p‑GSK‐3β↓, 2,   HDAC↓, 120,   HDAC↑, 1,   HDAC∅, 1,   HDAC1↓, 13,   HDAC11↓, 1,   HDAC2↓, 6,   HDAC3↓, 9,   HDAC4↓, 2,   HDAC6↓, 1,   HDAC8↓, 6,   HMTs↓, 3,   HMTs↑, 1,   IGF-1↓, 3,   IGF-2↑, 1,   IGFBP3↑, 2,   Jun↓, 1,   KLF4↓, 1,   Let-7↑, 1,   mTOR↓, 7,   mTOR↑, 1,   mTOR∅, 1,   p‑mTOR↓, 3,   mTORC1↓, 1,   Nanog↓, 3,   Nestin↓, 2,   Neurog1↑, 1,   NOTCH↓, 4,   NOTCH1↓, 2,   NOTCH1↑, 1,   NOTCH3↓, 1,   OCT4↓, 3,   p300↓, 2,   PI3K↓, 8,   p‑PI3K↓, 2,   PTEN↓, 1,   PTEN↑, 7,   p‑PTEN↓, 1,   RAS↑, 1,   Shh↓, 2,   Smo↓, 1,   SOX2↓, 1,   p‑Src↓, 1,   STAT3↓, 11,   STAT3↑, 1,   p‑STAT3↓, 3,   p‑STAT3↑, 1,   STAT5↓, 1,   p‑STAT6↓, 1,   SUZ12↓, 1,   TOP1↓, 1,   TOPflash↑, 1,   TumCG↓, 18,   VDR↑, 1,   Wnt↓, 3,  

Migration

67LR↓, 1,   AntiAg↓, 1,   AP-1↓, 4,   AXL↓, 1,   CA↓, 1,   Ca+2↑, 5,   CD31↓, 1,   Cdc42↓, 1,   CDH1↑, 1,   CDKN1C↑, 1,   CEA↓, 1,   CLDN1↓, 3,   CLDN2↓, 1,   CXCL12↓, 1,   DLC1↑, 1,   E-cadherin↓, 1,   E-cadherin↑, 11,   ER-α36↓, 1,   FAK↓, 8,   p‑FAK↑, 1,   Fibronectin↓, 1,   ITGB1↓, 1,   Ki-67↓, 5,   MET↓, 1,   p‑MET↓, 1,   miR-139-5p↑, 1,   miR-155↓, 1,   miR-200c↑, 1,   miR-203↑, 1,   miR-22↑, 1,   MMP-10↓, 1,   MMP1↓, 1,   MMP2↓, 15,   proMMP2↓, 1,   MMP9↓, 17,   MMPs↓, 10,   MUC4↓, 3,   N-cadherin↓, 5,   PDGF↓, 2,   PKCδ↓, 1,   Rac1↓, 1,   Rho↓, 1,   Slug↓, 1,   Smad1↑, 1,   Snail↓, 5,   SOX4↓, 1,   TET1↑, 3,   TGF-β↓, 3,   TGF-β↑, 2,   TIMP1↑, 1,   TIMP2↑, 1,   TIMP3↑, 1,   Treg lymp↓, 1,   TSP-1↑, 1,   TumCI?, 1,   TumCI↓, 7,   TumCMig↓, 10,   TumCP↓, 16,   TumMeta↓, 10,   TumMeta↑, 1,   Twist↓, 7,   TXNIP↑, 2,   Tyro3↓, 1,   uPA↓, 6,   Vim↓, 5,   Vim↑, 1,   Zeb1↓, 6,   ZO-1↑, 1,   ac‑α-tubulin↑, 1,   β-catenin/ZEB1↓, 5,   β-catenin/ZEB1↑, 1,  

Angiogenesis & Vasculature

angioG↓, 19,   ATF4↑, 1,   EGFR↓, 7,   EGFR↑, 1,   eNOS↓, 1,   HIF-1↓, 1,   Hif1a↓, 19,   LOX1↓, 1,   NO↓, 1,   NO↑, 1,   VEGF↓, 22,   VEGFR2↓, 5,  

Barriers & Transport

GLUT1↓, 2,   NHE1↓, 1,   P-gp↓, 1,  

Immune & Inflammatory Signaling

ASC↓, 1,   B2M↓, 1,   COX2↓, 18,   COX2↑, 2,   CXCR4↓, 3,   ICAM-1↓, 1,   IFN-γ↑, 2,   Igs↑, 1,   IKKα↓, 2,   IL1↓, 1,   IL10↓, 3,   IL10↑, 1,   IL18↓, 1,   IL1β↓, 5,   IL2↓, 1,   IL2↑, 4,   IL6↓, 6,   IL8↓, 3,   Inflam↓, 4,   JAK2↓, 1,   M2 MC↓, 1,   MCP1↓, 2,   MDSCs↓, 1,   NF-kB↓, 25,   NF-kB↑, 1,   NK cell↑, 1,   p65↓, 1,   p‑p65↓, 1,   PD-1↓, 1,   PD-L1↓, 1,   PGE1↓, 1,   PGE2↓, 3,   PSA↓, 2,   SOCS1↑, 1,   TLR4↓, 1,   TNF-α↓, 8,  

Protein Aggregation

NLRP3↓, 2,  

Hormonal & Nuclear Receptors

AR↓, 4,   CDK6↓, 3,   COMT↑, 1,   CYP11A1↓, 1,   ER(estro)↓, 1,  

Drug Metabolism & Resistance

BioAv↓, 6,   BioAv↑, 8,   BioAv↝, 5,   BioEnh↑, 1,   ChemoSen↑, 20,   Dose?, 2,   Dose↑, 2,   Dose↝, 14,   Dose∅, 2,   eff↓, 7,   eff↑, 45,   eff↝, 3,   eff∅, 1,   Half-Life↓, 3,   Half-Life↝, 2,   Half-Life∅, 1,   P450↓, 1,   RadioS↑, 7,   selectivity?, 1,   selectivity↑, 20,   TET2↓, 1,   TET2↑, 2,  

Clinical Biomarkers

ALAT↓, 2,   ALP↓, 2,   AR↓, 4,   AST↓, 1,   B2M↓, 1,   BG↓, 1,   BMPs↑, 1,   BRCA1↓, 1,   BRCA1↑, 2,   CEA↓, 1,   EGFR↓, 7,   EGFR↑, 1,   EZH2↓, 6,   GutMicro↑, 2,   GutMicro↝, 1,   HER2/EBBR2↓, 4,   hTERT/TERT↓, 9,   IL6↓, 6,   Ki-67↓, 5,   LDH↓, 1,   Maspin↑, 2,   NSE↓, 1,   PD-L1↓, 1,   PSA↓, 2,   RBM3↑, 1,   SUZ12↓, 1,  

Functional Outcomes

AntiCan↑, 10,   AntiTum↑, 3,   cachexia↓, 1,   cardioP↑, 3,   CardioT↓, 2,   chemoP↑, 7,   ChemoSideEff↓, 3,   cognitive↑, 1,   hepatoP↑, 6,   K17↓, 1,   neuroP↑, 7,   OS↑, 6,   Remission↑, 1,   RenoP↑, 3,   Risk↓, 4,   toxicity↓, 2,   toxicity↝, 1,   toxicity∅, 1,   TumVol↓, 5,   TumW↓, 3,  

Infection & Microbiome

CD8+↑, 1,  
Total Targets: 525

Pathway results for Effect on Normal Cells:


NA, unassigned

chemoPv↑, 1,  

Redox & Oxidative Stress

antiOx↑, 13,   Catalase↑, 6,   GPx↑, 4,   GSH↑, 8,   GSR↑, 1,   GSTA1↑, 1,   GSTs↑, 3,   HDL↑, 1,   HO-1↑, 3,   lipid-P↓, 2,   MDA↓, 2,   MPO↑, 1,   NQO1↑, 1,   Nrf1↑, 1,   NRF2↑, 7,   RNS↓, 1,   ROS↓, 19,   ROS∅, 1,   SAM-e↑, 1,   SOD↑, 6,   SOD1↑, 1,   SOD2↑, 2,   TBARS↓, 1,   VitC↑, 1,  

Mitochondria & Bioenergetics

ATP↝, 1,   PGC-1α↓, 1,  

Core Metabolism/Glycolysis

ALAT↓, 1,   CREB↑, 1,   FAO↑, 1,   LDH↓, 1,   LDL↓, 1,   lipoGen↓, 1,   NAD↑, 1,   NAD↝, 1,   NADPH↓, 1,   NH3↓, 1,   SIRT1↑, 2,  

Cell Death

Apoptosis↓, 1,   Casp3↓, 2,   Cyt‑c↓, 1,   IAP1↓, 1,   iNOS↓, 4,   JNK↓, 1,   MAPK↓, 1,  

Transcription & Epigenetics

ac‑H3↑, 1,   ac‑H4↑, 1,   HATs↓, 1,   other↓, 1,  

Protein Folding & ER Stress

ChemChap↑, 2,   ER Stress↓, 2,   HSP27↓, 1,  

DNA Damage & Repair

DNMT1↓, 2,   DNMT3A↓, 2,   DNMTs↓, 2,   P53↓, 1,  

Cell Cycle & Senescence

E2Fs↑, 1,   P21↓, 1,  

Proliferation, Differentiation & Cell State

ERK↑, 1,   GSK‐3β↓, 1,   HDAC↓, 14,   HDAC↑, 2,   HDAC2↓, 1,   HDAC3↓, 2,   IGF-1R↓, 1,   PTEN↑, 1,  

Migration

AP-1↓, 2,   Ca+2↝, 1,   Ki-67↓, 1,   MMP13↓, 1,   MMP2↓, 1,   p‑Rac1↓, 1,   serineP↓, 1,   TIMP1↓, 1,  

Angiogenesis & Vasculature

NO↓, 3,   PDGFR-BB↓, 1,   VEGF↑, 1,  

Barriers & Transport

BBB↑, 2,   P-gp↓, 1,  

Immune & Inflammatory Signaling

COX2↓, 5,   CRP↓, 1,   CXCR2↑, 1,   IFN-γ↓, 1,   IKKα↑, 1,   IL10↓, 1,   IL10↑, 2,   IL17↓, 2,   IL1β↓, 6,   IL22↓, 1,   IL6↓, 4,   IL8↓, 2,   Inflam↓, 11,   Inflam↑, 2,   JAK↓, 1,   NF-kB↓, 9,   PGE2↓, 2,   TNF-α↓, 10,   VitD↑, 1,  

Synaptic & Neurotransmission

AChE↓, 1,   BDNF↑, 1,   TrkB↑, 1,  

Protein Aggregation

Aβ↓, 2,  

Hormonal & Nuclear Receptors

GR↑, 1,   testos↑, 1,  

Drug Metabolism & Resistance

BioAv?, 1,   BioAv↓, 7,   BioAv↑, 7,   BioAv↝, 2,   Dose↑, 1,   Dose↝, 2,   eff↑, 6,   Half-Life↑, 2,   Half-Life↝, 2,   Half-Life∅, 1,   P450↓, 1,   selectivity↑, 1,  

Clinical Biomarkers

ALAT↓, 1,   ALP↓, 1,   AST↓, 2,   BMD↑, 1,   BMPs↑, 1,   Calcium↑, 1,   CRP↓, 1,   hs-CRP↓, 1,   IL6↓, 4,   Ki-67↓, 1,   LDH↓, 1,   Mag↑, 1,   VitD↑, 1,  

Functional Outcomes

AntiAge↑, 1,   AntiCan↑, 3,   cardioP↑, 5,   chemoP↑, 2,   ChemoSideEff↓, 1,   cognitive↑, 3,   hepatoP↓, 1,   hepatoP↑, 1,   memory↑, 4,   neuroP↑, 11,   radioP↑, 4,   RenoP↑, 2,   Risk↓, 1,   toxicity↓, 8,   toxicity↝, 1,   toxicity∅, 2,  
Total Targets: 145

Scientific Paper Hit Count for: HDAC, Histone deacetylases
33 Sulforaphane (mainly Broccoli)
23 Phenylbutyrate
14 Thymoquinone
10 EGCG (Epigallocatechin Gallate)
7 Apigenin (mainly Parsley)
4 Butyrate
4 Chrysin
4 Curcumin
4 Chemotherapy
4 Luteolin
4 Quercetin
3 Berberine
3 Boron
3 Honokiol
3 Resveratrol
3 Silymarin (Milk Thistle) silibinin
2 Ashwagandha(Withaferin A)
2 Radiotherapy/Radiation
2 Cisplatin
2 Propolis -bee glue
2 Phenethyl isothiocyanate
1 Allicin (mainly Garlic)
1 alpha Linolenic acid
1 Andrographis
1 Atorvastatin
1 Betulinic acid
1 diet FMD Fasting Mimicking Diet
1 Genistein (soy isoflavone)
1 Magnolol
1 Piperlongumine
1 Vorinostat
1 Selenite
1 doxorubicin
1 Gemcitabine (Gemzar)
1 Vitamin D3
1 diet Plant based
Query results interpretion may depend on "conditions" listed in the research papers.
Such Conditions may include : 
  -low or high Dose
  -format for product, such as nano of lipid formations
  -different cell line effects
  -synergies with other products 
  -if effect was for normal or cancerous cells
Filter Conditions: Pro/AntiFlg:%  IllCat:%  CanType:%  Cells:%  prod#:%  Target#:140  State#:%  Dir#:%
wNotes=0 sortOrder:rid,rpid

 

Home Page