Database Query Results : , , AR

AR, androgen receptor: Click to Expand ⟱
Source: HalifaxProj(suppress signaling);CGL-Driver Genes
Type: Oncogene
Androgens play an important role in the proliferation, differentiation, maintenance and function of the prostate [1]. Intriguingly, they may also be involved in the development and progression of prostate cancer. Androgen deprivation therapy can suppress hormone-naïve prostate cancer, but prostate cancer changes AR and adapts to survive under castration levels of androgen.

The prognostic significance of androgen receptor expression varies widely across different cancer types. In some cancers, high AR expression is associated with poor outcomes, while in others, it may indicate a better prognosis
High expression with poor prognosis is most common.

AR is used as a clinical biomarker for prostate therapy


Scientific Papers found: Click to Expand⟱
207- Api,    Involvement of nuclear factor-kappa B, Bax and Bcl-2 in induction of cell cycle arrest and apoptosis by apigenin in human prostate carcinoma cells
- in-vitro, Pca, LNCaP
PSA↓, cycD1/CCND1↓, cycE/CCNE↓, CDK2↓, CDK4/6↓, P21↑, AR↓,
2640- Api,    Apigenin: A Promising Molecule for Cancer Prevention
- Review, Var, NA
chemoPv↑, ITGB4↓, TumCI↓, TumMeta↓, Akt↓, ERK↓, p‑JNK↓, *Inflam↓, *PKCδ↓, *MAPK↓, EGFR↓, CK2↓, TumCCA↑, CDK1↓, P53↓, P21↑, Bax:Bcl2↑, Cyt‑c↑, APAF1↑, Casp↑, cl‑PARP↑, VEGF↓, Hif1a↓, IGF-1↓, IGFBP3↑, E-cadherin↑, β-catenin/ZEB1↓, HSPs↓, Telomerase↓, FASN↓, MMPs↓, HER2/EBBR2↓, CK2↓, eff↑, AntiAg↑, eff↑, FAK↓, ROS↑, Bcl-2↓, Cyt‑c↑, cl‑Casp3↑, cl‑Casp7↑, cl‑Casp8↑, cl‑Casp9↑, cl‑IAP2↑, AR↓, PSA↓, p‑pRB↓, p‑GSK‐3β↓, CDK4↓, ChemoSen↑, Ca+2↑, cal2↑,
1532- Ba,    Baicalein as Promising Anticancer Agent: A Comprehensive Analysis on Molecular Mechanisms and Therapeutic Perspectives
- Review, NA, NA
ROS↑, ER Stress↑, Ca+2↑, MMPs↓, Cyt‑c↑, Casp3↑, ROS↑, DR5↑, ROS↑, BAX↑, Bcl-2↓, MMP↓, Casp3↑, Casp9↑, P53↑, p16↑, P21↑, p27↑, HDAC10↑, MDM2↓, Apoptosis↑, PI3K↓, Akt↓, p‑Akt↓, p‑mTOR↓, NF-kB↓, p‑IκB↓, IκB↑, BAX↑, Bcl-2↓, ROS⇅, BNIP3↑, p38↑, 12LOX↓, Mcl-1↓, Wnt?, GLI2↓, AR↓, eff↑,
2021- BBR,    Berberine: An Important Emphasis on Its Anticancer Effects through Modulation of Various Cell Signaling Pathways
- Review, NA, NA
*antiOx?, *Inflam↓, Apoptosis↑, TumCCA↑, BAX↑, eff↑, VEGF↓, PI3K↓, Akt↓, mTOR↓, Telomerase↓, β-catenin/ZEB1↓, Wnt↓, EGFR↓, AP-1↓, NF-kB↓, COX2↑, NRF2↓, RadioS↑, STAT3↓, ERK↓, AR↓, ROS↑, eff↑, selectivity↑, selectivity↑, BioAv↓, DNMT1↓, cMyc↓,
746- Bor,    Organoboronic acids/esters as effective drug and prodrug candidates in cancer treatments: challenge and hope
- Review, NA, NA
eff↑, *toxicity↓, ROS↑, LAT↓, AntiCan↑, AR↓, PSMB5↓, IGF-1↓, PSA↓, TumVol↓, eff↑, Rho↓, Cdc42↓, Ca+2↓, eff↑,
2767- Bos,    The potential role of boswellic acids in cancer prevention and treatment
- Review, Var, NA
*Inflam↓, AntiCan↑, *MAPK↑, *Ca+2↝, p‑ERK↓, TumCI↓, cycD1/CCND1↓, cycE/CCNE↓, CDK2↓, CDK4↓, p‑RB1↓, *NF-kB↓, *TNF-α↓, NF-kB↓, IKKα↓, MCP1↓, IL1α↓, MIP2↓, VEGF↓, Tf↓, COX2↓, MMP9↓, CXCR4↓, VEGF↓, eff↑, PPARα↓, lipid-P?, STAT3↓, TOP1↓, TOP2↑, 5HT↓, p‑PDGFR-BB↓, PDGF↓, AR↓, DR5↑, angioG↓, DR4↑, Casp3↑, Casp8↑, cl‑PARP↑, eff↑, chemoPv↑, Wnt↓, β-catenin/ZEB1↓, ascitic↓, Let-7↑, miR-200b↑, eff↑, MMP1↓, MMP2↓, eff↑, BioAv↓, BioAv↑, Half-Life↓, toxicity↓, Dose↑, BioAv↑, ChemoSen↑,
2776- Bos,    Anti-inflammatory and anti-cancer activities of frankincense: Targets, treatments and toxicities
- Review, Var, NA
*5LO↓, *TNF-α↓, *MMP3↓, *COX1↓, *COX2↓, *PGE2↓, *Th2↑, *Catalase↑, *SOD↑, *NO↑, *PGE2↑, *IL1β↓, *IL6↓, *Th1 response↓, *Th2↑, *iNOS↓, *NO↓, *p‑JNK↓, *p38↓, GutMicro↑, p‑Akt↓, GSK‐3β↓, cycD1/CCND1↓, Akt↓, STAT3↓, CSCs↓, AR↓, P21↑, DR5↑, CHOP↑, Casp3↑, Casp8↑, cl‑PARP↑, DNAdam↑, p‑RB1↓, FOXM1↓, TOP2↓, CDC25↓, p‑CDK1↓, p‑ERK↓, MMP9↓, VEGF↓, angioG↓, ROS↑, Cyt‑c↑, AIF↑, Diablo↑, survivin↓, ICAD↓, ChemoSen↑, SOX9↓, ER Stress↑, GRP78/BiP↑, cal2↓, AMPK↓, mTOR↓, ROS↓,
2775- Bos,    The journey of boswellic acids from synthesis to pharmacological activities
- Review, Var, NA - Review, AD, NA - Review, PSA, NA
ROS↑, ER Stress↑, TumCG↓, Apoptosis↑, Inflam↓, ChemoSen↑, Casp↑, ERK↓, cl‑PARP↑, AR↓, cycD1/CCND1↓, VEGFR2↓, CXCR4↓, radioP↑, NF-kB↓, VEGF↓, P21↑, Wnt↓, β-catenin/ZEB1↓, Cyt‑c↑, MMP2↓, MMP1↓, MMP9↓, PI3K↓, MAPK↓, JNK↑, *5LO↓, *NRF2↑, *HO-1↑, *MDA↓, *SOD↑, *hepatoP↑, *ALAT↓, *AST↓, *LDH↑, *CRP↓, *COX2↓, *GSH↑, *ROS↓, *Imm↑, *Dose↝, *eff↑, *neuroP↑, *cognitive↑, *IL6↓, *TNF-α↓,
145- CA,  CUR,    The anti-cancer effects of carotenoids and other phytonutrients resides in their combined activity
- in-vitro, NA, NA
AR↓, ARE/EpRE↑,
2013- CAP,    Capsaicin, a component of red peppers, inhibits the growth of androgen-independent, p53 mutant prostate cancer cells
- in-vitro, Pca, PC3 - in-vitro, Pca, LNCaP - in-vitro, Pca, DU145 - in-vivo, NA, NA
TumCP↓, P53↑, P21↑, BAX↑, PSA↓, AR↓, NF-kB↓, Proteasome↓, TumVol↓, eff∅,
2781- CHr,  PBG,    Chrysin a promising anticancer agent: recent perspectives
- Review, Var, NA
PI3K↓, Akt↓, mTOR↓, MMP9↑, uPA↓, VEGF↓, AR↓, Casp↑, TumMeta↓, TumCCA↑, angioG↓, BioAv↓, *hepatoP↑, *neuroP↑, *SOD↑, *GPx↑, *ROS↓, *Inflam↓, *Catalase↑, *MDA↓, ROS↓, BBB↑, Half-Life↓, BioAv↑, ROS↑, eff↑, ROS↑, ROS↑, lipid-P↑, ER Stress↑, NOTCH1↑, NRF2↓, p‑FAK↓, Rho↓, PCNA↓, COX2↓, NF-kB↓, PDK1↓, PDK3↑, GLUT1↓, Glycolysis↓, mt-ATP↓, Ki-67↓, cMyc↓, ROCK1↓, TOP1↓, TNF-α↓, IL1β↓, CycB/CCNB1↓, CDK2↓, EMT↓, STAT3↓, PD-L1↓, IL2↑,
157- CUR,    Curcumin induces cell cycle arrest and apoptosis of prostate cancer cells by regulating the expression of IkappaBalpha, c-Jun and androgen receptor
- in-vitro, Pca, LNCaP - in-vitro, Pca, PC3
cJun↓, AR↓,
152- CUR,    Anti-cancer activity of curcumin loaded nanoparticles in prostate cancer
- in-vivo, Pca, NA
β-catenin/ZEB1↓, AR↓, STAT3↓, p‑Akt↓, Mcl-1↓, Bcl-xL↓, cl‑PARP↑, miR-21↓, miR-205↑,
151- CUR,    Curcumin analogues with high activity for inhibiting human prostate cancer cell growth and androgen receptor activation
- in-vitro, Pca, 22Rv1 - in-vitro, Pca, LNCaP
AR↓,
142- CUR,    Effect of curcumin on the interaction between androgen receptor and Wnt/β-catenin in LNCaP xenografts
- in-vivo, Pca, LNCaP
AR↓, PSA↓,
183- CUR,    Curcumin down-regulates AR gene expression and activation in prostate cancer cell lines
- in-vitro, Pca, LNCaP - in-vitro, Pca, PC3
AR↓, AP-1↓, NF-kB↓, CBP↓,
15- CUR,  UA,    Effects of curcumin and ursolic acid in prostate cancer: A systematic review
NF-kB↝, Akt↝, AR↝, Apoptosis↝, Bcl-2↝, Casp3↝, BAX↝, P21↝, ROS↝, Apoptosis↝, Bcl-xL↝, JNK↝, MMP2↝, P53↝, PSA↝, VEGF↝, COX2↝, cycD1/CCND1↝, EGFR↝, IL6↝, β-catenin/ZEB1↝, mTOR↝, NRF2↝, p‑Akt↝, AP-1↝, Cyt‑c↝, PI3K↝, PTEN↝, Cyc↝, TNF-α↝,
165- CUR,    Curcumin interrupts the interaction between the androgen receptor and Wnt/β-catenin signaling pathway in LNCaP prostate cancer cells
- in-vitro, Pca, LNCaP
AR↓, β-catenin/ZEB1↓, p‑Akt↓, GSK‐3β↓, p‑β-catenin/ZEB1↑, cycD1/CCND1↓, cMyc↓,
122- CUR,  isoFl,    Combined inhibitory effects of soy isoflavones and curcumin on the production of prostate-specific antigen
- Human, Pca, LNCaP
PSA↓, AR↓,
690- EGCG,    Green tea polyphenol EGCG blunts androgen receptor function in prostate cancer
- in-vitro, Pca, NA
AR↓, miR-21↓, miR-330-5p↑, TumCG↓,
680- EGCG,    Cancer preventive and therapeutic effects of EGCG, the major polyphenol in green tea
- Review, NA, NA
NF-kB↓, STAT3↓, PI3K↓, HGF/c-Met↓, Akt↓, ERK↓, MAPK↓, AR↓, Casp↑, Ki-67↓, PARP↑, Bcl-2↓, BAX↑, PCNA↓, p27↑, P21↑,
2993- EGCG,    Tea polyphenols down-regulate the expression of the androgen receptor in LNCaP prostate cancer cells
- in-vitro, Pca, LNCaP
TumCG↓, PSA↓, HK2↓, AR↓, Sp1/3/4↓,
2839- FIS,    Dietary flavonoid fisetin for cancer prevention and treatment
- Review, Var, NA
DNAdam↑, ROS↑, Apoptosis↑, Bcl-2↓, BAX↑, cl‑Casp9↑, cl‑Casp3↑, Cyt‑c↑, lipid-P↓, TumCG↓, TumCA↓, TumCMig↓, TumCI↓, uPA↓, ERK↓, MMP9↓, NF-kB↓, cFos↓, cJun↓, AP-1↓, TumCCA↑, AR↓, mTORC1↓, mTORC2↓, TSC2↑, EGF↓, TGF-β↓, EMT↓, P-gp↓, PI3K↓, Akt↓, mTOR↓, eff↑, ROS↓, ER Stress↑, IRE1↑, ATF4↑, GRP78/BiP↑, ChemoSen↑, CDK2↓, CDK4↓, cycE/CCNE↓, cycD1/CCND1↓, P21↑, COX2↓, Wnt↓, EGFR↓, β-catenin/ZEB1↓, TCF-4↓, MMP7↓, RadioS↑, eff↑,
4639- HT,    Hydroxytyrosol Induces Apoptosis, Cell Cycle Arrest and Suppresses Multiple Oncogenic Signaling Pathways in Prostate Cancer Cells
- in-vitro, Pca, LNCaP - in-vitro, Pca, C4-2B
TumCP↓, selectivity↑, TumCCA↑, cycD1/CCND1↓, cycE/CCNE↓, CDK2↓, CDK4↓, P21↑, p27↑, Apoptosis↑, Casp↑, cl‑PARP↑, Bax:Bcl2↑, p‑Akt↓, p‑STAT3↓, NF-kB↓, AR↓, ROS↑, *BioAv↓, *toxicity∅,
2919- LT,    Luteolin as a potential therapeutic candidate for lung cancer: Emerging preclinical evidence
- Review, Var, NA
RadioS↑, ChemoSen↑, chemoP↑, *lipid-P↓, *Catalase↑, *SOD↑, *GPx↑, *GSTs↑, *GSH↑, *TNF-α↓, *IL1β↓, *Casp3↓, *IL10↑, NRF2↓, HO-1↓, NQO1↓, GSH↓, MET↓, p‑MET↓, p‑Akt↓, HGF/c-Met↓, NF-kB↓, Bcl-2↓, SOD2↓, Casp8↑, Casp3↑, PARP↑, MAPK↓, NLRP3↓, ASC↓, Casp1↓, IL6↓, IKKα↓, p‑p65↓, p‑p38↑, MMP2↓, ICAM-1↓, EGFR↑, p‑PI3K↓, E-cadherin↓, ZO-1↑, N-cadherin↓, CLDN1↓, β-catenin/ZEB1↓, Snail↓, Vim↑, ITGB1↓, FAK↓, p‑Src↓, Rac1↓, Cdc42↓, Rho↓, PCNA↓, Tyro3↓, AXL↓, CEA↓, NSE↓, SOD↓, Catalase↓, GPx↓, GSR↓, GSTs↓, GSH↓, VitE↓, VitC↓, CYP1A1↓, cFos↑, AR↓, AIF↑, p‑STAT6↓, p‑MDM2↓, NOTCH1↓, VEGF↓, H3↓, H4↓, HDAC↓, SIRT1↓, ROS↑, DR5↑, Cyt‑c↑, p‑JNK↑, PTEN↓, mTOR↓, CD34↓, FasL↑, Fas↑, XIAP↓, p‑eIF2α↑, CHOP↑, LC3II↑, PD-1↓, STAT3↓, IL2↑, EMT↓, cachexia↓, BioAv↑, *Half-Life↝, *eff↑,
2914- LT,    Therapeutic Potential of Luteolin on Cancer
- Review, Var, NA
*antiOx↑, *IronCh↑, *toxicity↓, *BioAv↓, *BioAv↑, DNAdam↑, TumCP↓, DR5↑, P53↑, JNK↑, BAX↑, cl‑Casp3↑, cl‑Casp8↑, cl‑Casp9↑, cl‑PARP↑, survivin↓, cycD1/CCND1↓, CycB/CCNB1↓, CDC2↓, P21↑, angioG↓, MMP2↓, AEG1↓, VEGF↓, VEGFR2↓, MMP9↓, CXCR4↓, PI3K↓, Akt↓, ERK↓, TumAuto↑, LC3B-II↑, EMT↓, E-cadherin↑, N-cadherin↓, Wnt↓, ROS↑, NICD↓, p‑GSK‐3β↓, iNOS↓, COX2↓, NRF2↑, Ca+2↑, ChemoSen↑, ChemoSen↓, IFN-γ↓, RadioS↑, MDM2↓, NOTCH1↓, AR↓, TIMP1↑, TIMP2↑, ER Stress↑, CDK2↓, Telomerase↓, p‑NF-kB↑, p‑cMyc↑, hTERT/TERT↓, RAS↓, YAP/TEAD↓, TAZ↓, NF-kB↓, NRF2↓, HO-1↓, MDR1↓,
2028- PB,    Potential of Phenylbutyrate as Adjuvant Chemotherapy: An Overview of Cellular and Molecular Anticancer Mechanisms
- Review, Var, NA
HDAC↓, TumCCA↑, P21↑, Dose↝, Telomerase↓, IGFBP3↑, p‑p38↑, JNK↑, ERK↑, BAX↑, Casp3↑, Bcl-2↓, Cyt‑c↝, FAK↓, survivin↓, VEGF↓, angioG↓, DNArepair↓, TumMeta↓, HSP27↑, ASK1↑, ROS↑, eff↑, ER Stress↓, GRP78/BiP↓, CHOP↑, AR↓, other?,
2950- PL,    Overview of piperlongumine analogues and their therapeutic potential
- Review, Var, NA
AntiAg↑, neuroP↑, Inflam↓, NO↓, PGE2↓, MMP3↓, MMP13↓, TumCMig↓, TumCI↓, p38↑, JNK↑, NF-kB↑, ROS↑, FOXM1↓, TrxR1↓, GSH↓, Trx↓, cMyc↓, Casp3↑, Bcl-2↓, Mcl-1↓, STAT3↓, AR↓, DNAdam↑,
3341- QC,    Antioxidant Activities of Quercetin and Its Complexes for Medicinal Application
- Review, Var, NA - Review, Stroke, NA
*antiOx↑, *BioAv↑, *GSH↑, *AChE↓, *BChE↓, *H2O2↓, *lipid-P↓, *SOD↑, *SOD2↑, *Catalase↑, *GPx↑, *neuroP↑, *HO-1↑, *cardioP↑, *MDA↓, *NF-kB↓, *IKKα↓, *ROS↓, *PI3K↑, *Akt↑, *hepatoP↑, P53↑, BAX↑, IGF-1R↓, Akt↓, AR↓, TumCP↓, GSH↑, SOD↑, Catalase↑, lipid-P↓, *TNF-α↓, *Ca+2↓,
67- QC,  RES,    Overexpression of c-Jun induced by quercetin and resverol inhibits the expression and function of the androgen receptor in human prostate cancer cells
- in-vitro, Pca, LNCaP - in-vitro, Pca, LAPC-4
cJun↑, AR↓,
70- QC,    Quercetin inhibits the expression and function of the androgen receptor in LNCaP prostate cancer cells
- in-vitro, Pca, LNCaP - in-vitro, Pca, LAPC-4
PSA↓, AR↓, NKX3.1↓, HK2↓,
72- QC,    Selenium- or quercetin-induced retardation of DNA synthesis in primary prostate cells occurs in the presence of a concomitant reduction in androgen-receptor activity
- in-vitro, Pca, PECs - in-vitro, Pca, LNCaP - in-vitro, Pca, NIH-3T3
AR↓,
75- QC,    Quercetin targets hnRNPA1 to overcome enzalutamide resistance in prostate cancer cells
- in-vitro, Pca, HEK293 - in-vitro, NA, 22Rv1 - in-vitro, NA, C4-2B
hnRNPA1↓, PSA↓, NKX3.1↓, FKBP5↓, UBE2C↓, AR-FL↓, AR-V7↑, AR↓,
81- QC,  EGCG,    Enhanced inhibition of prostate cancer xenograft tumor growth by combining quercetin and green tea
- in-vivo, Pca, NA
COMT↓, MRP1↓, Ki-67↓, Bax:Bcl2↑, AR↓, Akt↓, p‑ERK↓, COMT↓, eff↑,
82- QC,  AG,    Arctigenin in combination with quercetin synergistically enhances the anti-proliferative effect in prostate cancer cells
- in-vitro, Pca, NA
AR↓, PI3K/Akt↓, miR-21↓, STAT3↓, BAD↓, PRAS40↓, GSK‐3β↓, PSA↓, NKX3.1↑, Bax:Bcl2↑, miR-19b↓, miR-148a↓, AMPKα↓,
3078- RES,    The Effects of Resveratrol on Prostate Cancer through Targeting the Tumor Microenvironment
- Review, Pca, NA
*ROS↓, ROS↑, DNAdam↑, Apoptosis↑, Hif1a↑, Casp3↑, Casp9↑, Cyt‑c↑, Dose↝, MMPs↓, MMP2↓, MMP9↓, EMT↓, E-cadherin↑, N-cadherin↓, AR↓,
3055- RES,    Resveratrol and Tumor Microenvironment: Mechanistic Basis and Therapeutic Targets
- Review, Var, NA
BioAv↓, BioAv↓, Dose↑, eff↑, eff↑, Dose↑, BioAv↑, ROS↑, MMP↓, P21↑, p27↑, TumCCA↑, ChemoSen↑, COX2↓, 5LO↓, VEGF↓, IL1↓, IL6↓, IL8↓, AR↓, PSA↓, MAPK↓, Hif1a↓, Glycolysis↓, miR-21↓, PTEN↑, Half-Life↝, *IGF-1↓, *IGFBP3↑, Half-Life↓,
3089- RES,    The Role of Resveratrol in Cancer Therapy
- Review, Var, NA
angioG↓, VEGF↓, EGFR↓, FGF↑, TumCMig↓, TumCI↓, TIMP1↑, MMP2↓, MMP9↓, NF-kB↓, Hif1a↓, PI3K↓, Akt↓, MAPK↓, EMT↓, AR↓,
3033- RosA,    Rosemary (Rosmarinus officinalis) Extract Modulates CHOP/GADD153 to Promote Androgen Receptor Degradation and Decreases Xenograft Tumor Growth
- in-vitro, Pca, 22Rv1 - in-vitro, Pca, LNCaP - vitro+vivo, NA, NA
ER Stress↑, selectivity↑, AR↓, TumCG↓, TumCCA↑, CHOP↑, PERK↓, GRP78/BiP↑, PSA↓,
3002- RosA,    Anticancer Effects of Rosemary (Rosmarinus officinalis L.) Extract and Rosemary Extract Polyphenols
- Review, Var, NA
TumCG↓, TumCP↓, TumCCA↑, ChemoSen↑, NRF2↑, PERK↑, SESN2↑, HO-1↑, cl‑Casp3↑, ROS↑, UPR↑, ER Stress↑, CHOP↑, HER2/EBBR2↓, ER-α36↓, PSA↓, BAX↑, AR↓, P-gp↓, Cyt‑c↑, HSP70/HSPA5↑, eff↑, p‑Akt↓, p‑mTOR↓, p‑P70S6K↓, cl‑PARP↑, eff↑,
4900- Sal,    Anticancer Mechanisms of Salinomycin in Breast Cancer and Its Clinical Applications
- Review, BC, NA
CSCs↓, Apoptosis↑, TumAuto↑, necrosis↑, TumCP↓, TumCI↓, TumCMig↓, TumCG↓, TumMeta↓, eff↑, Bcl-2↓, cMyc↓, Snail↓, ALDH↓, Myc↓, AR↓, ROS↑, NF-kB↓, PTCH1↓, Smo↓, Gli1↓, GLI2↓, Wnt↓, mTOR↓, GSK‐3β↓, cycD1/CCND1↓, survivin↓, P21↑, p27↑, CHOP↑, Ca+2↑, DNAdam↑, Hif1a↓, VEGF↓, angioG↓, MMP↓, ATP↓, p‑P53↑, γH2AX↑, ChemoSen↑,
3192- SFN,    Transcriptome analysis reveals a dynamic and differential transcriptional response to sulforaphane in normal and prostate cancer cells and suggests a role for Sp1 in chemoprevention
- in-vitro, Pca, PC3
Sp1/3/4↓, selectivity↑, NRF2↑, HDAC↓, DNMTs↓, TumCCA↑, selectivity↑, HO-1↑, NQO1↑, CDK2↓, TumCP↓, BID↑, Smad1↑, Diablo↑, ICAD↑, Cyt‑c↑, IAP1↑, HSP27↑, *Cyt‑c↓, *IAP1↓, *HSP27↓, survivin↓, CDK4↓, VEGF↓, AR↓,
2446- SFN,  CAP,    The Molecular Effects of Sulforaphane and Capsaicin on Metabolism upon Androgen and Tip60 Activation of Androgen Receptor
- in-vitro, Pca, LNCaP
AR↓, Bcl-xL↓, TumCP↓, Glycolysis↓, HK2↓, PKA↓, Hif1a↓, PSA↓, ECAR↓, BioAv↑, BioAv↓, *toxicity↓,
3282- SIL,    Role of Silymarin in Cancer Treatment: Facts, Hypotheses, and Questions
- Review, NA, NA
hepatoP↑, AntiCan↑, TumCMig↓, Hif1a↓, selectivity↑, toxicity∅, *antiOx↑, *Inflam↓, TumCCA↑, P21↑, CDK4↓, NF-kB↓, ERK↓, PSA↓, TumCG↓, p27↑, COX2↓, IL1↓, VEGF↓, IGFBP3↑, AR↓, STAT3↓, Telomerase↓, Cyt‑c↑, Casp↑, eff↝, HDAC↓, HATs↑, Zeb1↓, E-cadherin↑, miR-203↑, NHE1↓, MMP2↓, MMP9↓, PGE2↓, Vim↓, Wnt↓, angioG↓, VEGF↓, *TIMP1↓, EMT↓, TGF-β↓, CD44↓, EGFR↓, PDGF↓, *IL8↓, SREBP1↓, MMP↓, ATP↓, uPA↓, PD-L1↓, NOTCH↓, *SIRT1↑, SIRT1↓, CA↓, Ca+2↑, chemoP↑, cardioP↑, Dose↝, Half-Life↝, BioAv↓, BioAv↓, BioAv↓, toxicity↝, Half-Life↓, ROS↓, FAK↓,
2197- SK,    Shikonin derivatives for cancer prevention and therapy
- Review, Var, NA
ROS↑, Ca+2↑, BAX↑, Bcl-2↓, MMP9↓, NF-kB↓, PKM2↓, Hif1a↓, NRF2↓, P53↑, DNMT1↓, MDR1↓, COX2↓, VEGF↓, EMT↓, MMP7↓, MMP13↓, uPA↓, RIP1↑, RIP3↑, Casp3↑, Casp7↑, Casp9↑, P21↓, DFF45↓, TRAIL↑, PTEN↑, mTOR↓, AR↓, FAK↓, Src↓, Myc↓, RadioS↑,
2084- TQ,    Thymoquinone, as an anticancer molecule: from basic research to clinical investigation
- Review, Var, NA
*ROS↓, *chemoPv↑, ROS↑, ROS⇅, MUC4↓, selectivity↑, AR↓, cycD1/CCND1↓, Bcl-2↓, Bcl-xL↓, survivin↓, Mcl-1↓, VEGF↓, cl‑PARP↑, ROS↑, HSP70/HSPA5↑, P53↑, miR-34a↑, Rac1↓, TumCCA↑, NOTCH↓, NF-kB↓, IκB↓, p‑p65↓, IAP1↓, IAP2↑, XIAP↓, TNF-α↓, COX2↓, Inflam↓, α-tubulin↓, Twist↓, EMT↓, mTOR↓, PI3K↓, Akt↓, BioAv↓, ChemoSen↑, BioAv↑, PTEN↑, chemoPv↑, RadioS↑, *Half-Life↝, *BioAv↝,
4854- Uro,    Urolithins: Emerging natural compound targeting castration-resistant prostate cancer (CRPC)
- Review, Pca, NA
AR↓, ROS↓, Apoptosis↑, selectivity↑, Dose↑, MDA↓, SOD↑, GPx↑, ROS↑, Casp3↑, Casp9↑,
4837- Uro,    Urolithins: The Gut Based Polyphenol Metabolites of Ellagitannins in Cancer Prevention, a Review
- Review, Var, NA
AntiCan↑, TumCCA↑, Apoptosis↑, TumAuto↑, *BioAv↝, *BioAv↑, RAS↓, ERK↓, AR↓, TumCP↓, PI3K↓, Akt↓, NF-kB↓, COX2↓, IL6↓, IL1β↓, Wnt↓, β-catenin/ZEB1↓, cMyc↓, P53↑, Casp3↑, PARP↑, ROS↓, toxicity↓,
1816- VitK2,    Role of Vitamin K in Selected Malignant Neoplasms in Women
- Review, Var, NA
TumCP↓, TumMeta↓, TumAuto↑, Apoptosis↑, Apoptosis↑, Casp3↑, Casp7↑, ROS↑, AR↓, EMT↓, Wnt↓, MMP↓, Cyt‑c↑, NF-kB↓, cycD1/CCND1↓, TumCCA↓,
1839- VitK3,    Vitamin K3 derivative inhibits androgen receptor signaling in targeting aggressive prostate cancer cells
- in-vitro, Pca, NA
TumCP↓, Apoptosis↑, TumCCA↑, ROS↑, eff↓, AR↓, Trx↓, Bcl-2↓,

* indicates research on normal cells as opposed to diseased cells
Total Research Paper Matches: 50

Pathway results for Effect on Cancer / Diseased Cells:


NA, unassigned

chemoPv↑, 3,  

Redox & Oxidative Stress

ARE/EpRE↑, 1,   Catalase↓, 1,   Catalase↑, 1,   CYP1A1↓, 1,   GPx↓, 1,   GPx↑, 1,   GSH↓, 3,   GSH↑, 1,   GSR↓, 1,   GSTs↓, 1,   HO-1↓, 2,   HO-1↑, 2,   lipid-P?, 1,   lipid-P↓, 2,   lipid-P↑, 1,   MDA↓, 1,   NQO1↓, 1,   NQO1↑, 1,   NRF2↓, 5,   NRF2↑, 3,   NRF2↝, 1,   ROS↓, 6,   ROS↑, 27,   ROS⇅, 2,   ROS↝, 1,   SOD↓, 1,   SOD↑, 2,   SOD2↓, 1,   Trx↓, 2,   TrxR1↓, 1,   VitC↓, 1,   VitE↓, 1,  

Metal & Cofactor Biology

Tf↓, 1,  

Mitochondria & Bioenergetics

AIF↑, 2,   ATP↓, 2,   mt-ATP↓, 1,   CDC2↓, 1,   CDC25↓, 1,   EGF↓, 1,   MMP↓, 5,   XIAP↓, 2,  

Core Metabolism/Glycolysis

12LOX↓, 1,   AMPK↓, 1,   cMyc↓, 6,   p‑cMyc↑, 1,   ECAR↓, 1,   FASN↓, 1,   Glycolysis↓, 3,   HK2↓, 3,   LAT↓, 1,   PDK1↓, 1,   PDK3↑, 1,   PI3K/Akt↓, 1,   PKM2↓, 1,   PPARα↓, 1,   PSMB5↓, 1,   SIRT1↓, 2,   SREBP1↓, 1,  

Cell Death

Akt↓, 13,   Akt↝, 1,   p‑Akt↓, 7,   p‑Akt↝, 1,   APAF1↑, 1,   Apoptosis↑, 12,   Apoptosis↝, 2,   ASK1↑, 1,   BAD↓, 1,   BAX↑, 11,   BAX↝, 1,   Bax:Bcl2↑, 4,   Bcl-2↓, 12,   Bcl-2↝, 1,   Bcl-xL↓, 3,   Bcl-xL↝, 1,   BID↑, 1,   Casp↑, 6,   Casp1↓, 1,   Casp3↑, 12,   Casp3↝, 1,   cl‑Casp3↑, 4,   Casp7↑, 2,   cl‑Casp7↑, 1,   Casp8↑, 3,   cl‑Casp8↑, 2,   Casp9↑, 4,   cl‑Casp9↑, 3,   CBP↓, 1,   CK2↓, 2,   Cyt‑c↑, 12,   Cyt‑c↝, 2,   Diablo↑, 2,   DR4↑, 1,   DR5↑, 5,   Fas↑, 1,   FasL↑, 1,   HGF/c-Met↓, 2,   hTERT/TERT↓, 1,   IAP1↓, 1,   IAP1↑, 1,   IAP2↑, 1,   cl‑IAP2↑, 1,   ICAD↓, 1,   ICAD↑, 1,   iNOS↓, 1,   JNK↑, 4,   JNK↝, 1,   p‑JNK↓, 1,   p‑JNK↑, 1,   MAPK↓, 5,   Mcl-1↓, 4,   MDM2↓, 2,   p‑MDM2↓, 1,   Myc↓, 2,   necrosis↑, 1,   NICD↓, 1,   p27↑, 6,   p38↑, 2,   p‑p38↑, 2,   Proteasome↓, 1,   RIP1↑, 1,   survivin↓, 6,   Telomerase↓, 5,   TRAIL↑, 1,   YAP/TEAD↓, 1,  

Kinase & Signal Transduction

AMPKα↓, 1,   HER2/EBBR2↓, 2,   SOX9↓, 1,   Sp1/3/4↓, 2,   TSC2↑, 1,  

Transcription & Epigenetics

cJun↓, 2,   cJun↑, 1,   H3↓, 1,   H4↓, 1,   HATs↑, 1,   miR-205↑, 1,   miR-21↓, 4,   other?, 1,   p‑pRB↓, 1,  

Protein Folding & ER Stress

CHOP↑, 6,   p‑eIF2α↑, 1,   ER Stress↓, 1,   ER Stress↑, 8,   GRP78/BiP↓, 1,   GRP78/BiP↑, 3,   HSP27↑, 2,   HSP70/HSPA5↑, 2,   HSPs↓, 1,   IRE1↑, 1,   PERK↓, 1,   PERK↑, 1,   UPR↑, 1,  

Autophagy & Lysosomes

BNIP3↑, 1,   LC3B-II↑, 1,   LC3II↑, 1,   SESN2↑, 1,   TumAuto↑, 4,  

DNA Damage & Repair

DFF45↓, 1,   DNAdam↑, 6,   DNArepair↓, 1,   DNMT1↓, 2,   DNMTs↓, 1,   NKX3.1↓, 2,   NKX3.1↑, 1,   p16↑, 1,   P53↓, 1,   P53↑, 7,   P53↝, 1,   p‑P53↑, 1,   PARP↑, 3,   cl‑PARP↑, 9,   PCNA↓, 3,   γH2AX↑, 1,  

Cell Cycle & Senescence

CDK1↓, 1,   p‑CDK1↓, 1,   CDK2↓, 7,   CDK4↓, 6,   Cyc↝, 1,   CycB/CCNB1↓, 2,   cycD1/CCND1↓, 11,   cycD1/CCND1↝, 1,   cycE/CCNE↓, 4,   P21↓, 1,   P21↑, 14,   P21↝, 1,   p‑RB1↓, 2,   TumCCA↓, 1,   TumCCA↑, 14,  

Proliferation, Differentiation & Cell State

ALDH↓, 1,   AR-FL↓, 1,   AR-V7↑, 1,   CD34↓, 1,   CD44↓, 1,   cFos↓, 1,   cFos↑, 1,   CSCs↓, 2,   EMT↓, 10,   ERK↓, 8,   ERK↑, 1,   p‑ERK↓, 3,   FGF↑, 1,   FOXM1↓, 2,   Gli1↓, 1,   GSK‐3β↓, 4,   p‑GSK‐3β↓, 2,   HDAC↓, 4,   HDAC10↑, 1,   IGF-1↓, 2,   IGF-1R↓, 1,   IGFBP3↑, 3,   Let-7↑, 1,   miR-330-5p↑, 1,   miR-34a↑, 1,   mTOR↓, 8,   mTOR↝, 1,   p‑mTOR↓, 2,   mTORC1↓, 1,   mTORC2↓, 1,   NOTCH↓, 2,   NOTCH1↓, 2,   NOTCH1↑, 1,   p‑P70S6K↓, 1,   PI3K↓, 10,   PI3K↝, 1,   p‑PI3K↓, 1,   PTCH1↓, 1,   PTEN↓, 1,   PTEN↑, 3,   PTEN↝, 1,   RAS↓, 2,   Smo↓, 1,   Src↓, 1,   p‑Src↓, 1,   STAT3↓, 10,   p‑STAT3↓, 1,   p‑STAT6↓, 1,   TAZ↓, 1,   TCF-4↓, 1,   TOP1↓, 2,   TOP2↓, 1,   TOP2↑, 1,   TumCG↓, 8,   Wnt?, 1,   Wnt↓, 9,  

Migration

5LO↓, 1,   AEG1↓, 1,   AntiAg↑, 2,   AP-1↓, 3,   AP-1↝, 1,   AXL↓, 1,   CA↓, 1,   Ca+2↓, 1,   Ca+2↑, 6,   cal2↓, 1,   cal2↑, 1,   Cdc42↓, 2,   CDK4/6↓, 1,   CEA↓, 1,   CLDN1↓, 1,   E-cadherin↓, 1,   E-cadherin↑, 4,   ER-α36↓, 1,   FAK↓, 5,   p‑FAK↓, 1,   GLI2↓, 2,   hnRNPA1↓, 1,   ITGB1↓, 1,   ITGB4↓, 1,   Ki-67↓, 3,   MET↓, 1,   p‑MET↓, 1,   miR-148a↓, 1,   miR-19b↓, 1,   miR-200b↑, 1,   miR-203↑, 1,   MMP1↓, 2,   MMP13↓, 2,   MMP2↓, 7,   MMP2↝, 1,   MMP3↓, 1,   MMP7↓, 2,   MMP9↓, 9,   MMP9↑, 1,   MMPs↓, 3,   MUC4↓, 1,   N-cadherin↓, 3,   PDGF↓, 2,   PKA↓, 1,   Rac1↓, 2,   Rho↓, 3,   RIP3↑, 1,   ROCK1↓, 1,   Smad1↑, 1,   Snail↓, 2,   TGF-β↓, 2,   TIMP1↑, 2,   TIMP2↑, 1,   TumCA↓, 1,   TumCI↓, 6,   TumCMig↓, 5,   TumCP↓, 11,   TumMeta↓, 5,   Twist↓, 1,   Tyro3↓, 1,   uPA↓, 4,   Vim↓, 1,   Vim↑, 1,   Zeb1↓, 1,   ZO-1↑, 1,   α-tubulin↓, 1,   β-catenin/ZEB1↓, 9,   β-catenin/ZEB1↝, 1,   p‑β-catenin/ZEB1↑, 1,  

Angiogenesis & Vasculature

angioG↓, 8,   ATF4↑, 1,   EGFR↓, 5,   EGFR↑, 1,   EGFR↝, 1,   Hif1a↓, 7,   Hif1a↑, 1,   NO↓, 1,   p‑PDGFR-BB↓, 1,   VEGF↓, 18,   VEGF↝, 1,   VEGFR2↓, 2,  

Barriers & Transport

BBB↑, 1,   GLUT1↓, 1,   NHE1↓, 1,   P-gp↓, 2,  

Immune & Inflammatory Signaling

ASC↓, 1,   COX2↓, 9,   COX2↑, 1,   COX2↝, 1,   CXCR4↓, 3,   ICAM-1↓, 1,   IFN-γ↓, 1,   IKKα↓, 2,   IL1↓, 2,   IL1α↓, 1,   IL1β↓, 2,   IL2↑, 2,   IL6↓, 3,   IL6↝, 1,   IL8↓, 1,   Inflam↓, 3,   IκB↓, 1,   IκB↑, 1,   p‑IκB↓, 1,   MCP1↓, 1,   MIP2↓, 1,   NF-kB↓, 19,   NF-kB↑, 1,   NF-kB↝, 1,   p‑NF-kB↑, 1,   p‑p65↓, 2,   PD-1↓, 1,   PD-L1↓, 2,   PGE2↓, 2,   PSA↓, 15,   PSA↝, 1,   TNF-α↓, 2,   TNF-α↝, 1,  

Synaptic & Neurotransmission

5HT↓, 1,  

Protein Aggregation

NLRP3↓, 1,  

Hormonal & Nuclear Receptors

AR↓, 49,   AR↝, 1,   COMT↓, 2,   FKBP5↓, 1,  

Drug Metabolism & Resistance

BioAv↓, 10,   BioAv↑, 7,   ChemoSen↓, 1,   ChemoSen↑, 11,   Dose↑, 4,   Dose↝, 3,   eff↓, 1,   eff↑, 22,   eff↝, 1,   eff∅, 1,   Half-Life↓, 4,   Half-Life↝, 2,   MDR1↓, 2,   MRP1↓, 1,   RadioS↑, 6,   selectivity↑, 9,  

Clinical Biomarkers

AR↓, 49,   AR↝, 1,   ascitic↓, 1,   CEA↓, 1,   EGFR↓, 5,   EGFR↑, 1,   EGFR↝, 1,   FOXM1↓, 2,   GutMicro↑, 1,   HER2/EBBR2↓, 2,   hTERT/TERT↓, 1,   IL6↓, 3,   IL6↝, 1,   Ki-67↓, 3,   Myc↓, 2,   NSE↓, 1,   PD-L1↓, 2,   PSA↓, 15,   PSA↝, 1,  

Functional Outcomes

AntiCan↑, 4,   cachexia↓, 1,   cardioP↑, 1,   chemoP↑, 2,   hepatoP↑, 1,   neuroP↑, 1,   PRAS40↓, 1,   radioP↑, 1,   toxicity↓, 2,   toxicity↝, 1,   toxicity∅, 1,   TumVol↓, 2,   UBE2C↓, 1,  
Total Targets: 416

Pathway results for Effect on Normal Cells:


NA, unassigned

chemoPv↑, 1,  

Redox & Oxidative Stress

antiOx?, 1,   antiOx↑, 3,   Catalase↑, 4,   GPx↑, 3,   GSH↑, 3,   GSTs↑, 1,   H2O2↓, 1,   HO-1↑, 2,   lipid-P↓, 2,   MDA↓, 3,   NRF2↑, 1,   ROS↓, 5,   SOD↑, 5,   SOD2↑, 1,  

Metal & Cofactor Biology

IronCh↑, 1,  

Core Metabolism/Glycolysis

ALAT↓, 1,   LDH↑, 1,   SIRT1↑, 1,  

Cell Death

Akt↑, 1,   Casp3↓, 1,   Cyt‑c↓, 1,   IAP1↓, 1,   iNOS↓, 1,   p‑JNK↓, 1,   MAPK↓, 1,   MAPK↑, 1,   p38↓, 1,  

Protein Folding & ER Stress

HSP27↓, 1,  

Proliferation, Differentiation & Cell State

IGF-1↓, 1,   IGFBP3↑, 1,   PI3K↑, 1,  

Migration

5LO↓, 2,   Ca+2↓, 1,   Ca+2↝, 1,   MMP3↓, 1,   PKCδ↓, 1,   TIMP1↓, 1,  

Angiogenesis & Vasculature

NO↓, 1,   NO↑, 1,  

Immune & Inflammatory Signaling

COX1↓, 1,   COX2↓, 2,   CRP↓, 1,   IKKα↓, 1,   IL10↑, 1,   IL1β↓, 2,   IL6↓, 2,   IL8↓, 1,   Imm↑, 1,   Inflam↓, 5,   NF-kB↓, 2,   PGE2↓, 1,   PGE2↑, 1,   Th1 response↓, 1,   Th2↑, 2,   TNF-α↓, 5,  

Synaptic & Neurotransmission

AChE↓, 1,   BChE↓, 1,  

Drug Metabolism & Resistance

BioAv↓, 2,   BioAv↑, 3,   BioAv↝, 2,   Dose↝, 1,   eff↑, 2,   Half-Life↝, 2,  

Clinical Biomarkers

ALAT↓, 1,   AST↓, 1,   CRP↓, 1,   IL6↓, 2,   LDH↑, 1,  

Functional Outcomes

cardioP↑, 1,   cognitive↑, 1,   hepatoP↑, 3,   neuroP↑, 3,   toxicity↓, 3,   toxicity∅, 1,  
Total Targets: 75

Scientific Paper Hit Count for: AR, androgen receptor
9 Curcumin
7 Quercetin
4 EGCG (Epigallocatechin Gallate)
4 Resveratrol
3 Boswellia (frankincense)
2 Apigenin (mainly Parsley)
2 Capsaicin
2 Luteolin
2 Rosmarinic acid
2 Sulforaphane (mainly Broccoli)
2 Urolithin
1 Baicalein
1 Berberine
1 Boron
1 Carnosic acid
1 Chrysin
1 Propolis -bee glue
1 Ursolic acid
1 isoflavones
1 Fisetin
1 HydroxyTyrosol
1 Phenylbutyrate
1 Piperlongumine
1 Arctigenin
1 salinomycin
1 Silymarin (Milk Thistle) silibinin
1 Shikonin
1 Thymoquinone
1 Vitamin K2
1 VitK3,menadione
Query results interpretion may depend on "conditions" listed in the research papers.
Such Conditions may include : 
  -low or high Dose
  -format for product, such as nano of lipid formations
  -different cell line effects
  -synergies with other products 
  -if effect was for normal or cancerous cells
Filter Conditions: Pro/AntiFlg:%  IllCat:%  CanType:%  Cells:%  prod#:%  Target#:15  State#:%  Dir#:%
wNotes=0 sortOrder:rid,rpid

 

Home Page