| Source: HalifaxProj(suppress signaling);CGL-Driver Genes |
| Type: Oncogene |
| Androgens play an important role in the proliferation, differentiation, maintenance and function of the prostate [1]. Intriguingly, they may also be involved in the development and progression of prostate cancer. Androgen deprivation therapy can suppress hormone-naïve prostate cancer, but prostate cancer changes AR and adapts to survive under castration levels of androgen. The prognostic significance of androgen receptor expression varies widely across different cancer types. In some cancers, high AR expression is associated with poor outcomes, while in others, it may indicate a better prognosis High expression with poor prognosis is most common. AR is used as a clinical biomarker for prostate therapy |
| 207- | Api, | Involvement of nuclear factor-kappa B, Bax and Bcl-2 in induction of cell cycle arrest and apoptosis by apigenin in human prostate carcinoma cells |
| - | in-vitro, | Pca, | LNCaP |
| 2640- | Api, | Apigenin: A Promising Molecule for Cancer Prevention |
| - | Review, | Var, | NA |
| 1532- | Ba, | Baicalein as Promising Anticancer Agent: A Comprehensive Analysis on Molecular Mechanisms and Therapeutic Perspectives |
| - | Review, | NA, | NA |
| 2021- | BBR, | Berberine: An Important Emphasis on Its Anticancer Effects through Modulation of Various Cell Signaling Pathways |
| - | Review, | NA, | NA |
| 746- | Bor, | Organoboronic acids/esters as effective drug and prodrug candidates in cancer treatments: challenge and hope |
| - | Review, | NA, | NA |
| 2767- | Bos, | The potential role of boswellic acids in cancer prevention and treatment |
| - | Review, | Var, | NA |
| 2776- | Bos, | Anti-inflammatory and anti-cancer activities of frankincense: Targets, treatments and toxicities |
| - | Review, | Var, | NA |
| 2775- | Bos, | The journey of boswellic acids from synthesis to pharmacological activities |
| - | Review, | Var, | NA | - | Review, | AD, | NA | - | Review, | PSA, | NA |
| 145- | CA, | CUR, | The anti-cancer effects of carotenoids and other phytonutrients resides in their combined activity |
| - | in-vitro, | NA, | NA |
| 2013- | CAP, | Capsaicin, a component of red peppers, inhibits the growth of androgen-independent, p53 mutant prostate cancer cells |
| - | in-vitro, | Pca, | PC3 | - | in-vitro, | Pca, | LNCaP | - | in-vitro, | Pca, | DU145 | - | in-vivo, | NA, | NA |
| 2781- | CHr, | PBG, | Chrysin a promising anticancer agent: recent perspectives |
| - | Review, | Var, | NA |
| 157- | CUR, | Curcumin induces cell cycle arrest and apoptosis of prostate cancer cells by regulating the expression of IkappaBalpha, c-Jun and androgen receptor |
| - | in-vitro, | Pca, | LNCaP | - | in-vitro, | Pca, | PC3 |
| 152- | CUR, | Anti-cancer activity of curcumin loaded nanoparticles in prostate cancer |
| - | in-vivo, | Pca, | NA |
| 151- | CUR, | Curcumin analogues with high activity for inhibiting human prostate cancer cell growth and androgen receptor activation |
| - | in-vitro, | Pca, | 22Rv1 | - | in-vitro, | Pca, | LNCaP |
| 142- | CUR, | Effect of curcumin on the interaction between androgen receptor and Wnt/β-catenin in LNCaP xenografts |
| - | in-vivo, | Pca, | LNCaP |
| 183- | CUR, | Curcumin down-regulates AR gene expression and activation in prostate cancer cell lines |
| - | in-vitro, | Pca, | LNCaP | - | in-vitro, | Pca, | PC3 |
| 15- | CUR, | UA, | Effects of curcumin and ursolic acid in prostate cancer: A systematic review |
| 165- | CUR, | Curcumin interrupts the interaction between the androgen receptor and Wnt/β-catenin signaling pathway in LNCaP prostate cancer cells |
| - | in-vitro, | Pca, | LNCaP |
| 122- | CUR, | isoFl, | Combined inhibitory effects of soy isoflavones and curcumin on the production of prostate-specific antigen |
| - | Human, | Pca, | LNCaP |
| 690- | EGCG, | Green tea polyphenol EGCG blunts androgen receptor function in prostate cancer |
| - | in-vitro, | Pca, | NA |
| 680- | EGCG, | Cancer preventive and therapeutic effects of EGCG, the major polyphenol in green tea |
| - | Review, | NA, | NA |
| 2993- | EGCG, | Tea polyphenols down-regulate the expression of the androgen receptor in LNCaP prostate cancer cells |
| - | in-vitro, | Pca, | LNCaP |
| 2839- | FIS, | Dietary flavonoid fisetin for cancer prevention and treatment |
| - | Review, | Var, | NA |
| 4639- | HT, | Hydroxytyrosol Induces Apoptosis, Cell Cycle Arrest and Suppresses Multiple Oncogenic Signaling Pathways in Prostate Cancer Cells |
| - | in-vitro, | Pca, | LNCaP | - | in-vitro, | Pca, | C4-2B |
| 2919- | LT, | Luteolin as a potential therapeutic candidate for lung cancer: Emerging preclinical evidence |
| - | Review, | Var, | NA |
| 2914- | LT, | Therapeutic Potential of Luteolin on Cancer |
| - | Review, | Var, | NA |
| 2028- | PB, | Potential of Phenylbutyrate as Adjuvant Chemotherapy: An Overview of Cellular and Molecular Anticancer Mechanisms |
| - | Review, | Var, | NA |
| 2950- | PL, | Overview of piperlongumine analogues and their therapeutic potential |
| - | Review, | Var, | NA |
| 3341- | QC, | Antioxidant Activities of Quercetin and Its Complexes for Medicinal Application |
| - | Review, | Var, | NA | - | Review, | Stroke, | NA |
| 67- | QC, | RES, | Overexpression of c-Jun induced by quercetin and resverol inhibits the expression and function of the androgen receptor in human prostate cancer cells |
| - | in-vitro, | Pca, | LNCaP | - | in-vitro, | Pca, | LAPC-4 |
| 70- | QC, | Quercetin inhibits the expression and function of the androgen receptor in LNCaP prostate cancer cells |
| - | in-vitro, | Pca, | LNCaP | - | in-vitro, | Pca, | LAPC-4 |
| 72- | QC, | Selenium- or quercetin-induced retardation of DNA synthesis in primary prostate cells occurs in the presence of a concomitant reduction in androgen-receptor activity |
| - | in-vitro, | Pca, | PECs | - | in-vitro, | Pca, | LNCaP | - | in-vitro, | Pca, | NIH-3T3 |
| 75- | QC, | Quercetin targets hnRNPA1 to overcome enzalutamide resistance in prostate cancer cells |
| - | in-vitro, | Pca, | HEK293 | - | in-vitro, | NA, | 22Rv1 | - | in-vitro, | NA, | C4-2B |
| 81- | QC, | EGCG, | Enhanced inhibition of prostate cancer xenograft tumor growth by combining quercetin and green tea |
| - | in-vivo, | Pca, | NA |
| 82- | QC, | AG, | Arctigenin in combination with quercetin synergistically enhances the anti-proliferative effect in prostate cancer cells |
| - | in-vitro, | Pca, | NA |
| 3078- | RES, | The Effects of Resveratrol on Prostate Cancer through Targeting the Tumor Microenvironment |
| - | Review, | Pca, | NA |
| 3055- | RES, | Resveratrol and Tumor Microenvironment: Mechanistic Basis and Therapeutic Targets |
| - | Review, | Var, | NA |
| 3089- | RES, | The Role of Resveratrol in Cancer Therapy |
| - | Review, | Var, | NA |
| 3033- | RosA, | Rosemary (Rosmarinus officinalis) Extract Modulates CHOP/GADD153 to Promote Androgen Receptor Degradation and Decreases Xenograft Tumor Growth |
| - | in-vitro, | Pca, | 22Rv1 | - | in-vitro, | Pca, | LNCaP | - | vitro+vivo, | NA, | NA |
| 3002- | RosA, | Anticancer Effects of Rosemary (Rosmarinus officinalis L.) Extract and Rosemary Extract Polyphenols |
| - | Review, | Var, | NA |
| 4900- | Sal, | Anticancer Mechanisms of Salinomycin in Breast Cancer and Its Clinical Applications |
| - | Review, | BC, | NA |
| 3192- | SFN, | Transcriptome analysis reveals a dynamic and differential transcriptional response to sulforaphane in normal and prostate cancer cells and suggests a role for Sp1 in chemoprevention |
| - | in-vitro, | Pca, | PC3 |
| 2446- | SFN, | CAP, | The Molecular Effects of Sulforaphane and Capsaicin on Metabolism upon Androgen and Tip60 Activation of Androgen Receptor |
| - | in-vitro, | Pca, | LNCaP |
| 3282- | SIL, | Role of Silymarin in Cancer Treatment: Facts, Hypotheses, and Questions |
| - | Review, | NA, | NA |
| 2197- | SK, | Shikonin derivatives for cancer prevention and therapy |
| - | Review, | Var, | NA |
| 2084- | TQ, | Thymoquinone, as an anticancer molecule: from basic research to clinical investigation |
| - | Review, | Var, | NA |
| 4854- | Uro, | Urolithins: Emerging natural compound targeting castration-resistant prostate cancer (CRPC) |
| - | Review, | Pca, | NA |
| 4837- | Uro, | Urolithins: The Gut Based Polyphenol Metabolites of Ellagitannins in Cancer Prevention, a Review |
| - | Review, | Var, | NA |
| 1816- | VitK2, | Role of Vitamin K in Selected Malignant Neoplasms in Women |
| - | Review, | Var, | NA |
| 1839- | VitK3, | Vitamin K3 derivative inhibits androgen receptor signaling in targeting aggressive prostate cancer cells |
| - | in-vitro, | Pca, | NA |
Query results interpretion may depend on "conditions" listed in the research papers. Such Conditions may include : -low or high Dose -format for product, such as nano of lipid formations -different cell line effects -synergies with other products -if effect was for normal or cancerous cells
Filter Conditions: Pro/AntiFlg:% IllCat:% CanType:% Cells:% prod#:% Target#:15 State#:% Dir#:%
wNotes=0 sortOrder:rid,rpid