Database Query Results : , , JAK

JAK, Janus kinases: Click to Expand ⟱
Source: HalifaxProj(inhibit)
Type:
A family of enzymes that play a crucial role in the signaling pathways of various cytokines and growth factors. They are involved in the regulation of immune responses, hematopoiesis, and cell proliferation. Dysregulation of JAK signaling has been implicated in several types of cancer, particularly hematological malignancies such as leukemia and lymphoma.
Targeting JAKs with specific inhibitors has emerged as a therapeutic strategy in oncology. JAK inhibitors, such as ruxolitinib and tofacitinib, are used to treat certain blood cancers and autoimmune diseases. These drugs work by blocking the activity of JAKs, thereby inhibiting the signaling pathways that promote cancer cell proliferation and survival.


Scientific Papers found: Click to Expand⟱
3450- ALA,    α-Lipoic Acid Inhibits Expression of IL-8 by Suppressing Activation of MAPK, Jak/Stat, and NF-κB in H. pylori-Infected Gastric Epithelial AGS Cells
- in-vitro, NA, AGS
*IL8↓, *MAPK↓, *JAK↓, *STAT↓, *NF-kB↓,
171- Api,    Apigenin in cancer therapy: anti-cancer effects and mechanisms of action
- Review, Var, NA
PI3K/Akt↓, NF-kB↓, CK2↓, FOXO↓, MAPK↝, ERK↓, p‑JAK↓, Wnt/(β-catenin)↓, ROS↑, CDC25↓, p‑STAT↓, DNAdam↑,
269- Api,    Cytotoxicity of apigenin on leukemia cell lines: implications for prevention and therapy
- in-vitro, AML, HL-60 - in-vitro, AML, K562 - in-vitro, AML, TF1
JAK↓, PI3K↓, cDC2↓, STAT↓,
3179- Ash,    Withaferin A inhibits JAK/STAT3 signaling and induces apoptosis of human renal carcinoma Caki cells
- in-vitro, RCC, Caki-1
JAK↓, STAT3↓, Apoptosis↑,
3861- CUR,    Curcumin as a novel therapeutic candidate for cancer: can this natural compound revolutionize cancer treatment?
- Review, Var, NA
*antiOx↑, *Inflam↓, PI3K↓, Akt↓, mTOR↓, Wnt↓, β-catenin/ZEB1↓, NF-kB↓, HH↓, NOTCH↓, JAK↓, STAT3↓, ADAM10↓,
4709- CUR,    Curcumin Regulates Cancer Progression: Focus on ncRNAs and Molecular Signaling Pathways
- Review, Var, NA
miR-21↓, TumCP↓, TumCMig↓, TumCI↓, Apoptosis↑, miR-99↑, JAK↓, STAT↓, cycD1/CCND1↓, P21↑, ChemoSen↑, miR-192-5p↑, cMyc↓, Wnt↓, β-catenin/ZEB1↓, miR-130a↓,
13- CUR,    Role of curcumin in regulating p53 in breast cancer: an overview of the mechanism of action
- Review, BC, NA
P53↑, DR5↑, JNK↑, NRF2↑, PPARγ↑, HER2/EBBR2↓, IR↓, ER(estro)↓, Fas↑, PDGF↓, TGF-β↓, FGF↓, EGFR↓, JAK↓, PAK↓, MAPK↓, ATPase↓, COX2↓, MMPs↓, IL1↓, IL2↓, IL5↓, IL6↓, IL8↓, IL12↓, IL18↓, NF-kB↓, NOTCH1↓, STAT1↓, STAT4↓, STAT5↓, STAT3↓,
464- CUR,    Curcumin inhibits the viability, migration and invasion of papillary thyroid cancer cells by regulating the miR-301a-3p/STAT3 axis
- in-vitro, Thyroid, BCPAP - in-vitro, Thyroid, TPC-1
TumCI↓, TumCI↓, MMP2↓, MMP9↓, EMT↓, STAT3↓, miR-301a-3p↓, STAT↓, N-cadherin↓, Vim↓, Fibronectin↓, p‑JAK↓, p‑JAK2↓, p‑JAK3↓, p‑STAT1↓, p‑STAT2↓, E-cadherin↑,
469- CUR,    The inhibitory effect of curcumin via fascin suppression through JAK/STAT3 pathway on metastasis and recurrence of ovary cancer cells
- in-vitro, Ovarian, SKOV3
fascin↓, STAT3↓, JAK↓,
1605- EA,    Ellagic Acid and Cancer Hallmarks: Insights from Experimental Evidence
- Review, Var, NA
*BioAv↓, antiOx↓, Inflam↓, TumCP↓, TumCCA↑, cycD1/CCND1↓, cycE/CCNE↓, P53↑, P21↑, COX2↓, NF-kB↓, Akt↑, NOTCH↓, CDK2↓, CDK6↓, JAK↓, STAT3↓, EGFR↓, p‑ERK↓, p‑Akt↓, p‑STAT3↓, TGF-β↓, SMAD3↓, CDK6↓, Wnt/(β-catenin)↓, Myc↓, survivin↓, CDK8↓, PKCδ↓, tumCV↓, RadioS↑, eff↑, MDM2↓, XIAP↓, p‑RB1↓, PTEN↑, p‑FAK↓, Bax:Bcl2↑, Bcl-xL↓, Mcl-1↓, PUMA↑, NOXA↑, MMP↓, Cyt‑c↑, ROS↑, Ca+2↝, Endoglin↑, Diablo↑, AIF↑, iNOS↓, Casp9↑, Casp3↑, cl‑PARP↑, RadioS↑, Hif1a↓, HO-1↓, HO-2↓, SIRT1↓, selectivity↑, Dose∅, NHE1↓, Glycolysis↓, GlucoseCon↓, lactateProd↓, PDK1?, PDK1?, ECAR↝, COX1↓, Snail↓, Twist↓, cMyc↓, Telomerase↓, angioG↓, MMP2↓, MMP9↓, VEGF↓, Dose↝, PD-L1↓, eff↑, SIRT6↑, DNAdam↓,
651- EGCG,    Epigallocatechin-3-Gallate Therapeutic Potential in Cancer: Mechanism of Action and Clinical Implications
ROS↑, p‑AMPK↑, mTOR↓, FAK↓, Smo↓, Gli1↓, HH↓, TumCMig↓, TumCI↓, NOTCH↓, JAK↓, STAT↓, Bcl-2↓, Bcl-xL↓, BAX↑, Casp9↑,
3201- EGCG,    Epigallocatechin Gallate (EGCG): Pharmacological Properties, Biological Activities and Therapeutic Potential
- Review, NA, NA
*AntiCan↑, *cardioP↑, *neuroP↑, *BioAv↝, *BioAv↓, *BioAv↓, *Dose↝, *Half-Life↝, *BioAv↑, *BBB↑, *hepatoP↓, *other↓, *Inflam↓, *NF-kB↓, *AP-1↓, *iNOS↓, *COX2↓, *ROS↓, *RNS↓, *IL8↓, *JAK↓, *PDGFR-BB↓, *IGF-1R↓, *MMP2↓, *P53↓, *NRF2↑, *TNF-α↓, *IL6↓, *E2Fs↑, *SOD1↑, *SOD2↑, Casp3↑, Cyt‑c↑, PARP↑, DNMTs↓, Telomerase↓, Hif1a↓, MMPs↓, BAX↑, Bak↑, Bcl-2↓, Bcl-xL↓, P53↑, PTEN↑, TumCP↓, MAPK↓, HGF/c-Met↓, TIMP1↑, HDAC↓, MMP9↓, uPA↓, GlutMet↓, ChemoSen↑, chemoP↑,
1322- EMD,    The versatile emodin: A natural easily acquired anthraquinone possesses promising anticancer properties against a variety of cancers
- Review, Var, NA
Apoptosis↑, TumCP↓, ROS↑, TumAuto↑, EMT↓, TGF-β↓, DNAdam↑, ER Stress↑, TumCCA↑, ATP↓, NF-kB↓, CYP1A1↑, STAC2↓, JAK↓, PI3K↓, Akt↓, MAPK↓, FASN↓, HER2/EBBR2↓, ChemoSen↑, eff↑, ChemoSen↑, angioG↓, VEGF↓, MMP2↓, eNOS↓, FOXD3↑, MMP9↓, TIMP1↑,
834- Gra,    Anticancer Properties of Graviola (Annona muricata): A Comprehensive Mechanistic Review
- Review, NA, NA
EGFR↓, PI3K/Akt↓, NF-kB↓, JAK↓, STAT↓, Hif1a↓, GLUT1↓, GLUT4↓, ROS↑, Catalase↑, SOD↑, HO-1↑,
1803- NarG,    Naringin and naringenin as anticancer agents and adjuvants in cancer combination therapy: Efficacy and molecular mechanisms of action, a comprehensive narrative review
- Review, Var, NA
JAK↓, STAT↓, PI3K↓, Akt↓, mTOR↓, NF-kB↓, COX2↓, NOTCH↓, TumCCA↑,
4972- Nimb,    Chemopreventive and therapeutic effects of nimbolide in cancer: The underlying mechanisms
- Review, Var, NA
Apoptosis↑, TumCP↓, NF-kB↓, Wnt↓, PI3K↓, MAPK↓, JAK↓, STAT↓,
3380- QC,    Quercetin as a JAK–STAT inhibitor: a potential role in solid tumors and neurodegenerative diseases
- Review, Var, NA - Review, Park, NA - Review, AD, NA
JAK↓, STAT↓, Inflam↓, NO↓, COX2↓, CRP↓, selectivity↑, *neuroP↑, STAT3↓, cycD1/CCND1↓, MMP2↓, STAT4↓, JAK2↓, TumCP↓, Diff↓, *eff↑, *IL6↓, *TNF-α↓, *IL1β↓, *Aβ↓,
4787- QC,    Quercetin: A Phytochemical with Pro-Apoptotic Effects in Colon Cancer Cells
- Review, CRC, NA
Inflam↓, AntiCan↑, Apoptosis↑, MMP↓, P53↑, BAX↑, Casp3↑, Casp9↑, Bcl-2↓, NF-kB↓, IL6↓, IL1β↓, *antiOx↑, *lipid-P↓, *ROS↓, MAPK↓, JAK↓, STAT↓, PI3K↓, Akt↓, chemoP↑, ROS⇅, DNAdam↑, ChemoSen↝,
3098- RES,    Regulation of Cell Signaling Pathways and miRNAs by Resveratrol in Different Cancers
- Review, Var, NA
NOTCH2↓, Wnt↓, β-catenin/ZEB1↓, p‑SMAD2↓, p‑SMAD3↓, PTCH1↓, Smo↓, Gli1↓, E-cadherin↑, NOTCH⇅, TAC?, NKG2D↑, DR4↑, survivin↓, DR5↑, BAX↑, p27↑, cycD1/CCND1↓, Bcl-2↓, STAT3↓, STAT5↓, JAK↓, DNAdam↑, γH2AX↑,
1208- SANG,    Sanguinarine induces apoptosis in osteosarcoma by attenuating the binding of STAT3 to the single-stranded DNA-binding protein 1 (SSBP1) promoter region
- in-vitro, OS, NA
SSBP1↑, mtDam↑, Apoptosis↑, JAK↓, STAT3↓, PI3k/Akt/mTOR↓, ROS↑, MMP↓,

* indicates research on normal cells as opposed to diseased cells
Total Research Paper Matches: 20

Pathway results for Effect on Cancer / Diseased Cells:


Redox & Oxidative Stress

antiOx↓, 1,   Catalase↑, 1,   CYP1A1↑, 1,   HO-1↓, 1,   HO-1↑, 1,   HO-2↓, 1,   NRF2↑, 1,   ROS↑, 6,   ROS⇅, 1,   SOD↑, 1,   TAC?, 1,  

Mitochondria & Bioenergetics

AIF↑, 1,   ATP↓, 1,   CDC25↓, 1,   MMP↓, 3,   mtDam↑, 1,   SSBP1↑, 1,   XIAP↓, 1,  

Core Metabolism/Glycolysis

p‑AMPK↑, 1,   cMyc↓, 2,   ECAR↝, 1,   FASN↓, 1,   GlucoseCon↓, 1,   GlutMet↓, 1,   Glycolysis↓, 1,   IR↓, 1,   lactateProd↓, 1,   PDK1?, 2,   PI3K/Akt↓, 2,   PI3k/Akt/mTOR↓, 1,   PPARγ↑, 1,   SIRT1↓, 1,  

Cell Death

Akt↓, 4,   Akt↑, 1,   p‑Akt↓, 1,   Apoptosis↑, 6,   Bak↑, 1,   BAX↑, 4,   Bax:Bcl2↑, 1,   Bcl-2↓, 4,   Bcl-xL↓, 3,   Casp3↑, 3,   Casp9↑, 3,   CK2↓, 1,   Cyt‑c↑, 2,   Diablo↑, 1,   DR4↑, 1,   DR5↑, 2,   Fas↑, 1,   HGF/c-Met↓, 1,   iNOS↓, 1,   JNK↑, 1,   MAPK↓, 5,   MAPK↝, 1,   Mcl-1↓, 1,   MDM2↓, 1,   Myc↓, 1,   NOXA↑, 1,   p27↑, 1,   PUMA↑, 1,   survivin↓, 2,   Telomerase↓, 2,  

Kinase & Signal Transduction

FOXD3↑, 1,   HER2/EBBR2↓, 2,   PAK↓, 1,  

Transcription & Epigenetics

miR-192-5p↑, 1,   miR-21↓, 1,   tumCV↓, 1,  

Protein Folding & ER Stress

ER Stress↑, 1,  

Autophagy & Lysosomes

TumAuto↑, 1,  

DNA Damage & Repair

DNAdam↓, 1,   DNAdam↑, 4,   DNMTs↓, 1,   P53↑, 4,   PARP↑, 1,   cl‑PARP↑, 1,   SIRT6↑, 1,   γH2AX↑, 1,  

Cell Cycle & Senescence

CDK2↓, 1,   cycD1/CCND1↓, 4,   cycE/CCNE↓, 1,   P21↑, 2,   p‑RB1↓, 1,   TumCCA↑, 3,  

Proliferation, Differentiation & Cell State

cDC2↓, 1,   CDK8↓, 1,   Diff↓, 1,   EMT↓, 2,   ERK↓, 1,   p‑ERK↓, 1,   FGF↓, 1,   FOXO↓, 1,   Gli1↓, 2,   HDAC↓, 1,   HH↓, 2,   miR-99↑, 1,   mTOR↓, 3,   NOTCH↓, 4,   NOTCH⇅, 1,   NOTCH1↓, 1,   NOTCH2↓, 1,   PI3K↓, 6,   PTCH1↓, 1,   PTEN↑, 2,   Smo↓, 2,   STAT↓, 9,   p‑STAT↓, 1,   STAT1↓, 1,   p‑STAT1↓, 1,   p‑STAT2↓, 1,   STAT3↓, 9,   p‑STAT3↓, 1,   STAT4↓, 2,   STAT5↓, 2,   Wnt↓, 4,   Wnt/(β-catenin)↓, 2,  

Migration

ATPase↓, 1,   Ca+2↝, 1,   E-cadherin↑, 2,   FAK↓, 1,   p‑FAK↓, 1,   fascin↓, 1,   Fibronectin↓, 1,   miR-130a↓, 1,   miR-301a-3p↓, 1,   MMP2↓, 4,   MMP9↓, 4,   MMPs↓, 2,   N-cadherin↓, 1,   PDGF↓, 1,   PKCδ↓, 1,   p‑SMAD2↓, 1,   SMAD3↓, 1,   p‑SMAD3↓, 1,   Snail↓, 1,   STAC2↓, 1,   TGF-β↓, 3,   TIMP1↑, 2,   TumCI↓, 4,   TumCMig↓, 2,   TumCP↓, 6,   Twist↓, 1,   uPA↓, 1,   Vim↓, 1,   β-catenin/ZEB1↓, 3,  

Angiogenesis & Vasculature

angioG↓, 2,   EGFR↓, 3,   Endoglin↑, 1,   eNOS↓, 1,   Hif1a↓, 3,   NO↓, 1,   VEGF↓, 2,  

Barriers & Transport

GLUT1↓, 1,   GLUT4↓, 1,   NHE1↓, 1,  

Immune & Inflammatory Signaling

COX1↓, 1,   COX2↓, 4,   CRP↓, 1,   IL1↓, 1,   IL12↓, 1,   IL18↓, 1,   IL1β↓, 1,   IL2↓, 1,   IL5↓, 1,   IL6↓, 2,   IL8↓, 1,   Inflam↓, 3,   JAK↓, 16,   p‑JAK↓, 2,   JAK2↓, 1,   p‑JAK2↓, 1,   p‑JAK3↓, 1,   NF-kB↓, 9,   PD-L1↓, 1,  

Synaptic & Neurotransmission

ADAM10↓, 1,  

Hormonal & Nuclear Receptors

CDK6↓, 2,   ER(estro)↓, 1,  

Drug Metabolism & Resistance

ChemoSen↑, 4,   ChemoSen↝, 1,   Dose↝, 1,   Dose∅, 1,   eff↑, 3,   RadioS↑, 2,   selectivity↑, 2,  

Clinical Biomarkers

CRP↓, 1,   EGFR↓, 3,   HER2/EBBR2↓, 2,   IL6↓, 2,   Myc↓, 1,   PD-L1↓, 1,  

Functional Outcomes

AntiCan↑, 1,   chemoP↑, 2,   NKG2D↑, 1,  
Total Targets: 193

Pathway results for Effect on Normal Cells:


Redox & Oxidative Stress

antiOx↑, 2,   lipid-P↓, 1,   NRF2↑, 1,   RNS↓, 1,   ROS↓, 2,   SOD1↑, 1,   SOD2↑, 1,  

Cell Death

iNOS↓, 1,   MAPK↓, 1,  

Transcription & Epigenetics

other↓, 1,  

DNA Damage & Repair

P53↓, 1,  

Cell Cycle & Senescence

E2Fs↑, 1,  

Proliferation, Differentiation & Cell State

IGF-1R↓, 1,   STAT↓, 1,  

Migration

AP-1↓, 1,   MMP2↓, 1,  

Angiogenesis & Vasculature

PDGFR-BB↓, 1,  

Barriers & Transport

BBB↑, 1,  

Immune & Inflammatory Signaling

COX2↓, 1,   IL1β↓, 1,   IL6↓, 2,   IL8↓, 2,   Inflam↓, 2,   JAK↓, 2,   NF-kB↓, 2,   TNF-α↓, 2,  

Protein Aggregation

Aβ↓, 1,  

Drug Metabolism & Resistance

BioAv↓, 3,   BioAv↑, 1,   BioAv↝, 1,   Dose↝, 1,   eff↑, 1,   Half-Life↝, 1,  

Clinical Biomarkers

IL6↓, 2,  

Functional Outcomes

AntiCan↑, 1,   cardioP↑, 1,   hepatoP↓, 1,   neuroP↑, 2,  
Total Targets: 38

Scientific Paper Hit Count for: JAK, Janus kinases
5 Curcumin
2 Apigenin (mainly Parsley)
2 EGCG (Epigallocatechin Gallate)
2 Quercetin
1 Alpha-Lipoic-Acid
1 Ashwagandha(Withaferin A)
1 Ellagic acid
1 Emodin
1 Graviola
1 Naringin
1 Nimbolide
1 Resveratrol
1 Sanguinarine
Query results interpretion may depend on "conditions" listed in the research papers.
Such Conditions may include : 
  -low or high Dose
  -format for product, such as nano of lipid formations
  -different cell line effects
  -synergies with other products 
  -if effect was for normal or cancerous cells
Filter Conditions: Pro/AntiFlg:%  IllCat:%  CanType:%  Cells:%  prod#:%  Target#:162  State#:%  Dir#:%
wNotes=0 sortOrder:rid,rpid

 

Home Page