| Source: |
| Type: |
| JNK acts synergistically with NF-κB, JAK/STAT, and other signaling molecules to exert a survival function. Janus signaling promotes cancer cell survival. JNK, or c-Jun N-terminal kinase, is a member of the mitogen-activated protein kinase (MAPK) family. It plays a crucial role in various cellular processes, including cell proliferation, differentiation, and apoptosis (programmed cell death). JNK is activated in response to various stress signals, such as UV radiation, oxidative stress, and inflammatory cytokines. JNK activation can promote apoptosis in cancer cells, acting as a tumor suppressor. However, in other contexts, it can promote cell survival and proliferation, contributing to tumor progression. JNK is often unregulated in cancers, leading to increased cancer cell proliferation, survival, and resistance to apoptosis. This activation is typically associated with poor prognosis and aggressive tumor behavior. |
| 248- | AL, | Allicin inhibits cell growth and induces apoptosis in U87MG human glioblastoma cells through an ERK-dependent pathway |
| - | in-vitro, | GBM, | U87MG |
| 2655- | AL, | Allicin and Digestive System Cancers: From Chemical Structure to Its Therapeutic Opportunities |
| - | Review, | GC, | NA |
| 2558- | AL, | Allicin, an Antioxidant and Neuroprotective Agent, Ameliorates Cognitive Impairment |
| - | Review, | AD, | NA |
| 2669- | AL, | Rad, | Inhibition of ICAM-1 expression by garlic component, allicin, in gamma-irradiated human vascular endothelial cells via downregulation of the JNK signaling pathway |
| - | in-vitro, | Nor, | HUVECs |
| 2666- | AL, | Targeting the Interplay of Autophagy and ROS for Cancer Therapy: An Updated Overview on Phytochemicals |
| - | Review, | Var, | NA |
| 277- | ALA, | α-lipoic acid modulates prostate cancer cell growth and bone cell differentiation |
| - | in-vitro, | Pca, | 22Rv1 | - | in-vitro, | Pca, | C4-2B |
| 259- | ALA, | Increased ROS generation and p53 activation in alpha-lipoic acid-induced apoptosis of hepatoma cells |
| - | in-vitro, | Liver, | HepG2 | - | in-vitro, | Liver, | FaO |
| 3442- | ALA, | α‑lipoic acid modulates prostate cancer cell growth and bone cell differentiation |
| - | in-vitro, | Pca, | 22Rv1 | - | in-vitro, | Pca, | C4-2B | - | in-vitro, | Nor, | 3T3 |
| 3549- | ALA, | Important roles of linoleic acid and α-linolenic acid in regulating cognitive impairment and neuropsychiatric issues in metabolic-related dementia |
| - | Review, | AD, | NA |
| 1150- | Api, | Apigenin inhibits the TNFα-induced expression of eNOS and MMP-9 via modulating Akt signalling through oestrogen receptor engagement |
| - | in-vitro, | Lung, | EAhy926 |
| 584- | Api, | Cisplatin, | Apigenin potentiates the antitumor activity of 5-FU on solid Ehrlich carcinoma: Crosstalk between apoptotic and JNK-mediated autophagic cell death platforms |
| - | in-vivo, | Var, | NA |
| 270- | Api, | Apigenin induces apoptosis in human leukemia cells and exhibits anti-leukemic activity in vivo via inactivation of Akt and activation of JNK |
| - | in-vivo, | AML, | U937 |
| 416- | Api, | In Vitro and In Vivo Anti-tumoral Effects of the Flavonoid Apigenin in Malignant Mesothelioma |
| - | vitro+vivo, | NA, | NA |
| 2640- | Api, | Apigenin: A Promising Molecule for Cancer Prevention |
| - | Review, | Var, | NA |
| 2633- | Api, | Apigenin induces ROS-dependent apoptosis and ER stress in human endometriosis cells |
| - | in-vitro, | EC, | NA |
| 3383- | ART/DHA, | Dihydroartemisinin: A Potential Natural Anticancer Drug |
| - | Review, | Var, | NA |
| 3391- | ART/DHA, | Antitumor Activity of Artemisinin and Its Derivatives: From a Well-Known Antimalarial Agent to a Potential Anticancer Drug |
| - | Review, | Var, | NA |
| - | in-vitro, | AML, | THP1 |
| 1356- | Ash, | Withaferin A induces apoptosis by ROS-dependent mitochondrial dysfunction in human colorectal cancer cells |
| - | in-vitro, | CRC, | HCT116 |
| 3166- | Ash, | Exploring the Multifaceted Therapeutic Potential of Withaferin A and Its Derivatives |
| - | Review, | Var, | NA |
| 2600- | Ba, | Baicalein Induces Apoptosis and Autophagy via Endoplasmic Reticulum Stress in Hepatocellular Carcinoma Cells |
| - | in-vitro, | HCC, | SMMC-7721 cell | - | in-vitro, | HCC, | Bel-7402 |
| 2606- | Ba, | Baicalein: A review of its anti-cancer effects and mechanisms in Hepatocellular Carcinoma |
| - | Review, | HCC, | NA |
| 2627- | Ba, | Cisplatin, | Baicalein, a Bioflavonoid, Prevents Cisplatin-Induced Acute Kidney Injury by Up-Regulating Antioxidant Defenses and Down-Regulating the MAPKs and NF-κB Pathways |
| 2480- | Ba, | Inhibition of 12/15 lipoxygenase by baicalein reduces myocardial ischemia/reperfusion injury via modulation of multiple signaling pathways |
| - | in-vivo, | Stroke, | NA |
| 1242- | BBM, | Berbamine Exerts Anti-Inflammatory Effects via Inhibition of NF-κB and MAPK Signaling Pathways |
| - | in-vivo, | Nor, | NA |
| 1390- | BBR, | Rad, | Berberine Inhibited Radioresistant Effects and Enhanced Anti-Tumor Effects in the Irradiated-Human Prostate Cancer Cells |
| - | in-vitro, | Pca, | PC3 |
| 1386- | BBR, | Berberine-induced apoptosis in human breast cancer cells is mediated by reactive oxygen species generation and mitochondrial-related apoptotic pathway |
| - | in-vitro, | BC, | MCF-7 | - | in-vitro, | BC, | MDA-MB-231 |
| 1379- | BBR, | Berberine derivative DCZ0358 induce oxidative damage by ROS-mediated JNK signaling in DLBCL cells |
| - | in-vitro, | lymphoma, | NA |
| 1378- | BBR, | Berberine induces non-small cell lung cancer apoptosis via the activation of the ROS/ASK1/JNK pathway |
| - | in-vitro, | Lung, | NA |
| 2677- | BBR, | Liposome-Encapsulated Berberine Alleviates Liver Injury in Type 2 Diabetes via Promoting AMPK/mTOR-Mediated Autophagy and Reducing ER Stress: Morphometric and Immunohistochemical Scoring |
| - | in-vivo, | Diabetic, | NA |
| 2690- | BBR, | Berberine Differentially Modulates the Activities of ERK, p38 MAPK, and JNK to Suppress Th17 and Th1 T Cell Differentiation in Type 1 Diabetic Mice |
| - | in-vivo, | Diabetic, | NA |
| 2683- | BBR, | Berberine reduces endoplasmic reticulum stress and improves insulin signal transduction in Hep G2 cells |
| - | in-vitro, | Liver, | HepG2 |
| 3679- | BBR, | Berberine alleviates Alzheimer's disease by activating autophagy and inhibiting ferroptosis through the JNK-p38MAPK signaling pathway |
| - | in-vivo, | AD, | NA |
| 2743- | BetA, | Betulinic acid and the pharmacological effects of tumor suppression |
| - | Review, | Var, | NA |
| 2758- | BetA, | Betulinic Acid Attenuates Oxidative Stress in the Thymus Induced by Acute Exposure to T-2 Toxin via Regulation of the MAPK/Nrf2 Signaling Pathway |
| - | in-vivo, | Nor, | NA |
| 2735- | BetA, | Betulinic acid as apoptosis activator: Molecular mechanisms, mathematical modeling and chemical modifications |
| - | Review, | Var, | NA |
| 2776- | Bos, | Anti-inflammatory and anti-cancer activities of frankincense: Targets, treatments and toxicities |
| - | Review, | Var, | NA |
| 2775- | Bos, | The journey of boswellic acids from synthesis to pharmacological activities |
| - | Review, | Var, | NA | - | Review, | AD, | NA | - | Review, | PSA, | NA |
| 2652- | CAP, | Oxidative Stress Inducers in Cancer Therapy: Preclinical and Clinical Evidence |
| - | Review, | Var, | NA |
| 2019- | CAP, | Capsaicin: A Two-Decade Systematic Review of Global Research Output and Recent Advances Against Human Cancer |
| - | Review, | Var, | NA |
| 2012- | CAP, | Capsaicin induces cytotoxicity in human osteosarcoma MG63 cells through TRPV1-dependent and -independent pathways |
| - | NA, | OS, | MG63 |
| 2653- | Cela, | Oxidative Stress Inducers in Cancer Therapy: Preclinical and Clinical Evidence |
| - | Review, | Var, | NA |
| 1298- | CGA, | Chlorogenic acid regulates apoptosis and stem cell marker-related gene expression in A549 human lung cancer cells |
| - | in-vitro, | Lung, | A549 |
| 1144- | CHr, | 8-bromo-7-methoxychrysin-induced apoptosis of hepatocellular carcinoma cells involves ROS and JNK |
| - | in-vitro, | HCC, | HepG2 | - | in-vitro, | HCC, | Bel-7402 | - | in-vitro, | Nor, | HL7702 |
| 2794- | CHr, | An updated review on the versatile role of chrysin in neurological diseases: Chemistry, pharmacology, and drug delivery approaches |
| - | Review, | Park, | NA | - | Review, | Stroke, | NA |
| 2791- | CHr, | Chrysin attenuates progression of ovarian cancer cells by regulating signaling cascades and mitochondrial dysfunction |
| - | in-vitro, | Ovarian, | OV90 |
| 1571- | Cu, | Copper in cancer: From pathogenesis to therapy |
| - | Review, | NA, | NA |
| 2821- | CUR, | Antioxidant curcumin induces oxidative stress to kill tumor cells (Review) |
| - | Review, | Var, | NA |
| 2654- | CUR, | Oxidative Stress Inducers in Cancer Therapy: Preclinical and Clinical Evidence |
| - | Review, | Var, | NA |
| - | in-vitro, | Pca, | PC3 | - | in-vitro, | NA, | DU145 | - | in-vitro, | NA, | LNCaP |
| 13- | CUR, | Role of curcumin in regulating p53 in breast cancer: an overview of the mechanism of action |
| - | Review, | BC, | NA |
| 15- | CUR, | UA, | Effects of curcumin and ursolic acid in prostate cancer: A systematic review |
| 167- | CUR, | Curcumin-induced apoptosis in PC3 prostate carcinoma cells is caspase-independent and involves cellular ceramide accumulation and damage to mitochondria |
| - | in-vitro, | Pca, | PC3 |
| 129- | CUR, | JNK_pathways_via_epigenetic_regulation">Curcumin suppressed the prostate cancer by inhibiting JNK pathways via epigenetic regulation |
| - | vitro+vivo, | Pca, | LNCaP |
| 463- | CUR, | Curcumin induces autophagic cell death in human thyroid cancer cells |
| - | in-vitro, | Thyroid, | K1 | - | in-vitro, | Thyroid, | FTC-133 | - | in-vitro, | Thyroid, | BCPAP | - | in-vitro, | Thyroid, | 8505C |
| 5006- | DSF, | Cu, | Disulfiram targeting lymphoid malignant cell lines via ROS-JNK activation as well as Nrf2 and NF-kB pathway inhibition |
| - | vitro+vivo, | lymphoma, | NA |
| - | vitro+vivo, | lymphoma, | NA |
| 4916- | DSF, | Cu, | The immunomodulatory function and antitumor effect of disulfiram: paving the way for novel cancer therapeutics |
| - | Review, | Var, | NA |
| 642- | EGCG, | Prooxidant Effects of Epigallocatechin-3-Gallate in Health Benefits and Potential Adverse Effect |
| 3238- | EGCG, | Green tea catechin, epigallocatechin-3-gallate (EGCG): mechanisms, perspectives and clinical applications |
| - | Review, | Var, | NA |
| 3714- | FA, | Recent Advances in the Neuroprotective Properties of Ferulic Acid in Alzheimer's Disease: A Narrative Review |
| - | Review, | AD, | NA |
| 2844- | FIS, | Fisetin, a dietary flavonoid induces apoptosis via modulating the MAPK and PI3K/Akt signalling pathways in human osteosarcoma (U-2 OS) cells |
| - | in-vitro, | OS, | U2OS |
| 2825- | FIS, | Exploring the molecular targets of dietary flavonoid fisetin in cancer |
| - | Review, | Var, | NA |
| 2830- | FIS, | Biological effects and mechanisms of fisetin in cancer: a promising anti-cancer agent |
| - | Review, | Var, | NA |
| 1971- | GamB, | Gambogic acid triggers vacuolization-associated cell death in cancer cells via disruption of thiol proteostasis |
| - | in-vitro, | Nor, | MCF10 | - | in-vitro, | BC, | MDA-MB-435 | - | in-vitro, | BC, | MDA-MB-468 | - | in-vivo, | NA, | NA |
| 2060- | GamB, | Gambogenic acid induces apoptosis and autophagy through ROS-mediated endoplasmic reticulum stress via JNK pathway in prostate cancer cells |
| - | in-vitro, | Pca, | NA |
| 1958- | GamB, | Gambogenic acid induces apoptosis and autophagy through ROS-mediated endoplasmic reticulum stress via JNK pathway in prostate cancer cells |
| - | in-vitro, | Pca, | NA | - | in-vivo, | NA, | NA |
| 1005- | GI, | Ginger Constituent 6-Shogaol Inhibits Inflammation- and Angiogenesis-Related Cell Functions in Primary Human Endothelial Cells |
| - | vitro+vivo, | Nor, | HUVECs |
| 845- | Gra, | A Review on Annona muricata and Its Anticancer Activity |
| - | Review, | NA, | NA |
| 3774- | H2, | The role of hydrogen in Alzheimer’s disease |
| - | Review, | AD, | NA |
| 3766- | H2, | The role of hydrogen in Alzheimer′s disease |
| - | Review, | AD, | NA |
| 2864- | HNK, | Honokiol: A Review of Its Anticancer Potential and Mechanisms |
| - | Review, | Var, | NA |
| 601- | HTyr, | Dihydroxyphenylethanol induces apoptosis by activating serine/threonine protein phosphatase PP2A and promotes the endoplasmic reticulum stress response in human colon carcinoma cells |
| - | in-vivo, | NA, | HT-29 |
| 2919- | LT, | Luteolin as a potential therapeutic candidate for lung cancer: Emerging preclinical evidence |
| - | Review, | Var, | NA |
| 2923- | LT, | Luteolin induces apoptosis through endoplasmic reticulum stress and mitochondrial dysfunction in Neuro-2a mouse neuroblastoma cells |
| - | in-vitro, | NA, | NA |
| 2914- | LT, | Therapeutic Potential of Luteolin on Cancer |
| - | Review, | Var, | NA |
| 2906- | LT, | Luteolin, a flavonoid with potentials for cancer prevention and therapy |
| - | Review, | Var, | NA |
| 2911- | LT, | Luteolin targets MKK4 to attenuate particulate matter-induced MMP-1 and inflammation in human keratinocytes |
| - | in-vitro, | Nor, | HaCaT |
| 3278- | Lyco, | Anti-inflammatory effect of lycopene in SW480 human colorectal cancer cells |
| - | in-vitro, | Colon, | SW480 |
| 4228- | Lyco, | A review for the pharmacological effect of lycopene in central nervous system disorders |
| - | Review, | AD, | NA | - | Review, | Park, | NA |
| 4780- | Lyco, | Potential inhibitory effect of lycopene on prostate cancer |
| - | Review, | Pca, | NA |
| 1089- | MAG, | Magnolol potently suppressed lipopolysaccharide-induced iNOS and COX-2 expression via downregulating MAPK and NF-κB signaling pathways |
| - | in-vitro, | AML, | RAW264.7 |
| 4519- | MAG, | Magnolol: A Neolignan from the Magnolia Family for the Prevention and Treatment of Cancer |
| - | Review, | Var, | NA |
| 1782- | MEL, | Melatonin in Cancer Treatment: Current Knowledge and Future Opportunities |
| - | Review, | Var, | NA |
| 3457- | MF, | Cellular stress response to extremely low‐frequency electromagnetic fields (ELF‐EMF): An explanation for controversial effects of ELF‐EMF on apoptosis |
| - | Review, | Var, | NA |
| 486- | MF, | mTOR Activation by PI3K/Akt and ERK Signaling in Short ELF-EMF Exposed Human Keratinocytes |
| - | in-vitro, | Nor, | HaCaT |
| 204- | MFrot, | MF, | Rotating magnetic field improved cognitive and memory impairments in a sporadic ad model of mice by regulating microglial polarization |
| - | in-vivo, | AD, | NA |
| 218- | MFrot, | MF, | Extremely low frequency magnetic fields inhibit adipogenesis of human mesenchymal stem cells |
| - | in-vitro, | Nor, | NA |
| 1271- | NCL, | Niclosamide inhibits ovarian carcinoma growth by interrupting cellular bioenergetics |
| - | vitro+vivo, | Ovarian, | SKOV3 |
| 1986- | Part, | Modulation of Cell Surface Protein Free Thiols: A Potential Novel Mechanism of Action of the Sesquiterpene Lactone Parthenolide |
| - | in-vitro, | NA, | NA |
| 2062- | PB, | Sodium 4-phenylbutyrate induces apoptosis of human lung carcinoma cells through activating JNK pathway |
| - | in-vitro, | Lung, | H460 | - | in-vitro, | Lung, | H1792 | - | in-vitro, | Lung, | A549 | - | in-vitro, | Lung, | SK-LU-1 | - | in-vitro, | Nor, | HBE4-E6/E7 |
| 2028- | PB, | Potential of Phenylbutyrate as Adjuvant Chemotherapy: An Overview of Cellular and Molecular Anticancer Mechanisms |
| - | Review, | Var, | NA |
| 1661- | PBG, | Propolis: a natural compound with potential as an adjuvant in cancer therapy - a review of signaling pathways |
| - | Review, | Var, | NA |
| 1674- | PBG, | SDT, | HPT, | Study on the effect of a triple cancer treatment of propolis, thermal cycling-hyperthermia, and low-intensity ultrasound on PANC-1 cells |
| - | in-vitro, | PC, | PANC1 | - | in-vitro, | Nor, | H6c7 |
| 3249- | PBG, | Can Propolis Be a Useful Adjuvant in Brain and Neurological Disorders and Injuries? A Systematic Scoping Review of the Latest Experimental Evidence |
| - | Review, | Var, | NA |
| 4943- | PEITC, | Phenethyl isothiocyanate (PEITC) inhibits growth of ovarian cancer cells by inducing apoptosis: role of caspase and MAPK activation |
| - | in-vitro, | Ovarian, | OVCAR-3 |
| 1940- | PL, | Piperlongumine Inhibits Migration of Glioblastoma Cells via Activation of ROS-Dependent p38 and JNK Signaling Pathways |
| - | in-vitro, | GBM, | LN229 | - | in-vitro, | GBM, | U87MG |
| 2950- | PL, | Overview of piperlongumine analogues and their therapeutic potential |
| - | Review, | Var, | NA |
| 2949- | PL, | Piperlongumine selectively kills glioblastoma multiforme cells via reactive oxygen species accumulation dependent JNK and p38 activation |
| - | in-vitro, | GBM, | LN229 | - | in-vitro, | GBM, | U87MG |
| 2944- | PL, | Piperlongumine, a Potent Anticancer Phytotherapeutic, Induces Cell Cycle Arrest and Apoptosis In Vitro and In Vivo through the ROS/Akt Pathway in Human Thyroid Cancer Cells |
| - | in-vitro, | Thyroid, | IHH4 | - | in-vitro, | Thyroid, | 8505C | - | in-vivo, | NA, | NA |
| 2005- | Plum, | Plumbagin induces apoptosis in lymphoma cells via oxidative stress mediated glutathionylation and inhibition of mitogen-activated protein kinase phosphatases (MKP1/2) |
| - | in-vivo, | Nor, | EL4 | - | in-vitro, | AML, | Jurkat |
| 3919- | PTS, | Low-dose pterostilbene, but not resveratrol, is a potent neuromodulator in aging and Alzheimer's disease |
| - | in-vivo, | AD, | NA |
| 3372- | QC, | FIS, | KaempF, | Anticancer Potential of Selected Flavonols: Fisetin, Kaempferol, and Quercetin on Head and Neck Cancers |
| - | Review, | HNSCC, | NA |
| 3366- | QC, | Quercetin Attenuates Endoplasmic Reticulum Stress and Apoptosis in TNBS-Induced Colitis by Inhibiting the Glucose Regulatory Protein 78 Activation |
| - | in-vivo, | IBD, | NA |
| 3337- | QC, | Endoplasmic Reticulum Stress-Relieving Effect of Quercetin in Thapsigargin-Treated Hepatocytes |
| - | in-vitro, | NA, | HepG2 |
| 3077- | RES, | Resveratrol attenuates matrix metalloproteinase-9 and -2-regulated differentiation of HTB94 chondrosarcoma cells through the p38 kinase and JNK pathways |
| - | in-vitro, | Chon, | HTB94 |
| 3079- | RES, | Therapeutic role of resveratrol against hepatocellular carcinoma: A review on its molecular mechanisms of action |
| - | Review, | Var, | NA |
| 1744- | RosA, | Therapeutic Applications of Rosmarinic Acid in Cancer-Chemotherapy-Associated Resistance and Toxicity |
| - | Review, | Var, | NA |
| 3023- | RosA, | Rosmarinic acid alleviates septic acute respiratory distress syndrome in mice by suppressing the bronchial epithelial RAS-mediated ferroptosis |
| - | in-vivo, | Sepsis, | NA |
| 3021- | RosA, | Rosmarinic acid ameliorates septic-associated mortality and lung injury in mice via GRP78/IRE1α/JNK pathway |
| - | in-vivo, | Sepsis, | NA |
| - | in-vitro, | Lung, | A549 |
| 3001- | RosA, | Therapeutic Potential of Rosmarinic Acid: A Comprehensive Review |
| - | Review, | Var, | NA |
| 5003- | Sal, | Salinomycin, as an autophagy modulator-- a new avenue to anticancer: a review |
| - | Review, | Var, | NA |
| 3301- | SIL, | Critical review of therapeutic potential of silymarin in cancer: A bioactive polyphenolic flavonoid |
| - | Review, | Var, | NA |
| 3304- | SIL, | Silymarin induces inhibition of growth and apoptosis through modulation of the MAPK signaling pathway in AGS human gastric cancer cells |
| - | in-vitro, | GC, | AGS | - | in-vivo, | NA, | NA |
| 3305- | SIL, | Silymarin inhibits proliferation of human breast cancer cells via regulation of the MAPK signaling pathway and induction of apoptosis |
| - | in-vitro, | BC, | MDA-MB-231 | - | in-vitro, | BC, | MCF-7 | - | in-vivo, | NA, | NA |
| 3315- | SIL, | Silymarin alleviates docetaxel-induced central and peripheral neurotoxicity by reducing oxidative stress, inflammation and apoptosis in rats |
| - | in-vivo, | Nor, | NA |
| 3296- | SIL, | Silibinin induces oral cancer cell apoptosis and reactive oxygen species generation by activating the JNK/c-Jun pathway |
| - | in-vitro, | Oral, | Ca9-22 | - | in-vivo, | Oral, | YD10B |
| 3293- | SIL, | Silymarin (milk thistle extract) as a therapeutic agent in gastrointestinal cancer |
| - | Review, | Var, | NA |
| 3319- | SIL, | Silymarin and neurodegenerative diseases: Therapeutic potential and basic molecular mechanisms |
| - | Review, | AD, | NA | - | Review, | Park, | NA | - | Review, | Stroke, | NA |
| 2355- | SK, | Pharmacological properties and derivatives of shikonin-A review in recent years |
| - | Review, | Var, | NA |
| 2231- | SK, | Shikonin Exerts Cytotoxic Effects in Human Colon Cancers by Inducing Apoptotic Cell Death via the Endoplasmic Reticulum and Mitochondria-Mediated Pathways |
| - | in-vitro, | CRC, | SNU-407 |
| 2228- | SK, | Shikonin induced Apoptosis Mediated by Endoplasmic Reticulum Stress in Colorectal Cancer Cells |
| - | in-vitro, | CRC, | HCT116 | - | in-vitro, | CRC, | HCT15 | - | in-vivo, | NA, | NA |
| 3042- | SK, | The protective effects of Shikonin on lipopolysaccharide/D -galactosamine-induced acute liver injury via inhibiting MAPK and NF-kB and activating Nrf2/HO-1 signaling pathways |
| - | in-vivo, | Nor, | NA |
| 2196- | SK, | Research progress in mechanism of anticancer action of shikonin targeting reactive oxygen species |
| - | Review, | Var, | NA |
| 1195- | SM, | Salvia miltiorrhiza polysaccharide activates T Lymphocytes of cancer patients through activation of TLRs mediated -MAPK and -NF-κB signaling pathways |
| - | in-vitro, | Lung, | A549 | - | in-vitro, | Liver, | HepG2 | - | in-vitro, | CRC, | HCT116 |
| 324- | SNP, | CPT, | Silver Nanoparticles Potentiates Cytotoxicity and Apoptotic Potential of Camptothecin in Human Cervical Cancer Cells |
| - | in-vitro, | Cerv, | HeLa |
| 363- | SNP, | Silver nanoparticles induce oxidative cell damage in human liver cells through inhibition of reduced glutathione and induction of mitochondria-involved apoptosis |
| 369- | SNP, | Silver nanoparticles induce oxidative cell damage in human liver cells through inhibition of reduced glutathione and induction of mitochondria-involved apoptosis |
| - | in-vitro, | Liver, | NA |
| 4561- | SNP, | VitC, | Cellular Effects Nanosilver on Cancer and Non-cancer Cells: Potential Environmental and Human Health Impacts |
| - | in-vitro, | CRC, | HCT116 | - | in-vitro, | Nor, | HEK293 |
| 4557- | SNP, | The apoptotic effect of nanosilver is mediated by a ROS- and JNK-dependent mechanism involving the mitochondrial pathway in NIH3T3 cells |
| - | in-vitro, | NA, | NIH-3T3 | - | in-vitro, | CRC, | HCT116 |
| 3559- | TQ, | Molecular signaling pathway targeted therapeutic potential of thymoquinone in Alzheimer’s disease |
| - | Review, | AD, | NA | - | Review, | Var, | NA |
| 3427- | TQ, | Chemopreventive and Anticancer Effects of Thymoquinone: Cellular and Molecular Targets |
| 3397- | TQ, | Thymoquinone: A Promising Therapeutic Agent for the Treatment of Colorectal Cancer |
| - | Review, | CRC, | NA |
| 3425- | TQ, | Advances in research on the relationship between thymoquinone and pancreatic cancer |
| 4173- | TQ, | Thymoquinone Can Improve Neuronal Survival and Promote Neurogenesis in Rat Hippocampal Neurons |
| - | in-vivo, | NA, | NA |
| 2121- | TQ, | Thymoquinone Inhibits Tumor Growth and Induces Apoptosis in a Breast Cancer Xenograft Mouse Model: The Role of p38 MAPK and ROS |
| - | in-vitro, | BC, | MCF-7 | - | in-vitro, | BC, | MDA-MB-231 |
| 2411- | UA, | Ursolic acid in health and disease |
| - | Review, | Var, | NA |
| 3107- | VitC, | Repurposing Vitamin C for Cancer Treatment: Focus on Targeting the Tumor Microenvironment |
| - | Review, | Var, | NA |
| 2279- | VitK2, | Vitamin K2 Induces Mitochondria-Related Apoptosis in Human Bladder Cancer Cells via ROS and JNK/p38 MAPK Signal Pathways |
| - | in-vitro, | Bladder, | T24 | - | in-vitro, | Bladder, | J82 | - | in-vitro, | Nor, | HEK293 | - | in-vitro, | Nor, | L02 | - | in-vivo, | NA, | NA |
| 1818- | VitK2, | New insights on vitamin K biology with relevance to cancer |
| - | Review, | Var, | NA |
Query results interpretion may depend on "conditions" listed in the research papers. Such Conditions may include : -low or high Dose -format for product, such as nano of lipid formations -different cell line effects -synergies with other products -if effect was for normal or cancerous cells
Filter Conditions: Pro/AntiFlg:% IllCat:% CanType:% Cells:% prod#:% Target#:168 State#:% Dir#:%
wNotes=0 sortOrder:rid,rpid