| Source: |
| Type: |
| LDHA is a key enzyme that catalyzes the conversion of pyruvate into lactate while regenerating NAD+, essential for glycolysis. Elevated levels of LDHA have been associated with increased tumor growth and survival. By promoting lactate production, cancer cells can create an acidic microenvironment that may facilitate invasion and metastasis. Is often upregulated in various types of cancer, including breast, lung, colorectal, and prostate cancers. This upregulation is associated with the metabolic shift that cancer cells undergo to support rapid growth and proliferation. Measuring the lactate dehydrogenase (LDH) is a useful method for detection of necrosis. |
| 2325- | 2DG, | Research Progress of Warburg Effect in Hepatocellular Carcinoma |
| - | Review, | Var, | NA |
| - | in-vitro, | CRC, | NA |
| 3434- | ALA, | Alpha lipoic acid modulates metabolic reprogramming in breast cancer stem cells enriched 3D spheroids by targeting phosphoinositide 3-kinase: In silico and in vitro insights |
| - | in-vitro, | BC, | MCF-7 | - | in-vitro, | BC, | MDA-MB-231 |
| 3454- | ALA, | Lipoic acid blocks autophagic flux and impairs cellular bioenergetics in breast cancer and reduces stemness |
| - | in-vitro, | BC, | MCF-7 | - | in-vitro, | BC, | MDA-MB-231 |
| 938- | Api, | doxoR, | Apigenin and hesperidin augment the toxic effect of doxorubicin against HepG2 cells |
| - | vitro+vivo, | HCC, | HepG2 |
| 2320- | ART/DHA, | Dihydroartemisinin Inhibits the Proliferation of Leukemia Cells K562 by Suppressing PKM2 and GLUT1 Mediated Aerobic Glycolysis |
| - | in-vitro, | AML, | K562 | - | in-vitro, | Liver, | HepG2 |
| 2322- | ART/DHA, | Dihydroartemisinin Regulates Self-Renewal of Human Melanoma-Initiating Cells by Targeting PKM2/LDHARelated Glycolysis |
| - | in-vitro, | Melanoma, | NA |
| 3160- | Ash, | Withaferin A: A Pleiotropic Anticancer Agent from the Indian Medicinal Plant Withania somnifera (L.) Dunal |
| - | Review, | Var, | NA |
| 2620- | Ba, | Natural compounds targeting glycolysis as promising therapeutics for gastric cancer: A review |
| - | Review, | GC, | NA |
| 2617- | Ba, | Potential of baicalein in the prevention and treatment of cancer: A scientometric analyses based review |
| - | Review, | Var, | NA |
| 2616- | Ba, | The Role of HK2 in Tumorigenesis and Development: Potential for Targeted Therapy with Natural Products |
| - | Review, | Var, | NA |
| 2295- | Ba, | 5-FU, | Baicalein reverses hypoxia-induced 5-FU resistance in gastric cancer AGS cells through suppression of glycolysis and the PTEN/Akt/HIF-1α signaling pathway |
| - | in-vitro, | GC, | AGS |
| 2291- | Ba, | BA, | Baicalein and Baicalin Promote Melanoma Apoptosis and Senescence via Metabolic Inhibition |
| - | in-vitro, | Melanoma, | SK-MEL-28 | - | in-vitro, | Melanoma, | A375 |
| 2298- | Ba, | Flavonoids Targeting HIF-1: Implications on Cancer Metabolism |
| - | Review, | Var, | NA |
| 2389- | BA, | Baicalin alleviates lipid accumulation in adipocytes via inducing metabolic reprogramming and targeting Adenosine A1 receptor |
| - | in-vitro, | Obesity, | 3T3 |
| 2708- | BBR, | Berberine decelerates glucose metabolism via suppression of mTOR‑dependent HIF‑1α protein synthesis in colon cancer cells |
| - | in-vitro, | CRC, | HCT116 |
| 2709- | BBR, | Berberine inhibits the glycolysis and proliferation of hepatocellular carcinoma cells by down-regulating HIF-1α |
| - | in-vitro, | HCC, | HepG2 |
| 940- | BBR, | Functional inhibition of lactate dehydrogenase suppresses pancreatic adenocarcinoma progression |
| - | vitro+vivo, | PC, | PANC1 | - | in-vivo, | PC, | MIA PaCa-2 |
| 943- | BetA, | Betulinic acid suppresses breast cancer aerobic glycolysis via caveolin-1/NF-κB/c-Myc pathway |
| - | in-vitro, | BC, | MCF-7 | - | in-vitro, | BC, | MDA-MB-231 | - | in-vivo, | NA, | NA |
| 2738- | BetA, | Betulinic Acid Suppresses Breast Cancer Metastasis by Targeting GRP78-Mediated Glycolysis and ER Stress Apoptotic Pathway |
| - | in-vitro, | BC, | MDA-MB-231 | - | in-vitro, | BC, | BT549 | - | in-vivo, | NA, | NA |
| 2347- | CAP, | Capsaicin ameliorates inflammation in a TRPV1-independent mechanism by inhibiting PKM2-LDHA-mediated Warburg effect in sepsis |
| - | in-vivo, | Nor, | NA | - | in-vitro, | Nor, | RAW264.7 |
| 2394- | CAP, | Capsaicin acts as a novel NRF2 agonist to suppress ethanol induced gastric mucosa oxidative damage by directly disrupting the KEAP1-NRF2 interaction |
| - | in-vitro, | Nor, | GES-1 |
| 939- | Catechins, | 5-FU, | Targeting Lactate Dehydrogenase A with Catechin Resensitizes SNU620/5FU Gastric Cancer Cells to 5-Fluorouracil |
| - | vitro+vivo, | GC, | SNU620 |
| 2398- | CGA, | Polyphenol-rich diet mediates interplay between macrophage-neutrophil and gut microbiota to alleviate intestinal inflammation |
| - | in-vivo, | Col, | NA |
| 2308- | CUR, | Counteracting Action of Curcumin on High Glucose-Induced Chemoresistance in Hepatic Carcinoma Cells |
| - | in-vitro, | Liver, | HepG2 |
| 933- | CUR, | EP, | Effective electrochemotherapy with curcumin in MDA-MB-231-human, triple negative breast cancer cells: A global proteomics study |
| - | in-vitro, | BC, | NA |
| 466- | CUR, | Curcumin circumvent lactate-induced chemoresistance in hepatic cancer cells through modulation of hydroxycarboxylic acid receptor-1 |
| - | in-vitro, | Liver, | HepG2 | - | in-vitro, | Liver, | HuT78 |
| 937- | EGCG, | Metabolic Consequences of LDHA inhibition by Epigallocatechin Gallate and Oxamate in MIA PaCa-2 Pancreatic Cancer Cells |
| - | in-vitro, | Pca, | MIA PaCa-2 |
| 936- | EGCG, | Bioactivity-Guided Identification and Cell Signaling Technology to Delineate the Lactate Dehydrogenase A Inhibition Effects of Spatholobus suberectus on Breast Cancer |
| - | in-vitro, | BC, | MCF-7 | - | in-vitro, | BC, | MDA-MB-231 |
| 681- | EGCG, | Suppressing glucose metabolism with epigallocatechin-3-gallate (EGCG) reduces breast cancer cell growth in preclinical models |
| - | vitro+vivo, | BC, | NA |
| 2309- | EGCG, | Chemo, | Targeting Glycolysis with Epigallocatechin-3-Gallate Enhances the Efficacy of Chemotherapeutics in Pancreatic Cancer Cells and Xenografts |
| - | in-vitro, | PC, | MIA PaCa-2 | - | in-vitro, | Nor, | HPNE | - | in-vitro, | PC, | PANC1 | - | in-vivo, | NA, | NA |
| 2302- | EGCG, | Flavonoids Targeting HIF-1: Implications on Cancer Metabolism |
| - | Review, | Var, | NA |
| 2422- | EMD, | Anti-Cancer Effects of Emodin on HepG2 Cells as Revealed by 1H NMR Based Metabolic Profiling |
| - | in-vitro, | HCC, | HepG2 |
| 845- | Gra, | A Review on Annona muricata and Its Anticancer Activity |
| - | Review, | NA, | NA |
| 836- | Gra, | Graviola: A Novel Promising Natural-Derived Drug That Inhibits Tumorigenicity and Metastasis of Pancreatic Cancer Cells In Vitro and In Vivo Through Altering Cell Metabolism |
| - | vitro+vivo, | PC, | NA |
| 2438- | Gra, | Emerging therapeutic potential of graviola and its constituents in cancers |
| - | Review, | Var, | NA |
| 1232- | Gra, | Graviola: A Systematic Review on Its Anticancer Properties |
| - | Review, | NA, | NA |
| 960- | HNK, | Honokiol Inhibits HIF-1α-Mediated Glycolysis to Halt Breast Cancer Growth |
| - | vitro+vivo, | BC, | MCF-7 | - | vitro+vivo, | BC, | MDA-MB-231 |
| 2178- | itraC, | Itraconazole inhibits tumor growth via CEBPB-mediated glycolysis in colorectal cancer |
| - | in-vivo, | CRC, | HCT116 |
| 2351- | lamb, | Anti-Warburg effect via generation of ROS and inhibition of PKM2/β-catenin mediates apoptosis of lambertianic acid in prostate cancer cells |
| - | in-vitro, | Pca, | DU145 | - | in-vitro, | Pca, | PC3 |
| 2912- | LT, | Luteolin: a flavonoid with a multifaceted anticancer potential |
| - | Review, | Var, | NA |
| 995- | MEL, | Melatonin Treatment Triggers Metabolic and Intracellular pH Imbalance in Glioblastoma |
| - | vitro+vivo, | GBM, | NA |
| 2384- | MET, | Integration of metabolomics and transcriptomics reveals metformin suppresses thyroid cancer progression via inhibiting glycolysis and restraining DNA replication |
| - | in-vitro, | Thyroid, | BCPAP | - | in-vivo, | NA, | NA | - | in-vitro, | Thyroid, | TPC-1 |
| 946- | Nimb, | Nimbolide retards T cell lymphoma progression by altering apoptosis, glucose metabolism, pH regulation, and ROS homeostasis |
| - | in-vivo, | NA, | NA |
| 991- | OA, | Blockade of glycolysis-dependent contraction by oroxylin a via inhibition of lactate dehydrogenase-a in hepatic stellate cells |
| - | in-vivo, | NA, | NA | - | in-vivo, | Nor, | NA |
| 2421- | PB, | Sodium butyrate inhibits aerobic glycolysis of hepatocellular carcinoma cells via the c‐myc/hexokinase 2 pathway |
| - | in-vitro, | HCC, | HCCLM3 | - | in-vivo, | NA, | NA | - | in-vitro, | HCC, | Bel-7402 | - | in-vitro, | HCC, | SMMC-7721 cell | - | in-vitro, | Nor, | L02 |
| - | in-vitro, | HCC, | HepG2 |
| 2381- | PBG, | Chinese Poplar Propolis Inhibits MDA-MB-231 Cell Proliferation in an Inflammatory Microenvironment by Targeting Enzymes of the Glycolytic Pathway |
| - | in-vitro, | BC, | MDA-MB-231 |
| 2380- | PBG, | Potential Strategies for Overcoming Drug Resistance Pathways Using Propolis and Its Polyphenolic/Flavonoid Compounds in Combination with Chemotherapy and Radiotherapy |
| - | Review, | Var, | NA |
| 1664- | PBG, | Anticancer Activity of Propolis and Its Compounds |
| - | Review, | Var, | NA |
| 1661- | PBG, | Propolis: a natural compound with potential as an adjuvant in cancer therapy - a review of signaling pathways |
| - | Review, | Var, | NA |
| 1231- | PBG, | Caffeic acid phenethyl ester inhibits MDA-MB-231 cell proliferation in inflammatory microenvironment by suppressing glycolysis and lipid metabolism |
| - | in-vitro, | BC, | MDA-MB-231 |
| 2431- | QC, | The Protective Effect of Quercetin against the Cytotoxicity Induced by Fumonisin B1 in Sertoli Cells |
| - | in-vitro, | Nor, | TM4 |
| 2343- | QC, | Pharmacological Activity of Quercetin: An Updated Review |
| - | Review, | Nor, | NA |
| 2341- | QC, | Quercetin suppresses the mobility of breast cancer by suppressing glycolysis through Akt-mTOR pathway mediated autophagy induction |
| - | in-vitro, | BC, | MCF-7 | - | in-vitro, | BC, | MDA-MB-231 | - | in-vivo, | NA, | NA |
| 2340- | QC, | Oral Squamous Cell Carcinoma Cells with Acquired Resistance to Erlotinib Are Sensitive to Anti-Cancer Effect of Quercetin via Pyruvate Kinase M2 (PKM2) |
| - | in-vitro, | OS, | NA |
| 2331- | RES, | Resveratrol improves follicular development of PCOS rats via regulating glycolysis pathway and targeting SIRT1 |
| - | in-vivo, | Nor, | NA |
| 2333- | RES, | Resveratrol regulates insulin resistance to improve the glycolytic pathway by activating SIRT2 in PCOS granulosa cells |
| - | in-vitro, | Nor, | NA |
| 3026- | RosA, | Modulatory Effect of Rosmarinic Acid on H2O2-Induced Adaptive Glycolytic Response in Dermal Fibroblasts |
| - | in-vitro, | Nor, | NA |
| 2403- | SFN, | Reversal of the Warburg phenomenon in chemoprevention of prostate cancer by sulforaphane |
| - | in-vitro, | Pca, | LNCaP | - | in-vitro, | Pca, | 22Rv1 | - | in-vitro, | Pca, | PC3 | - | in-vivo, | NA, | NA |
| 2404- | SFN, | Prostate cancer chemoprevention by sulforaphane in a preclinical mouse model is associated with inhibition of fatty acid metabolism |
| - | in-vitro, | Pca, | LNCaP | - | in-vitro, | Pca, | 22Rv1 | - | in-vivo, | NA, | NA |
| 2406- | SFN, | Sulforaphane and Its Protective Role in Prostate Cancer: A Mechanistic Approach |
| - | Review, | Pca, | NA |
| 1140- | SIL, | Silibinin-mediated metabolic reprogramming attenuates pancreatic cancer-induced cachexia and tumor growth |
| - | in-vitro, | PC, | AsPC-1 | - | in-vivo, | PC, | NA | - | in-vitro, | PC, | MIA PaCa-2 | - | in-vitro, | PC, | PANC1 | - | in-vitro, | PC, | Bxpc-3 |
| 1001- | SIL, | Silibinin down-regulates PD-L1 expression in nasopharyngeal carcinoma by interfering with tumor cell glycolytic metabolism |
| - | in-vitro, | NA, | NA |
| 2417- | SK, | Shikonin inhibits the Warburg effect, cell proliferation, invasion and migration by downregulating PFKFB2 expression in lung cancer |
| - | in-vitro, | Lung, | A549 | - | in-vitro, | Lung, | H446 |
| 2125- | TQ, | Thymoquinone Selectively Kills Hypoxic Renal Cancer Cells by Suppressing HIF-1α-Mediated Glycolysis |
| - | in-vitro, | RCC, | RCC4 | - | in-vitro, | RCC, | Caki-1 |
| 942- | UA, | Ursolic Acid Inhibits Breast Cancer Metastasis by Suppressing Glycolytic Metabolism via Activating SP1/Caveolin-1 Signaling |
| - | vitro+vivo, | BC, | MCF-7 | - | in-vitro, | BC, | MDA-MB-231 |
| 3140- | VitC, | Vitamin-C-dependent downregulation of the citrate metabolism pathway potentiates pancreatic ductal adenocarcinoma growth arrest |
| - | in-vitro, | PC, | MIA PaCa-2 | - | in-vitro, | Nor, | HEK293 |
| 3145- | VitC, | Vitamin C inhibits the growth of colorectal cancer cell HCT116 and reverses the glucose‐induced oncogenic effect by downregulating the Warburg effect |
| - | in-vitro, | CRC, | HCT116 |
| 3143- | VitC, | ATO, | Vitamin C enhances the sensitivity of osteosarcoma to arsenic trioxide via inhibiting aerobic glycolysis |
| - | in-vitro, | OS, | NA |
| 3141- | VitC, | High-dose Vitamin C inhibits PD-L1 expression by activating AMPK in colorectal cancer |
| - | in-vitro, | CRC, | HCT116 |
| 2369- | VitD3, | Long Non-coding RNA MEG3 Activated by Vitamin D Suppresses Glycolysis in Colorectal Cancer via Promoting c-Myc Degradation |
| - | in-vitro, | CRC, | DLD1 | - | in-vitro, | CRC, | RKO |
| 2365- | VitD3, | Vitamin D Affects the Warburg Effect and Stemness Maintenance of Non- Small-Cell Lung Cancer Cells by Regulating the PI3K/AKT/mTOR Signaling Pathway |
| - | in-vitro, | Lung, | A549 | - | in-vitro, | Lung, | H1975 | - | in-vivo, | NA, | NA |
| 1214- | VitK2, | Vitamin K2 promotes PI3K/AKT/HIF-1α-mediated glycolysis that leads to AMPK-dependent autophagic cell death in bladder cancer cells |
| - | in-vitro, | Bladder, | T24 | - | in-vitro, | Bladder, | J82 |
| 2301- | Wog, | Flavonoids Targeting HIF-1: Implications on Cancer Metabolism |
| - | Review, | Var, | NA |
| 2397- | Wor, | Phytochemicals targeting glycolysis in colorectal cancer therapy: effects and mechanisms of action |
| - | Review, | Var, | NA |
| 2414- | β‐Ele, | Beta‐elemene inhibits breast cancer metastasis through blocking pyruvate kinase M2 dimerization and nuclear translocation |
| - | in-vitro, | BC, | MDA-MB-231 | - | in-vitro, | BC, | MCF-7 | - | in-vivo, | NA, | NA |
| 2425- | γ-Toc, | Anticancer Effects of γ-Tocotrienol Are Associated with a Suppression in Aerobic Glycolysis |
| - | in-vitro, | NA, | MCF-7 | - | in-vivo, | NA, | NA |
Query results interpretion may depend on "conditions" listed in the research papers. Such Conditions may include : -low or high Dose -format for product, such as nano of lipid formations -different cell line effects -synergies with other products -if effect was for normal or cancerous cells
Filter Conditions: Pro/AntiFlg:% IllCat:% CanType:% Cells:% prod#:% Target#:175 State#:% Dir#:%
wNotes=0 sortOrder:rid,rpid