Database Query Results : , , MMP

MMP, ΔΨm, mitochondrial membrane potential: Click to Expand ⟱
Source:
Type:
Destruction of mitochondrial transmembrane potential, which is widely regarded as one of the earliest events in the process of cell apoptosis.
Mitochondria are organelles within eukaryotic cells that produce adenosine triphosphate (ATP), the main energy molecule used by the cell. For this reason, the mitochondrion is sometimes referred to as “the powerhouse of the cell”.
Mitochondria produce ATP through process of cellular respiration—specifically, aerobic respiration, which requires oxygen. The citric acid cycle, or Krebs cycle, takes place in the mitochondria.
The mitochondrial membrane potential is widely used in assessing mitochondrial function as it relates to the mitochondrial capacity of ATP generation by oxidative phosphorylation. The mitochondrial membrane potential is a reliable indicator of mitochondrial health.
In cancer cells, ΔΨm is often decreased, which can lead to changes in cellular metabolism, increased glycolysis, increased reactive oxygen species (ROS) production, and altered cell death pathways.

The membrane of malignant mitochondria is hyperpolarized (−220 mV) in comparison to their healthy counterparts (−160 mV), which facilitates the penetration of positively charged molecules to the cancer cells mitochondria.
The MMP is a critical indicator of mitochondrial function, directly reflecting the organelle's capacity to generate ATP through oxidative phosphorylation.


Scientific Papers found: Click to Expand⟱
2435- 2DG,    Targeting hexokinase 2 for oral cancer therapy: structure-based design and validation of lead compounds
- in-vitro, SCC, CAL27
MMP↓, HK2↓,
233- AL,  5-FU,    Allicin sensitizes hepatocellular cancer cells to anti-tumor activity of 5-fluorouracil through ROS-mediated mitochondrial pathway
- in-vivo, Liver, NA
ROS↑, MMP↓, Casp3↑, PARP↑, Bcl-2↓,
234- AL,    Allicin Induces Anti-human Liver Cancer Cells through the p53 Gene Modulating Apoptosis and Autophagy
- in-vitro, HCC, Hep3B
ROS↑, *toxicity∅, MMP↓, BAX↑, Bcl-2↓, AIF↑, Casp3↑, Casp8↑, Casp9↑, eff↓, γH2AX↑, selectivity↑, DNA-PK↑,
250- AL,    Allicin Induces p53-Mediated Autophagy in Hep G2 Human Liver Cancer Cells
- in-vitro, Liver, HepG2
P53↓, PI3K↓, mTOR↓, Bcl-2↓, AMPK↑, TSC2↑, Beclin-1↑, TumAuto↑, tumCV↓, ATG7↑, MMP↓,
254- AL,    Allicin and Cancer Hallmarks
- Review, Var, NA
NRF2⇅, BAX↑, Bcl-2↓, Fas↑, MMP↓, Bax:Bcl2↑, Cyt‑c↑, Casp3↑, Casp12↑, GSH↓, TumCCA↑, ROS↑, antiOx↓,
2000- AL,    Exploring the ROS-mediated anti-cancer potential in human triple-negative breast cancer by garlic bulb extract: A source of therapeutically active compounds
- in-vitro, BC, MDA-MB-231 - in-vitro, BC, MCF-7 - in-vitro, Nor, NA
selectivity↑, TumCG?, *toxicity∅, ROS↑, MMP↓, TumCCA↑, P53↑, Bcl-2↓, p‑Akt↓, p‑p38↓, *ROS∅,
2655- AL,    Allicin and Digestive System Cancers: From Chemical Structure to Its Therapeutic Opportunities
- Review, GC, NA
TGF-β↓, cycD1/CCND1↓, cycE/CCNE↓, CDK1↓, DNAdam↑, ROS↑, BAX↑, JNK↑, MMP↓, p38↑, MAPK↑, Fas↑, Cyt‑c↑, Casp8↑, PARP↑, Casp3↑, Casp9↑, Ca+2↑, ER Stress↑, P21↑, CDK2↓, CDK6↑, TumCCA↑, CDK4↓,
2656- AL,    Allicin Protects PC12 Cells Against 6-OHDA-Induced Oxidative Stress and Mitochondrial Dysfunction via Regulating Mitochondrial Dynamics
- in-vitro, Park, PC12
*antiOx↑, *Apoptosis↓, *LDH↓, ROS↓, *lipid-P↓, *mtDam↓, *MMP↓, *Cyt‑c↓, *ATP∅, *Ca+2↝, *neuroP↑,
282- ALA,    Alpha-lipoic acid induced apoptosis of PC3 prostate cancer cells through an alteration on mitochondrial membrane depolarization and MMP-9 mRNA expression
- in-vitro, Pca, PC3
MMP↓, Casp↑, MMP9↓,
3447- ALA,    Redox Active α-Lipoic Acid Differentially Improves Mitochondrial Dysfunction in a Cellular Model of Alzheimer and Its Control Cells
- in-vitro, AD, SH-SY5Y
*ATP↑, *MMP↑, *ROS↓, *GlucoseCon↑, *GSH↑, *neuroP↑, *cognitive↑, *Ach↑, *Inflam↓, *Aβ↓, OXPHOS↓,
3448- ALA,    Alpha lipoic acid attenuates hypoxia-induced apoptosis, inflammation and mitochondrial oxidative stress via inhibition of TRPA1 channel in human glioblastoma cell line
*Inflam↓, *ROS↓, *GSH↑, *GPx↑, *Casp3↓, *Casp9↓, *MMP↑,
3454- ALA,    Lipoic acid blocks autophagic flux and impairs cellular bioenergetics in breast cancer and reduces stemness
- in-vitro, BC, MCF-7 - in-vitro, BC, MDA-MB-231
TumCG↑, Glycolysis↓, ROS↑, CSCs↓, selectivity↑, LC3B-II↑, MMP↓, mitResp↓, ATP↓, OCR↓, NAD↓, p‑AMPK↑, GlucoseCon↓, lactateProd↓, HK2↓, PFK↓, LDHA↓, eff↓, mTOR↓, ECAR↓, ALDH↓, CD44↓, CD24↓,
3541- ALA,    Insights on alpha lipoic and dihydrolipoic acids as promising scavengers of oxidative stress and possible chelators in mercury toxicology
- Review, Var, NA
*antiOx↑, *IronCh↑, *GSH↑, *BBB↑, Apoptosis↑, MMP↓, ROS↑, lipid-P↑, PARP1↑, Casp3↑, Casp9↑, *NRF2↑, *GSH↑, *ROS↓, RenoP↑, ChemoSen↑, *BG↓,
1253- aLinA,    The Antitumor Effects of α-Linolenic Acid
- Review, NA, NA
PPARγ↑, COX2↓, E6↓, E7↓, P53↑, p‑ERK↓, p38↓, lipid-P↑, ROS⇅, MPT↑, MMP↓, Cyt‑c↑, Casp↑, iNOS↓, NO↓, Casp3↑, Bcl-2↓, Hif1a↓, FASN↓, CRP↓, IL6↓, IL1β↓, IFN-γ↓, TNF-α↓, Twist↓, VEGF↓, MMP2↓, MMP9↓,
1349- And,    Andrographolide promoted ferroptosis to repress the development of non-small cell lung cancer through activation of the mitochondrial dysfunction
- in-vitro, Lung, H460 - in-vitro, Lung, H1650
TumCG↓, TumMeta↓, Ferroptosis↑, ROS↑, MDA↑, Iron↑, GSH↓, GPx4↓, xCT↓, MMP↓, ATP↓,
586- Api,  5-FU,    5-Fluorouracil combined with apigenin enhances anticancer activity through mitochondrial membrane potential (ΔΨm)-mediated apoptosis in hepatocellular carcinoma
- in-vivo, HCC, NA
ROS↑, MMP↓, Bcl-2↓, Casp3↑, PARP↑,
175- Api,    Apigenin up-regulates transgelin and inhibits invasion and migration of colorectal cancer through decreased phosphorylation of AKT
- vitro+vivo, CRC, SW480 - vitro+vivo, CRC, DLD1 - vitro+vivo, CRC, LS174T
MMP↓, p‑Akt↓,
1536- Api,    Apigenin causes necroptosis by inducing ROS accumulation, mitochondrial dysfunction, and ATP depletion in malignant mesothelioma cells
- in-vitro, MM, MSTO-211H - in-vitro, MM, H2452
tumCV↓, ROS↑, MMP↓, ATP↓, Apoptosis↑, Necroptosis↑, DNAdam↑, TumCCA↑, Casp3↑, cl‑PARP↑, MLKL↑, p‑RIP3↑, Bax:Bcl2↑, eff↓, eff↓,
1564- Api,    Apigenin-induced prostate cancer cell death is initiated by reactive oxygen species and p53 activation
- in-vitro, Pca, 22Rv1 - in-vivo, NA, NA
MDM2↓, NF-kB↓, p65↓, P21↑, ROS↑, GSH↓, MMP↓, Cyt‑c↑, Apoptosis↑, P53↑, eff↓, Bcl-xL↓, Bcl-2↓, BAX↑, Casp↑, TumCG↓, TumVol↓, TumW↓,
1547- Api,    Apigenin: Molecular Mechanisms and Therapeutic Potential against Cancer Spreading
- Review, NA, NA
angioG↓, EMT↓, CSCs↓, TumCCA↑, Dose∅, ROS↑, MMP↓, Catalase↓, GSH↓, PI3K↓, Akt↓, NF-kB↓, OCT4↓, Nanog↓, SIRT3↓, SIRT6↓, eff↑, eff↑, Cyt‑c↑, Bax:Bcl2↑, p‑GSK‐3β↓, FOXO3↑, p‑STAT3↓, MMP2↓, MMP9↓, COX2↓, MMPs↓, NRF2↓, HDAC↓, Telomerase↓, eff↑, eff↑, eff↑, eff↑, eff↑, XIAP↓, survivin↓, CK2↓, HSP90↓, Hif1a↓, FAK↓, EMT↓,
1563- Api,  MET,    Metformin-induced ROS upregulation as amplified by apigenin causes profound anticancer activity while sparing normal cells
- in-vitro, Nor, HDFa - in-vitro, PC, AsPC-1 - in-vitro, PC, MIA PaCa-2 - in-vitro, Pca, DU145 - in-vitro, Pca, LNCaP - in-vivo, NA, NA
selectivity↑, selectivity↑, selectivity↓, ROS↑, eff↑, tumCV↓, MMP↓, Dose∅, eff↓, DNAdam↑, Apoptosis↑, TumAuto↑, Necroptosis↑, p‑P53↑, BIM↑, BAX↑, p‑PARP↑, Casp3↑, Casp8↑, Casp9↑, Cyt‑c↑, Bcl-2↓, AIF↑, p62↑, LC3B↑, MLKL↑, p‑MLKL↓, RIP3↑, p‑RIP3↑, TumCG↑, TumW↓,
2593- Api,    Apigenin promotes apoptosis of 4T1 cells through PI3K/AKT/Nrf2 pathway and improves tumor immune microenvironment in vivo
- in-vivo, BC, 4T1
TumCP↓, TumCMig↓, TumCI↓, Apoptosis↑, MMP↑, ROS↑, p‑PI3K↓, PI3K↓, Akt↓, NRF2↓, AntiTum↑, OS↑,
2632- Api,    Apigenin inhibits migration and induces apoptosis of human endometrial carcinoma Ishikawa cells via PI3K-AKT-GSK-3β pathway and endoplasmic reticulum stress
- in-vitro, EC, NA
TumCP↓, TumCCA↑, Apoptosis↑, Bcl-2↓, BAX↑, Bak↑, Casp↑, ER Stress↑, Ca+2↑, ATF4↑, CHOP↑, ROS↑, MMP↓, TumCMig↓, TumCI↓, eff↑, P53↑, P21↑, Cyt‑c↑, Casp9↑, Casp3↑, Bcl-xL↓,
2639- Api,    Plant flavone apigenin: An emerging anticancer agent
- Review, Var, NA
*antiOx↑, *Inflam↓, AntiCan↑, ChemoSen↑, BioEnh↑, chemoPv↑, IL6↓, STAT3↓, NF-kB↓, IL8↓, eff↝, Akt↓, PI3K↓, HER2/EBBR2↓, cycD1/CCND1↓, CycD3↓, p27↑, FOXO3↑, STAT3↓, MMP2↓, MMP9↓, VEGF↓, Twist↓, MMP↓, ROS↑, NADPH↑, NRF2↓, SOD↓, COX2↓, p38↑, Telomerase↓, HDAC↓, HDAC1↓, HDAC3↓, Hif1a↓, angioG↓, uPA↓, Ca+2↑, Bax:Bcl2↑, Cyt‑c↑, Casp9↑, Casp12↑, Casp3↑, cl‑PARP↑, E-cadherin↑, β-catenin/ZEB1↓, cMyc↓, CDK4↓, CDK2↓, CDK6↓, IGF-1↓, CK2↓, CSCs↓, FAK↓, Gli↓, GLUT1↓,
2634- Api,    Apigenin induces both intrinsic and extrinsic pathways of apoptosis in human colon carcinoma HCT-116 cells
- in-vitro, CRC, HCT116
TumCG↓, TumCCA↑, MMP↓, ROS↑, Ca+2↑, ER Stress↑, mtDam↑, CHOP↑, DR5↑, cl‑BID↑, BAX↑, Cyt‑c↑, cl‑Casp3↑, cl‑Casp8↑, cl‑Casp9↑, Apoptosis↑,
2633- Api,    Apigenin induces ROS-dependent apoptosis and ER stress in human endometriosis cells
- in-vitro, EC, NA
TumCP↓, TumCCA↑, MMP↓, Ca+2↑, BAX↑, Cyt‑c↑, ROS↑, lipid-P↑, ER Stress↑, UPR↑, p‑ERK↓, ERK↓, JNK↑,
2631- Api,    Apigenin Induces Autophagy and Cell Death by Targeting EZH2 under Hypoxia Conditions in Gastric Cancer Cells
- in-vivo, GC, NA - in-vitro, GC, AGS
ER Stress↑, Hif1a↓, EZH2↓, HDAC↓, TumAuto↑, p‑mTOR↓, AMPKα↑, GRP78/BiP↑, ROS↑, MMP↓, Ca+2↑, ATF4↑, CHOP↑,
1079- ART/DHA,    Artesunate inhibits the growth and induces apoptosis of human gastric cancer cells by downregulating COX-2
- in-vitro, GC, BGC-823 - in-vitro, GC, HGC27 - in-vitro, GC, MGC803
TumCP↓, Apoptosis↑, COX2↓, BAX↑, Bcl-2↓, Casp3↑, Casp9↑, MMP↓,
1367- Ash,    An anti-cancerous protein fraction from Withania somnifera induces ROS-dependent mitochondria-mediated apoptosis in human MDA-MB-231 breast cancer cells
- in-vitro, BC, MDA-MB-231
Apoptosis↑, ROS↑, Bax:Bcl2↑, MMP↓, Casp3↑, TumCCA↑,
1365- Ash,    Withaferin A Induces Oxidative Stress-Mediated Apoptosis and DNA Damage in Oral Cancer Cells
- in-vitro, Oral, Ca9-22 - in-vitro, Oral, CAL27
ROS↑, *toxicity↓, Apoptosis↑, TumCCA↑, MMP↓, p‑γH2AX↑, DNAdam↑, eff↓,
1364- Ash,    Withaferin a Triggers Apoptosis and DNA Damage in Bladder Cancer J82 Cells through Oxidative Stress
- in-vitro, Bladder, J82
cl‑Casp3↑, cl‑Casp8↑, cl‑Casp9↑, cl‑PARP↑, ROS↑, MMP↓, DNAdam↑, eff↓,
1359- Ash,    Withaferin A Induces ROS-Mediated Paraptosis in Human Breast Cancer Cell-Lines MCF-7 and MDA-MB-231
- in-vitro, BC, MCF-7 - in-vitro, BC, MDA-MB-231
MMP↓, Alix/AIP‑1↓, ROS↑, Paraptosis↑, ER Stress↝,
1356- Ash,    Withaferin A induces apoptosis by ROS-dependent mitochondrial dysfunction in human colorectal cancer cells
- in-vitro, CRC, HCT116
ROS↑, TumCCA↑, MMP↓, TumCG↓, Apoptosis↑, JNK↝,
1372- Ash,    Withaferin-A Induces Apoptosis in Osteosarcoma U2OS Cell Line via Generation of ROS and Disruption of Mitochondrial Membrane Potential
- in-vitro, OS, U2OS
Apoptosis↑, ROS↑, MMP↓, Casp3↑,
1371- Ash,    Reactive oxygen species generation and mitochondrial dysfunction in the apoptotic cell death of human myeloid leukemia HL-60 cells by a dietary compound withaferin A with concomitant protection by N-acetyl cysteine
- in-vitro, AML, HL-60
ROS↑, MMP↓, cl‑Casp3↑, cl‑Casp9↑, cl‑PARP↑, eff↓,
3160- Ash,    Withaferin A: A Pleiotropic Anticancer Agent from the Indian Medicinal Plant Withania somnifera (L.) Dunal
- Review, Var, NA
TumCCA↑, H3↑, P21↑, cycA1/CCNA1↓, CycB/CCNB1↓, cycE/CCNE↓, CDC2↓, CHK1↓, Chk2↓, p38↑, MAPK↑, E6↓, E7↓, P53↑, Akt↓, FOXO3↑, ROS↑, γH2AX↑, MMP↓, mitResp↓, eff↑, TumCD↑, Mcl-1↓, ER Stress↑, ATF4↑, ATF3↑, CHOP↑, NOTCH↓, NF-kB↓, Bcl-2↓, STAT3↓, CDK1↓, β-catenin/ZEB1↓, N-cadherin↓, EMT↓, Cyt‑c↑, eff↑, CDK4↓, p‑RB1↓, PARP↑, cl‑Casp3↑, cl‑Casp9↑, NRF2↑, ER-α36↓, LDHA↓, lipid-P↑, AP-1↓, COX2↓, RenoP↑, PDGFR-BB↓, SIRT3↑, MMP2↓, MMP9↓, NADPH↑, NQO1↑, GSR↑, HO-1↑, *SOD2↑, *Prx↑, *Casp3?, eff↑, Snail↓, Slug↓, Vim↓, CSCs↓, HEY1↓, MMPs↓, VEGF↓, uPA↓, *toxicity↓, CDK2↓, CDK4↓, HSP90↓,
3176- Ash,    Apoptosis is induced in leishmanial cells by a novel protein kinase inhibitor withaferin A and is facilitated by apoptotic topoisomerase I-DNA complex
- in-vitro, NA, NA
PKCδ↓, TOP1∅, ROS↑, GSH↓, DNAdam↑, MMP↓, Cyt‑c↑,
4813- ASTX,    Astaxanthin Prevents Oxidative Damage and Cell Apoptosis Under Oxidative Stress Involving the Restoration of Mitochondrial Function
- in-vitro, AD, NA
*antiOx↑, *Apoptosis↓, *AntiTum↑, *ROS↓, *MMP↑, *neuroP↑,
1288- Ba,    The Traditional Chinese Medicine Baicalein Potently Inhibits Gastric Cancer Cells
- in-vitro, GC, SGC-7901
TumCG↓, TumCCA↑, Apoptosis↑, MMP↓, Bcl-2↓, BAX↑,
1533- Ba,    Baicalein, as a Prooxidant, Triggers Mitochondrial Apoptosis in MCF-7 Human Breast Cancer Cells Through Mobilization of Intracellular Copper and Reactive Oxygen Species Generation
- in-vitro, BrCC, MCF-7 - in-vitro, Nor, MCF10
tumCV↓, i-ROS↑, MMP↓, Bcl-2↓, BAX↑, Cyt‑c↑, Casp9↑, Casp3↑, eff↓, selectivity↑, *toxicity∅, Apoptosis↑, Fenton↑,
1521- Ba,    Baicalein induces apoptosis via ROS-dependent activation of caspases in human bladder cancer 5637 cells
- in-vitro, Bladder, 5637
TumCG↓, Apoptosis↑, IAP1↓, IAP2↓, Casp3↑, Casp9↑, BAX↑, Bcl-2↓, MMP↓, Casp8↑, BID↑, ROS?, eff↓, DR4↑, DR5↑, FasL↑, TRAIL↑,
1524- Ba,    Baicalein Induces Caspase‐dependent Apoptosis Associated with the Generation of ROS and the Activation of AMPK in Human Lung Carcinoma A549 Cells
- in-vitro, Lung, A549
DR5↑, FADD↑, FasL↑, Casp8↑, cFLIP↓, Casp3↑, Casp9↑, cl‑PARP↑, MMP↓, BID↑, Cyt‑c↑, ROS↑, eff↓, AMPK↑, Apoptosis↑, TumCCA↑, DR5↑, FasL↑, DR4∅, cFLIP↓, FADD↑, MMPs↓,
1532- Ba,    Baicalein as Promising Anticancer Agent: A Comprehensive Analysis on Molecular Mechanisms and Therapeutic Perspectives
- Review, NA, NA
ROS↑, ER Stress↑, Ca+2↑, MMPs↓, Cyt‑c↑, Casp3↑, ROS↑, DR5↑, ROS↑, BAX↑, Bcl-2↓, MMP↓, Casp3↑, Casp9↑, P53↑, p16↑, P21↑, p27↑, HDAC10↑, MDM2↓, Apoptosis↑, PI3K↓, Akt↓, p‑Akt↓, p‑mTOR↓, NF-kB↓, p‑IκB↓, IκB↑, BAX↑, Bcl-2↓, ROS⇅, BNIP3↑, p38↑, 12LOX↓, Mcl-1↓, Wnt?, GLI2↓, AR↓, eff↑,
2047- BA,    Sodium butyrate inhibits migration and induces AMPK-mTOR pathway-dependent autophagy and ROS-mediated apoptosis via the miR-139-5p/Bmi-1 axis in human bladder cancer cells
- in-vitro, CRC, T24 - in-vitro, Nor, SV-HUC-1 - in-vitro, Bladder, 5637 - in-vivo, NA, NA
HDAC↓, AntiTum↑, TumCMig↓, AMPK↑, mTOR↑, TumAuto↑, ROS↑, miR-139-5p↑, BMI1↓, TumCI?, E-cadherin↑, N-cadherin↓, Vim↓, Snail↓, cl‑PARP↑, cl‑Casp3↑, BAX↑, Bcl-2↓, Bcl-xL↓, MMP↓, PINK1↑, PARK2↑, TumMeta↓, TumCG↓, LC3II↑, p62↓, eff↓,
2599- Ba,    Baicalein induces apoptosis and autophagy of breast cancer cells via inhibiting PI3K/AKT pathway in vivo and vitro
- in-vitro, BC, MCF-7 - in-vitro, BC, MDA-MB-231 - in-vivo, NA, NA
TumCP↓, Apoptosis↑, p‑Akt↓, p‑mTOR↓, NF-kB↓, p‑IKKα↓, IKKα↑, PI3K↓, MMP↓, TumAuto↑, TumVol↓, TumW↓,
2605- Ba,  BA,    Potential therapeutic effects of baicalin and baicalein
- Review, Var, NA - Review, Stroke, NA - Review, IBD, NA - Review, Arthritis, NA - Review, AD, NA - Review, Park, NA
cardioP↑, Inflam↓, cognitive↑, *hepatoP↑, *ROS?, *SOD↑, *GSH↑, *MMP↑, *GutMicro↑, ChemoSen↑, *TNF-α↓, *IL10↑, *IL6↓, *eff↑, *ROS↓, *COX2↓, *NF-kB↓, *STAT3↓, *PGE2↓, *MPO↓, *IL1β↓, *MMP2↓, *MMP9↓, *β-Amyloid↓, *neuroP↑, *Dose↝, *BioAv↝, *BioAv↝, *BBB↑, *BDNF↑,
2623- Ba,    Activation of the Nrf2/HO-1 signaling pathway contributes to the protective effects of baicalein against oxidative stress-induced DNA damage and apoptosis in HEI193 Schwann cells
- in-vitro, Nor, HEI193
*DNAdam↓, *ROS↓, *Bax:Bcl2↓, *p‑NRF2↑, *HO-1↑, *neuroP↑, *MMP↑,
2624- Ba,    Baicalein inhibition of hydrogen peroxide-induced apoptosis via ROS-dependent heme oxygenase 1 gene expression
- in-vitro, Nor, RAW264.7
*HO-1↑, *ERK↑, *ROS↓, *eff↑, *MMP↑, *Cyt‑c∅,
2617- Ba,    Potential of baicalein in the prevention and treatment of cancer: A scientometric analyses based review
- Review, Var, NA
Ca+2↑, MMP2↓, MMP9↓, Vim↓, Snail↓, E-cadherin↑, Wnt↓, β-catenin/ZEB1↓, p‑Akt↓, p‑mTOR↓, NF-kB↓, i-ROS↑, Bcl-2↓, BAX↑, Cyt‑c↑, Casp3↑, Casp9↑, STAT3↓, IL6↓, MMP2↓, MMP9↓, NOTCH↓, PPARγ↓, p‑NRF2↓, HK2↓, LDHA↓, PDK1↓, Glycolysis↓, PTEN↑, Akt↓, Hif1a↓, MMP↓, VEGF↓, VEGFR2↓, TOP2↓, uPA↓, TIMP1↓, TIMP2↓, cMyc↓, TrxR↓, ASK1↑, Vim↓, ZO-1↑, E-cadherin↑, SOX2↓, OCT4↓, Shh↓, Smo↓, Gli1↓, N-cadherin↓, XIAP↓,
2296- Ba,    The most recent progress of baicalein in its anti-neoplastic effects and mechanisms
- Review, Var, NA
CDK1↓, Cyc↓, p27↑, P21↑, P53↑, TumCCA↑, TumCI↓, MMP2↓, MMP9↓, E-cadherin↑, N-cadherin↓, Vim↓, LC3A↑, p62↓, p‑mTOR↓, PD-L1↓, CAFs/TAFs↓, VEGF↓, ROCK1↓, Bcl-2↓, Bcl-xL↓, BAX↑, ROS↑, cl‑PARP↑, Casp3↑, Casp9↑, PTEN↑, MMP↓, Cyt‑c↑, Ca+2↑, PERK↑, IRE1↑, CHOP↑, Copper↑, Snail↓, Vim↓, Twist↓, GSH↓, NRF2↓, HO-1↓, GPx4↓, XIAP↓, survivin↓, DR5↑,
2477- Ba,    Baicalein induces apoptosis via a mitochondrial-dependent caspase activation pathway in T24 bladder cancer cells
- in-vitro, CRC, T24
TumCG↓, TumCCA↑, MMP↓, Cyt‑c↑, Casp9↑, Casp3↑, p‑Akt↓, Bcl-2↓, BAX↑, Bax:Bcl2↑, 12LOX↓,
2476- Ba,    Baicalein Induces Caspase-dependent Apoptosis Associated with the Generation of ROS and the Activation of AMPK in Human Lung Carcinoma A549 Cells
- in-vitro, Lung, A549
TumCG↓, Apoptosis↑, DR5↑, FasL↑, FADD↑, Casp8↑, cFLIP↓, Casp9↑, Casp3↑, cl‑PARP↑, MMP↓, BID↑, BAX↑, Cyt‑c↑, ROS↑, eff↓, AMPK↑,
2023- BBR,    Berberine Induces Caspase-Independent Cell Death in Colon Tumor Cells through Activation of Apoptosis-Inducing Factor
- in-vitro, Colon, NA - in-vitro, Nor, YAMC
TumCD↑, *toxicity↓, selectivity↑, ROS↑, *ROS∅, MMP↓, *MMP∅, PARP↑, BioAv↝,
1394- BBR,  DL,    Synergistic Inhibitory Effect of Berberine and d-Limonene on Human Gastric Carcinoma Cell Line MGC803
- in-vitro, GC, MGC803
eff↑, ROS↑, MMP↓, Casp3↑, Bcl-2↓, TumCCA↑,
1395- BBR,    Analysis of the mechanism of berberine against stomach carcinoma based on network pharmacology and experimental validation
- in-vitro, GC, NA
Apoptosis↑, ROS↑, MMP↓, ATP↓, AMPK↑, TP53↑, p‑MAPK↓, p‑ERK↓,
1399- BBR,  Rad,    Radiotherapy Enhancing and Radioprotective Properties of Berberine: A Systematic Review
- Review, NA, NA
*ROS↓, *MDA↓, *TNF-α↓, *TGF-β↓, *IL10↑, ROS↑, DNAdam↑, mtDam↑, MMP↓, Apoptosis↑, TumCCA↑, Hif1a↓, VEGF↓, RadioS↑,
1402- BBR,    Berberine-induced apoptosis in human glioblastoma T98G cells is mediated by endoplasmic reticulum stress accompanying reactive oxygen species and mitochondrial dysfunction
- in-vitro, GBM, T98G
tumCV↓, ROS↑, Ca+2↑, ER Stress↑, eff↓, Bax:Bcl2↑, MMP↓, Casp9↑, Casp3↑, cl‑PARP↑,
1404- BBR,    Berberine-induced apoptosis in human prostate cancer cells is initiated by reactive oxygen species generation
- in-vitro, Pca, PC3
Apoptosis↑, *Apoptosis∅, MMP↓, cl‑Casp3↑, cl‑Casp9↑, cl‑PARP↑, ROS↑, eff↓, Cyt‑c↑,
1405- BBR,  Chit,    Chitosan/alginate nanogel potentiate berberine uptake and enhance oxidative stress mediated apoptotic cell death in HepG2 cells
- in-vitro, Liver, HepG2
*BioAv↑, ROS↑, MMP↓, TumCP↓,
1386- BBR,    Berberine-induced apoptosis in human breast cancer cells is mediated by reactive oxygen species generation and mitochondrial-related apoptotic pathway
- in-vitro, BC, MCF-7 - in-vitro, BC, MDA-MB-231
tumCV↓, ROS↑, JNK↑, MMP↓, Bcl-2↓, BAX↑, Cyt‑c↑, AIF↝,
1379- BBR,    Berberine derivative DCZ0358 induce oxidative damage by ROS-mediated JNK signaling in DLBCL cells
- in-vitro, lymphoma, NA
TumCP↓, CDK4↓, CDK6↓, cycD1/CCND1↓, TumCCA↑, MMP↓, Ca+2↑, ATP↓, mtDam↑, Apoptosis↑, ROS↑, JNK↑, eff↓,
1378- BBR,    Berberine induces non-small cell lung cancer apoptosis via the activation of the ROS/ASK1/JNK pathway
- in-vitro, Lung, NA
Apoptosis↑, Casp3↑, Cyt‑c↑, MMP↓, p‑JNK↑, eff↓,
1377- BBR,    Berberine inhibits autophagy and promotes apoptosis of fibroblast-like synovial cells from rheumatoid arthritis patients through the ROS/mTOR signaling pathway
- in-vitro, Arthritis, NA
Apoptosis↑, MMP↓, Bax:Bcl2↑, LC3‑Ⅱ/LC3‑Ⅰ↓, p62↑, *ROS↓,
2699- BBR,    Plant Isoquinoline Alkaloid Berberine Exhibits Chromatin Remodeling by Modulation of Histone Deacetylase To Induce Growth Arrest and Apoptosis in the A549 Cell Line
- in-vitro, Lung, A549
HDAC↓, TumCCA↑, TNF-α↓, COX2↓, MMP2↓, MMP9↓, P21↑, P53↑, Casp↑, ac‑H3↑, ac‑H4↑, ROS↑, MMP↓,
2674- BBR,    Berberine: A novel therapeutic strategy for cancer
- Review, Var, NA - Review, IBD, NA
Inflam↓, AntiCan↑, Apoptosis↑, TumAuto↑, TumCCA↑, TumMeta↓, TumCI↓, eff↑, eff↑, CD4+↓, TNF-α↓, IL1↓, BioAv↓, BioAv↓, other↓, AMPK↑, MAPK↓, NF-kB↓, IL6↓, MCP1↓, PGE2↓, COX2↓, *ROS↓, *antiOx↑, *GPx↑, *Catalase↑, AntiTum↑, TumCP↓, angioG↓, Fas↑, FasL↑, ROS↑, ATM↑, P53↑, RB1↑, Casp9↑, Casp8↑, Casp3↓, BAX↑, Bcl-2↓, Bcl-xL↓, IAP1↓, XIAP↓, survivin↓, MMP2↓, MMP9↓, CycB/CCNB1↓, CDC25↓, CDC25↓, Cyt‑c↑, MMP↓, RenoP↑, mTOR↓, MDM2↓, LC3II↑, ERK↓, COX2↓, MMP3↓, TGF-β↓, EMT↑, ROCK1↓, FAK↓, RAS↓, Rho↓, NF-kB↓, uPA↓, MMP1↓, MMP13↓, ChemoSen↑,
2686- BBR,    Effects of resveratrol, curcumin, berberine and other nutraceuticals on aging, cancer development, cancer stem cells and microRNAs
- Review, Nor, NA
Inflam↓, IL6↓, MCP1↓, COX2↓, PGE2↓, MMP2↓, MMP9↓, DNAdam↑, eff↝, Telomerase↓, Bcl-2↓, AMPK↑, ROS↑, MMP↓, ATP↓, p‑mTORC1↓, p‑S6K↓, ERK↓, PI3K↓, PTEN↑, Akt↓, Raf↓, MEK↓, Dose↓, Dose↑, selectivity↑, TumCCA↑, eff↑, EGFR↓, Glycolysis↓, Dose?, p27↑, CDK2↓, CDK4↓, cycD1/CCND1↓, cycE/CCNE↓, Bax:Bcl2↑, Casp3↑, Casp9↑, VEGFR2↓, ChemoSen↑, eff↑, eff↑, PGE2↓, JAK2↓, STAT3↓, CXCR4↓, CCR7↓, uPA↓, CSCs↓, EMT↓, Diff↓, CD133↓, Nestin↓, n-MYC↓, NOTCH↓, SOX2↓, Hif1a↓, VEGF↓, RadioS↑,
2753- BetA,    Betulinic acid induces apoptosis by regulating PI3K/Akt signaling and mitochondrial pathways in human cervical cancer cells
- in-vitro, Cerv, HeLa
PI3K↓, p‑Akt↓, ROS↑, TumCCA↑, p27↑, P21↑, mt-Apoptosis↑, BAD↑, Casp9↑, MMP↓, eff↓,
2752- BetA,    Betulinic acid: a natural product with anticancer activity
- Review, Var, NA
selectivity↑, ChemoSen↑, RadioS↑, MMP↓, cl‑Casp3↑, Cyt‑c↑, ROS↑, NF-kB↑, TOP1↓,
2748- BetA,    Betulinic Acid: Recent Advances in Chemical Modifications, Effective Delivery, and Molecular Mechanisms of a Promising Anticancer Therapy
- Review, Var, NA
Bcl-2↓, MMP↓, Cyt‑c↑, Casp↑, Diablo↑, AIF↑, angioG↓, BioAv↓, NF-kB↓,
2746- BetA,    Betulinic acid induces apoptosis and inhibits metastasis of human colorectal cancer cells in vitro and in vivo
- in-vitro, CRC, HCT116 - in-vivo, CRC, NA
TumCG↓, BAX↑, Bcl-2↓, ROS↑, MMP↓, TIMP2↑, TumVol↓,
2745- BetA,    Betulinic acid inhibits colon cancer cell and tumor growth and induces proteasome-dependent and -independent downregulation of specificity proteins (Sp) transcription factors
- in-vitro, CRC, RKO - in-vitro, CRC, SW480 - in-vivo, NA, NA
Apoptosis↑, TumCG↓, Sp1/3/4↓, survivin↓, VEGF↓, p65↓, EGFR↓, cycD1/CCND1↓, ROS↑, MMP↓,
2744- BetA,    Betulin and betulinic acid: triterpenoids derivatives with a powerful biological potential
- Review, Var, NA
Apoptosis↓, TumCCA↑, Casp9↑, Casp3↑, Casp7↑, cl‑PARP↑, MMP↓, ROS↑, TOP1↓, NF-kB↓,
2743- BetA,    Betulinic acid and the pharmacological effects of tumor suppression
- Review, Var, NA
ROS↓, MMP↓, Cyt‑c↑, Apoptosis↑, TumCCA↑, Sp1/3/4↓, STAT3↓, NF-kB↓, EMT↓, TOP1↓, MAPK↑, p38↑, JNK↑, Casp↑, Bcl-2↓, BAX↑, VEGF↓, LAMs↓,
2759- BetA,    Chemopreventive and Chemotherapeutic Potential of Betulin and Betulinic Acid: Mechanistic Insights From In Vitro, In Vivo and Clinical Studies
- Review, Var, NA
chemoPv↑, ChemoSen↑, *Inflam↓, *NRF2↑, *NF-kB↓, *COX2↓, ROS↑, MMP↓, Sp1/3/4↓, VEGF↓,
2717- BetA,    Betulinic Acid Induces ROS-Dependent Apoptosis and S-Phase Arrest by Inhibiting the NF-κB Pathway in Human Multiple Myeloma
- in-vitro, Melanoma, U266 - in-vivo, Melanoma, NA - in-vitro, Melanoma, RPMI-8226
Apoptosis↑, TumCCA↑, MMP↓, ROS↑, eff↓, NF-kB↓, Cyt‑c↑, Casp3↑, Casp8↑, Casp9↑, cl‑PARP1↑, MDA↑, SOD↓, SOD2↓, GCLM↓, GSTA1↓, FTH1↓, GSTs↓, TumVol↓,
2718- BetA,    The anti-cancer effect of betulinic acid in u937 human leukemia cells is mediated through ROS-dependent cell cycle arrest and apoptosis
- in-vitro, AML, U937
TumCCA↑, Apoptosis↑, i-ROS↑, cycA1/CCNA1↓, CycB/CCNB1↓, P21↑, Cyt‑c↑, MMP↓, Bax:Bcl2↑, Casp9↑, Casp3↑, PARP↓, eff↓, *antiOx↑, *Inflam↓, *hepatoP↑, selectivity↑, NF-kB↓, *ROS↓,
2719- BetA,    Betulinic Acid Restricts Human Bladder Cancer Cell Proliferation In Vitro by Inducing Caspase-Dependent Cell Death and Cell Cycle Arrest, and Decreasing Metastatic Potential
- in-vitro, CRC, T24 - in-vitro, Bladder, UMUC3 - in-vitro, Bladder, 5637
TumCD↑, Apoptosis↑, TumCCA↑, CycB/CCNB1↓, cycA1/CCNA1↓, CDK2↓, CDC25↓, mtDam↑, BAX↑, cl‑PARP↑, Casp3↑, Casp8↑, Casp9↑, Snail↓, Slug↓, MMP9↓, selectivity↑, MMP↓, ROS∅, TumCMig↓, TumCI↓,
2722- BetA,    Betulinic Acid for Cancer Treatment and Prevention
- Review, Var, NA
MMP↓, Cyt‑c↑, cl‑Casp3↑, cl‑Casp8↑, ROS↑, NF-kB↑, TOP1↓,
2726- BetA,    Betulinic acid induces DNA damage and apoptosis in SiHa cells
- in-vitro, Cerv, SiHa
tumCV↓, DNAdam↑, MMP↓, ROS↑, TumCCA↑, TOP1↓,
2729- BetA,    Betulinic acid in the treatment of tumour diseases: Application and research progress
- Review, Var, NA
ChemoSen↑, mt-ROS↑, STAT3↓, NF-kB↓, selectivity↑, *toxicity↓, eff↑, GRP78/BiP↑, MMP2↓, P90RSK↓, TumCI↓, EMT↓, MALAT1↓, Glycolysis↓, AMPK↑, Sp1/3/4↓, Hif1a↓, angioG↓, NF-kB↑, NF-kB↓, MMP↓, Cyt‑c↑, Casp9↑, Casp3↑, RadioS↑, PERK↑, CHOP↑, *toxicity↓,
2737- BetA,    Multiple molecular targets in breast cancer therapy by betulinic acid
- Review, Var, NA
TumCP↓, Cyc↓, TOP1↓, TumCCA↑, angioG↓, NF-kB↓, Sp1/3/4↓, VEGF↓, MMPs↓, ChemoSen↑, eff↑, MMP↓, ROS↑, Bcl-2↓, Bcl-xL↓, Mcl-1↓, lipid-P↑, RadioS↑, eff↑,
2735- BetA,    Betulinic acid as apoptosis activator: Molecular mechanisms, mathematical modeling and chemical modifications
- Review, Var, NA
mt-Apoptosis↑, Casp↑, p38↑, MAPK↓, JNK↓, VEGF↓, AIF↑, Cyt‑c↑, ROS↑, Ca+2↑, ATP↓, NF-kB↓, ATF3↓, TOP1↓, VEGF↓, survivin↓, Sp1/3/4↓, MMP↓, ChemoSen↑, selectivity↑, BioAv↓, BioAv↑, BioAv↑, BioAv↑, BioAv↑,
2731- BetA,    Betulinic Acid for Glioblastoma Treatment: Reality, Challenges and Perspectives
- Review, GBM, NA - Review, Park, NA - Review, AD, NA
BBB↑, *GSH↑, *Catalase↑, *motorD↑, *neuroP↑, *cognitive↑, *ROS↓, *antiOx↑, *Inflam↓, MMP↓, STAT3↓, NF-kB↓, Sp1/3/4↓, TOP1↓, EMT↓, Hif1a↓, VEGF↓, ChemoSen↑, RadioS↑, BioAv↓,
3507- Bor,    Boron inhibits apoptosis in hyperapoptosis condition: Acts by stabilizing the mitochondrial membrane and inhibiting matrix remodeling
*MMP↑, *Cyt‑c↓, *Apoptosis↓, *Casp3↓, *NO↓, *iNOS↓,
3505- Bor,    Mineral requirements for mitochondrial function: A connection to redox balance and cellular differentiation
- Review, NA, NA
*glucose↓, *creat↓, *SOD↑, *MMP↑, *ROS↓,
760- Bor,    Therapeutic Efficacy of Boric Acid Treatment on Brain Tissue and Cognitive Functions in Rats with Experimental Alzheimer’s Disease
- in-vivo, AD, NA
*memory↑, *ROS↓, *GSH↑, *Aβ↓, *Inflam↓, *MMP↑, *lipid-P↓, *Ca+2↓, *cognitive↑, *TOS↓,
1450- Bos,  Cisplatin,    3-Acetyl-11-keto-β-boswellic acid (AKBA) induced antiproliferative effect by suppressing Notch signaling pathway and synergistic interaction with cisplatin against prostate cancer cells
- in-vitro, Pca, DU145
ROS↑, MMP↓, Casp↑, Apoptosis↑, Bax:Bcl2↑, TumCCA?, cycD1/CCND1↓, CDK4↓, P21↑, p27↑, NOTCH↓, ChemoSen↑,
1449- Bos,  Chemo,    Anti-proliferative, Pro-apoptotic, and Chemosensitizing Potential of 3-Acetyl-11-keto-β-boswellic Acid (AKBA) Against Prostate Cancer Cells
- in-vitro, Pca, PC3
TumCP↓, ChemoSen↑, MMP↝, ROS↝, Apoptosis↑,
1448- Bos,    A triterpenediol from Boswellia serrata induces apoptosis through both the intrinsic and extrinsic apoptotic pathways in human leukemia HL-60 cells
- in-vitro, AML, HL-60
TumCP↓, Apoptosis↑, ROS↑, NO↑, cl‑Bcl-2↑, BAX↑, MMP↓, Cyt‑c↑, AIF↑, Diablo↑, survivin↓, ICAD↓, Casp↑, cl‑PARP↑, DR4↑, TNFR 1↑,
2024- Bos,    Antiproliferative and cell cycle arrest potentials of 3-O-acetyl-11-keto-β-boswellic acid against MCF-7 cells in vitro
- in-vitro, BC, MCF-7 - in-vitro, Nor, MCF10
MMP↓, Cyt‑c↑, ROS↑, Casp8↑, Casp9↑, AntiTum↑, selectivity↑, TumCCA↑,
1650- CA,    Adjuvant Properties of Caffeic Acid in Cancer Treatment
- Review, Var, NA
ROS↑, antiOx↑, Inflam↓, AntiCan↑, NF-kB↓, STAT3↓, ERK↓, ChemoSen↑, RadioS↑, AMPK↑, eff↑, selectivity↑, COX2↓, Dose∅, PHDs↓, MMP9↓, MMP2↓, Dose∅, Dose∅, Ca+2↑, Dose?, MMP↓, RadioS↑,
2652- CAP,    Oxidative Stress Inducers in Cancer Therapy: Preclinical and Clinical Evidence
- Review, Var, NA
chemoPv↑, AntiCan↑, ROS↑, TumCG↓, ROS↑, MMP↑, Apoptosis↑, TumCCA↑, JNK↑, SOD↓, Catalase↓, GPx↓, other↓, SIRT1↓, NADPH↑, FOXO3↑,
1264- CAP,    Capsaicin modulates proliferation, migration, and activation of hepatic stellate cells
- in-vitro, HCC, NA
TumCP↓, TumCMig↓, TumCCA↑, MMP∅, MMP2↓, MMP9↓, α-SMA↓, COL1A1↓, COL3A1↓, TIMP1↓,
2014- CAP,    Role of Mitochondrial Electron Transport Chain Complexes in Capsaicin Mediated Oxidative Stress Leading to Apoptosis in Pancreatic Cancer Cells
- in-vitro, PC, Bxpc-3 - in-vitro, Nor, HPDE-6 - in-vivo, PC, AsPC-1
ROS↑, *ROS∅, selectivity↑, compI↓, compIII↓, eff↑, selectivity↑, ATP↓, Cyt‑c↑, Casp9↑, Casp3↑, MMP↓, SOD↓, GSH/GSSG↓, Apoptosis↑, *toxicity∅, GSH↓, Catalase↓, GPx↓, Dose↝,
2018- CAP,  MF,    Capsaicin: Effects on the Pathogenesis of Hepatocellular Carcinoma
- Review, HCC, NA
TRPV1↑, eff↑, Akt↓, mTOR↓, p‑STAT3↑, MMP2↑, ER Stress↑, Ca+2↑, ROS↑, selectivity↑, MMP↓, eff↑,
2019- CAP,    Capsaicin: A Two-Decade Systematic Review of Global Research Output and Recent Advances Against Human Cancer
- Review, Var, NA
chemoPv↑, Ca+2↑, antiOx↑, *ROS↓, *MMP∅, *Cyt‑c∅, *Casp3∅, *eff↑, *Inflam↓, *NF-kB↓, *COX2↓, iNOS↓, TRPV1↑, i-Ca+2?, MMP↓, Cyt‑c↑, Bax:Bcl2↑, P53↑, JNK↑, PI3K↓, Akt↓, mTOR↓, LC3II↑, ATG5↑, p62↑, Fap1↓, Casp3↑, Apoptosis↑, ROS↑, MMP9↓, eff↑, eff↓, eff↑, selectivity↑, eff↑, ChemoSen↑,
2012- CAP,    Capsaicin induces cytotoxicity in human osteosarcoma MG63 cells through TRPV1-dependent and -independent pathways
- NA, OS, MG63
AntiTum↑, Apoptosis↑, TRPV1↑, ROS↑, SOD↓, AMPK↑, P53↑, JNK↑, Bcl-2↓, Cyt‑c↑, cl‑Casp3↑, cl‑PARP↑, Ca+2↑, MMP↓,
2020- CAP,    Capsaicinoids and Their Effects on Cancer: The “Double-Edged Sword” Postulate from the Molecular Scale
- Review, Var, NA
AntiTum↑, selectivity↑, TRPV1↑, MMP↓, Ca+2↑, ER Stress↑, angioG↓, Casp3?, cl‑PARP↑, selectivity↑, ROS↑, *ROS∅, selectivity↑,
1517- CAP,    Capsaicin Inhibits Multiple Bladder Cancer Cell Phenotypes by Inhibiting Tumor-Associated NADH Oxidase (tNOX) and Sirtuin1 (SIRT1)
- in-vitro, Bladder, TSGH8301 - in-vitro, CRC, T24
ENOX2↓, TumCCA↑, ERK↓, p‑FAK↓, p‑pax↓, TumCMig↓, EMT↓, SIRT1↓, Dose∅, ROS↑, MMP↓, Bcl-2↓, Bak↑, cl‑PARP↑, Casp3↑, SIRT1↓, ac‑P53↑, BIM↑, p‑RB1↓, cycD1/CCND1↓, Dose∅, β-catenin/ZEB1↓, N-cadherin↓, E-cadherin↑,
2653- Cela,    Oxidative Stress Inducers in Cancer Therapy: Preclinical and Clinical Evidence
- Review, Var, NA
chemoPv↑, Catalase↑, ROS↑, HSP90↓, Sp1/3/4↓, AMPK↑, P53↑, JNK↑, ER Stress↑, MMP↓, TumCCA↑, TumAuto↑, Hif1a↑, Akt↑, other↓, Prx↓,
4481- Chit,    Antioxidant Properties and Redox-Modulating Activity of Chitosan and Its Derivatives: Biomaterials with Application in Cancer Therapy
- Review, Var, NA
*BioAv↑, *toxicity↓, *antiOx↑, AntiCan↑, *Inflam↓, *ROS↓, *lipid-P↓, MDA↓, selectivity↑, MMP↓, ROS↑, TumCCA↑, MDA↑, GSH↓, ChemoSen↑,
4478- Chit,    Chitosan promotes ROS-mediated apoptosis and S phase cell cycle arrest in triple-negative breast cancer cells: evidence for intercalative interaction with genomic DNA
- in-vitro, BC, MDA-MB-231 - in-vitro, BC, MCF-7 - in-vitro, BC, T47D
TumCP↓, selectivity↑, MMP↓, ROS↑, TumCCA↑, Apoptosis↑, Casp3↑,
1249- CHr,    Chrysin as an Anti-Cancer Agent Exerts Selective Toxicity by Directly Inhibiting Mitochondrial Complex II and V in CLL B-lymphocytes
- in-vitro, CLL, NA
ROS↑, MMP↓, ADP:ATP↑, Casp3↑, Apoptosis↑,
2804- CHr,  Rad,    Gamma-Irradiated Chrysin Improves Anticancer Activity in HT-29 Colon Cancer Cells Through Mitochondria-Related Pathway
- in-vitro, CRC, HT29
RadioS↑, ROS↑, MMP↓, Casp3↑, Casp9↑, cl‑PARP↑,
2806- CHr,  Se,    Selenium-containing chrysin and quercetin derivatives: attractive scaffolds for cancer therapy
- in-vitro, Var, NA
eff↑, selectivity↑, Dose↝, TrxR↓, GSH↓, MMP↓, ROS↑, H2O2↑,
2792- CHr,    Chrysin induces death of prostate cancer cells by inducing ROS and ER stress
- in-vitro, Pca, DU145 - in-vitro, Pca, PC3
DNAdam↑, TumCCA↑, MMP↓, ROS↑, lipid-P↑, ER Stress↑, UPR↑, PERK↑, eIF2α↑, GRP78/BiP↑, PI3K↓, Akt↓, p70S6↓, MAPK↑,
2780- CHr,    Anti-cancer Activity of Chrysin in Cancer Therapy: a Systematic Review
- Review, Var, NA
*antiOx↑, Inflam↓, *hepatoP↑, AntiCan↑, Cyt‑c↑, Casp3↑, XIAP↓, p‑Akt↓, PI3K↑, Apoptosis↑, COX2↓, FAK↓, AMPK↑, STAT3↑, MMP↓, DNAdam↑, BAX↑, Bak↑, Casp9↑, p38↑, MAPK↑, TumCCA↑, ChemoSen↑, HDAC8↓, Wnt↓, NF-kB↓, angioG↓, BioAv↓,
2782- CHr,    Broad-Spectrum Preclinical Antitumor Activity of Chrysin: Current Trends and Future Perspectives
- Review, Var, NA - Review, Stroke, NA - Review, Park, NA
*antiOx↑, *Inflam↓, *hepatoP↑, *neuroP↑, *BioAv↓, *cardioP↑, *lipidLev↓, *RenoP↑, *TNF-α↓, *IL2↓, *PI3K↓, *Akt↓, *ROS↓, *cognitive↑, eff↑, cycD1/CCND1↓, hTERT/TERT↓, VEGF↓, p‑STAT3↓, TumMeta↓, TumCP↓, eff↑, eff↑, IL1β↓, IL6↓, NF-kB↓, ROS↑, MMP↓, Cyt‑c↑, Apoptosis↑, ER Stress↑, Ca+2↑, TET1↑, Let-7↑, Twist↓, EMT↓, TumCCA↑, Casp3↑, Casp9↑, BAX↑, HK2↓, GlucoseCon↓, lactateProd↓, Glycolysis↓, SHP1↑, N-cadherin↓, E-cadherin↑, UPR↑, PERK↑, ATF4↑, eIF2α↑, RadioS↑, NOTCH1↑, NRF2↓, BioAv↑, eff↑,
2784- CHr,    Chrysin targets aberrant molecular signatures and pathways in carcinogenesis (Review)
- Review, Var, NA
Apoptosis↑, TumCMig↓, *toxicity↝, ChemoSen↑, *BioAv↓, Dose↝, neuroP↑, *P450↓, *ROS↓, *HDL↑, *GSTs↑, *SOD↑, *Catalase↑, *MAPK↓, *NF-kB↓, *PTEN↑, *VEGF↑, ROS↑, MMP↓, Ca+2↑, selectivity↑, PCNA↓, Twist↓, EMT↓, CDKN1C↑, p‑STAT3↑, MMP2↓, MMP9↓, eff↑, cycD1/CCND1↓, hTERT/TERT↓, CLDN1↓, TumVol↓, OS↑, COX2↓, eff↑, CDK2↓, CDK4↓, selectivity↑, TumCCA↑, E-cadherin↑, HK2↓, HDAC↓,
2785- CHr,    Emerging cellular and molecular mechanisms underlying anticancer indications of chrysin
- Review, Var, NA
*NF-kB↓, *COX2↓, *iNOS↓, angioG↓, TOP1↓, HDAC↓, TNF-α↓, IL1β↓, cardioP↑, RenoP↑, neuroP↑, LDL↓, BioAv↑, eff↑, cycD1/CCND1↓, hTERT/TERT↓, MMP-10↓, Akt↓, STAT3↓, VEGF↓, EGFR↓, Snail↓, Slug↓, Vim↓, E-cadherin↑, eff↑, TET1↑, ROS↑, mTOR↓, PPARα↓, ER Stress↑, Ca+2↑, ERK↓, MMP↑, Cyt‑c↑, Casp3↑, HK2↓, NRF2↓, HO-1↓, MMP2↓, MMP9↓, Fibronectin↓, GRP78/BiP↑, XBP-1↓, p‑eIF2α↑, *AST↓, ALAT↓, ALP↓, LDH↓, COX2↑, Bcl-xL↓, IL6↓, PGE2↓, iNOS↓, DNAdam↑, UPR↑, Hif1a↓, EMT↓, Twist↓, lipid-P↑, CLDN1↓, PDK1↓, IL10↓, TLR4↓, NOTCH1↑, PARP↑, Mcl-1↓, XIAP↓,
2790- CHr,    Chrysin: Pharmacological and therapeutic properties
- Review, Var, NA
*hepatoP↑, *neuroP↓, *ROS↓, *cardioP↑, *Inflam↓, eff↑, hTERT/TERT↓, cycD1/CCND1↓, MMP9↓, MMP2↓, TIMP1↑, TIMP2↑, BioAv↑, HK2↓, ROS↑, MMP↓, Casp3↑, ADP:ATP↑, Apoptosis↑, ER Stress↑, UPR↑, GRP78/BiP↝, eff↑, Ca+2↑,
2791- CHr,    Chrysin attenuates progression of ovarian cancer cells by regulating signaling cascades and mitochondrial dysfunction
- in-vitro, Ovarian, OV90
TumCP↓, TumCD↑, ROS↑, Ca+2↑, MMP↓, MAPK↑, PI3K↑, p‑Akt↑, PCNA↓, p‑p70S6↑, p‑ERK↑, p38↑, JNK↑, DNAdam↑, TumCCA↑, chemoP↑,
1579- Citrate,    Effect of Food Additive Citric Acid on The Growth of Human Esophageal Carcinoma Cell Line EC109
- in-vitro, ESCC, Eca109
TumCP↓, e-LDH↑, MMP↓, Ca+2?, PFK↓, Glycolysis↓,
4761- CoQ10,    Elevated levels of mitochondrial CoQ10 induce ROS-mediated apoptosis in pancreatic cancer
- in-vitro, PC, NA - in-vivo, PC, NA
*ETC↝, ROS↑, *antiOx↑, ROS↑, OCR↓, MMP↓, TumCD↑, TumCG↓, other↝,
4764- CoQ10,  VitE,    Auxiliary effect of trolox on coenzyme Q10 restricts angiogenesis and proliferation of retinoblastoma cells via the ERK/Akt pathway
- in-vitro, RPE, Y79 - in-vitro, Nor, ARPE-19 - in-vivo, NA, NA
tumCV↓, Apoptosis↑, ROS↑, MMP↓, TumCCA↑, VEGF↓, ERK↓, Akt↓, ChemoSen↑, chemoP↑, toxicity↓, angioG↓,
1572- Cu,    Recent Advances in Cancer Therapeutic Copper-Based Nanomaterials for Antitumor Therapy
- Review, NA, NA
eff↑, Fenton↑, ROS↑, eff↑, mtDam↑, BAX↑, Bcl-2↓, MMP↓, Cyt‑c↑, Casp3↑, ER Stress↑, CHOP↑, Apoptosis↑, selectivity↑, eff↑, Pyro↑, Paraptosis↑, Cupro↑, ChemoSen↑, eff↑,
1409- CUR,    Curcumin analog WZ26 induces ROS and cell death via inhibition of STAT3 in cholangiocarcinoma
- in-vivo, CCA, Walker256
TumCG↓, ROS↑, MMP↓, STAT3↓, TumCCA↑, eff↓,
1981- CUR,    Mitochondrial targeted curcumin exhibits anticancer effects through disruption of mitochondrial redox and modulation of TrxR2 activity
- in-vitro, Lung, NA
eff↑, ROS↑, mt-GSH↓, Bax:Bcl2↑, Cyt‑c↑, MMP↓, Casp3↑, Trx2↓, TrxR↓, mt-DNAdam↑,
3831- CUR,    Traditional Chinese Medicine: Role in Reducing β-Amyloid, Apoptosis, Autophagy, Neuroinflammation, Oxidative Stress, and Mitochondrial Dysfunction of Alzheimer’s Disease
- Review, AD, NA
*neuroP↑, *ROS↓, *Ca+2↓, *MMP↑,
2980- CUR,    Inhibition of NF B and Pancreatic Cancer Cell and Tumor Growth by Curcumin Is Dependent on Specificity Protein Down-regulation
- in-vivo, PC, NA
TumCG↓, p50↓, p65↓, NF-kB↓, Sp1/3/4↓, MMP↓, ROS↑,
407- CUR,    Curcumin inhibited growth of human melanoma A375 cells via inciting oxidative stress
- in-vitro, Melanoma, A375
Apoptosis↑, ROS↑, GSH↓, MMP↓,
462- CUR,    Curcumin promotes cancer-associated fibroblasts apoptosis via ROS-mediated endoplasmic reticulum stress
- in-vitro, Pca, PC3
Bcl-2↓, MMP↓, cl‑Casp3↑, BAX↑, BIM↑, p‑PARP↑, PUMA↑, p‑P53↑, ROS↑, p‑ERK↑, p‑eIF2α↑, CHOP↑, ATF4↑,
481- CUR,  CHr,  Api,    Flavonoid-induced glutathione depletion: Potential implications for cancer treatment
- in-vitro, Liver, A549 - in-vitro, Pca, PC3 - in-vitro, AML, HL-60
GSH↓, mtDam↑, MMP↓, Cyt‑c↑,
1885- DCA,    Role of SLC5A8, a plasma membrane transporter and a tumor suppressor, in the antitumor activity of dichloroacetate
- in-vitro, CRC, HCT116 - in-vitro, CRC, SW-620 - in-vitro, CRC, HT-29
SMCT1∅, eff↓, eff↑, eff↑, PDKs↓, MMP↓, Glycolysis↓, mitResp↑, ROS↑, eff↑,
1875- DCA,    Dichloroacetate inhibits neuroblastoma growth by specifically acting against malignant undifferentiated cells
- in-vitro, neuroblastoma, NA - in-vivo, NA, NA
selectivity↑, AntiCan↑, TumVol↓, PDKs↓, mt-OXPHOS↑, MMP↓, Glycolysis↓, toxicity↓, Warburg↓, ROS↑, eff↑,
1873- DCA,    Dual-targeting of aberrant glucose metabolism in glioblastoma
- in-vitro, GBM, U87MG - in-vitro, GBM, U251
PDKs↓, eff↑, selectivity↑, MMP↓, ROS↑, Apoptosis↑, Warburg↓, eff↑, Dose∅, toxicity∅,
1870- DCA,  Rad,    Dichloroacetate (DCA) sensitizes both wild-type and over expressing Bcl-2 prostate cancer cells in vitro to radiation
- in-vitro, Pca, PC3
TumCCA↑, Apoptosis↑, MMP↓, eff↑, RadioS↑,
1868- DCA,  MET,    Long-term stabilization of stage 4 colon cancer using sodium dichloroacetate therapy
- Case Report, NA, NA
eff↑, toxicity∅, MMP↓, Apoptosis↑, selectivity↑, pH↝, Dose↝, Dose↝, eff↑,
4456- DFE,    Induction of apoptosis and cell cycle arrest by ethyl acetate fraction of Phoenix dactylifera L. (Ajwa dates) in prostate cancer cells
- in-vitro, Pca, PC3
TumCD↑, MMP↓, mt-ROS↑, Apoptosis↑, TumCCA↑,
4455- DFE,    Ajwa Date (Phoenix dactylifera L.) Extract Inhibits Human Breast Adenocarcinoma (MCF7) Cells In Vitro by Inducing Apoptosis and Cell Cycle Arrest
- in-vitro, BC, MCF-7 - in-vitro, Nor, 3T3
TumCCA↑, P53↑, BAX↑, Casp3↑, MMP↓, Fas↑, FasL↑, Bcl-2↓, Apoptosis↑, TumCP↓, TUNEL↑, eff↑, selectivity↑,
4454- DFE,    Cytostatic and Anti-tumor Potential of Ajwa Date Pulp against Human Hepatocellular Carcinoma HepG2 Cells
- in-vitro, Liver, HepG2
ROS↑, MMP↓, TumCCA↑, Apoptosis↑, selectivity↑, MMP↓, TumCCA↑,
5012- DSF,  Cu,    Advancing Cancer Therapy with Copper/Disulfiram Nanomedicines and Drug Delivery Systems
ROS↑, ALDH↓, TumCP↓, CSCs↓, angioG↓, TumMeta↓, DNAdam↑, Proteasome↓, SOD1↓, GSR↓, ox-GSSG↑, GSH/GSSG↓, MMP↓, Akt↓, cycD1/CCND1↓, NF-kB↓, CSCs↓, MAPK↓, angioG↓, DrugR↓, EMT↓, Vim↓, BioAv↑, eff↑,
1621- EA,    The multifaceted mechanisms of ellagic acid in the treatment of tumors: State-of-the-art
- Review, Var, NA
AntiCan↑, Apoptosis↑, TumCP↓, TumMeta↓, TumCI↓, TumAuto↑, VEGFR2↓, MAPK↓, PI3K↓, Akt↓, PD-1↓, NOTCH↓, PCNA↓, Ki-67↓, cycD1/CCND1↓, CDK2↑, CDK6↓, Bcl-2↓, cl‑PARP↑, BAX↑, Casp3↑, DR4↑, DR5↑, Snail↓, MMP2↓, MMP9↓, TGF-β↑, PKCδ↓, β-catenin/ZEB1↓, SIRT1↓, HO-1↓, ROS↑, CHOP↑, Cyt‑c↑, MMP↓, OCR↓, AMPK↑, Hif1a↓, NF-kB↓, E-cadherin↑, Vim↓, EMT↓, LC3II↑, CIP2A↓, GLUT1↓, PDH↝, MAD↓, LDH↓, GSTs↑, NOTCH↓, survivin↓, XIAP↓, ER Stress↑, ChemoSideEff↓, ChemoSen↑,
1605- EA,    Ellagic Acid and Cancer Hallmarks: Insights from Experimental Evidence
- Review, Var, NA
*BioAv↓, antiOx↓, Inflam↓, TumCP↓, TumCCA↑, cycD1/CCND1↓, cycE/CCNE↓, P53↑, P21↑, COX2↓, NF-kB↓, Akt↑, NOTCH↓, CDK2↓, CDK6↓, JAK↓, STAT3↓, EGFR↓, p‑ERK↓, p‑Akt↓, p‑STAT3↓, TGF-β↓, SMAD3↓, CDK6↓, Wnt/(β-catenin)↓, Myc↓, survivin↓, CDK8↓, PKCδ↓, tumCV↓, RadioS↑, eff↑, MDM2↓, XIAP↓, p‑RB1↓, PTEN↑, p‑FAK↓, Bax:Bcl2↑, Bcl-xL↓, Mcl-1↓, PUMA↑, NOXA↑, MMP↓, Cyt‑c↑, ROS↑, Ca+2↝, Endoglin↑, Diablo↑, AIF↑, iNOS↓, Casp9↑, Casp3↑, cl‑PARP↑, RadioS↑, Hif1a↓, HO-1↓, HO-2↓, SIRT1↓, selectivity↑, Dose∅, NHE1↓, Glycolysis↓, GlucoseCon↓, lactateProd↓, PDK1?, PDK1?, ECAR↝, COX1↓, Snail↓, Twist↓, cMyc↓, Telomerase↓, angioG↓, MMP2↓, MMP9↓, VEGF↓, Dose↝, PD-L1↓, eff↑, SIRT6↑, DNAdam↓,
1620- EA,  Rad,    Radiosensitizing effect of ellagic acid on growth of Hepatocellular carcinoma cells: an in vitro study
- in-vitro, Liver, HepG2
ROS↑, P53↑, TumCCA↑, IL6↓, COX2↓, TNF-α↓, MMP↓, angioG↓, MMP9↓, BAX↑, Casp3↑, Apoptosis↑, RadioS↑, TBARS↑, GSH↓, Bax:Bcl2↑, p‑NF-kB↓, p‑STAT3↓,
989- EGCG,  Citrate,    In vitro and in vivo study of epigallocatechin-3-gallate-induced apoptosis in aerobic glycolytic hepatocellular carcinoma cells involving inhibition of phosphofructokinase activity
- in-vitro, HCC, NA - in-vivo, NA, NA
PFK↓, Glycolysis↓, lactateProd↓, GlucoseCon↓, TumCP↓, TumCCA↑, Casp3↑, cl‑PARP↑, Apoptosis↑, Casp8↑, Casp9↑, Cyt‑c↝, MMP↓, BAD↑, GLUT2↓, PKM2∅,
655- EGCG,    A new molecular mechanism underlying the EGCG-mediated autophagic modulation of AFP in HepG2 cells
- in-vitro, HCC, HepG2
AFP↓, TumAuto↑, LC3II↑, TumCG↓, MMP↓,
3207- EGCG,    EGCG Enhances the Chemosensitivity of Colorectal Cancer to Irinotecan through GRP78-MediatedEndoplasmic Reticulum Stress
- in-vitro, CRC, RKO - in-vitro, CRC, HCT116
GRP78/BiP↑, MMP↓, ER Stress↑, ROS↓, UPR↑,
3205- EGCG,    The Role of Epigallocatechin-3-Gallate in Autophagy and Endoplasmic Reticulum Stress (ERS)-Induced Apoptosis of Human Diseas
- Review, Var, NA - Review, AD, NA
Beclin-1↑, ROS↑, Apoptosis↑, ER Stress↑, *Inflam↓, *cardioP↑, *antiOx↑, *LDL↓, *NF-kB↓, *MPO↓, *glucose↓, *ROS↓, ATG5↑, LC3B↑, MMP↑, lactateProd↓, VEGF↓, Zeb1↑, Wnt↑, IGF-1R↑, Fas↑, Bak↑, BAD↑, TP53↓, Myc↓, Casp8↓, LC3II↑, NOTCH3↓, eff↑, p‑Akt↓, PARP↑, *Cyt‑c↓, *BAX↓, *memory↑, *neuroP↑, *Ca+2?, GRP78/BiP↑, CHOP↑, ATF4↑, Casp3↑, Casp8↑, UPR↑,
3219- EGCG,    Nano-chemotherapeutic efficacy of (−) -epigallocatechin 3-gallate mediating apoptosis in A549 cells: Involvement of reactive oxygen species mediated Nrf2/Keap1signaling
- in-vitro, Lung, A549
ROS↑, RNS↓, MMP↓, NRF2↑, Keap1↓,
1976- EGCG,    Epigallocatechin-3-gallate exhibits anti-tumor effect by perturbing redox homeostasis, modulating the release of pro-inflammatory mediators and decreasing the invasiveness of glioblastoma cells
- in-vitro, GBM, U87MG
ROS↑, MMP↓, Casp3↑, Cyt‑c↑, Trx1↓, Ceru↓, IL6↓, IL8↓, MCP1↓, RANTES?, uPA↝, ROS↑,
1974- EGCG,    Protective Effect of Epigallocatechin-3-Gallate in Hydrogen Peroxide-Induced Oxidative Damage in Chicken Lymphocytes
- in-vitro, Nor, NA
*ROS↓, *NO↓, *MMP↑, *i-Ca+2↓, *HO-1↑, *Catalase↑, *NRF2↑, *Trx1↑, *antiOx↑, *SOD↑, *Apoptosis↓,
1318- EMD,    Aloe-emodin Induces Apoptosis in Human Liver HL-7702 Cells through Fas Death Pathway and the Mitochondrial Pathway by Generating Reactive Oxygen Species
- in-vitro, Nor, HL7702
*TumCCA↑, *ROS↑, *MMP↓, *Fas↑, *P53↑, *P21↓, *Bax:Bcl2↑, *cl‑Casp3↑, *cl‑Casp8↑, *cl‑Casp9↑, *cl‑PARP↑,
1321- EMD,    Antitumor effects of emodin on LS1034 human colon cancer cells in vitro and in vivo: roles of apoptotic cell death and LS1034 tumor xenografts model
- in-vitro, CRC, LS1034 - in-vivo, NA, NA
tumCV↓, TumCCA↑, ROS↑, Ca+2↑, MMP↓, Apoptosis↑, Cyt‑c↑, Casp9↑, Bax:Bcl2↑,
1323- EMD,    Anticancer action of naturally occurring emodin for the controlling of cervical cancer
- Review, Cerv, NA
TumCCA↑, DNAdam↑, mTOR↓, Casp3↑, Casp8↑, Casp9↑, TGF-β↑, SMAD3↓, p‑SMAD4↓, ROS↑, MMP↓, CXCR4↓, HER2/EBBR2↓, ER Stress↓, TumAuto↑, NOTCH1↓,
1245- EMD,    Emodin Exhibits Strong Cytotoxic Effect in Cervical Cancer Cells by Activating Intrinsic Pathway of Apoptosis
- in-vitro, Cerv, HeLa
TumCG↓, TumCP↓, Apoptosis↑, ROS↑, Casp3↑, Casp9↑, MMP↓, DNAdam↑, GSH↓,
1324- EMD,    Is Emodin with Anticancer Effects Completely Innocent? Two Sides of the Coin
- Review, Var, NA
*toxicity↑, *BioAv↓, Akt↓, ERK↓, ROS↑, MMP↓, Bcl-2↓, BAX↑, TumCCA↑,
1327- EMD,    Emodin induces apoptosis in human lung adenocarcinoma cells through a reactive oxygen species-dependent mitochondrial signaling pathway
- in-vitro, Lung, A549
Cyt‑c↑, Casp2↑, Casp3↑, Casp9↑, ERK↓, Akt↓, ROS↑, MMP↓, Bcl-2↓, BAX↑,
1328- EMD,    Emodin induces apoptosis of human tongue squamous cancer SCC-4 cells through reactive oxygen species and mitochondria-dependent pathways
- in-vitro, Tong, SCC4
TumCCA↑, P21↑, Chk2↑, CycB/CCNB1↓, cDC2↓, Apoptosis↑, Cyt‑c↑, Casp9↑, Casp3↑, ROS↑, MMP↓, Bax:Bcl2↑, ER Stress↑,
1332- EMD,    Induction of Apoptosis in HepaRG Cell Line by Aloe-Emodin through Generation of Reactive Oxygen Species and the Mitochondrial Pathway
- in-vivo, Nor, HepaRG
*tumCV↓, *ROS↑, *MMP↓, *Fas↑, *P53↑, *P21↑, *Bax:Bcl2↑, *Casp3↑, *Casp8↑, *Casp9↑, *cl‑PARP↑, *TumCCA↑, *P21↑, *cycE/CCNE↑, *cycA1/CCNA1↓, *CDK2↓,
1296- EMD,    Emodin inhibits LOVO colorectal cancer cell proliferation via the regulation of the Bcl-2/Bax ratio and cytochrome c
- in-vitro, CRC, LoVo
BAX↑, Bcl-2↓, MMP↓, Cyt‑c↑,
1329- EMD,    Aloe-emodin induces cell death through S-phase arrest and caspase-dependent pathways in human tongue squamous cancer SCC-4 cells
- in-vitro, Tong, SCC4
TumCCA↑, eff↓, P53↑, P21↑, p27↑, cycA1/CCNA1↓, cycE/CCNE↓, TS↓, CDC25↓, AIF↑, proCasp9↓, Cyt‑c↑, MMP↓, Bax:Bcl2↑, Casp3↑, Casp9↑,
1330- EMD,    Aloe emodin-induced apoptosis in t-HSC/Cl-6 cells involves a mitochondria-mediated pathway
- in-vitro, NA, NA
tumCV↓, Casp3↑, Casp9↑, MMP↓, Cyt‑c↑, BAX↑, Bax:Bcl2↑,
1331- EMD,    Aloe-emodin induces apoptosis of human nasopharyngeal carcinoma cells via caspase-8-mediated activation of the mitochondrial death pathway
- in-vitro, NPC, NA
TumCCA↑, CycB/CCNB1↑, DNAdam↑, Casp3↑, cl‑PARP↑, MMP↓, Ca+2↑, ROS↑,
3460- EP,    Picosecond pulsed electric fields induce apoptosis in HeLa cells via the endoplasmic reticulum stress and caspase-dependent signaling pathways
- in-vitro, Cerv, HeLa
tumCV↓, Apoptosis↑, TumCCA↑, GRP78/BiP↑, GRP94↑, CEBPA↑, CHOP↑, Ca+2↑, Casp12↑, Casp9↑, Casp3↑, Cyt‑c↑, BAX↑, Bcl-2↓, ER Stress↑, MMP↓,
3783- FA,    Design, Synthesis, and Biological Evaluation of Ferulic Acid-Piperazine Derivatives Targeting Pathological Hallmarks of Alzheimer’s Disease
- NA, AD, NA
*ROS↓, *IronCh↑, *NLRP3↓, *Aβ↓, *AChE↓, *BChE↓, *antiOx↑, *BBB↑, *MMP↑, *memory↑, *SOD↑, *Catalase↑,
3713- FA,    Protective Effect of Ferulic Acid on Acetylcholinesterase and Amyloid Beta Peptide Plaque Formation in Alzheimer’s Disease: An In Vitro Study
- Review, AD, NA
*AChE↓, *antiOx↑, *neuroP↑, *Aβ↓, *MMP↓, *XO↓, *SOD↑, *lipid-P↑, *ROS↓,
3780- FA,    Ferulic Acid: A Natural Antioxidant with Application Towards Neuroprotection Against Alzheimer’s Disease
- Review, AD, NA
*antiOx↑, *SOD↑, *Catalase↑, *HO-1↑, *neuroP↑, *AChE↓, *MMP↑,
2496- Fenb,    Impairment of the Ubiquitin-Proteasome Pathway by Methyl N-(6-Phenylsulfanyl-1H-benzimidazol-2-yl)carbamate Leads to a Potent Cytotoxic Effect in Tumor Cells
- in-vitro, NSCLC, A549 - in-vitro, NSCLC, H460
TumCG↓, selectivity↑, P53↑, IKKα↑, ER Stress↑, GRP78/BiP↑, CHOP↑, ATF3↑, IRE1↑, NOXA↑, ROS↑, MMP↓, Cyt‑c↑, selectivity↑, eff↝,
2844- FIS,    Fisetin, a dietary flavonoid induces apoptosis via modulating the MAPK and PI3K/Akt signalling pathways in human osteosarcoma (U-2 OS) cells
- in-vitro, OS, U2OS
tumCV↓, Apoptosis↑, Casp3↑, Casp8↑, Casp9↑, BAX↑, BAD↑, Bcl-2↓, Bcl-xL↓, PI3K↓, Akt↓, ERK↓, p‑JNK↑, p‑cJun↑, p‑p38↑, ROS↑, MMP↓, mTORC1↓, PTEN↑, p‑GSK‐3β↓, GSK‐3β↑, NF-kB↓, IKKα↑, Cyt‑c↑,
2845- FIS,    Fisetin: A bioactive phytochemical with potential for cancer prevention and pharmacotherapy
- Review, Var, NA
PI3K↓, Akt↓, mTOR↓, p38↓, *antiOx↑, *neuroP↑, Casp3↑, Bcl-2↓, Mcl-1↓, BAX↑, BIM↑, BAD↑, AMPK↑, ACC↑, DNAdam↑, MMP↓, eff↑, ROS↑, cl‑PARP↑, Cyt‑c↑, Diablo↑, P53↑, p65↓, Myc↓, HSP70/HSPA5↓, HSP27↓, COX2↓, Wnt↓, EGFR↓, NF-kB↓, TumCCA↑, CDK2↓, CDK4↓, cycD1/CCND1↓, cycA1/CCNA1↓, P21↑, MMP2↓, MMP9↓, TumMeta↓, MMP1↓, MMP3↓, MMP7↓, MET↓, N-cadherin↓, Vim↓, Snail↓, Fibronectin↓, E-cadherin↑, uPA↓, ChemoSen↑, EMT↓, Twist↓, Zeb1↓, cFos↓, cJun↓, EGF↓, angioG↓, VEGF↓, eNOS↓, *NRF2↑, HO-1↑, NRF2↓, GSTs↓, ATF4↓,
2852- FIS,    A comprehensive view on the fisetin impact on colorectal cancer in animal models: Focusing on cellular and molecular mechanisms
- Review, CRC, NA
Risk↓, P53↑, MDM2↓, COX2↓, Wnt↓, NF-kB↓, CDK2↓, CDK4↓, p‑RB1↓, cycE/CCNE↓, P21↑, NRF2↓, ROS↑, Casp8↑, Fas↑, TRAIL↑, DR5↑, MMP↓, Cyt‑c↑, selectivity↑, P450↝, GSTs↝, RadioS↑, Inflam↓, β-catenin/ZEB1↓, EGFR↓, TumCCA↑, ChemoSen↑,
2853- FIS,    Fisetin Inhibits Cell Proliferation and Induces Apoptosis via JAK/STAT3 Signaling Pathways in Human Thyroid TPC 1 Cancer Cells
- in-vitro, Thyroid, TPC-1
Apoptosis↑, ROS↑, MMP↓, TumCCA↑, Casp3↑, Casp8↑, Casp9↑, JAK1↓, STAT3↓,
2856- FIS,    N -acetyl- L -cysteine enhances fisetin-induced cytotoxicity via induction of ROS-independent apoptosis in human colonic cancer cells
- in-vitro, Colon, COLO205
eff↑, ROS↑, tumCV↓, Casp3↑, Bcl-2↓, MMP↓, eff↑,
2857- FIS,    A review on the chemotherapeutic potential of fisetin: In vitro evidences
- Review, Var, NA
COX2↓, PGE2↓, EGFR↓, Wnt↓, β-catenin/ZEB1↓, TCF↑, Apoptosis↑, Casp3↑, cl‑PARP↑, Bcl-2↓, Mcl-1↓, BAX↑, BIM↑, BAD↑, Akt↓, mTOR↓, ACC↑, Cyt‑c↑, Diablo↑, cl‑Casp8↑, Fas↑, DR5↑, TRAIL↑, Securin↓, CDC2↓, CDC25↓, HSP70/HSPA5↓, CDK2↓, CDK4↓, cycD1/CCND1↓, MMP2↓, uPA↓, NF-kB↓, cFos↓, cJun↓, MEK↓, p‑ERK↓, N-cadherin↓, Vim↓, Snail↓, Fibronectin↓, E-cadherin↓, NF-kB↑, ROS↑, DNAdam↑, MMP↓, CHOP↑, eff↑, ChemoSen↑,
2842- FIS,    Fisetin inhibits cellular proliferation and induces mitochondria-dependent apoptosis in human gastric cancer cells
- in-vitro, GC, AGS
TumCCA↑, CDK2↓, P53↑, selectivity↑, MMP↓, DNAdam↑, cl‑PARP↑, mt-ROS↑, eff↓, survivin↓,
2824- FIS,    Fisetin in Cancer: Attributes, Developmental Aspects, and Nanotherapeutics
- Review, Var, NA
*antiOx↑, *Inflam↓, angioG↓, BioAv↓, BioAv↑, TumCP↓, TumCI↓, TumCMig↓, *neuroP↑, EMT↓, ROS↑, selectivity↑, EGFR↓, NF-kB↓, VEGF↓, MMP9↓, MMP↓, cl‑PARP↑, Casp7↑, Casp8↑, Casp9↑, *ROS↓, uPA↓, MMP1↓, Wnt↓, Akt↓, PI3K↓, ERK↓, Half-Life↝,
2825- FIS,    Exploring the molecular targets of dietary flavonoid fisetin in cancer
- Review, Var, NA
*Inflam↓, *antiOx↓, *ERK↑, *p‑cMyc↑, *NRF2↑, *GSH↑, *HO-1↑, mTOR↓, PI3K↓, Akt↓, TumCCA↑, cycD1/CCND1↓, cycE/CCNE↓, CDK2↓, CDK4↓, CDK6↓, P21↑, p27↑, JNK↑, MMP2↓, MMP9↓, uPA↓, NF-kB↓, cFos↓, cJun↓, E-cadherin↑, Vim↓, N-cadherin↓, EMT↓, MMP↓, Cyt‑c↑, Diablo↑, Casp↑, cl‑PARP↑, P53↑, COX2↓, PGE2↓, HSP70/HSPA5↓, HSP27↓, DNAdam↑, Casp3↑, Casp9↑, ROS↑, AMPK↑, NO↑, Ca+2↑, mTORC1↓, p70S6↓, ROS↓, ER Stress↑, IRE1↑, ATF4↑, GRP78/BiP↑, eff↑, eff↑, eff↑, RadioS↑, ChemoSen↑, Half-Life↝,
2827- FIS,    The Potential Role of Fisetin, a Flavonoid in Cancer Prevention and Treatment
- Review, Var, NA
*antiOx↑, *Inflam↓, neuroP↑, hepatoP↑, RenoP↑, cycD1/CCND1↓, TumCCA↑, MMPs↓, VEGF↓, MAPK↓, NF-kB↓, angioG↓, Beclin-1↑, LC3s↑, ATG5↑, Bcl-2↓, BAX↑, Casp↑, TNF-α↓, Half-Life↓, MMP↓, mt-ROS↑, cl‑PARP↑, CDK2↓, CDK4↓, Cyt‑c↑, Diablo↑, DR5↑, Fas↑, PCNA↓, Ki-67↓, p‑H3↓, chemoP↑, Ca+2↑, Dose↝, CDC25↓, CDC2↓, CHK1↑, Chk2↑, ATM↑, PCK1↓, RAS↓, p‑p38↓, Rho↓, uPA↓, MMP7↓, MMP13↓, GSK‐3β↑, E-cadherin↑, survivin↓, VEGFR2↓, IAP2↓, STAT3↓, JAK1↓, mTORC1↓, mTORC2↓, NRF2↑,
2828- FIS,    Fisetin, a Potent Anticancer Flavonol Exhibiting Cytotoxic Activity against Neoplastic Malignant Cells and Cancerous Conditions: A Scoping, Comprehensive Review
- Review, Var, NA
*neuroP↑, *antiOx↑, *Inflam↓, RenoP↑, COX2↓, Wnt↓, EGFR↓, NF-kB↓, Casp3↑, Ca+2↑, Casp8↑, TumCCA↑, CDK1↓, PI3K↓, Akt↓, mTOR↓, MAPK↓, *P53↓, *P21↓, *p16↓, mTORC1↓, mTORC2↓, P53↑, P21↑, cycD1/CCND1↓, cycA1/CCNA1↓, CDK2↓, CDK4↓, BAX↑, Bcl-2↓, PCNA↓, HER2/EBBR2↓, Cyt‑c↑, MMP↓, cl‑Casp9↑, MMP2↓, MMP9↓, cl‑PARP↑, uPA↓, DR4↑, DR5↑, ROS↓, AIF↑, CDC25↓, Dose↑, CHOP↑, ROS↑, cMyc↓, cardioP↑,
2829- FIS,    Fisetin: An anticancer perspective
- Review, Var, NA
TumCP↓, TumCI↓, TumCCA↑, TumCG↓, Apoptosis↑, cl‑PARP↑, PKCδ↓, ROS↓, ERK↓, NF-kB↓, survivin↓, ROS↑, PI3K↓, Akt↓, mTOR↓, MAPK↓, p38↓, HER2/EBBR2↓, EMT↓, PTEN↑, HO-1↑, NRF2↑, MMP2↓, MMP9↓, MMP↓, Casp8↑, Casp9↑, TRAILR↑, Cyt‑c↑, XIAP↓, P53↑, CDK2↓, CDK4↓, CDC25↓, CDC2↓, VEGF↓, DNAdam↑, TET1↓, CHOP↑, CD44↓, CD133↓, uPA↓, CSCs↓,
2832- FIS,    Fisetin's Promising Antitumor Effects: Uncovering Mechanisms and Targeting for Future Therapies
- Review, Var, NA
MMP↓, mtDam↑, Cyt‑c↑, Diablo↑, Casp↑, cl‑PARP↑, Bak↑, BIM↑, Bcl-xL↓, Bcl-2↓, P53↑, ROS↑, AMPK↑, Casp9↑, Casp3↑, BID↑, AIF↑, Akt↓, mTOR↓, MAPK↓, Wnt↓, β-catenin/ZEB1↓, TumCCA↑, P21↑, p27↑, cycD1/CCND1↓, cycE/CCNE↓, CDK2↓, CDK4↓, CDK6↓, TumMeta↓, uPA↓, E-cadherin↑, Vim↓, EMT↓, Twist↓, DNAdam↑, ROS↓, COX2↓, PGE2↓, HSF1↓, cFos↓, cJun↓, AP-1↓, Mcl-1↓, NF-kB↓, IRE1↑, ER Stress↑, ATF4↑, GRP78/BiP↑, MMP2↓, MMP9↓, TCF-4↓, MMP7↓, RadioS↑, TOP1↓, TOP2↓,
2833- FIS,  SNP,    Glucose-capped fisetin silver nanoparticles induced cytotoxicity and ferroptosis in breast cancer cells: A molecular perspective
- in-vitro, BC, MDA-MB-231
MMP↓, ROS↑, NRF2↑, NOX↑, selectivity↑,
2838- FIS,    Fisetin induces apoptosis in colorectal cancer cells by suppressing autophagy and down-regulating nuclear factor erythroid 2-related factor 2 (Nrf2)
cl‑Casp3↑, cl‑PARP↑, MMP↓, Cyt‑c↑, ROS↑, NRF2↓,
4028- FulvicA,    Mineral pitch induces apoptosis and inhibits proliferation via modulating reactive oxygen species in hepatic cancer cells
- in-vitro, Liver, HUH7
Apoptosis↑, TumCP↓, ROS↑, NO↑, Dose↝, MMP↓, Cyt‑c↑, SOD↓, Catalase↓, GSH↑, lipid-P↑, miR-21↓, miR-22↑,
1624- GA,    Anticancer Effect of Pomegranate Peel Polyphenols against Cervical Cancer
- in-vitro, Cerv, NA
ROS↑, Dose∅, MMP↓, GSH↑,
1065- GA,    Gallic acid, a phenolic acid, hinders the progression of prostate cancer by inhibition of histone deacetylase 1 and 2 expression
- vitro+vivo, Pca, NA
tumCV↓, MMP↓, DNAdam↑, HDAC1↓, HDAC2↓, PCNA↓, cycD1/CCND1↓, cycE1↓, P21↑, TumVol↓,
1971- GamB,    Gambogic acid triggers vacuolization-associated cell death in cancer cells via disruption of thiol proteostasis
- in-vitro, Nor, MCF10 - in-vitro, BC, MDA-MB-435 - in-vitro, BC, MDA-MB-468 - in-vivo, NA, NA
Paraptosis↑, ER Stress↑, MMP↓, eff↓, selectivity↑, p‑ERK↑, p‑JNK↑, eff↓,
1955- GamB,    Gambogic acid inhibits thioredoxin activity and induces ROS-mediated cell death in castration-resistant prostate cancer
- in-vitro, Pca, NA
ROS↑, Apoptosis↑, Ferroptosis↑, Trx↓, eff↑, TrxR↓, Dose∅, MMP↓, eff↑,
1957- GamB,    Nanoscale Features of Gambogic Acid Induced ROS-Dependent Apoptosis in Esophageal Cancer Cells Imaged by Atomic Force Microscopy
- in-vitro, ESCC, EC9706
AntiCan↑, toxicity↓, TumCP↓, Apoptosis↑, TumCCA↑, MMP↓, ROS↑, eff↓, RadioS↑,
1959- GamB,    Gambogic acid induces GSDME dependent pyroptotic signaling pathway via ROS/P53/Mitochondria/Caspase-3 in ovarian cancer cells
- in-vitro, Ovarian, NA - in-vivo, NA, NA
AntiCan↑, Pyro↑, tumCV?, CellMemb↓, cl‑Casp3↑, GSDME-N↑, ROS?, p‑P53↑, eff↓, MMP↓, Bcl-2↓, BAX↑, mtDam↑, Cyt‑c↑, TumCG↓, CD4+↑, CD8+↑,
1962- GamB,  HCQ,    Gambogic acid induces autophagy and combines synergistically with chloroquine to suppress pancreatic cancer by increasing the accumulation of reactive oxygen species
- in-vitro, PC, NA
LC3II↑, Beclin-1↑, p62↓, MMP↓, ROS↑, TumAuto↑, eff↑,
831- GAR,  CUR,    Induction of apoptosis by garcinol and curcumin through cytochrome c release and activation of caspases in human leukemia HL-60 cells
- in-vitro, AML, HL-60
Apoptosis↑, Casp3↑, MMP↓, Cyt‑c↑, proCasp9↑, Bcl-2↓, BAX↑, PARP↓, DNAdam↑, DFF45↓,
821- GAR,    Garcinol inhibits cell growth in hepatocellular carcinoma Hep3B cells through induction of ROS-dependent apoptosis
- in-vitro, Liver, Hep3B
ROS↑, CHOP↑, MMP↓, Bax:Bcl2↑, Casp8↑, Casp3↑, Casp9↑, cl‑PARP↑, DFF45↑,
805- GAR,  Cisplatin,  PacT,    Garcinol Exhibits Anti-Neoplastic Effects by Targeting Diverse Oncogenic Factors in Tumor Cells
- Review, NA, NA
ERK↓, PI3K/Akt↓, Wnt/(β-catenin)↓, STAT3↓, NF-kB↓, ChemoSen↑, COX2↓, Casp3↑, Casp9↑, BAX↑, Bcl-2↓, VEGF↓, TGF-β↓, HATs↓, E-cadherin↑, Vim↓, Zeb1↓, ZEB2↓, Let-7↑, MMP9↓, TumCCA↑, ROS↑, MMP↓, IL6↓, NOTCH1↓,
3721- Gb,    Ginkgo biloba Extract in Alzheimer’s Disease: From Action Mechanisms to Medical Practice
- Review, AD, NA
*antiOx↑, *ROS↓, *SOD↑, *Catalase↑, *GSR↑, *MMP↑, *Inflam↓, *Aβ↓, *memory↑, *Dose↝, *BBB↑, *neuroP↑,
4513- GLA,    Antineoplastic Effects of Gamma Linolenic Acid on Hepatocellular Carcinoma Cell Lines
- in-vitro, Liver, HUH7
TumCP↓, ROS↑, Apoptosis↑, HO-1↑, Trx↑, lipid-P↑, eff↓, MMP↓, DNAdam↑, selectivity↑,
4506- GLA,    A basal level of γ-linolenic acid depletes Ca2+ stores and induces endoplasmic reticulum and oxidative stresses to cause death of breast cancer BT-474 cells
- in-vitro, BC, BT474
Apoptosis↓, Ca+2↑, MMP↓, p‑eIF2α↑, CHOP↑, ER Stress↑, ROS↑,
1901- GoldNP,  Rad,    The role of thioredoxin reductase in gold nanoparticle radiosensitization effects
- in-vitro, Lung, A549
MMP↓, ROS↑, RadioS↑, TrxR↓,
1904- GoldNP,  SNP,    Unveiling the Potential of Innovative Gold(I) and Silver(I) Selenourea Complexes as Anticancer Agents Targeting TrxR and Cellular Redox Homeostasis
- in-vitro, Lung, H157 - in-vitro, BC, MCF-7 - in-vitro, Colon, HCT15 - in-vitro, Melanoma, A375
TrxR↓, selectivity↑, eff↑, eff↝, ROS↑, MMP↓, Apoptosis↑, eff↑,
845- Gra,    A Review on Annona muricata and Its Anticancer Activity
- Review, NA, NA
GlucoseCon↓, ATP↓, HIF-1↓, GLUT1↓, GLUT4↓, HK2↓, LDHA↓, ERK↓, Akt↓, Apoptosis↑, NF-kB↓, ROS↑, Bax:Bcl2↑, MMP↓, Casp3↑, Casp9↑, p‑JNK↓,
841- Gra,    The Chemopotential Effect of Annona muricata Leaves against Azoxymethane-Induced Colonic Aberrant Crypt Foci in Rats and the Apoptotic Effect of Acetogenin Annomuricin E in HT-29 Cells: A Bioassay-Guided Approach
- in-vitro, CRC, HT-29 - in-vitro, Nor, CCD841
PCNA↓, Bcl-2↓, BAX↑, *MDA↓, lipid-P↓, TumCG↓, MMP↓, Cyt‑c↑, Casp3↑, Casp7↑, Casp9↑, *ROS↓, LDH↓, *toxicity↓, selectivity↑,
835- Gra,    Annona muricata leaves induced apoptosis in A549 cells through mitochondrial-mediated pathway and involvement of NF-κB
- in-vitro, Lung, A549
ROS↑, MMP↓, BAX↑, Bcl-2↓, Cyt‑c↑, Casp9↑, Casp3↑, Apoptosis↑, TumCCA↑,
850- Gra,    Selective cytotoxic and anti-metastatic activity in DU-145 prostate cancer cells induced by Annona muricata L. bark extract and phytochemical, annonacin
- in-vitro, PC, PC3 - in-vitro, Pca, DU145
ROS∅, MMP∅, Casp3↑, Casp7↑, VEGF↓,
858- Gra,    Annona muricata leaves induce G₁ cell cycle arrest and apoptosis through mitochondria-mediated pathway in human HCT-116 and HT-29 colon cancer cells
- in-vitro, CRC, HT-29 - in-vitro, CRC, HCT116
TumCCA↑, Apoptosis↑, ROS↑, MMP↓, Cyt‑c↑, Casp↑, BAX↑, Bcl-2↓, TumCMig↓, TumCI↓,
2438- Gra,    Emerging therapeutic potential of graviola and its constituents in cancers
- Review, Var, NA
Hif1a↓, GLUT1↓, GLUT4↓, HK2↓, LDHA↓, MUC4↓, TumCCA↑, MMP↓, NF-kB↓, ROS↓, Bax:Bcl2↑, ER(estro)↓, cycD1/CCND1↓, chemoPv↑, hepatoP↑,
1232- Gra,    Graviola: A Systematic Review on Its Anticancer Properties
- Review, NA, NA
EGFR↓, cycD1/CCND1↓, Bcl-2↓, TumCCA↑, Apoptosis↑, ROS↑, MMP↓, BAX↑, Cyt‑c↑, Hif1a↓, NF-kB↓, GLUT1↓, GLUT4↓, HK2↓, LDHA↓, ATP↓,
1233- Gra,    THERAPEUTIC ELIGIBILITY OF GRAVIOLA VERSUS 5-FLUOROURACIL: APOPTOTIC EFFICACY ON HEAD AND NECK SQUAMOUS CELL CARCINOMA AND NORMAL EPITHELIUM CELLS
- in-vitro, HNSCC, NA
Apoptosis↑, MMP↓,
1644- HCAs,  PBG,    Artepillin C (3,5-diprenyl-4-hydroxycinnamic acid) sensitizes LNCaP prostate cancer cells to TRAIL-induced apoptosis
- in-vitro, Pca, LNCaP
NF-kB↓, TRAILR↑, Casp8↑, Casp3↑, MMP↓, Dose?,
2887- HNK,    Honokiol Restores Microglial Phagocytosis by Reversing Metabolic Reprogramming
- in-vitro, AD, BV2
*Glycolysis↑, *ATP↑, *ROS↓, *MMP↑, *OXPHOS↑, *PPARα↑, *PGC-1α↑,
2889- HNK,  doxoR,    Honokiol, an activator of Sirtuin-3 (SIRT3) preserves mitochondria and protects the heart from doxorubicin-induced cardiomyopathy in mice
- in-vivo, Nor, NA
*SIRT3↑, chemoP↑, *cardioP↑, mtDam↑, ROS↑, *ROS↓, *MMP↑,
2864- HNK,    Honokiol: A Review of Its Anticancer Potential and Mechanisms
- Review, Var, NA
TumCCA↑, CDK2↓, EMT↓, MMPs↓, AMPK↑, TumCI↓, TumCMig↓, TumMeta↓, VEGFR2↓, *antiOx↑, *Inflam↓, *BBB↑, *neuroP↑, *ROS↓, Dose↝, selectivity↑, Casp3↑, Casp9↑, NOTCH1↓, cycD1/CCND1↓, cMyc↓, P21?, DR5↑, cl‑PARP↑, P53↑, Mcl-1↑, p65↓, NF-kB↓, ROS↑, JNK↑, NRF2↑, cJun↑, EF-1α↓, MAPK↓, PI3K↓, mTORC1↓, CSCs↓, OCT4↓, Nanog↓, SOX4↓, STAT3↓, CDK4↓, p‑RB1↓, PGE2↓, COX2↓, β-catenin/ZEB1↑, IKKα↓, HDAC↓, HATs↑, H3↑, H4↑, LC3II↑, c-Raf↓, SIRT3↑, Hif1a↓, ER Stress↑, GRP78/BiP↑, cl‑CHOP↑, MMP↓, PCNA↓, Zeb1↓, NOTCH3↓, CD133↓, Nestin↓, ATG5↑, ATG7↑, survivin↓, ChemoSen↑, SOX2↓, OS↑, P-gp↓, Half-Life↓, Half-Life↝, eff↑, BioAv↓,
2869- HNK,    Nature's neuroprotector: Honokiol and its promise for Alzheimer's and Parkinson's
- Review, AD, NA - Review, Park, NA
*neuroP↑, *Inflam↓, *motorD↑, *Aβ↓, *p‑tau↓, *cognitive↑, *memory↑, *ERK↑, *p‑Akt↑, *PPARγ↑, *PGC-1α↑, *MMP↑, *mt-ROS↓, *SIRT3↑, *IL1β↓, *TNF-α↓, *GRP78/BiP↓, *CHOP↓, *NF-kB↓, *GSK‐3β↓, *β-catenin/ZEB1↑, *Ca+2↓, *AChE↓, *SOD↑, *Catalase↑, *GPx↑,
4238- HNK,    Neuropharmacological potential of honokiol and its derivatives from Chinese herb Magnolia species: understandings from therapeutic viewpoint
- Review, AD, NA - NA, Park, NA
*BDNF↑, *hepatoP↑, *ALAT↓, *AST↓, *TNF-α↓, *SIRT3↑, *Aβ↓, *Apoptosis↓, *ROS↓, *MMP↑, *Ca+2↓, *Casp3↓, *Ach↑, *PPARγ↑, *PGC-1α↑, *motorD↑, *TNF-α↓, *IL1β↓,
2073- HNK,    Honokiol induces apoptosis and autophagy via the ROS/ERK1/2 signaling pathway in human osteosarcoma cells in vitro and in vivo
- in-vitro, OS, U2OS - in-vivo, NA, NA
TumCD↑, TumAuto↑, Apoptosis↑, TumCCA↑, GRP78/BiP↑, ROS↑, eff↓, p‑ERK↑, selectivity↑, Ca+2↑, MMP↓, Casp3↑, Casp9↑, cl‑PARP↑, Bcl-2↓, Bcl-xL↓, survivin↓, LC3B-II↑, ATG5↑, TumVol↓, TumW↓, ER Stress↑,
2071- HNK,    Identification of senescence rejuvenation mechanism of Magnolia officinalis extract including honokiol as a core ingredient
- Review, Nor, HaCaT
*ROS↓, *antiOx↑, *AntiAge↑, *MMP↑, *ECAR↓, *Glycolysis↓, *PAR-2↓, *CXCL12↑, *BMAL1↑, *mt-ROS↓, *OXPHOS↓,
886- HPT,    Impact of hyper- and hypothermia on cellular and whole-body physiology
- Analysis, NA, NA
MMP↓, OXPHOS↓, ATP↓, ROS↑, Apoptosis↑, Cyt‑c↑,
4640- HT,    The anti-cancer potential of hydroxytyrosol
- Review, Var, NA
selectivity↑, MMP↓, Cyt‑c↑, Casp9↑, Casp3↑, Bcl-2↓, BAX↑, MPT↑, Fas↑, PI3K↓, Akt↓, mTOR↓, Mcl-1↓, survivin↓, STAT3↓, EMT↓, TumCI↓, angioG↓, E-cadherin↑, N-cadherin↓, Snail↓, Twist↓, MMPs↓, MMP2↓, MMP9↓, VEGF↓, VEGFR2↓, Hif1a↓, CSCs↓, CD44↓, Wnt↓, β-catenin/ZEB1↓,
4641- HT,    Hydroxytyrosol induced ferroptosis through Nrf2 signaling pathway in colorectal cancer cells
- in-vitro, CRC, HCT116 - in-vitro, CRC, SW48
Ferroptosis↑, Iron↑, lipid-P↑, ROS↑, GSH↓, MMP↓, GPx4↓, TLR1↑, eff↓, NRF2↓, ROS↑,
1927- JG,    Juglone-induced apoptosis in human gastric cancer SGC-7901 cells via the mitochondrial pathway
- in-vitro, GC, SGC-7901
Apoptosis↑, ROS↑, Bcl-2↓, BAX↑, MMP↓, Cyt‑c↑, Casp3?, Bax:Bcl2↑,
1926- JG,    Mechanism of juglone-induced apoptosis of MCF-7 cells by the mitochondrial pathway
- in-vitro, BC, MCF-7
TumCG↓, ROS↑, MMP↓, i-Ca+2↑, BAX↑, Bcl-2↓, Cyt‑c↑, Casp3?,
1925- JG,    Redox regulation of mitochondrial functional activity by quinones
- in-vitro, NA, NA
other↓, ROS↑, MMP↓, eff↝,
2916- LT,    Antioxidative and Anticancer Potential of Luteolin: A Comprehensive Approach Against Wide Range of Human Malignancies
- Review, Var, NA - Review, AD, NA - Review, Park, NA
proCasp9↓, CDC2↓, CycB/CCNB1↓, Casp9↑, Casp3↑, Cyt‑c↑, cycA1/CCNA1↑, CDK2↓, APAF1↑, TumCCA↑, P53↑, BAX↑, VEGF↓, Bcl-2↓, Apoptosis↑, p‑Akt↓, p‑EGFR↓, p‑ERK↓, p‑STAT3↓, cardioP↑, Catalase↓, SOD↓, *BioAv↓, *antiOx↑, *ROS↓, *NO↓, *GSTs↑, *GSR↑, *SOD↑, *Catalase↑, *lipid-P↓, PI3K↓, Akt↓, CDK2↓, BNIP3↑, hTERT/TERT↓, DR5↑, Beclin-1↑, TNF-α↓, NF-kB↓, IL1↓, IL6↓, EMT↓, FAK↓, E-cadherin↑, MDM2↓, NOTCH↓, MAPK↑, Vim↓, N-cadherin↓, Snail↓, MMP2↓, Twist↓, MMP9↓, ROS↑, MMP↓, *AChE↓, *MMP↑, *Aβ↓, *neuroP↑, Trx1↑, ROS↓, *NRF2↑, NRF2↓, *BBB↑, ChemoSen↑, GutMicro↑,
2923- LT,    Luteolin induces apoptosis through endoplasmic reticulum stress and mitochondrial dysfunction in Neuro-2a mouse neuroblastoma cells
- in-vitro, NA, NA
Apoptosis↑, TumCD↑, Casp12↑, Casp9↑, Casp3↑, ER Stress↑, CHOP↑, GRP78/BiP↑, GRP94↑, cl‑ATF6↑, p‑eIF2α↑, MMP↓, JNK↓, p38↑, ERK↑, Cyt‑c↑,
2913- LT,    Luteolin induces apoptosis by impairing mitochondrial function and targeting the intrinsic apoptosis pathway in gastric cancer cells
- in-vitro, GC, HGC27 - in-vitro, BC, MCF-7 - in-vitro, GC, MKN45
TumCP↓, MMP↓, Apoptosis↑, ROS↑, SOD↓, ATP↓, Bax:Bcl2↑, TumCCA↑,
2903- LT,    Luteolin induces apoptosis by ROS/ER stress and mitochondrial dysfunction in gliomablastoma
- in-vitro, GBM, U251 - in-vitro, GBM, U87MG - in-vivo, NA, NA
ER Stress↑, ROS↑, PERK↑, eIF2α↑, ATF4↑, CHOP↑, Casp12↑, eff↓, UPR↑, MMP↓, Cyt‑c↑, Bcl-2↓, BAX↑, TumCG↓, Weight∅, ALAT∅, AST∅,
2904- LT,    Luteolin from Purple Perilla mitigates ROS insult particularly in primary neurons
- in-vitro, Park, SK-N-SH - in-vitro, AD, NA
*ROS↓, *neuroP↑, *MMP↑, *Catalase↑, *GSH↑, selectivity↑, *eff↑, *Cyt‑c↓,
2912- LT,    Luteolin: a flavonoid with a multifaceted anticancer potential
- Review, Var, NA
ROS↑, TumCCA↑, TumCP↓, angioG↓, ER Stress↑, mtDam↑, PERK↑, ATF4↑, eIF2α↑, cl‑Casp12↑, EMT↓, E-cadherin↑, N-cadherin↓, Vim↓, *neuroP↑, NF-kB↓, PI3K↓, Akt↑, XIAP↓, MMP↓, Ca+2↑, BAX↑, Casp3↑, Casp9↑, Bcl-2↓, Cyt‑c↑, IronCh↑, SOD↓, *ROS↓, *LDHA↑, *SOD↑, *GSH↑, *BioAv↓, Telomerase↓, cMyc↓, hTERT/TERT↓, DR5↑, Fas↑, FADD↑, BAD↑, BOK↑, BID↑, NAIP↓, Mcl-1↓, CDK2↓, CDK4↓, MAPK↓, AKT1↓, Akt2↓, *Beclin-1↓, Hif1a↓, LC3II↑, Beclin-1↑,
3263- Lyco,    Lycopene protects against myocardial ischemia-reperfusion injury by inhibiting mitochondrial permeability transition pore opening
- in-vitro, Nor, H9c2 - in-vitro, Stroke, NA
*Apoptosis↓, *MMP↑, *Cyt‑c↓, *APAF1↓, *cl‑Casp9↓, *cl‑Casp3↓, *Bcl-2↑, *BAX↓, cardioP↑,
4779- Lyco,    Lycopene Inhibits Reactive Oxygen Species-Mediated NF-κB Signaling and Induces Apoptosis in Pancreatic Cancer Cells
- in-vitro, PC, PANC1
ROS↓, NF-kB↓, tumCV↓, Casp3↑, Apoptosis↑, OCR↓, MMP↓, CIP2A↓, survivin↓, Casp3↑, Bax:Bcl2↑,
4791- Lyco,    Investigating into anti-cancer potential of lycopene: Molecular targets
- Review, Var, NA
*antiOx↑, TumCP↓, TumCCA↓, Apoptosis↑, TumCI↓, angioG↓, TumMeta↓, *Risk↓, cycD1/CCND1↓, CycD3↓, cycE/CCNE↓, CDK2↓, CDK4↓, Bcl-2↓, P21↑, p27↑, P53↑, BAX↑, selectivity↑, MMP↓, Cyt‑c↑, Wnt↓, eff↑, PPARγ↑, LDL↓, Akt↓, PI3K↓, mTOR↓, PDGF↓, NF-kB↓, eff↑,
4789- Lyco,    Inhibitory Effect of Lycopene on Amyloid-β-Induced Apoptosis in Neuronal Cells
- in-vitro, AD, SH-SY5Y
*antiOx↑, *ROS↓, *NF-kB↓, *neuroP↑, *MMP↓, *mtDam↓, *OCR↓,
4783- Lyco,    Lycopene suppresses gastric cancer cell growth without affecting normal gastric epithelial cells
- in-vitro, GC, AGS - in-vitro, GC, SGC-7901 - in-vitro, Nor, GES-1
TumCG↓, TumCCA↑, Apoptosis↑, MMP↓, selectivity↑, cycE1↓, TP53↑, *antiOx↑,
2533- M-Blu,  PDT,    Methylene blue-mediated photodynamic therapy enhances apoptosis in lung cancer cells
- in-vitro, Lung, A549
MMP↓, p‑MAPK↑, ROS↑, cl‑PARP↑, Bcl-2↓, Mcl-1↓, eff↓,
4533- MAG,    Magnolol, a natural compound, induces apoptosis of SGC-7901 human gastric adenocarcinoma cells via the mitochondrial and PI3K/Akt signaling pathways
- in-vitro, GC, SGC-7901
AntiCan↑, DNAdam↑, Apoptosis↑, TumCCA↑, Bax:Bcl2↑, MMP↓, Casp3↑, PI3K↓, Akt↓,
1899- MeJa,    Methyl jasmonate induces production of reactive oxygen species and alterations in mitochondrial dynamics that precede photosynthetic dysfunction and subsequent cell death
- in-vitro, NA, NA
ROS↑, MMP↓, eff↓, H2O2?,
2457- MET,    Metformin Impairs Glucose Consumption and Survival in Calu-1 Cells by Direct Inhibition of Hexokinase-II
- in-vitro, Lung, Calu-1
HK1↓, HK2↓, GlucoseCon↓, MMP↓, ATP↓,
2242- MF,    Electromagnetic stimulation increases mitochondrial function in osteogenic cells and promotes bone fracture repair
- in-vitro, Nor, NA
*MMP↑, *Diff↑, *OXPHOS↑, *BMD↑, ATP∅,
4568- MF,    Extremely low-frequency pulses of faint magnetic field induce mitophagy to rejuvenate mitochondria
- Study, NA, NA
*ETC↓, *OCR↑, *MMP↑, *ROS⇅, *MMP⇅,
4147- MF,    PEMFs Restore Mitochondrial and CREB/BDNF Signaling in Oxidatively Stressed PC12 Cells Targeting Neurodegeneration
- in-vitro, AD, PC12
*ROS↓, *Catalase↑, *MMP↑, *Casp3↓, *p‑ERK↓, *cAMP↑, *p‑CREB↑, *BDNF↑, *neuroP↑,
538- MF,    The extremely low frequency electromagnetic stimulation selective for cancer cells elicits growth arrest through a metabolic shift
- in-vitro, BC, MDA-MB-231 - in-vitro, Melanoma, MSTO-211H
TumCG↓, Ca+2↑, COX2↓, ATP↑, MMP↑, ROS↑, OXPHOS↑, mitResp↑,
532- MF,    A 50 Hz magnetic field influences the viability of breast cancer cells 96 h after exposure
- in-vitro, BC, MDA-MB-231 - in-vitro, BC, MCF-7 - in-vitro, Nor, MCF10
TumCP↓, MMP↓, ROS↑, eff↝, selectivity↑,
507- MF,    Effects of extremely low frequency electromagnetic fields on the tumor cell inhibition and the possible mechanism
- in-vitro, Liver, HepG2 - in-vitro, Lung, A549 - in-vitro, Nor, GP-293
MMP↓, TumCG↓, ROS↑, *Ca+2↓, Ca+2↑, selectivity↑, i-pH↑,
525- MF,    Pulsed electromagnetic fields regulate metabolic reprogramming and mitochondrial fission in endothelial cells for angiogenesis
- in-vitro, Nor, HUVECs
*angioG↑, *GPx1↑, *GPx4↑, *SOD↑, *PFKM↑, *PFKL↑, *PKM2↑, *PFKP↑, *HK2↑, *GLUT1↑, *GLUT4↑, *ROS↓, *MMP↝, *Glycolysis↑, *OXPHOS↓,
520- MF,    Exposure to a 50-Hz magnetic field induced mitochondrial permeability transition through the ROS/GSK-3β signaling pathway
- in-vitro, Nor, NA
*MPT↑, *Cyt‑c↑, *ROS↑, *p‑GSK‐3β↑, *eff↓, *MMP∅, *BAX↓, *Bcl-2∅,
184- MFrot,  MF,    Rotating Magnetic Fields Inhibit Mitochondrial Respiration, Promote Oxidative Stress and Produce Loss of Mitochondrial Integrity in Cancer Cells
- in-vitro, GBM, GBM
ROS↑, mitResp↓, mtDam↑, Dose↝, MMP?, OCR↓, mt-H2O2↑, eff↓, SDH↓, Thiols↓, GSH↓, TumCD↑, Casp3↑, Casp7↑, MPT↑, Cyt‑c↑, selectivity↑, GSH/GSSG↓, ETC↓,
3493- MFrot,  MF,    Mechanical nanosurgery of chemoresistant glioblastoma using magnetically controlled carbon nanotubes
- in-vivo, GBM, NA
TumCD↑, MMP↓, Cyt‑c↑, Apoptosis↑, OS↑, DNAdam↑,
2259- MFrot,  MF,    Method and apparatus for oncomagnetic treatment
- in-vitro, GBM, NA
MMP↓, Bcl-2↓, BAX↑, Bak↑, Cyt‑c↑, Casp3↑, Casp9↑, DNAdam↑, ROS↑, lactateProd↑, Apoptosis↑, MPT↑, *selectivity↑, eff↑, MMP↓, selectivity↑, TCA?, H2O2↑, eff↑, *antiOx↑, H2O2↑, eff↓, GSH/GSSG↓, *toxicity∅, OS↑,
1891- MGO,    Methylglyoxal induces mitochondria-dependent apoptosis in sarcoma
- in-vitro, SCC, NA
NADH↓, MMP↓, Cyt‑c↑, selectivity↑, Apoptosis↑, ROS↑, ATP↓,
3839- Moringa,    Nutritional Value of Moringa oleifera Lam. Leaf Powder Extracts and Their Neuroprotective Effects via Antioxidative and Mitochondrial Regulation
*eff↑, *ROS↓, *lipid-P↓, *GSH↑, *antiOx↑, *Ca+2↓, *MMP↑, *neuroP↑, *BBB↑, *Catalase↑, *SOD↑, GPx↑,
1170- MushCha,    Chaga mushroom extract suppresses oral cancer cell growth via inhibition of energy metabolism
- in-vitro, Oral, HSC4
tumCV↓, TumCP↓, TumCCA↑, STAT3↓, Glycolysis↓, MMP↓, TumAuto↑, p38↑, NF-kB↑,
4975- Nimb,    Nimbolide Induces Cell Apoptosis via Mediating ER Stress-Regulated Apoptotic Signaling in Human Oral Squamous Cell Carcinoma
- in-vitro, Oral, NA
Apoptosis↑, ROS↑, Ca+2↑, ER Stress↑, Casp↑, MMP↓, tumCV↓,
4643- OLE,  HT,    Use of Oleuropein and Hydroxytyrosol for Cancer Prevention and Treatment: Considerations about How Bioavailability and Metabolism Impact Their Adoption in Clinical Routine
- Review, Var, NA
TumCCA↑, Apoptosis↑, ER Stress↑, UPR↑, CHOP↑, ROS↑, Bcl-2↓, NOX4↑, Hif1a↓, MMP2↓, MMP↓, VEGF↓, Akt↓, NF-kB↓, p65↓, SIRT3↓, mTOR↓, Catalase↓, SOD2↓, FASN↓, STAT3↓, HDAC2↓, HDAC3↓, BAD↑, BAX↑, Bak↑, Casp3↑, Casp9↑, PARP↑, P53↑, P21↑, p27↑, Half-Life↝, BioAv↓, BioAv↓, selectivity↑, RadioS↑, *ROS↓, *GSH↑, *MDA↓, *SOD↑, *Catalase↑, *NRF2↑, *chemoP↑, *Inflam↓, PPARγ↑,
1988- Part,    Parthenolide Induces ROS-Mediated Apoptosis in Lymphoid Malignancies
- in-vitro, lymphoma, NCI-H929
NF-kB↓, ROS↑, GSH↓, MMP↓, GPx1↓,
1993- Part,    Parthenolide induces apoptosis and autophagy through the suppression of PI3K/Akt signaling pathway in cervical cancer
- in-vitro, Cerv, HeLa
tumCV↓, TumAuto↑, Casp3↑, BAX↑, Beclin-1↑, ATG3↑, ATG5↑, Bcl-2↓, mTOR↓, PI3K↓, Akt↓, PTEN↑, ROS↑, MMP↓,
1991- Part,    A novel SLC25A1 inhibitor, parthenolide, suppresses the growth and stemness of liver cancer stem cells with metabolic vulnerability
- in-vitro, Liver, HUH7
TumCCA↑, Apoptosis↑, CSCs↓, ROS↑, OXPHOS↓, MMP↓, SLC25A1↓, IDH2↓,
1990- Part,    Parthenolide alleviates cognitive dysfunction and neurotoxicity via regulation of AMPK/GSK3β(Ser9)/Nrf2 signaling pathway
- in-vitro, AD, PC12
*Apoptosis↓, *ROS↓, *MMP↓, *memory↑, *eff↑,
1989- Part,    Parthenolide and Its Soluble Analogues: Multitasking Compounds with Antitumor Properties
- Review, Var, NA
eff↑, NF-kB↓, STAT↓, ROS↑, Inflam↓, Wnt↓, TCF-4↓, LEF1↓, GSH↓, MMP↓, Casp↑, eff↓, CSCs↓,
2057- PB,    Trichomonas vaginalis induces apoptosis via ROS and ER stress response through ER–mitochondria crosstalk in SiHa cells
- in-vitro, Cerv, SiHa
ROS↓, tumCV∅, cl‑PARP↓, cl‑Casp3↓, MMP∅, ER Stress↓,
2046- PB,    Sodium butyrate promotes apoptosis in breast cancer cells through reactive oxygen species (ROS) formation and mitochondrial impairment
- in-vitro, BC, MCF-7 - in-vitro, BC, MDA-MB-468 - in-vitro, Nor, MCF10
Apoptosis↑, i-ROS?, Casp↑, MMP?, selectivity↑, *ROS∅, HDAC↓, DNArepair↓, Casp3↑, Casp8↑, *toxicity↓, TumCCA↑,
2041- PB,    The Effect of Glucose Concentration and Sodium Phenylbutyrate Treatment on Mitochondrial Bioenergetics and ER Stress in 3T3-L1 Adipocytes
- in-vitro, Nor, 3T3
*mitResp↓, *ER Stress↓, MMP↓, GlucoseCon↓, OCR↓, CHOP↑,
2070- PB,    Phenylbutyrate-induced apoptosis is associated with inactivation of NF-kappaB IN HT-29 colon cancer cells
- in-vitro, CRC, HT-29
TumCG↓, Apoptosis↑, MMP↓, Casp3↑, PARP↓, NF-kB↓, eff↑,
2065- PB,  TMZ,    Inhibition of Mitochondria- and Endoplasmic Reticulum Stress-Mediated Autophagy Augments Temozolomide-Induced Apoptosis in Glioma Cells
- in-vitro, GBM, NA
eff↑, ROS↑, MMP↓, ER Stress↑, CHOP↑, GRP78/BiP↑, pro‑Casp12↓, eff↝, Ca+2↝,
2077- PB,    Butyrate induces ROS-mediated apoptosis by modulating miR-22/SIRT-1 pathway in hepatic cancer cells
- in-vitro, Liver, HUH7
miR-22↑, SIRT1↓, ROS↑, Cyt‑c↑, Casp3↑, eff↓, TumCG↓, TumCP↓, HDAC↓, SIRT1↓, CD44↓, proMMP2↓, MMP↓, SOD↓,
998- PB,    Phenyl butyrate inhibits pyruvate dehydrogenase kinase 1 and contributes to its anti-cancer effect
- in-vivo, NA, NA
p‑PDH↓, PDH↑, PDK1↓, HDAC↓, Glycolysis↓, MMP↓, Apoptosis↑,
2381- PBG,    Chinese Poplar Propolis Inhibits MDA-MB-231 Cell Proliferation in an Inflammatory Microenvironment by Targeting Enzymes of the Glycolytic Pathway
- in-vitro, BC, MDA-MB-231
TumCP↓, TumCMig↓, TumCI↓, angioG↓, TNF-α↓, IL1β↓, IL6↓, NLRP3↓, Glycolysis↓, HK2↓, PFK↓, PKM2↓, LDHA↓, ROS↑, MMP↓,
2430- PBG,    The cytotoxic effects of propolis on breast cancer cells involve PI3K/Akt and ERK1/2 pathways, mitochondrial membrane potential, and reactive oxygen species generation
- in-vitro, BC, MDA-MB-231
TumCP↓, TP53↓, Casp3↓, BAX↓, P21↓, ROS↑, eff↓, MMP↓, LDH↑, ATP↓, Ca+2↑,
1664- PBG,    Anticancer Activity of Propolis and Its Compounds
- Review, Var, NA
Apoptosis↑, TumCMig↓, TumCCA↑, TumCP↓, angioG↓, P21↑, p27↑, CDK1↓, p‑CDK1↓, cycA1/CCNA1↓, CycB/CCNB1↓, P70S6K↓, CLDN2↓, HK2↓, PFK↓, PKM2↓, LDHA↓, TLR4↓, H3↓, α-tubulin↓, ROS↑, Akt↓, GSK‐3β↓, FOXO3↓, NF-kB↓, cycD1/CCND1↓, MMP↓, ROS↑, i-Ca+2↑, lipid-P↑, ER Stress↑, UPR↑, PERK↑, eIF2α↑, GRP78/BiP↑, BAX↑, PUMA↑, ROS↑, MMP↓, Cyt‑c↑, cl‑Casp8↑, cl‑Casp8↑, cl‑Casp3↑, cl‑PARP↑, eff↑, eff↑, RadioS↑, ChemoSen↑, eff↑,
1667- PBG,    Ethanolic extract of Brazilian green propolis sensitizes prostate cancer cells to TRAIL-induced apoptosis
- in-vitro, Pca, LNCaP
NF-kB↓, Apoptosis↑, MMP↓,
1668- PBG,    Propolis: A Detailed Insight of Its Anticancer Molecular Mechanisms
- Review, Var, NA
antiOx↑, Inflam↓, AntiCan↑, TumCP↓, Apoptosis↑, eff↝, MMPs↓, TNF-α↓, iNOS↓, COX2↓, IL1β↑, *BioAv↓, BAX↑, Casp3↑, Cyt‑c↑, Bcl-2↓, eff↑, selectivity↑, P53↑, ROS↑, Casp↑, eff↑, ERK↓, Dose∅, TRAIL↑, NF-kB↑, ROS↑, Dose↑, MMP↓, DNAdam↑, TumAuto↑, LC3II↑, p62↓, EGF↓, Hif1a↓, VEGF↓, TLR4↓, GSK‐3β↓, NF-kB↓, Telomerase↓, ChemoSen↑, ChemoSideEff↓,
1672- PBG,    The Potential Use of Propolis as an Adjunctive Therapy in Breast Cancers
- Review, BC, NA
ChemoSen↓, RadioS↑, Inflam↓, AntiCan↑, Dose∅, mtDam↑, Apoptosis?, OCR↓, ATP↓, ROS↑, ROS↑, LDH↓, TP53↓, Casp3↓, BAX↓, P21↓, ROS↑, eNOS↑, iNOS↑, eff↑, hTERT/TERT↓, cycD1/CCND1↓, eff↑, eff↑, eff↑, eff↑, STAT3↓, TIMP1↓, IL4↓, IL10↓, OS↑, Dose∅, ER Stress↑, ROS↑, NF-kB↓, p65↓, MMP↓, TumAuto↑, LC3II↑, p62↓, TLR4↓, mtDam↑, LDH↓, ROS↑, Glycolysis↓, HK2↓, PFK↓, PKM2↓, LDH↓, IL10↓, HDAC8↓, eff↑, eff↑, P21↑,
1663- PBG,    Propolis and Their Active Constituents for Chronic Diseases
- Review, Var, NA
NF-kB↓, Casp↓, Fas↓, DNAdam↑, Casp3↑, P53↝, MMP↝, ROS↑, mtDam↑, Dose?, angioG↓, TumCP↓, TumCMig↓, BAX↑, selectivity↑, MMP↓, LDH↓, IL6↓, IL1β↓, TNF-α↓,
1682- PBG,    Honey, Propolis, and Royal Jelly: A Comprehensive Review of Their Biological Actions and Health Benefits
- Review, Var, NA
i-LDH↓, Akt↓, MAPK↓, NF-kB↓, IL1β↓, IL6↓, TNF-α↓, iNOS↓, COX2↓, ROS↓, Bcl-2↓, PARP↓, P53↑, BAX↑, Casp3↑, TumCCA↑, Cyt‑c↑, MMP↓, eff↑,
1684- PBG,    Antitumor Activity of Chinese Propolis in Human Breast Cancer MCF-7 and MDA-MB-231 Cells
- in-vitro, BC, MCF-7 - in-vitro, BC, MDA-MB-231 - in-vitro, Nor, HUVECs
Apoptosis?, ANXA7↑, ROS↑, NF-kB↓, MMP↓, selectivity↑,
1685- PBG,    Antitumor Activity of Chinese Propolis in Human Breast Cancer MCF-7 and MDA-MB-231 Cells
- in-vitro, BC, MCF-7
ANXA7↑, ROS↑, NF-kB↓, MMP↓, selectivity↑, Dose⇅, ROS⇅,
1673- PBG,    An Insight into Anticancer Effect of Propolis and Its Constituents: A Review of Molecular Mechanisms
- Review, Var, NA
TumCP↓, Apoptosis↑, TumCCA↑, MALAT1↓, P53↑, RadioS↑, OS↑, ROS↑, NF-kB↓, p65↑, MMP↓, ROS↑, MMP9↓, β-catenin/ZEB1↓, Vim↓, E-cadherin↓, VEGF↓, EMT↓,
1674- PBG,  SDT,  HPT,    Study on the effect of a triple cancer treatment of propolis, thermal cycling-hyperthermia, and low-intensity ultrasound on PANC-1 cells
- in-vitro, PC, PANC1 - in-vitro, Nor, H6c7
tumCV↓, ROS↑, eff↑, Dose∅, selectivity↑, MMP↓, mtDam↑, cl‑PARP↑, p‑ERK↓, p‑JNK↑, p‑p38↑, eff↓, ChemoSen↑,
1676- PBG,    Use of Stingless Bee Propolis and Geopropolis against Cancer—A Literature Review of Preclinical Studies
- Review, Var, NA
ROS↑, MMP↓, Bcl-2↓, eff↑, tumCV↓, TumCCA↑, angioG↓, PAK1↓, HDAC1↓, HDAC2↓, P53↑, PCNA↓, cycD1/CCND1↓, cycE/CCNE↓, P21?, BAX↑, cl‑Casp3↑, cl‑PARP↑, ChemoSen↑,
1677- PBG,    Propolis Inhibits UVA-Induced Apoptosis of Human Keratinocyte HaCaT Cells by Scavenging ROS
- in-vitro, Nor, HaCaT
*Dose∅, *AP-1↓, *MMP↑, *Casp3↓, *ROS↓,
1231- PBG,    Caffeic acid phenethyl ester inhibits MDA-MB-231 cell proliferation in inflammatory microenvironment by suppressing glycolysis and lipid metabolism
- in-vitro, BC, MDA-MB-231
TumCP↓, TumCMig↓, TumCI↓, MMP↓, TLR4↓, TNF-α↓, NF-kB↓, IL1β↓, IL6↓, IRAK4↓, GLUT1↓, GLUT3↓, HK2↓, PFK↓, PKM2↓, LDHA↓, ACC↓, FASN↓, eff↓,
4922- PEITC,    Phenethyl Isothiocyanate: A comprehensive review of anti-cancer mechanisms
- Review, Var, NA
Risk↓, AntiCan↑, TumCP↓, TumMeta↓, ChemoSen↑, *BioAv↑, *other↝, *Dose↝, Dose↓, *BioAv↑, *Dose↝, *Half-Life↝, *toxicity↝, GSH↓, ROS↑, CYP1A1↑, CYP1A2↑, P450↓, CYP2E1↑, CYP3A4↓, CYP2A3/CYP2A6↓, *ROS↓, *GPx1↑, *SOD1↑, *SOD2↑, Akt↓, EGFR↓, HER2/EBBR2↓, P53↑, Telomerase↓, selectivity↑, MMP↓, Cyt‑c↑, Apoptosis↑, DR4↑, Fas↑, XIAP↓, survivin↓, TumAuto↑, Hif1a↓, angioG↓, MMPs↓, ERK↓, NF-kB↓, EMT↓, TumCI↓, TumCMig↓, Glycolysis↓, ATP↓, selectivity↑, *antiOx↑, Dose↝, other↝, OCR↓, GSH↓, ITGB1↓, ITGB6↓, ChemoSen↑,
4940- PEITC,    Phenethyl Isothiocyanate (PEITC) Inhibits the Growth of Human Oral Squamous Carcinoma HSC-3 Cells through G 0/G 1 Phase Arrest and Mitochondria-Mediated Apoptotic Cell Death
- in-vitro, Oral, HSC3
TumCCA↑, Apoptosis↑, BAX↑, BID↑, Bcl-2↓, MMP↓, Cyt‑c↑, AIF↑, tumCV↓, ROS↑, Ca+2↑, CDC25↓, CDK6↓, cycD1/CCND1↓, CDK2↓, cycE/CCNE↓, P53↑, p27↑, P21↑, Casp9↑, Casp3↑, GRP78/BiP↑,
4956- PEITC,    Inhibition of cancer growth in vitro and in vivo by a novel ROS-modulating agent with ability to eliminate stem-like cancer cells
- vitro+vivo, Lung, A549
GSH↓, ROS↑, mtDam↑, mitResp↓, MMP↓, CSCs↓, OCT4↓, ABC↓, SOX2↓, CD133↓, CD44↓, ALDH↓, Nanog↓, TumCG↓,
4950- PEITC,    Phenethyl isothiocyanate-induced apoptosis in PC-3 human prostate cancer cells is mediated by reactive oxygen species-dependent disruption of the mitochondrial membrane potential
- vitro+vivo, Pca, PC3
MMP↓, Cyt‑c↑, Smad1↑, Diablo↑, ROS↑,
4947- PEITC,    Phenethyl Isothiocyanate (PEITC) Inhibits the Growth of Human Oral Squamous Carcinoma HSC-3 Cells through G0/G1   Phase Arrest and Mitochondria-Mediated Apoptotic Cell Death
- in-vitro, Oral, HSC3
AntiCan↑, chemoPv↑, TumCG↓, Apoptosis↑, TumCCA↑, P53↑, P21↑, BAX↑, BID↑, Bcl-2↓, MMP↓, Cyt‑c↑, AIF↑, ROS↑, Ca+2↑,
4944- PEITC,    Phenethyl isothiocyanate induces DNA damage-associated G2/M arrest and subsequent apoptosis in oral cancer cells with varying p53 mutations
- in-vitro, Oral, NA
TumCG↓, TumCCA↑, Apoptosis↑, ROS↑, NO↑, GSH↓, MMP↓, DNAdam↑, ATM↑, Chk2↑, P53↑, eff↓,
4942- PEITC,    Phenethyl Isothiocyanate (PEITC) Inhibits the Growth of Human Oral Squamous Carcinoma HSC-3 Cells through G(0)/G(1) Phase Arrest and Mitochondria-Mediated Apoptotic Cell Death
- in-vitro, Oral, HSC3
chemoPv↑, TumCG↓, TumCCA↑, Apoptosis↑, BAX↑, BID↑, Bcl-2↓, MMP↓, Cyt‑c↑, AIF↑, ROS↑, Ca+2↑,
1766- PG,    Propyl gallate induces human pulmonary fibroblast cell death through the regulation of Bax and caspase-3
- in-vitro, Nor, NA
TumCCA↑, MMP↓,
1768- PG,    Propyl gallate reduces the growth of lung cancer cells through caspase‑dependent apoptosis and G1 phase arrest of the cell cycle
- in-vitro, Lung, Calu-6 - in-vitro, Lung, A549
TumCG↓, TumCCA↓, Dose∅, Bcl-2↓, cl‑PARP↑, MMP↓, Casp3↑, Casp8↑,
1765- PG,    Enhanced cell death effects of MAP kinase inhibitors in propyl gallate-treated lung cancer cells are related to increased ROS levels and GSH depletion
- in-vitro, Lung, A549 - in-vitro, Lung, Calu-6
TumCD↑, MMP↓, ROS↑, GSH↓, Dose∅, eff↑,
1938- PL,    Piperlongumine regulates epigenetic modulation and alleviates psoriasis-like skin inflammation via inhibition of hyperproliferation and inflammation
- Study, PSA, NA - in-vivo, NA, NA
ROS↑, Apoptosis↑, MMP↓, TumCCA↑, DNAdam↑, STAT3↓, Akt↓, PCNA↓, Ki-67↓, cycD1/CCND1↓, Bcl-2↓, K17↓, HDAC↓, ROS↑, *IL1β↓, *IL6↓, *TNF-α↓, *IL17↓, *IL22↓,
1946- PL,  PI,    Piperlonguminine and Piperine Analogues as TrxR Inhibitors that Promote ROS and Autophagy and Regulate p38 and Akt/mTOR Signaling
- in-vitro, Liver, NA
eff↑, toxicity↓, TrxR↓, ROS↑, MMP↓, p38↑, Akt↓, mTOR↓,
1951- PL,    Piperlongumine Analogs Promote A549 Cell Apoptosis through Enhancing ROS Generation
- in-vitro, Lung, A549
ROS↑, lipid-P↑, MMP↓, TumCCA↑, TrxR↓, eff↑,
2651- Plum,    Oxidative Stress Inducers in Cancer Therapy: Preclinical and Clinical Evidence
- Review, Var, NA
ROS↑, TrxR↓, GSR↓, ER Stress↓, TumCCA↑, MMP↓, NF-kB↓, PI3K↓, Akt↓, mTOR↓, MKP1↓, MKP2↓, ChemoSen↑,
4968- PSO,    Psoralidin: emerging biological activities of therapeutic benefits and its potential utility in cervical cancer
- in-vitro, Cerv, NA
*Inflam↓, *antiOx↑, *neuroP↑, *AntiDiabetic↑, *Bacteria↓, AntiTum↑, CSCs↓, ROS↑, TumAuto↑, Apoptosis↑, ChemoSen↑, RadioS↑, BioAv↓, *cardioP↑, *ROS↓, *LDH↓, TumCP↓, TRAIL⇅, TumCMig↓, EMT↓, NF-kB↓, P53↑, Casp3↑, NOTCH↓, CSCs↓, angioG↓, VEGF↓, Ki-67↓, CD31↓, TRAILR↑, MMP↓, BioAv↓, BioAv↑,
4969- PSO,    The Coumarin Psoralidin Enhances Anticancer Effect of Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand (TRAIL)
- in-vitro, Cerv, HeLa
AntiCan↑, chemoPv↑, TRAIL↑, selectivity↑, toxicity↓, MMP↓, Apoptosis↑,
3930- PTS,    A Review of Pterostilbene Antioxidant Activity and Disease Modification
- Review, Var, NA - Review, adrenal, NA - Review, Stroke, NA
*BioAv↑, *antiOx↑, *neuroP↑, *Inflam↓, *ROS↓, *H2O2↓, *GSH↑, *GPx↑, *GSR↑, *SOD↑, TumCG↓, PTEN↑, HGF/c-Met↓, PI3K↓, Akt↓, NF-kB↓, TumMeta↓, MMP2↓, MMP9↓, Ki-67↓, Casp3↑, MMP↓, H2O2↑, ROS↑, ChemoSen↑, *cardioP↑, *CDK2↓, *CDK4↓, *cycE/CCNE↓, *cycD1/CCND1↓, *RB1↓, *PCNA↓, *CREB↑, *GABA↑, *memory↑, *IGF-1↑, *ERK↑, TIMP1↑, BAX↑, Cyt‑c↑, Diablo↑, SOD2↑,
3353- QC,    Quercetin triggers cell apoptosis-associated ROS-mediated cell death and induces S and G2/M-phase cell cycle arrest in KON oral cancer cells
- in-vitro, Oral, KON - in-vitro, Nor, MRC-5
tumCV↓, selectivity↑, TumCCA↑, TumCMig↓, TumCI↓, Apoptosis↑, TumMeta↓, Bcl-2↓, BAX↑, TIMP1↑, MMP2↓, MMP9↓, *Inflam↓, *neuroP↑, *cardioP↑, p38↓, MAPK↓, Twist↓, P21↓, cycD1/CCND1↓, Casp3↑, Casp9↑, p‑Akt↓, p‑ERK↓, CD44↓, CD24↓, ChemoSen↑, MMP↓, Cyt‑c↑, AIF↑, ROS↑, Ca+2↑, Hif1a↓, VEGF↓,
3350- QC,    Quercetin and the mitochondria: A mechanistic view
- Review, NA, NA
*antiOx↑, *Inflam↓, *NRF2↑, ROS⇅, *NRF2↑, *HO-1↑, *PPARα↑, *PGC-1α↑, *SIRT1↑, *ATP↑, ATP↓, ERK↓, cl‑PARP↑, Casp9↑, Casp8↑, BAX↑, MMP↓, Cyt‑c↑, Casp3↑, HSP27↓, HSP72↓, RAS↓, Raf↓,
3343- QC,    Quercetin, a Flavonoid with Great Pharmacological Capacity
- Review, Var, NA - Review, AD, NA - Review, Arthritis, NA
*antiOx↑, *ROS↓, *angioG↓, *Inflam↓, *BioAv↓, *Half-Life↑, *GSH↑, *SOD↑, *Catalase↑, *Nrf1↑, *BP↓, *cardioP↑, *IL10↓, *TNF-α↓, *Aβ↓, *GSK‐3β↓, *tau↓, *neuroP↑, *Pain↓, *COX2↓, *NRF2↑, *HO-1↑, *IL1β↓, *IL17↓, *MCP1↓, PKCδ↓, ERK↓, BAX↓, cMyc↓, KRAS↓, ROS↓, selectivity↑, tumCV↓, Apoptosis↑, TumCCA↑, eff↑, P-gp↓, eff↑, eff↑, eff↑, eff↑, CycB/CCNB1↓, CDK1↓, CDK4↓, CDK2↓, TOP2↓, Cyt‑c↑, cl‑PARP↑, MMP↓, HSP70/HSPA5↓, HSP90↓, MDM2↓, RAS↓, eff↑,
3372- QC,  FIS,  KaempF,    Anticancer Potential of Selected Flavonols: Fisetin, Kaempferol, and Quercetin on Head and Neck Cancers
- Review, HNSCC, NA
ROCK1↑, TumCCA↓, HSPs↓, RAS↓, ROS↑, Ca+2↑, MMP↓, Cyt‑c↑, Endon↑, MMP9↓, MMP2↓, MMP7↓, MMP-10↓, VEGF↓, NF-kB↓, p65↓, iNOS↓, COX2↓, uPA↓, PI3K↓, FAK↓, MEK↓, ERK↓, JNK↓, p38↓, cJun↓, FOXO3↑,
3374- QC,    Therapeutic effects of quercetin in oral cancer therapy: a systematic review of preclinical evidence focused on oxidative damage, apoptosis and anti-metastasis
- Review, Oral, NA - Review, AD, NA
α-SMA↓, α-SMA↑, TumCP↓, tumCV↓, TumVol↓, TumCI↓, TumMeta↓, TumCMig↓, ROS↑, Apoptosis↑, BioAv↓, *neuroP↑, *antiOx↑, *Inflam↓, *Aβ↓, *cardioP↑, MMP↓, Cyt‑c↑, MMP2↓, MMP9↓, EMT↓, MMPs↓, Twist↓, Slug↓, Ca+2↑, AIF↑, Endon↑, P-gp↓, LDH↑, HK2↓, PKA↓, Glycolysis↓, GlucoseCon↓, lactateProd↓, GRP78/BiP↑, Casp12↑, CHOP↑,
3371- QC,    Quercetin induces MGMT+ glioblastoma cells apoptosis via dual inhibition of Wnt3a/β-Catenin and Akt/NF-κB signaling pathways
- in-vitro, GBM, T98G
TIMP2↑, TumCG↓, TumCMig↓, Apoptosis↑, TumCCA↑, MMP↓, ROS↑, Bax:Bcl2↑, cl‑Casp9↑, cl‑Casp3↑, DNAdam↑, γH2AX↑, MGMT↓, cl‑PARP↑,
3368- QC,    The potential anti-cancer effects of quercetin on blood, prostate and lung cancers: An update
- Review, Var, NA
*Inflam↓, *antiOx↑, *AntiCan↑, Casp3↓, p‑Akt↓, p‑mTOR↓, p‑ERK↓, β-catenin/ZEB1↓, Hif1a↓, AntiAg↓, VEGFR2↓, EMT↓, EGFR↓, MMP2↓, MMP↓, TumMeta↓, MMPs↓, Akt↓, Snail↓, N-cadherin↓, Vim↓, E-cadherin↑, STAT3↓, TGF-β↓, ROS↓, P53↑, BAX↑, PKCδ↓, PI3K↓, COX2↓, cFLIP↓, cycD1/CCND1↓, cMyc↓, IL6↓, IL10↓, Cyt‑c↑, TumCCA↑, DNMTs↓, HDAC↓, ac‑H3↑, ac‑H4↑, Diablo↑, Casp3↑, Casp9↑, PARP1↑, eff↑, PTEN↑, VEGF↓, NO↓, iNOS↓, ChemoSen↑, eff↑, eff↑, eff↑, uPA↓, CXCR4↓, CXCL12↓, CLDN2↓, CDK6↓, MMP9↓, TSP-1↑, Ki-67↓, PCNA↓, ROS↑, ER Stress↑,
3365- QC,    Quercetin attenuates sepsis-induced acute lung injury via suppressing oxidative stress-mediated ER stress through activation of SIRT1/AMPK pathways
- in-vivo, Sepsis, NA
*ER Stress↓, *PDI↓, *CHOP↓, *GRP78/BiP↓, *ATF6↓, *PERK↓, *IRE1↓, *MMP↑, *SOD↑, *ROS↓, *MDA↓, *SIRT1↑, *AMPK↑, *Sepsis↓,
3363- QC,    The Protective Effect of Quercetin on Endothelial Cells Injured by Hypoxia and Reoxygenation
- in-vitro, Nor, HBMECs
*Apoptosis↓, *angioG↑, *NRF2↑, *Keap1↓, *ATF6↓, *GRP78/BiP↓, *CLDN5↑, *ZO-1↑, *MMP↑, *BBB↑, *ROS↓, *ER Stress↓,
3336- QC,    Neuroprotective Effects of Quercetin in Alzheimer’s Disease
- Review, AD, NA
*neuroP↑, *lipid-P↓, *antiOx↑, *Aβ↓, *Inflam↓, *BBB↝, *NF-kB↓, *iNOS↓, *memory↑, *cognitive↑, *AChE↓, *MMP↑, *ROS↓, *ATP↑, *AMPK↑, *NADPH↓, *p‑tau↓,
2431- QC,    The Protective Effect of Quercetin against the Cytotoxicity Induced by Fumonisin B1 in Sertoli Cells
- in-vitro, Nor, TM4
*Apoptosis↓, *ROS↓, *antiOx↓, *MMP↑, *GPI↑, *HK2↑, *ALDOA↑, *PKM1↑, *LDHA↑, *PFKL↑,
55- QC,    Quercetin inhibits the growth of human gastric cancer stem cells by inducing mitochondrial-dependent apoptosis through the inhibition of PI3K/Akt signaling
- in-vitro, GC, GCSCs
Bcl-2↓, BAX↑, Cyt‑c↑, MMP↓, PI3K/Akt↓, Casp3↑, Casp9↑,
41- QC,    Quercetin induces mitochondrial-derived apoptosis via reactive oxygen species-mediated ERK activation in HL-60 leukemia cells and xenograft
- vitro+vivo, AML, HL-60
Casp8↑, Casp9↑, Casp3↑, ROS↑, ERK↑, PARP↑, MMP↓,
89- QC,  doxoR,    Quercetin reverses the doxorubicin resistance of prostate cancer cells by downregulating the expression of c-met
- in-vitro, Pca, PC3
PI3K/Akt↓, cMET↓, Casp3↑, Casp9↑, MMP↓,
914- QC,    Quercetin and Cancer Chemoprevention
- Review, NA, NA
GSH↓, ROS↑, TumCCA↑, Ca+2↑, MMP↓, Casp3↑, Casp8↑, Casp9↑, β-catenin/ZEB1↓, AMPKα↑, ASK1↑, p38↑, TRAIL↑, DR5↑, cFLIP↓, Apoptosis↑,
923- QC,    Quercetin as an innovative therapeutic tool for cancer chemoprevention: Molecular mechanisms and implications in human health
- Review, Var, NA
ROS↑, GSH↓, Ca+2↝, MMP↓, Casp3↑, Casp8↑, Casp9↑, other↓, *ROS↓, *NRF2↑, HO-1↑, TumCCA↑, Inflam↓, STAT3↓, DR5↑, P450↓, MMPs↓, IFN-γ↓, IL6↓, COX2↓, IL8↓, iNOS↓, TNF-α↓, cl‑PARP↑, Apoptosis↑, P53↑, Sp1/3/4↓, survivin↓, TRAILR↑, Casp10↑, DFF45↑, TNFR 1↑, Fas↑, NF-kB↓, IKKα↓, cycD1/CCND1↓, Bcl-2↓, BAX↑, PI3K↓, Akt↓, E-cadherin↓, Vim↓, β-catenin/ZEB1↓, cMyc↓, EMT↓, MMP2↓, NOTCH1↓, MMP7↓, angioG↓, TSP-1↑, CSCs↓, XIAP↓, Snail↓, Slug↓, LEF1↓, P-gp↓, EGFR↓, GSK‐3β↓, mTOR↓, RAGE↓, HSP27↓, VEGF↓, TGF-β↓, COL1↓, COL3A1↓,
889- QC,    The multifaceted role of quercetin derived from its mitochondrial mechanism
- vitro+vivo, Var, NA
MMP↓, ATP↝, OXPHOS↝, ROS↑,
4787- QC,    Quercetin: A Phytochemical with Pro-Apoptotic Effects in Colon Cancer Cells
- Review, CRC, NA
Inflam↓, AntiCan↑, Apoptosis↑, MMP↓, P53↑, BAX↑, Casp3↑, Casp9↑, Bcl-2↓, NF-kB↓, IL6↓, IL1β↓, *antiOx↑, *lipid-P↓, *ROS↓, MAPK↓, JAK↓, STAT↓, PI3K↓, Akt↓, chemoP↑, ROS⇅, DNAdam↑, ChemoSen↝,
4827- QC,  CUR,    Synthetic Pathways and the Therapeutic Potential of Quercetin and Curcumin
- Review, Var, NA
*AntiCan↑, *Inflam↓, *Bacteria↓, *AntiDiabetic↑, *ROS↓, *SOD↑, *Catalase↑, *GSH↑, *NRF2↑, *Trx↑, *IronCh↑, *MDA↑, cycD1/CCND1↓, PI3K↓, Casp3↑, BAX↑, ChemoSen↑, ROS↑, eff↑, MMP↓, Cyt‑c↑, Akt↓, ERK↓,
103- RES,  CUR,  QC,    The effect of resveratrol, curcumin and quercetin combination on immuno-suppression of tumor microenvironment for breast tumor-bearing mice
- vitro+vivo, BC, 4T1
ROS↑, MMP↓, Bcl-2↓, BAX↑, Casp9↑, T-Cell↑, TGF-β↓,
871- RES,  CUR,  QC,    The effect of resveratrol, curcumin and quercetin combination on immuno-suppression of tumor microenvironment for breast tumor-bearing mice
- in-vitro, BC, 4T1 - in-vivo, BC, 4T1
T-Cell↑, Neut↓, Macrophages↓, ROS↑, MMP↓, other↓, AntiTum↑, TumVol↓,
1490- RES,    Anticancer Potential of Resveratrol, β-Lapachone and Their Analogues
- Review, Var, NA
TumCCA↑, ROS↑, Ca+2↑, MMP↓, ATP↓, TOP1?, P53↑, p53 Wildtype∅, Akt↓, mTOR↓, EMT↓, *BioAv↓,
2566- RES,    A comprehensive review on the neuroprotective potential of resveratrol in ischemic stroke
- Review, Stroke, NA
*neuroP↑, *NRF2↑, *SIRT1↑, *PGC-1α↑, *FOXO↑, *HO-1↑, *NQO1↑, *ROS↓, *BP↓, *BioAv↓, *Half-Life↝, *AMPK↑, *GSK‐3β↓, *eff↑, *AntiAg↑, *BBB↓, *Inflam↓, *MPO↓, *TLR4↓, *NF-kB↓, *p65↓, *MMP9↓, *TNF-α↓, *IL1β↓, *PPARγ↑, *MMP↑, *ATP↑, *Cyt‑c∅, *mt-lipid-P↓, *H2O2↓, *HSP70/HSPA5↝, *Mets↝, *eff↑, *eff↑, *motorD↑, *MDA↓, *NADH:NAD↑, eff↑, eff↑,
3067- RES,    Proteomic Profiling Reveals That Resveratrol Inhibits HSP27 Expression and Sensitizes Breast Cancer Cells to Doxorubicin Therapy
- in-vitro, BC, MCF-7
Apoptosis↑, MMP↓, Cyt‑c↑, Casp3↑, Casp9↑, HSP27↓,
3055- RES,    Resveratrol and Tumor Microenvironment: Mechanistic Basis and Therapeutic Targets
- Review, Var, NA
BioAv↓, BioAv↓, Dose↑, eff↑, eff↑, Dose↑, BioAv↑, ROS↑, MMP↓, P21↑, p27↑, TumCCA↑, ChemoSen↑, COX2↓, 5LO↓, VEGF↓, IL1↓, IL6↓, IL8↓, AR↓, PSA↓, MAPK↓, Hif1a↓, Glycolysis↓, miR-21↓, PTEN↑, Half-Life↝, *IGF-1↓, *IGFBP3↑, Half-Life↓,
3099- RES,    Resveratrol and cognitive decline: a clinician perspective
- Review, Nor, NA - NA, AD, NA
*antiOx↑, *ROS↓, *cognitive↑, *neuroP↑, *SIRT1↑, *AMPK↑, *GPx↑, *HO-1↑, *GSK‐3β↑, *COX2↓, *PGE2↓, *NF-kB↓, *NO↓, *Casp3↓, *MMP3↓, *MMP9↓, *MMP↑, *GSH↑, *other↑, *BioAv↑, *memory↑, *GlutMet↑, *BioAv↓, *Half-Life↓, *toxicity∅,
3092- RES,    Resveratrol in breast cancer treatment: from cellular effects to molecular mechanisms of action
- Review, BC, MDA-MB-231 - Review, BC, MCF-7
TumCP↓, tumCV↓, TumCI↓, TumMeta↓, *antiOx↑, *cardioP↑, *Inflam↓, *neuroP↑, *Keap1↓, *NRF2↑, *ROS↓, p62↓, IL1β↓, CRP↓, VEGF↓, Bcl-2↓, MMP2↓, MMP9↓, FOXO4↓, POLD1↓, CK2↓, MMP↓, ROS↑, Apoptosis↑, TumCCA↑, Beclin-1↓, Ki-67↓, ATP↓, GlutMet↓, PFK↓, TGF-β↓, SMAD2↓, SMAD3↓, Vim?, Snail↓, Slug↓, E-cadherin↑, EMT↓, Zeb1↓, Fibronectin↓, IGF-1↓, PI3K↓, Akt↓, HO-1↑, eff↑, PD-1↓, CD8+↑, Th1 response↑, CSCs↓, RadioS↑, SIRT1↑, Hif1a↓, mTOR↓,
2687- RES,    Effects of resveratrol, curcumin, berberine and other nutraceuticals on aging, cancer development, cancer stem cells and microRNAs
- Review, NA, NA - Review, AD, NA
NF-kB↓, P450↓, COX2↓, Hif1a↓, VEGF↓, *SIRT1↑, SIRT1↓, SIRT2↓, ChemoSen⇅, cardioP↑, *memory↑, *angioG↑, *neuroP↑, STAT3↓, CSCs↓, RadioS↑, Nestin↓, Nanog↓, TP53↑, P21↑, CXCR4↓, *BioAv↓, EMT↓, Vim↓, Slug↓, E-cadherin↑, AMPK↑, MDR1↓, DNAdam↑, TOP2↓, PTEN↑, Akt↓, Wnt↓, β-catenin/ZEB1↓, cMyc↓, MMP7↓, MALAT1↓, TCF↓, ALDH↓, CD44↓, Shh↓, IL6↓, VEGF↓, eff↑, HK2↓, ROS↑, MMP↓,
4668- RES,    Resveratrol Impedes the Stemness, Epithelial-Mesenchymal Transition, and Metabolic Reprogramming of Cancer Stem Cells in Nasopharyngeal Carcinoma through p53 Activation
- in-vitro, NPC, NA
ROS↑, MMP↓, CSCs↓, P53↑, EMT↓,
3028- RosA,    Network pharmacology mechanism of Rosmarinus officinalis L.(Rosemary) to improve cell viability and reduces apoptosis in treating Alzheimer’s disease
- in-vitro, AD, HT22 - in-vivo, NA, NA
*Aβ↓, *Apoptosis↓, *antiOx↑, *neuroP↑, *eff↑, *IGF-1↑, *MMP9↑, *Src↓, *MAPK↓, *MMP↑,
3001- RosA,    Therapeutic Potential of Rosmarinic Acid: A Comprehensive Review
- Review, Var, NA
TumCP↓, Apoptosis↑, TumMeta↓, Inflam↓, *antiOx↑, *AntiAge↑, *ROS↓, BioAv↑, Dose↝, NRF2↑, P-gp↑, ATP↑, MMPs↓, cl‑PARP↓, Hif1a↓, GlucoseCon↓, lactateProd↓, Warburg↓, TNF-α↓, COX2↓, IL6↓, HDAC2↓, GSH↑, ROS↓, ChemoSen↑, *BG↓, *IL1β↓, *TNF-α↓, *IL6↓, *p‑JNK↓, *p38↓, *Catalase↑, *SOD↑, *GSTs↑, *VitC↑, *VitE↑, *GSH↑, *GutMicro↑, *cardioP↑, *ROS↓, *MMP↓, *lipid-P↓, *NRF2↑, *hepatoP↑, *neuroP↑, *P450↑, *HO-1↑, *AntiAge↑, *motorD↓,
3003- RosA,    Comprehensive Insights into Biological Roles of Rosmarinic Acid: Implications in Diabetes, Cancer and Neurodegenerative Diseases
- Review, Var, NA - Review, AD, NA - Review, Park, NA
*Inflam↓, *antiOx↑, *neuroP↑, *IL6↓, *IL1β↓, *NF-kB↓, *PGE2↓, *COX2↓, *MMP↑, *memory↑, *ROS↓, *Aβ↓, *HMGB1↓, TumCG↓, MARK4↓, Zeb1↓, MDM2↓, BNIP3↑, ASC↑, NLRP3↓, PI3K↓, Akt↓, Casp1↓, E-cadherin↑, STAT3↓, TLR4↓, MMP↓, ICAM-1↓, AMPK↓, IL6↑, MMP2↓, Warburg↓, Bcl-xL↓, Bcl-2↓, TumCCA↑, EMT↓, TumMeta↓, mTOR↓, HSP27↓, Casp3↑, GlucoseCon↓, lactateProd↓, VEGF↓, p‑p65↓, GIT1↓, FOXM1↓, cycD1/CCND1↓, CDK4↓, MMP9↓, HDAC2↓,
3037- RosA,    Unraveling rosmarinic acid anticancer mechanisms in oral cancer malignant transformation
- in-vitro, Oral, SCC9 - in-vitro, Oral, HSC3
survivin↓, AntiCan↑, Vim↓, Snail↓, SOX9↓, EMT↓, MMP2↓, MMP9↓, P-gp↓, TumCG↓, ROS↑, MMP↓, GSH↓, P-gp↓, ATP↓,
4899- Sal,    Anticancer activity of salinomycin quaternary phosphonium salts
- in-vitro, Var, NA
eff↑, selectivity↑, CSCs↓, TumCCA↑, MMP↓, ROS↑, mitResp↑,
4900- Sal,    Anticancer Mechanisms of Salinomycin in Breast Cancer and Its Clinical Applications
- Review, BC, NA
CSCs↓, Apoptosis↑, TumAuto↑, necrosis↑, TumCP↓, TumCI↓, TumCMig↓, TumCG↓, TumMeta↓, eff↑, Bcl-2↓, cMyc↓, Snail↓, ALDH↓, Myc↓, AR↓, ROS↑, NF-kB↓, PTCH1↓, Smo↓, Gli1↓, GLI2↓, Wnt↓, mTOR↓, GSK‐3β↓, cycD1/CCND1↓, survivin↓, P21↑, p27↑, CHOP↑, Ca+2↑, DNAdam↑, Hif1a↓, VEGF↓, angioG↓, MMP↓, ATP↓, p‑P53↑, γH2AX↑, ChemoSen↑,
4902- Sal,  OXA,    Salinomycin and oxaliplatin synergistically enhances cytotoxic effect on human colorectal cancer cells in vitro and in vivo
- vitro+vivo, CRC, NA
RadioS↑, ChemoSen↑, TumCP↓, Apoptosis↑, ROS↑, MMP↓, MAPK↑, eff↓, TumCG↓, TumCCA↑,
4903- Sal,    Salinomycin: A new paradigm in cancer therapy
- Review, Var, NA
TumCG↓, ATP↓, CSCs↓, ROS↑, Casp↑, MMP↓, selectivity↑, OXPHOS↓, STAT3↓, P53↑, γH2AX↑, cycD1/CCND1↓, TumCCA↑, DNAdam↑, ChemoSen↑,
323- Sal,  SNP,    Combination of salinomycin and silver nanoparticles enhances apoptosis and autophagy in human ovarian cancer cells: an effective anticancer therapy
- in-vitro, BC, MDA-MB-231 - in-vitro, Ovarian, A2780S
TumCD↑, LDH↓, MDA↑, SOD↓, ROS↑, GSH↓, Catalase↓, MMP↓, P53↑, P21↑, BAX↑, Bcl-2↓, Casp3↑, Casp9↑, Apoptosis↑, TumAuto↑,
1208- SANG,    Sanguinarine induces apoptosis in osteosarcoma by attenuating the binding of STAT3 to the single-stranded DNA-binding protein 1 (SSBP1) promoter region
- in-vitro, OS, NA
SSBP1↑, mtDam↑, Apoptosis↑, JAK↓, STAT3↓, PI3k/Akt/mTOR↓, ROS↑, MMP↓,
2549- SDT,    Landscape of Cellular Bioeffects Triggered by Ultrasound-Induced Sonoporation
- Review, Var, NA
sonoP↑, tumCV↓, MMP↓, ROS↑, Ca+2↑, eff↝, eff↑, selectivity↑, Half-Life↝, Dose↝, P-gp↓, ER Stress↑, other↑,
4723- Se,    Selenium Induces Ferroptosis in Colorectal Cancer Cells via Direct Interaction with Nrf2 and Gpx4
- in-vitro, CRC, HCT116
TumCP↓, Iron↑, MDA↑, ROS↑, MMP↓, NRF2↓, GPx4↓, Ferroptosis↑,
4714- Se,    Selenium in cancer management: exploring the therapeutic potential
- Review, Var, NA
Risk↓, *BioAv↑, eff↝, *ROS↓, MMP↓, ROS↑, P53↑, *toxicity↓, TumCP↓, Casp↑, Apoptosis↑,
4742- Se,    Antitumor Effects of Selenium
- Review, Var, NA - Review, Arthritis, NA - Review, Sepsis, NA
*antiOx↓, *Inflam↓, Risk↓, TumCI↓, TumMeta↓, radioP↑, chemoP↑, Apoptosis↑, ROS↑, DNAdam↑, Dose↑, selectivity↑, *other↓, *BioAv↑, ROS↑, MMP↓, Casp↑, *Imm↑, *Pain↓, Sepsis↓, MMP2↓, MMP9↓, *Half-Life↓,
4469- Se,    Selenium Nanoparticles in Cancer Therapy: Unveiling Cytotoxic Mechanisms and Therapeutic Potential
- Review, Var, NA
antiOx↑, selectivity↑, eff↑, AntiCan↑, Apoptosis↑, ROS↑, MMP↓, Casp3↑, Casp9↑, AntiTum↑, TumCG↓, TumMeta↓, angioG↓, Cyt‑c↑, DNAdam↑, RadioS↑, BBB↑, *toxicity↓, ChemoSen↑,
4453- Se,    Selenium Nanoparticles: Green Synthesis and Biomedical Application
- Review, NA, NA
*toxicity↓, *Bacteria↓, ROS↑, MMP↓, ER Stress↑, P53↑, Apoptosis↑, Casp9↑, DNAdam↑, TumCCA↑, eff↑, Catalase↓, SOD↓, GSH↓, selectivity↓, selectivity↑, PCNA↓, eff↑, *ALAT↓, *AST↓, *ALP↓, *creat↓, *Inflam↓, *toxicity↓, selectivity↑,
4449- Se,    PEG-nanolized ultrasmall selenium nanoparticles overcome drug resistance in hepatocellular carcinoma HepG2 cells through induction of mitochondria dysfunction
- in-vitro, Liver, HepG2
MMP↓, selectivity↑, Apoptosis↑, ROS↑,
4471- Se,    Green synthesis of selenium nanoparticles with extract of hawthorn fruit induced HepG2 cells apoptosis
- in-vitro, Liver, HepG2
eff↑, ROS↑, MMP↓, Casp9↑, Bcl-2↓, selectivity↑, Apoptosis↑,
4486- Se,  Chit,    Selenium-Modified Chitosan Induces HepG2 Cell Apoptosis and Differential Protein Analysis
- in-vitro, Liver, HepG2
Apoptosis↑, TumCCA↑, MMP↓, Bcl-2↓, BAX↑, cl‑Casp9↑, cl‑Casp3↑, Risk↓, *BioAv↑, *toxicity↑, TumCG↓, AntiTum↑, ROS↑, Cyt‑c↑, Fas↑, FasL↑, FADD↑,
4484- Se,  Chit,  PEG,    Anti-cancer potential of selenium-chitosan-polyethylene glycol-carvacrol nanocomposites in multiple myeloma U266 cells
- in-vitro, Melanoma, U266
tumCV↓, selectivity↑, ROS↑, MMP↓, Apoptosis↑, BAX↑, Casp3↑, Casp9↑, Bcl-2↓,
1003- Sel,    Sodium selenite inhibits proliferation of lung cancer cells by inhibiting NF-κB nuclear translocation and down-regulating PDK1 expression which is a key enzyme in energy metabolism expression
- vitro+vivo, Lung, NA
NF-kB↓, PDK1↓, p‑p65↑, p‑IκB↑, BAX↑, lactateProd↓, MMP↓, Cyt‑c↑, mitResp↑, Apoptosis↑,
2448- SFN,    Sulforaphane and bladder cancer: a potential novel antitumor compound
- Review, Bladder, NA
Apoptosis↑, TumCG↓, TumCI↓, TumMeta↓, glucoNG↓, ChemoSen↑, TumCCA↑, Casp3↑, Casp7↑, cl‑PARP↑, survivin↓, EGFR↓, HER2/EBBR2↓, ATP↓, Glycolysis↓, mt-OXPHOS↓, AKT1↓, HK2↓, Hif1a↓, ROS↑, NRF2↑, EMT↓, COX2↓, MMP2↓, MMP9↓, Zeb1↓, Snail↓, HDAC↓, HATs↓, MMP↓, Cyt‑c↓, Shh↓, Smo↓, Gli1↓, BioAv↝, BioAv↝, Dose↝,
1723- SFN,    Sulforaphane as a potential remedy against cancer: Comprehensive mechanistic review
- Review, Var, NA
*NRF2↑, ROS↑, MMP↓, Cyt‑c↑, cl‑PARP↑, Apoptosis↑, AMPK↑, GSH↓,
1482- SFN,    Sulforaphane induces apoptosis in T24 human urinary bladder cancer cells through a reactive oxygen species-mediated mitochondrial pathway: the involvement of endoplasmic reticulum stress and the Nrf2 signaling pathway
- in-vitro, Bladder, T24
tumCV↓, Apoptosis↑, Cyt‑c↑, Bax:Bcl2↑, Casp9↑, Casp3↑, Casp8∅, cl‑PARP↑, ROS↑, MMP↓, eff↓, ER Stress↑, p‑NRF2↑, HO-1↑,
1468- SFN,    Cellular responses to dietary cancer chemopreventive agent D,L-sulforaphane in human prostate cancer cells are initiated by mitochondrial reactive oxygen species
- in-vitro, Pca, LNCaP - in-vitro, Pca, PC3
ROS↑, DNAdam↑, MMP↓, Cyt‑c↑, TumCCA↑,
1456- SFN,    Sulforaphane regulates cell proliferation and induces apoptotic cell death mediated by ROS-cell cycle arrest in pancreatic cancer cells
- in-vitro, PC, MIA PaCa-2 - in-vitro, PC, PANC1
tumCV↓, TumCP↓, cl‑PARP↑, cl‑Casp3↑, TumCCA↑, ROS↑, MMP↓, γH2AX↑, eff↓, *toxicity↓,
1458- SFN,    Sulforaphane Impact on Reactive Oxygen Species (ROS) in Bladder Carcinoma
- Review, Bladder, NA
HDAC↓, eff↓, TumW↓, TumW↓, angioG↓, *toxicity↓, GutMicro↝, AntiCan↑, ROS↑, MMP↓, Cyt‑c↑, Bax:Bcl2↑, Casp3↑, Casp9↑, Casp8∅, cl‑PARP↑, TRAIL↑, DR5↑, eff↓, NRF2↑, ER Stress↑, COX2↓, EGFR↓, HER2/EBBR2↓, ChemoSen↑, NF-kB↓, TumCCA?, p‑Akt↓, p‑mTOR↓, p70S6↓, p19↑, P21↑, CD44↓, CSCs↓,
1459- SFN,  Aur,    Auranofin Enhances Sulforaphane-Mediated Apoptosis in Hepatocellular Carcinoma Hep3B Cells through Inactivation of the PI3K/Akt Signaling Pathway
- in-vitro, Liver, Hep3B - in-vitro, Liver, HepG2
eff↑, TumCCA↑, Apoptosis↑, MMP↓, BAX↑, cl‑PARP↑, Casp3↑, Casp8↑, Casp9↑, ROS↑, eff↓, PI3K↓, Akt↓, TrxR↓, BAX↑, Bcl-2∅,
1465- SFN,    TRAIL attenuates sulforaphane-mediated Nrf2 and sustains ROS generation, leading to apoptosis of TRAIL-resistant human bladder cancer cells
- NA, Bladder, NA
eff↑, Apoptosis↑, Casp↑, MMP↓, BID↑, DR5↑, ROS↑, NRF2↑, eff↑, eff↓,
1466- SFN,    Sulforaphane inhibits thyroid cancer cell growth and invasiveness through the reactive oxygen species-dependent pathway
- vitro+vivo, Thyroid, FTC-133
TumCP↓, TumCCA↑, Apoptosis↑, TumCMig↓, TumCI↓, EMT↓, Slug↓, Twist↓, MMP2↓, MMP9↓, TumCG↓, p‑Akt↓, P21↑, ERK↑, p38↑, ROS↑, *toxicity∅, MMP↓, eff↓,
1467- SFN,    Sulforaphane generates reactive oxygen species leading to mitochondrial perturbation for apoptosis in human leukemia U937 cells
- in-vitro, AML, U937
Apoptosis↑, ROS↑, MMP↓, Casp3↑, Bcl-2↓, eff↓,
1469- SFN,    Sulforaphane enhances the therapeutic potential of TRAIL in prostate cancer orthotopic model through regulation of apoptosis, metastasis, and angiogenesis
- in-vitro, Pca, PC3 - in-vitro, Pca, LNCaP - in-vivo, Pca, NA
eff↑, ROS↑, MMP↓, Casp3↑, Casp9↑, DR4↑, DR5↑, BAX↑, Bak↑, BIM↑, NOXA↑, Bcl-2↓, Bcl-xL↓, Mcl-1↓, eff↓, TumCG↓, TumCP↓, eff↑, NF-kB↓, PI3K↓, Akt↓, MEK↓, ERK↓, angioG↓, FOXO3↑,
1471- SFN,    ROS-mediated activation of AMPK plays a critical role in sulforaphane-induced apoptosis and mitotic arrest in AGS human gastric cancer cells
- in-vitro, GC, AGS
TumCP↓, Apoptosis↑, TumCCA↑, CycB/CCNB1↑, P21↑, p‑H3↑, p‑AMPK↑, eff↓, MMP↓, Cyt‑c↑, ROS↑, eff↓,
1474- SFN,    Sulforaphane induces p53‑deficient SW480 cell apoptosis via the ROS‑MAPK signaling pathway
- in-vitro, Colon, SW480
TumCG↓, Apoptosis↑, MMP↓, Bax:Bcl2↑, Casp3↑, Casp7↑, Casp9↑, ROS↑, e-ERK↑, p38↑, P53∅, eff↓, ChemoSen↑,
2167- SFN,    The dietary isothiocyanate sulforaphane targets pathways of apoptosis, cell cycle arrest, and oxidative stress in human pancreatic cancer cells and inhibits tumor growth in severe combined immunodeficient mice
- in-vitro, PC, MIA PaCa-2 - in-vitro, PC, PANC1
Casp8↑, MMP↓, Casp3↑, Apoptosis↑, GSH↓, GSH↑,
3646- SIL,    "Silymarin", a promising pharmacological agent for treatment of diseases
- Review, NA, NA
*P-gp↓, *Inflam↓, *hepatoP↑, *antiOx↑, *GSH↑, *BioAv↑, *SOD↑, *IFN-γ↓, *IL4↓, *IL10↓, *Half-Life↓, *TNF-α↓, *ALAT↓, *AST↓, Akt↓, chemoP↑, β-catenin/ZEB1↓, TumCP↓, MMP↓, Cyt‑c↑, *RenoP↑, *BBB↑,
3282- SIL,    Role of Silymarin in Cancer Treatment: Facts, Hypotheses, and Questions
- Review, NA, NA
hepatoP↑, AntiCan↑, TumCMig↓, Hif1a↓, selectivity↑, toxicity∅, *antiOx↑, *Inflam↓, TumCCA↑, P21↑, CDK4↓, NF-kB↓, ERK↓, PSA↓, TumCG↓, p27↑, COX2↓, IL1↓, VEGF↓, IGFBP3↑, AR↓, STAT3↓, Telomerase↓, Cyt‑c↑, Casp↑, eff↝, HDAC↓, HATs↑, Zeb1↓, E-cadherin↑, miR-203↑, NHE1↓, MMP2↓, MMP9↓, PGE2↓, Vim↓, Wnt↓, angioG↓, VEGF↓, *TIMP1↓, EMT↓, TGF-β↓, CD44↓, EGFR↓, PDGF↓, *IL8↓, SREBP1↓, MMP↓, ATP↓, uPA↓, PD-L1↓, NOTCH↓, *SIRT1↑, SIRT1↓, CA↓, Ca+2↑, chemoP↑, cardioP↑, Dose↝, Half-Life↝, BioAv↓, BioAv↓, BioAv↓, toxicity↝, Half-Life↓, ROS↓, FAK↓,
3309- SIL,    Silymarin as a Natural Antioxidant: An Overview of the Current Evidence and Perspectives
- Review, NA, NA
*ROS↓, *IronCh↑, *MMP↑, *NRF2↑, *Inflam↓, *hepatoP↑, *HSPs↑, *Trx↑, *SIRT2↑, *GSH↑, *ROS↑, *NADPH↓, *iNOS↓, *NF-kB↓, *BioAv↓, *Dose↝, *BioAv↑,
3288- SIL,    Silymarin in cancer therapy: Mechanisms of action, protective roles in chemotherapy-induced toxicity, and nanoformulations
- Review, Var, NA
Inflam↓, lipid-P↓, TumMeta↓, angioG↓, chemoP↑, EMT↓, HDAC↓, HATs↑, MMPs↓, uPA↓, PI3K↓, Akt↓, VEGF↓, CD31↓, Hif1a↓, VEGFR2↓, Raf↓, MEK↓, ERK↓, BIM↓, BAX↑, Bcl-2↓, Bcl-xL↓, Casp↑, MAPK↓, P53↑, LC3II↑, mTOR↓, YAP/TEAD↓, *BioAv↓, MMP↓, Cyt‑c↑, PCNA↓, cMyc↓, cycD1/CCND1↓, β-catenin/ZEB1↓, survivin↓, APAF1↑, Casp3↑, MDSCs↓, IL10↓, IL2↑, IFN-γ↑, hepatoP↑, cardioP↑, GSH↑, neuroP↑,
3299- SIL,    Silymarin Effect on Mitophagy Pathway in the Human Colon Cancer HT-29 Cells
- in-vitro, Colon, HT29
tumCV↓, MMP↓, ROS↑, selectivity↑,
3298- SIL,    Silibinin, a natural flavonoid, induces autophagy via ROS-dependent mitochondrial dysfunction and loss of ATP involving BNIP3 in human MCF7 breast cancer cells
- in-vitro, BC, MCF-7
LC3II↑, Beclin-1↑, Bcl-2↓, ROS↑, MMP↓, ATP↓, eff↓, BNIP3?, TumAuto↑, eff↑,
3297- SIL,  Rad,    Studies on radiation sensitization efficacy by silymarin in colon carcinoma cells
- in-vitro, CRC, HCT15 - in-vitro, CRC, RKO
TumCP↓, RadioS↑, TumCCA↑, DNAdam↓, MMP↓, ROS↓, *radioP↑,
3290- SIL,    A review of therapeutic potentials of milk thistle (Silybum marianum L.) and its main constituent, silymarin, on cancer, and their related patents
- Analysis, Var, NA
hepatoP↑, chemoP↑, *lipid-P↓, *antiOx↑, tumCV↓, TumCMig↓, Apoptosis↑, ROS↑, GSH↓, Bcl-2↓, survivin↓, cycD1/CCND1↓, NOTCH1↓, BAX↑, NF-kB↓, COX2↓, LOX1↓, iNOS↓, TNF-α↓, IL1↓, Inflam↓, *toxicity↓, CXCR4↓, EGFR↓, ERK↓, MMP↓, Cyt‑c↑, TumCCA↑, RB1↑, P53↑, P21↑, p27↑, cycE/CCNE↓, CDK4↓, p‑pRB↓, Hif1a↓, cMyc↓, IL1β↓, IFN-γ↓, PCNA↓, PSA↓, CYP1A1↓,
3319- SIL,    Silymarin and neurodegenerative diseases: Therapeutic potential and basic molecular mechanisms
- Review, AD, NA - Review, Park, NA - Review, Stroke, NA
*neuroP↑, *ROS↓, *Inflam↓, *Apoptosis↓, *BBB?, *tau↓, *NF-kB↓, *IL1β↓, *TNF-α↓, *IL4↓, *MAPK↓, *memory↑, *cognitive↑, *Aβ↓, *ROS↓, *lipid-P↓, *GSH↑, *MDA↓, *SOD↑, *Catalase↑, *AChE↓, *BChE↓, *p‑ERK↓, *p‑JNK↓, *p‑p38↓, *GutMicro↑, *COX2↓, *iNOS↓, *TLR4↓, *neuroP↑, *Strength↑, *AMPK↑, *MMP↑, *necrosis↓, *NRF2↑, *HO-1↑,
2410- SIL,    Autophagy activated by silibinin contributes to glioma cell death via induction of oxidative stress-mediated BNIP3-dependent nuclear translocation of AIF
- in-vitro, GBM, U87MG - in-vitro, GBM, U251 - in-vivo, NA, NA
TumAuto↑, ATP↓, Glycolysis↓, H2O2↑, P53↑, GSH↓, xCT↓, BNIP3↝, MMP↑, mt-ROS↑, mtDam↑, HK2↓, PFKP↓, PKM2↓, TumCG↓,
2231- SK,    Shikonin Exerts Cytotoxic Effects in Human Colon Cancers by Inducing Apoptotic Cell Death via the Endoplasmic Reticulum and Mitochondria-Mediated Pathways
- in-vitro, CRC, SNU-407
Apoptosis↑, ER Stress↑, PERK↑, eIF2α↑, CHOP↑, mt-Ca+2↑, MMP↓, Bcl-2↓, Casp3↑, Casp9↑, ERK↑, JNK↑, p38↓,
2230- SK,    Shikonin induces ROS-based mitochondria-mediated apoptosis in colon cancer
- in-vitro, CRC, HCT116 - in-vivo, NA, NA
TumCG↓, Bcl-2↓, ROS↑, Bcl-xL↓, MMP↓, Casp↑, selectivity↑, cycD1/CCND1↓, TumCCA↑, eff↓,
2227- SK,    Shikonin induces mitochondria-mediated apoptosis and enhances chemotherapeutic sensitivity of gastric cancer through reactive oxygen species
- in-vitro, GC, BGC-823 - in-vitro, GC, SGC-7901 - in-vitro, Nor, GES-1
selectivity↑, TumCP↓, TumCD↑, ROS↑, MMP↓, Casp↑, Cyt‑c↑, Endon↑, AIF↑, eff↓, ChemoSen↑, TumCCA↑, GSH/GSSG↓, lipid-P↑,
2219- SK,    Shikonin induces apoptosis of HaCaT cells via the mitochondrial, Erk and Akt pathways
- in-vitro, Nor, HaCaT
*MMP↓, *ROS↑, *Casp3↑, *TumCG↓,
2416- SK,    Shikonin induces cell death by inhibiting glycolysis in human testicular cancer I-10 and seminoma TCAM-2 cells
- in-vitro, Testi, TCAM-2
MMP↓, ROS↑, lactateProd↓, Bcl-2↓, cl‑Casp3↓, PKM2↓, GLUT1↓, HK2↓, LC3B↑,
3040- SK,    Pharmacological Properties of Shikonin – A Review of Literature since 2002
- Review, Var, NA - Review, IBD, NA - Review, Stroke, NA
*Half-Life↝, *BioAv↓, *BioAv↑, *BioAv↑, *Inflam↓, *TNF-α↓, *other↑, *MPO↓, *COX2↓, *NF-kB↑, *STAT3↑, *antiOx↑, *ROS↓, *neuroP↑, *SOD↑, *Catalase↑, *GPx↑, *Bcl-2↑, *BAX↓, cardioP↑, AntiCan↑, NF-kB↓, ROS↑, PKM2↓, TumCCA↑, Necroptosis↑, Apoptosis↑, DNAdam↑, MMP↓, Cyt‑c↑, LDH↝,
3041- SK,    Promising Nanomedicines of Shikonin for Cancer Therapy
- Review, Var, NA
Glycolysis↓, TAMS↝, BioAv↓, Half-Life↝, P21↑, ERK↓, ROS↑, GSH↓, MMP↓, TrxR↓, MMP13↓, MMP2↓, MMP9↓, SIRT2↑, Hif1a↓, PKM2↓, TumCP↓, TumMeta↓, TumCI↓,
3043- SK,    Shikonin Induces Apoptosis by Inhibiting Phosphorylation of IGF-1 Receptor in Myeloma Cells.
- in-vitro, Melanoma, RPMI-8226
IGF-1↓, Apoptosis↑, TumCCA↑, MMP↓, Casp3↑, P53↑, BAX↑, Mcl-1↓, EGFR↓, Src↑, KDR/FLK-1↓, p‑IGF-1↓, PI3K↓, Akt↓,
3045- SK,    Cutting off the fuel supply to calcium pumps in pancreatic cancer cells: role of pyruvate kinase-M2 (PKM2)
- in-vitro, PC, MIA PaCa-2
ECAR↓, Glycolysis↓, ATP↓, PKM2↓, TumCMig↓, Ca+2↑, GlucoseCon↓, lactateProd↓, MMP↓, ROS↑,
1346- SK,    An Oxidative Stress Mechanism of Shikonin in Human Glioma Cells
- in-vitro, GBM, U87MG - in-vitro, GBM, Hs683
NRF2↓, ROS↑, Apoptosis↑, Cyt‑c↑, GSH↓, MMP↓, P53↑, HO-1⇅,
1344- SK,    Novel multiple apoptotic mechanism of shikonin in human glioma cells
- in-vitro, GBM, U87MG - in-vitro, GBM, Hs683 - in-vitro, GBM, M059K
ROS↑, GSH↓, MMP↓, P53↑, cl‑PARP↑, Catalase↓, SOD1↑, Bcl-2↓, BAX↑, eff↓,
2008- SK,  Cisplatin,    Enhancement of cisplatin-induced colon cancer cells apoptosis by shikonin, a natural inducer of ROS in vitro and in vivo
- in-vitro, CRC, HCT116 - in-vivo, NA, NA
ChemoSen↑, selectivity↑, i-ROS↑, DNAdam↑, MMP↓, TumCCA↑, eff↓, *toxicity↓,
2007- SK,    Shikonin Directly Targets Mitochondria and Causes Mitochondrial Dysfunction in Cancer Cells
- in-vitro, lymphoma, U937 - in-vitro, BC, MCF-7 - in-vitro, BC, SkBr3 - in-vitro, CRC, HCT116 - in-vitro, OS, U2OS - NA, Nor, RPE-1
tumCV↓, selectivity↑, Dose↝, other↑, MMP↓, ROS↑, DNAdam↑, Ca+2↑, Casp9↑, Cyt‑c↑, *toxicity↓,
2190- SK,    Shikonin exerts antitumor activity by causing mitochondrial dysfunction in hepatocellular carcinoma through PKM2-AMPK-PGC1α signaling pathway
- in-vitro, HCC, HCCLM3
TumCP↓, TumCMig↓, TumCI↓, Apoptosis↑, MMP↓, ROS↑, OCR↓, ATP↓, PKM2↓,
2188- SK,    Molecular mechanism of shikonin inhibiting tumor growth and potential application in cancer treatment
- Review, Var, NA
ROS↑, EGFR↓, PI3K↓, Akt↓, angioG↓, Apoptosis↑, Necroptosis↑, GSH↓, Ca+2↓, MMP↓, ERK↓, p38↑, proCasp3↑, eff↓, VEGF↓, FOXO3↑, EGR1↑, SIRT1↑, RIP1↑, RIP3↑, BioAv↓, NF-kB↓, Half-Life↓,
348- SNP,    Induction of p53 mediated mitochondrial apoptosis and cell cycle arrest in human breast cancer cells by plant mediated synthesis of silver nanoparticles from Bergenia ligulata (Whole plant)
- in-vitro, BC, MCF-7
Apoptosis↑, ROS↑, MMP↓, P53↑, BAX↑, cl‑Casp3↑,
350- SNP,    Cytotoxic and Apoptotic Effects of Green Synthesized Silver Nanoparticles via Reactive Oxygen Species-Mediated Mitochondrial Pathway in Human Breast Cancer Cells
- in-vitro, BC, MCF-7
ROS↑, MMP↓, P53↑, BAX↑, Casp3↑, Casp9↑, Bcl-2↓,
306- SNP,    Cancer Therapy by Silver Nanoparticles: Fiction or Reality?
- Analysis, NA, NA
EPR↝, ROS↑, IL1↑, IL8↑, ER Stress↑, MMP9↑, MMP↓, Cyt‑c↑, Apoptosis↑, Hif1a↑, BBB↑, GutMicro↝, eff↑, eff↑, RadioS↑,
324- SNP,  CPT,    Silver Nanoparticles Potentiates Cytotoxicity and Apoptotic Potential of Camptothecin in Human Cervical Cancer Cells
- in-vitro, Cerv, HeLa
ROS↑, Casp3↑, Casp9↑, Casp6↑, GSH↓, SOD↓, GPx↓, MMP↓, P53↑, P21↑, Cyt‑c↑, BID↑, BAX↑, Bcl-2↓, Bcl-xL↓, Akt↓, Raf↓, ERK↓, MAP2K1/MEK1↓, JNK↑, p38↑,
397- SNP,  GEM,    Silver nanoparticles enhance the apoptotic potential of gemcitabine in human ovarian cancer cells: combination therapy for effective cancer treatment
- in-vitro, Ovarian, A2780S
P53↑, P21↑, BAX↑, Bak↑, Cyt‑c↑, Casp3↑, Casp9↑, Bcl-2↓, ROS↑, MMP↓,
395- SNP,    The apoptotic and genomic studies on A549 cell line induced by silver nitrate
- in-vitro, Lung, A549
BAX↑, MMP↓,
363- SNP,    Silver nanoparticles induce oxidative cell damage in human liver cells through inhibition of reduced glutathione and induction of mitochondria-involved apoptosis
ROS↑, lipid-P↑, Apoptosis↑, BAX↑, Bcl-2↓, MMP↓, Cyt‑c↑, Casp3↑, Casp9↑, JNK↑,
369- SNP,    Silver nanoparticles induce oxidative cell damage in human liver cells through inhibition of reduced glutathione and induction of mitochondria-involved apoptosis
- in-vitro, Liver, NA
ROS↑, GSH↓, DNAdam↑, lipid-P↝, Apoptosis↑, BAX↑, Bcl-2↓, MMP↓, Casp9↑, Casp3↑, JNK↑,
373- SNP,    Cytotoxic Potential and Molecular Pathway Analysis of Silver Nanoparticles in Human Colon Cancer Cells HCT116
- in-vitro, Colon, HCT116
LDH↓, ROS↑, MDA↑, ATP↓, GSH↓, MMP↓,
2288- SNP,    Silver Nanoparticle-Mediated Cellular Responses in Various Cell Lines: An in Vitro Model
- Review, Var, NA
*ROS↑, Akt↓, ERK↓, DNAdam↑, Ca+2↑, ROS↑, MMP↓, Cyt‑c↑, TumCCA↑, DNAdam↑, Apoptosis↑, P53↑, p‑ERK↑, ER Stress↑, cl‑ATF6↑, GRP78/BiP↑, CHOP↑, UPR↑,
2287- SNP,    Silver nanoparticles induce endothelial cytotoxicity through ROS-mediated mitochondria-lysosome damage and autophagy perturbation: The protective role of N-acetylcysteine
- in-vitro, Nor, HUVECs
*TumCP↓, *ROS↑, *eff↓, *MDA↑, *GSH↓, *MMP↓, *ATP↓, *LC3II↑, *p62↑, *Bcl-2↓, *BAX↑, *Casp3↑,
4556- SNP,    Biofilm Impeding AgNPs Target Skin Carcinoma by Inducing Mitochondrial Membrane Depolarization Mediated through ROS Production
- in-vitro, Melanoma, A431
MMP↓, ROS↑, *toxicity↓, Bacteria↓,
4435- SNP,  Gluc,    Glucose-Functionalized Silver Nanoparticles as a Potential New Therapy Agent Targeting Hormone-Resistant Prostate Cancer cells
- in-vitro, Pca, PC3 - in-vitro, Pca, LNCaP - in-vitro, Pca, DU145
selectivity↑, ROS↑, mtDam↑, TumCCA↑, TumCP↓, Apoptosis↑, MMP↓,
4436- SNP,    Silver Nanoparticles (AgNPs) as Enhancers of Everolimus and Radiotherapy Sensitivity on Clear Cell Renal Cell Carcinoma
- in-vitro, Kidney, 786-O
ROS↑, MMP↑, TumCCA↑, TumCP↓, Apoptosis↑, RadioS↑,
4439- SNP,    Anticancer Potential of Green Synthesized Silver Nanoparticles Using Extract of Nepeta deflersiana against Human Cervical Cancer Cells (HeLA)
- in-vitro, Cerv, HeLa
ROS↑, lipid-P↑, MMP↓, GSH↓, TumCCA↑, Apoptosis↑, Necroptosis↑, TumCD↑, Dose↝,
4561- SNP,  VitC,    Cellular Effects Nanosilver on Cancer and Non-cancer Cells: Potential Environmental and Human Health Impacts
- in-vitro, CRC, HCT116 - in-vitro, Nor, HEK293
NRF2↑, TumCCA↑, ROS↑, selectivity↑, *AntiViral↑, *toxicity↝, ETC↓, MMP↓, DNAdam↑, Apoptosis↑, lipid-P↑, other↝, UPR↑, *GRP78/BiP↑, *p‑PERK↑, *cl‑eIF2α↑, *CHOP↑, *JNK↑, Hif1a↓, AntiCan↑, *toxicity↓, eff↑,
4558- SNP,    Role of Oxidative and Nitro-Oxidative Damage in Silver Nanoparticles Cytotoxic Effect against Human Pancreatic Ductal Adenocarcinoma Cells
- in-vitro, PC, PANC1
ROS↑, selectivity↑, NO↑, SOD↓, GPx4↓, Catalase↓, TumCCA↑, MMP↓,
4380- SNP,    Silver nanoparticles induce toxicity in A549 cells via ROS-dependent and ROS-independent pathways
- in-vitro, Lung, A549
ROS↑, tumCV↓, MMP↓, TumCCA↑, PCNA↓, eff↓,
4371- SNP,    Effects of Green Silver Nanoparticles on Apoptosis and Oxidative Stress in Normal and Cancerous Human Hepatic Cells in vitro
- in-vitro, Liver, HUH7
ROS↑, selectivity↑, DNAdam↑, Apoptosis↑, GSH↓, lipid-P↑, MMP↓, DNAdam↑,
4399- SNP,  Chit,    Silver nanoparticles impregnated alginate-chitosan-blended nanocarrier induces apoptosis in human glioblastoma cells
- in-vitro, GBM, U87MG
DNAdam↑, ROS↑, MMP↓, eff↑,
4398- SNP,    Induction of apoptosis in cancer cells at low silver nanoparticle concentrations using chitosan nanocarrier
- in-vitro, Colon, HT29
Apoptosis↑, MMP↓, Casp3↑, ROS↑, eff↑,
4389- SNP,    Graphene Oxide-Silver Nanocomposite Enhances Cytotoxic and Apoptotic Potential of Salinomycin in Human Ovarian Cancer Stem Cells (OvCSCs): A Novel Approach for Cancer Therapy
- in-vitro, Ovarian, NA
tumCV↓, ROS↑, LDH↓, MMP↑, CSCs↓, AntiCan↑,
4388- SNP,    Differential Cytotoxic Potential of Silver Nanoparticles in Human Ovarian Cancer Cells and Ovarian Cancer Stem Cells
- in-vitro, Cerv, NA
tumCV↓, CSCs↓, selectivity↑, Apoptosis↑, ROS↑, LDH↓, Casp3↑, BAX↑, Bak↑, cMyc↑, MMP↓,
4415- SNP,  SDT,  CUR,    Examining the Impact of Sonodynamic Therapy With Ultrasound Wave in the Presence of Curcumin-Coated Silver Nanoparticles on the Apoptosis of MCF7 Breast Cancer Cells
- in-vitro, BC, MCF-7
tumCV↓, BAX↑, Casp3↑, Bcl-2↓, eff↑, ROS↑, sonoS↑, eff↑, MMP↓, Cyt‑c↑,
4414- SNP,    Silver nanoparticles: Forging a new frontline in lung cancer therapy
- Review, Lung, NA
tumCV↑, ROS↑, MMP↓, TumCCA↑, Apoptosis↑, angioG↓,
4405- SNP,    Silver nanoparticles defeat p53-positive and p53-negative osteosarcoma cells by triggering mitochondrial stress and apoptosis
- in-vitro, OS, NA
Apoptosis↑, other↑, ROS↑, eff↑, P53↝, Apoptosis↑, cl‑Casp3↑, survivin↓, MMP↓, Cyt‑c↑,
4897- Sper,    Spermidine as a promising anticancer agent: Recent advances and newer insights on its molecular mechanisms
- Review, Var, NA
Inflam↓, TumAuto↑, Apoptosis↑, ROS↑, MMP↓, Cyt‑c↑, Bcl-2↓,
4894- Sper,    Application of Spermidine in Cancer Research Models: Notes and Protocols
- Review, Var, NA
TumAuto↑, AntiTum↑, Apoptosis↑, ROS↑, MMP↓, Cyt‑c↑,
4891- Sper,    Spermidine as a promising anticancer agent: Recent advances and newer insights on its molecular mechanisms
- Review, Var, NA - Review, AD, NA
TumCCA↑, TumCP↓, TumCG↓, *Inflam↓, *antiOx↑, *neuroP↑, *cognitive↑, *Aβ↓, *mitResp↑, AntiCan↑, TumCD↑, TumAuto↑, *AntiAge↑, LC3B-II↑, ATG5↑, Beclin-1↑, mt-ROS↑, H2O2↑, Apoptosis↑, *ROS↑, ChemoSen↑, MMP↓, Cyt‑c↑,
3954- Taur,    Mode of action of taurine as a neuroprotector
- in-vitro, AD, NA
*MMP↑, *Ca+2↓,
3950- Taur,    Taurine Supplementation as a Neuroprotective Strategy upon Brain Dysfunction in Metabolic Syndrome and Diabetes
- Review, Diabetic, NA - Review, Stroke, NA - Review, AD, NA
*Ca+2↝, *neuroP↑, *other↝, *pH↝, *ROS∅, eff↑, *MMP↑, *Apoptosis↓, *other↝, *ER Stress↓, *Bcl-xL↓, *BAX↑, *Cyt‑c↑, *cal2↓, *Casp3↓, *UPR↓, *other↝, *NF-kB↓, *NRF2↑, *GLUT1↑, *GLUT3↑, *memory↑,
3955- Taur,    Mechanism of neuroprotective function of taurine
- in-vitro, NA, NA
*Ca+2↓, *MMP↑, *Apoptosis↓, *Bcl-2↑, *cal2↓, *LDH↓,
3956- Taur,    Mechanisms underlying taurine protection against glutamate-induced neurotoxicity
- Review, AD, NA
*MMP↑, *Ca+2↓, *cal2↓, *Bcl-2↑,
3559- TQ,    Molecular signaling pathway targeted therapeutic potential of thymoquinone in Alzheimer’s disease
- Review, AD, NA - Review, Var, NA
*antiOx↑, *Inflam↓, *AChE↓, AntiCan↑, *cardioP↑, *RenoP↑, *neuroP↑, *hepatoP↑, TumCG↓, Apoptosis↑, PI3K↓, Akt↑, TumCCA↑, angioG↓, *NF-kB↓, *TLR2↓, *TLR4↓, *MyD88↓, *TRIF↓, *IRF3↓, *IL1β↓, *IL6↓, *IL12↓, *NRF2↑, *COX2↓, *VEGF↓, *MMP9↓, *cMyc↓, *cycD1/CCND1↓, *TumCP↓, *TumCI↓, *MDA↓, *TGF-β↓, *CRP↓, *Casp3↓, *GSH↑, *IL10↑, *iNOS↑, *lipid-P↓, *SOD↑, *H2O2↓, *ROS↓, *LDH↓, *Catalase↑, *GPx↑, *AChE↓, *cognitive↑, *MAPK↑, *JNK↑, *BAX↓, *memory↑, *Aβ↓, *MMP↑,
3564- TQ,    The Potential Neuroprotective Effect of Thymoquinone on Scopolamine-Induced In Vivo Alzheimer's Disease-like Condition: Mechanistic Insights
- in-vivo, AD, NA
*Inflam↓, *AntiCan↑, *antiOx↑, *neuroP↑, *cognitive↑, *Aβ↓, *PPARγ↑, *NF-kB↓, *p‑tau↓, *MMP↑, *memory↑, *NF-kB↓, *ROS↓,
3432- TQ,    Thymoquinone: Review of Its Potential in the Treatment of Neurological Diseases
- Review, AD, NA - Review, Park, NA
*memory↑, *cognitive↑, *ROS↓, *Inflam↓, *antiOx↑, *TLR1↓, *AChE↓, *MMP↑, *neuroP↑, *lipid-P↓, *SOD↑, *GSH↑, *Ach↑,
3404- TQ,    The Neuroprotective Effects of Thymoquinone: A Review
- Review, Var, NA - Review, AD, NA - Review, Park, NA - Review, Stroke, NA
*Inflam↓, AntiCan↑, *TNF-α↓, *IL6↓, *IL1β↓, *NF-kB↓, *iNOS↓, *NRF2↑, *neuroP↑, *MMP↑, *ROS↓, *MDA↓, *GSH↑, *Catalase↑, *SOD↑, *IL12↓, *MCP1↓, *IP-10/CXCL-10↓, *PGE2↓,
1936- TQ,    Thymoquinone induces apoptosis and increase ROS in ovarian cancer cell line
- in-vitro, Ovarian, CaOV3 - in-vitro, Nor, WRL68
selectivity↑, TumCP↓, MMP↓, Bcl-2↓, BAX↑, ROS↑,
2129- TQ,  doxoR,    Thymoquinone up-regulates PTEN expression and induces apoptosis in doxorubicin-resistant human breast cancer cells
- in-vitro, BC, MCF-7
ChemoSen↑, PTEN↑, p‑Akt↓, TumCCA↑, P53↑, P21↑, Apoptosis↑, MMP↓, Casp↑, cl‑PARP↑, Bax:Bcl2↑, eff↓, DNAdam↓, p‑γH2AX↑, ROS↑,
2127- TQ,    Therapeutic Potential of Thymoquinone in Glioblastoma Treatment: Targeting Major Gliomagenesis Signaling Pathways
- Review, GBM, NA
chemoP↑, ChemoSen↑, BioAv↑, PTEN↑, PI3K↓, Akt↓, TumCCA↓, NF-kB↓, p‑Akt↓, p65↓, XIAP↓, Bcl-2↓, COX2↓, VEGF↓, mTOR↓, RAS↓, Raf↓, MEK↓, ERK↓, MMP2↓, MMP9↓, TumCMig↓, TumCI↓, Casp↑, cl‑PARP↑, ROS⇅, ROS↑, MMP↓, eff↑, Telomerase↓, DNAdam↑, Apoptosis↑, STAT3↓, RadioS↑,
2123- TQ,    Thymoquinone suppresses growth and induces apoptosis via generation of reactive oxygen species in primary effusion lymphoma
- in-vitro, lymphoma, PEL
Akt↓, ROS↑, BAX↓, MMP↓, Cyt‑c↑, eff↑, Casp9↑, Casp3↑, cl‑PARP↑, DR5↑,
2092- TQ,    Dissecting the Potential Roles of Nigella sativa and Its Constituent Thymoquinone on the Prevention and on the Progression of Alzheimer's Disease
- Review, AD, NA
*iNOS↓, *ROS↓, *GSH↑, *neuroP↑, *MMPs↓, *MMP↑, *TXNIP↓, *Prx↑, *memory↑, *MDA↓, *SOD↑, *Catalase↑, *BioAv↑,
2085- TQ,    Anticancer Activities of Nigella Sativa (Black Cumin)
- Review, Var, NA
MMP↓, Casp3↑, Casp8↑, Casp9↓, cl‑PARP↑, Cyt‑c↑, Bax:Bcl2↑, NF-kB↓, IAP1↓, IAP2↓, XIAP↓, Bcl-xL↓, survivin↓, cJun↑, p38↑, Akt↑, chemoP↑, *radioP↑,
2110- TQ,    Nigella sativa seed oil suppresses cell proliferation and induces ROS dependent mitochondrial apoptosis through p53 pathway in hepatocellular carcinoma cells
- in-vitro, HCC, HepG2 - in-vitro, BC, MCF-7 - in-vitro, Lung, A549 - in-vitro, Nor, HEK293
P53↑, lipid-P↑, GSH↓, ROS↑, MMP↓, BAX↑, Casp3↑, Casp9↑, Bcl-2↓, tumCV↓, selectivity↑,
2112- TQ,    Crude flavonoid extract of the medicinal herb Nigella sativa inhibits proliferation and induces apoptosis in breastcancer cells
- in-vitro, BC, MCF-7
Apoptosis↑, DNAdam↑, ROS↑, GSH↓, MMP↓, Casp3↑, Casp7↑, Casp9↑, Bax:Bcl2↑, P53↑, P21↑, cycD1/CCND1↓, GSSG↑, GSH/GSSG↓,
1929- TQ,    Thymoquinone Suppresses the Proliferation, Migration and Invasiveness through Regulating ROS, Autophagic Flux and miR-877-5p in Human Bladder Carcinoma Cells
- in-vitro, Bladder, 5637 - in-vitro, Bladder, T24
tumCV↓, TumCP↓, TumCI↓, Casp↑, ROS↑, PD-L1↓, EMT↓, MMP↓, eff↓,
1931- TQ,  doxoR,    Thymoquinone enhances the anticancer activity of doxorubicin against adult T-cell leukemia in vitro and in vivo through ROS-dependent mechanisms
- in-vivo, AML, NA
eff↑, tumCV↓, TumCCA↑, ROS↑, MMP↓, eff↑, TumVol↓, eff↑, Ki-67↓,
3790- UA,    Therapeutic applications of ursolic acid: a comprehensive review and utilization of predictive tools
*Inflam↓, *antiOx↑, AntiCan↑, *neuroP↑, *hepatoP↑, *cardioP↑, *MMP↑, *ROS↓, *PGC-1α↑, *BDNF↑, *cognitive↑, Bcl-2↓, Cyt‑c↑, DR5↑, Casp9↑, Casp8↑, Casp3↑, TumCCA↑, *BioAv↓, *Dose↝, *Half-Life↓, *Half-Life↓,
2411- UA,    Ursolic acid in health and disease
- Review, Var, NA
Inflam↓, antiOx↑, NF-kB↓, Bcl-xL↓, Bcl-2↓, cycD1/CCND1↓, Ki-67↓, CD31↓, STAT3↓, EGFR↓, P53↑, P21↓, HK2↓, PKM2↓, ATP↓, lactateProd↓, p‑ERK↓, MMP↓, NO↑, ATM↑, Casp3↑, AMPK↑, JNK↑, FAO↑, FASN↓, *GSH↑, *SOD↑, *Catalase↑, *GPx↑, *GSTs↑, neuroP↑,
2350- UA,    Ursolic acid-mediated changes in glycolytic pathway promote cytotoxic autophagy and apoptosis in phenotypically different breast cancer cells
- in-vitro, BC, MCF-7 - in-vitro, BC, MDA-MB-231
Akt↓, Glycolysis↓, HK2↓, PKM2↓, ATP↓, lactateProd↓, AMPK↑, TumAuto↑, Apoptosis↑, ERK↓, MMP↓, NO↑, ROS↑, DNAdam↑,
5022- UA,    Ursolic Acid’s Alluring Journey: One Triterpenoid vs. Cancer Hallmarks
- Review, Var, NA
TumCP↓, Apoptosis↑, angioG↑, TumMeta↓, BioAv↓, Hif1a↓, Glycolysis↓, mitResp↓, Akt↓, MAPK↓, ERK↓, mTOR↓, P53↑, P21↑, E2Fs↑, STAT3↓, MMP↓, NLRP3↓, iNOS↓, CHK1↓, Chk2↓, BRCA1↓, E-cadherin↑, N-cadherin↓, Casp↑, p62↓, LC3II↑, Vim↓, ROS↑, CSCs↓, DNAdam↑, GutMicro↑, VEGF↓,
5021- UA,    Anticancer effect of ursolic acid via mitochondria-dependent pathways
- Review, Var, NA
Inflam↓, TNF-α↓, IL6↓, IL17↓, NF-kB↓, COX2↓, *AntiDiabetic↑, *hepatoP↑, ALAT↓, AST↓, TumCP↓, Apoptosis↑, TumCCA↑, TumAuto↑, tumCV↓, TumCMig↓, Glycolysis↓, ATP↓, lactateProd↓, HK2↓, PKA↓, COX2↓, mtDam↑, Casp3↑, Casp8↑, Casp9↑, Akt↓, ROS↑, MMP↓, P53↑,
4856- Uro,    Study on the biological mechanism of urolithin a on nasopharyngeal carcinoma in vitro
- in-vitro, NPC, CNE1 - in-vitro, NPC, CNE2
Apoptosis↑, MMP↓, ROS↑, E-cadherin↑, BAX↑, cl‑Casp3↑, PARP↑, MMP2↓, MMP9↓, N-cadherin↓, Vim↓, Snail↓, eff↓, TumCP↓, TumCMig↓, TumCI↓, EMT↓,
4840- Uro,    Urolithin A: A promising selective estrogen receptor modulator and 27-hydroxycholesterol attenuator in breast cancer
- vitro+vivo, BC, NA
MMP↓, TumCP↓, Apoptosis↑, tumCV↓, ER-α36↝, *toxicity↓,
4869- Uro,    Urolithin A in Central Nervous System Disorders: Therapeutic Applications and Challenges
- Review, AD, NA - Review, Park, NA - Review, Stroke, NA
*MitoP↑, *Inflam↓, *antiOx↑, *Risk↓, *Aβ↓, *p‑tau↓, *p62↓, *PARK2↑, *MMP↑, *ROS↓, *Strength↑, *CRP↓, *IL1β↓, *IL6↓, *TNF-α↓, *AMPK↑, *NF-kB↓, *MAPK↓, *p62↑, *NRF2↑, *SOD↑, *Catalase↑, *HO-1↑, *Ferroptosis↓, *lipid-P↓, *Cartilage↑, *PI3K↓, *Akt↓, *mTOR↓, *Apoptosis↓, *neuroP↑, *Bcl-2↓, *BAX↑, *Casp3↑, *ATP↑, *eff↑, *motorD↑, *NLRP3↓, *radioP↑, *BBB↑,
1888- VitB1/Thiamine,  DCA,    High Dose Vitamin B1 Reduces Proliferation in Cancer Cell Lines Analogous to Dichloroacetate
- in-vitro, PC, SK-N-BE - NA, PC, PANC1
p‑PDH↓, GlucoseCon↓, lactateProd↓, MMP↓, Casp3↑, eff↑, PDKs↓, selectivity↑, TumCG↓, Dose∅, MMP↓, ROS∅, toxicity↑, antiOx↑,
4334- VitB5,    Pantethine treatment is effective in recovering the disease phenotype induced by ketogenic diet in a pantothenate kinase-associated neurodegeneration mouse model
- in-vivo, AD, NA
*neuroP↑, *motorD↑, *MMP↑, *OCR↑,
1067- VitC,    Vitamin C activates pyruvate dehydrogenase (PDH) targeting the mitochondrial tricarboxylic acid (TCA) cycle in hypoxic KRAS mutant colon cancer
- in-vivo, CRC, NA
PDK1↓, Hif1a↓, GLUT1↓, ATP↓, MMP↓,
3102- VitC,    Two Faces of Vitamin C—Antioxidative and Pro-Oxidative Agent
- Review, Var, NA - Review, Stroke, NA
*radioP↑, *Dose↝, ROS↑, *neuroP↑, other↓, *ROS↓, *MMP↑,
2285- VitK2,    New insights into vitamin K biology with relevance to cancer
- Review, Var, NA
Risk↓, AntiCan↑, eff↑, MMP↓, ROS↑, Cyt‑c↑, eff↓, SXR↑,
2274- VitK2,    Vitamin K2 Modulates Mitochondrial Dysfunction Induced by 6-Hydroxydopamine in SH-SY5Y Cells via Mitochondrial Quality-Control Loop
- in-vitro, Nor, SH-SY5Y
*Bcl-2↓, *BAX↑, *MMP↑, *ROS↓, *p62↓, *LC3A↑, *Dose↝, *Apoptosis↓, *PINK1↑, *PARK2↑,
2279- VitK2,    Vitamin K2 Induces Mitochondria-Related Apoptosis in Human Bladder Cancer Cells via ROS and JNK/p38 MAPK Signal Pathways
- in-vitro, Bladder, T24 - in-vitro, Bladder, J82 - in-vitro, Nor, HEK293 - in-vitro, Nor, L02 - in-vivo, NA, NA
MMP↓, Cyt‑c↑, Casp3↑, p‑JNK↑, p‑p38↑, ROS↑, eff↓, tumCV↓, selectivity↑, *toxicity↓, TumVol↓,
2277- VitK2,    Vitamin K2 suppresses rotenone-induced microglial activation in vitro
- in-vitro, Nor, BV2 - NA, AD, NA - NA, Park, NA
*p38↓, *ROS↓, *Casp1↓, *MMP↑, *NF-kB↓, *IL1β↓, *iNOS↓, *COX2↓, *TNF-α↓,
2275- VitK2,    Delivery of the reduced form of vitamin K2(20) to NIH/3T3 cells partially protects against rotenone induced cell death
- in-vitro, Nor, NIH-3T3
*MMP↓, *ROS↓, *HO-1↓,
1816- VitK2,    Role of Vitamin K in Selected Malignant Neoplasms in Women
- Review, Var, NA
TumCP↓, TumMeta↓, TumAuto↑, Apoptosis↑, Apoptosis↑, Casp3↑, Casp7↑, ROS↑, AR↓, EMT↓, Wnt↓, MMP↓, Cyt‑c↑, NF-kB↓, cycD1/CCND1↓, TumCCA↓,
1824- VitK2,    Vitamin K and its analogs: Potential avenues for prostate cancer management
- Review, Pca, NA
AntiCan↑, toxicity∅, Risk↓, Apoptosis↑, ROS↑, TumCCA↑, eff↑, DNAdam↑, MMP↓, Cyt‑c↑, pro‑Casp3↑, FasL↑, Fas↑, TumAuto↑, ChemoSen↑, RadioS↑,
1817- VitK2,    Research progress on the anticancer effects of vitamin K2
- Review, Var, NA
TumCCA↑, Apoptosis↑, TumAuto↑, TumCI↓, TumCG↓, ChemoSen↓, ChemoSideEff↓, toxicity∅, eff↑, cycD1/CCND1↓, CDK4↓, eff↑, IKKα↓, NF-kB↓, other↑, p27↑, cMyc↓, i-ROS↑, Bcl-2↓, BAX↑, p38↑, MMP↓, Casp9↑, p‑ERK↓, RAS↓, MAPK↓, p‑P53↑, Casp8↑, Casp3↑, cJun↑, MMPs↓, eff↑, eff↑,
1818- VitK2,    New insights on vitamin K biology with relevance to cancer
- Review, Var, NA
TumCG↓, ChemoSen↑, toxicity∅, OS↑, BMD↑, eff↑, MMP↓, ROS↑, eff↓, ERK↑, JNK↑, p38↑, Cyt‑c↑, Casp↑, ATP↓, lactateProd↑, AMPK↑, Rho↓, TumCG↓, BioAv↑, cardioP↑, Risk↓,
1832- VitK3,  VitC,    Vitamin K3 and vitamin C alone or in combination induced apoptosis in leukemia cells by a similar oxidative stress signalling mechanism
- in-vitro, AML, K562
ROS↑, H2O2↑, NF-kB↑, P53↑, cJun↑, Casp3↑, MMP↓, DNAdam↑, Dose?,
1834- VitK3,  PDT,    Effects of Vitamin K3 Combined with UVB on the Proliferation and Apoptosis of Cutaneous Squamous Cell Carcinoma A431 Cells
- in-vitro, Melanoma, A431
eff↑, TumCG↓, TumCP↓, ROS↑, MMP↓,

* indicates research on normal cells as opposed to diseased cells
Total Research Paper Matches: 446

Pathway results for Effect on Cancer / Diseased Cells:


NA, unassigned

chemoPv↑, 9,   DrugR↓, 1,  

Redox & Oxidative Stress

antiOx↓, 2,   antiOx↑, 6,   ATF3↓, 1,   ATF3↑, 2,   Catalase↓, 10,   Catalase↑, 1,   Ceru↓, 1,   compI↓, 1,   Copper↑, 1,   CYP1A1↓, 1,   CYP1A1↑, 1,   CYP2E1↑, 1,   ENOX2↓, 1,   Fenton↑, 2,   Ferroptosis↑, 4,   GCLM↓, 1,   GPx↓, 3,   GPx↑, 1,   GPx1↓, 1,   GPx4↓, 5,   GSH↓, 42,   GSH↑, 5,   mt-GSH↓, 1,   GSH/GSSG↓, 6,   GSR↓, 2,   GSR↑, 1,   GSSG↑, 1,   ox-GSSG↑, 1,   GSTA1↓, 1,   GSTs↓, 2,   GSTs↑, 1,   GSTs↝, 1,   H2O2?, 1,   H2O2↑, 7,   mt-H2O2↑, 1,   HK1↓, 1,   HO-1↓, 4,   HO-1↑, 7,   HO-1⇅, 1,   HO-2↓, 1,   Iron↑, 3,   Keap1↓, 1,   lipid-P↓, 2,   lipid-P↑, 18,   lipid-P↝, 1,   MAD↓, 1,   MDA↓, 1,   MDA↑, 6,   NADH↓, 1,   NOX4↑, 1,   NQO1↑, 1,   NRF2↓, 13,   NRF2↑, 11,   NRF2⇅, 1,   p‑NRF2↓, 1,   p‑NRF2↑, 1,   OXPHOS↓, 4,   OXPHOS↑, 1,   OXPHOS↝, 1,   mt-OXPHOS↓, 1,   mt-OXPHOS↑, 1,   PARK2↑, 1,   Prx↓, 1,   RNS↓, 1,   ROS?, 2,   ROS↓, 17,   ROS↑, 310,   ROS⇅, 6,   ROS↝, 1,   ROS∅, 3,   i-ROS?, 1,   i-ROS↑, 5,   mt-ROS↑, 6,   SIRT3↓, 2,   SIRT3↑, 2,   SOD↓, 14,   SOD1↓, 1,   SOD1↑, 1,   SOD2↓, 2,   SOD2↑, 1,   TBARS↑, 1,   Thiols↓, 1,   Trx↓, 1,   Trx↑, 1,   Trx1↓, 1,   Trx1↑, 1,   Trx2↓, 1,   TrxR↓, 11,   xCT↓, 2,  

Metal & Cofactor Biology

FTH1↓, 1,   IronCh↑, 1,  

Mitochondria & Bioenergetics

ADP:ATP↑, 2,   AIF↑, 15,   AIF↝, 1,   ATP↓, 35,   ATP↑, 2,   ATP↝, 1,   ATP∅, 1,   BOK↑, 1,   CDC2↓, 5,   CDC25↓, 9,   compIII↓, 1,   EGF↓, 2,   ETC↓, 2,   MEK↓, 6,   mitResp↓, 5,   mitResp↑, 4,   MMP?, 2,   MMP↓, 374,   MMP↑, 8,   MMP↝, 2,   MMP∅, 3,   MPT↑, 4,   mtDam↑, 20,   OCR↓, 9,   PINK1↑, 1,   Raf↓, 5,   c-Raf↓, 1,   SDH↓, 1,   SSBP1↑, 1,   XIAP↓, 14,  

Core Metabolism/Glycolysis

12LOX↓, 2,   ACC↓, 1,   ACC↑, 2,   AKT1↓, 2,   ALAT↓, 2,   ALAT∅, 1,   AMPK↓, 1,   AMPK↑, 22,   p‑AMPK↑, 2,   ANXA7↑, 2,   ATG7↑, 2,   cMyc↓, 14,   cMyc↑, 1,   CYP3A4↓, 1,   ECAR↓, 2,   ECAR↝, 1,   FAO↑, 1,   FASN↓, 4,   glucoNG↓, 1,   GlucoseCon↓, 12,   GLUT2↓, 1,   GlutMet↓, 1,   Glycolysis↓, 24,   HK2↓, 23,   IDH2↓, 1,   lactateProd↓, 15,   lactateProd↑, 2,   LDH↓, 11,   LDH↑, 2,   LDH↝, 1,   e-LDH↑, 1,   i-LDH↓, 1,   LDHA↓, 9,   LDL↓, 2,   NAD↓, 1,   NADPH↑, 3,   PCK1↓, 1,   PDH↑, 1,   PDH↝, 1,   p‑PDH↓, 2,   PDK1?, 2,   PDK1↓, 5,   PDKs↓, 4,   PFK↓, 8,   PFKP↓, 1,   PI3K/Akt↓, 3,   PI3k/Akt/mTOR↓, 1,   PKM2↓, 12,   PKM2∅, 1,   POLD1↓, 1,   PPARα↓, 1,   PPARγ↓, 1,   PPARγ↑, 3,   p‑S6K↓, 1,   SIRT1↓, 9,   SIRT1↑, 2,   SIRT2↓, 1,   SIRT2↑, 1,   SLC25A1↓, 1,   SREBP1↓, 1,   TCA?, 1,   TS↓, 1,   Warburg↓, 4,  

Cell Death

Akt↓, 59,   Akt↑, 5,   p‑Akt↓, 17,   p‑Akt↑, 1,   APAF1↑, 2,   Apoptosis?, 2,   Apoptosis↓, 2,   Apoptosis↑, 178,   mt-Apoptosis↑, 2,   ASK1↑, 2,   BAD↑, 8,   Bak↑, 10,   BAX↓, 4,   BAX↑, 100,   Bax:Bcl2↑, 33,   Bcl-2↓, 107,   Bcl-2∅, 1,   cl‑Bcl-2↑, 1,   Bcl-xL↓, 18,   BID↑, 10,   cl‑BID↑, 1,   BIM↓, 1,   BIM↑, 7,   Casp↓, 1,   Casp↑, 31,   Casp1↓, 1,   Casp10↑, 1,   Casp12↑, 6,   cl‑Casp12↑, 1,   pro‑Casp12↓, 1,   Casp2↑, 1,   Casp3?, 3,   Casp3↓, 4,   Casp3↑, 144,   cl‑Casp3↓, 2,   cl‑Casp3↑, 20,   proCasp3↑, 1,   pro‑Casp3↑, 1,   Casp6↑, 1,   Casp7↑, 9,   Casp8↓, 1,   Casp8↑, 33,   Casp8∅, 2,   cl‑Casp8↑, 6,   Casp9↓, 1,   Casp9↑, 93,   cl‑Casp9↑, 8,   proCasp9↓, 2,   proCasp9↑, 1,   cFLIP↓, 5,   Chk2↓, 2,   Chk2↑, 3,   CK2↓, 3,   Cupro↑, 1,   Cyt‑c↓, 1,   Cyt‑c↑, 136,   Cyt‑c↝, 1,   Diablo↑, 11,   DR4↑, 6,   DR4∅, 1,   DR5↑, 22,   Endon↑, 3,   FADD↑, 5,   Fap1↓, 1,   Fas↓, 1,   Fas↑, 14,   FasL↑, 8,   Ferroptosis↑, 4,   GSDME-N↑, 1,   HEY1↓, 1,   HGF/c-Met↓, 1,   hTERT/TERT↓, 7,   IAP1↓, 3,   IAP2↓, 3,   ICAD↓, 1,   iNOS↓, 11,   iNOS↑, 1,   JNK↓, 3,   JNK↑, 18,   JNK↝, 1,   p‑JNK↓, 1,   p‑JNK↑, 5,   MAPK↓, 17,   MAPK↑, 8,   p‑MAPK↓, 1,   p‑MAPK↑, 1,   Mcl-1↓, 13,   Mcl-1↑, 1,   MDM2↓, 8,   MKP1↓, 1,   MKP2↓, 1,   MLKL↑, 2,   p‑MLKL↓, 1,   Myc↓, 4,   NAIP↓, 1,   Necroptosis↑, 5,   necrosis↑, 1,   NOXA↑, 3,   p27↑, 18,   p38↓, 6,   p38↑, 19,   p‑p38↓, 2,   p‑p38↑, 3,   Paraptosis↑, 3,   Proteasome↓, 1,   PUMA↑, 3,   Pyro↑, 2,   RIP1↑, 1,   survivin↓, 24,   Telomerase↓, 9,   TNFR 1↑, 2,   TRAIL↑, 7,   TRAIL⇅, 1,   TRAILR↑, 4,   TRPV1↑, 4,   TumCD↑, 15,   TUNEL↑, 1,   YAP/TEAD↓, 1,  

Kinase & Signal Transduction

AMPKα↑, 2,   EF-1α↓, 1,   HER2/EBBR2↓, 7,   p70S6↓, 3,   p‑p70S6↑, 1,   SOX9↓, 1,   Sp1/3/4↓, 10,   TSC2↑, 1,  

Transcription & Epigenetics

cJun↓, 5,   cJun↑, 4,   p‑cJun↑, 1,   EZH2↓, 1,   H3↓, 1,   H3↑, 2,   p‑H3↓, 1,   p‑H3↑, 1,   ac‑H3↑, 2,   H4↑, 1,   ac‑H4↑, 2,   HATs↓, 2,   HATs↑, 3,   miR-21↓, 2,   other↓, 7,   other↑, 4,   other↝, 3,   p‑pRB↓, 1,   sonoS↑, 1,   tumCV?, 1,   tumCV↓, 43,   tumCV↑, 1,   tumCV∅, 1,  

Protein Folding & ER Stress

cl‑ATF6↑, 2,   CHOP↑, 26,   cl‑CHOP↑, 1,   eIF2α↑, 6,   p‑eIF2α↑, 4,   ER Stress↓, 3,   ER Stress↑, 44,   ER Stress↝, 1,   GRP78/BiP↑, 18,   GRP78/BiP↝, 1,   GRP94↑, 2,   HSF1↓, 1,   HSP27↓, 6,   HSP70/HSPA5↓, 4,   HSP72↓, 1,   HSP90↓, 4,   HSPs↓, 1,   IRE1↑, 4,   PERK↑, 8,   UPR↑, 12,   XBP-1↓, 1,  

Autophagy & Lysosomes

ATG3↑, 1,   ATG5↑, 7,   Beclin-1↓, 1,   Beclin-1↑, 9,   BNIP3?, 1,   BNIP3↑, 3,   BNIP3↝, 1,   LC3‑Ⅱ/LC3‑Ⅰ↓, 1,   LC3A↑, 1,   LC3B↑, 3,   LC3B-II↑, 3,   LC3II↑, 14,   LC3s↑, 1,   p62↓, 7,   p62↑, 3,   TumAuto↑, 30,  

DNA Damage & Repair

ATM↑, 4,   BRCA1↓, 1,   CHK1↓, 2,   CHK1↑, 1,   DFF45↓, 1,   DFF45↑, 2,   DNA-PK↑, 1,   DNAdam↓, 3,   DNAdam↑, 58,   mt-DNAdam↑, 1,   DNArepair↓, 1,   DNMTs↓, 1,   MGMT↓, 1,   p16↑, 1,   P53↓, 1,   P53↑, 64,   P53↝, 2,   P53∅, 1,   p‑P53↑, 5,   ac‑P53↑, 1,   p53 Wildtype∅, 1,   PARP↓, 4,   PARP↑, 10,   p‑PARP↑, 2,   cl‑PARP↓, 2,   cl‑PARP↑, 54,   PARP1↑, 2,   cl‑PARP1↑, 1,   PCNA↓, 15,   SIRT6↓, 1,   SIRT6↑, 1,   TP53↓, 3,   TP53↑, 3,   γH2AX↑, 6,   p‑γH2AX↑, 2,  

Cell Cycle & Senescence

CDK1↓, 6,   p‑CDK1↓, 1,   CDK2↓, 23,   CDK2↑, 1,   CDK4↓, 24,   Cyc↓, 2,   cycA1/CCNA1↓, 7,   cycA1/CCNA1↑, 1,   CycB/CCNB1↓, 8,   CycB/CCNB1↑, 2,   cycD1/CCND1↓, 44,   CycD3↓, 2,   cycE/CCNE↓, 12,   cycE1↓, 2,   E2Fs↑, 1,   p19↑, 1,   P21?, 2,   P21↓, 4,   P21↑, 40,   RB1↑, 2,   p‑RB1↓, 5,   Securin↓, 1,   TumCCA?, 2,   TumCCA↓, 5,   TumCCA↑, 142,  

Proliferation, Differentiation & Cell State

ALDH↓, 5,   BMI1↓, 1,   CD133↓, 4,   CD24↓, 2,   CD44↓, 9,   cDC2↓, 1,   CDK8↓, 1,   CEBPA↑, 1,   cFos↓, 4,   CIP2A↓, 2,   cMET↓, 1,   CSCs↓, 26,   Diff↓, 1,   EMT↓, 41,   EMT↑, 1,   ERK↓, 31,   ERK↑, 5,   p‑ERK↓, 11,   p‑ERK↑, 5,   e-ERK↑, 1,   FOXM1↓, 1,   FOXO3↓, 1,   FOXO3↑, 7,   FOXO4↓, 1,   Gli↓, 1,   Gli1↓, 3,   GSK‐3β↓, 4,   GSK‐3β↑, 2,   p‑GSK‐3β↓, 2,   HDAC↓, 17,   HDAC1↓, 3,   HDAC10↑, 1,   HDAC2↓, 5,   HDAC3↓, 2,   HDAC8↓, 2,   IGF-1↓, 3,   p‑IGF-1↓, 1,   IGF-1R↑, 1,   IGFBP3↑, 1,   Let-7↑, 2,   MAP2K1/MEK1↓, 1,   mTOR↓, 27,   mTOR↑, 1,   p‑mTOR↓, 7,   mTORC1↓, 5,   p‑mTORC1↓, 1,   mTORC2↓, 2,   n-MYC↓, 1,   Nanog↓, 4,   Nestin↓, 3,   NOTCH↓, 10,   NOTCH1↓, 5,   NOTCH1↑, 2,   NOTCH3↓, 2,   OCT4↓, 4,   P70S6K↓, 1,   P90RSK↓, 1,   PI3K↓, 40,   PI3K↑, 2,   p‑PI3K↓, 1,   PTCH1↓, 1,   PTEN↑, 13,   RAS↓, 7,   Shh↓, 3,   SHP1↑, 1,   Smo↓, 3,   SOX2↓, 4,   Src↑, 1,   STAT↓, 2,   STAT3↓, 31,   STAT3↑, 1,   p‑STAT3↓, 5,   p‑STAT3↑, 2,   TCF↓, 1,   TCF↑, 1,   TCF-4↓, 2,   TOP1?, 1,   TOP1↓, 10,   TOP1∅, 1,   TOP2↓, 4,   TumCG?, 1,   TumCG↓, 56,   TumCG↑, 2,   Wnt?, 1,   Wnt↓, 15,   Wnt↑, 1,   Wnt/(β-catenin)↓, 2,  

Migration

5LO↓, 1,   Akt2↓, 1,   Alix/AIP‑1↓, 1,   AntiAg↓, 1,   AP-1↓, 2,   CA↓, 1,   Ca+2?, 1,   Ca+2↓, 1,   Ca+2↑, 49,   Ca+2↝, 3,   i-Ca+2?, 1,   i-Ca+2↑, 2,   mt-Ca+2↑, 1,   CAFs/TAFs↓, 1,   CD31↓, 3,   CDKN1C↑, 1,   CLDN1↓, 2,   CLDN2↓, 2,   COL1↓, 1,   COL1A1↓, 1,   COL3A1↓, 2,   CXCL12↓, 1,   E-cadherin↓, 3,   E-cadherin↑, 25,   ER-α36↓, 1,   ER-α36↝, 1,   FAK↓, 7,   p‑FAK↓, 2,   Fibronectin↓, 4,   GIT1↓, 1,   GLI2↓, 2,   ITGB1↓, 1,   ITGB6↓, 1,   Ki-67↓, 9,   KRAS↓, 1,   LAMs↓, 1,   LEF1↓, 2,   MALAT1↓, 3,   MARK4↓, 1,   MET↓, 1,   miR-139-5p↑, 1,   miR-203↑, 1,   miR-22↑, 2,   MMP-10↓, 2,   MMP1↓, 3,   MMP13↓, 3,   MMP2↓, 43,   MMP2↑, 1,   proMMP2↓, 1,   MMP3↓, 2,   MMP7↓, 6,   MMP9↓, 46,   MMP9↑, 1,   MMPs↓, 16,   MUC4↓, 1,   N-cadherin↓, 15,   PAK1↓, 1,   p‑pax↓, 1,   PDGF↓, 2,   PKA↓, 2,   PKCδ↓, 6,   RAGE↓, 1,   Rho↓, 3,   RIP3↑, 2,   p‑RIP3↑, 2,   ROCK1↓, 2,   ROCK1↑, 1,   Slug↓, 8,   Smad1↑, 1,   SMAD2↓, 1,   SMAD3↓, 3,   p‑SMAD4↓, 1,   Snail↓, 19,   SOX4↓, 1,   TET1↓, 1,   TET1↑, 2,   TGF-β↓, 9,   TGF-β↑, 2,   TIMP1↓, 3,   TIMP1↑, 3,   TIMP2↓, 1,   TIMP2↑, 3,   TSP-1↑, 2,   TumCI?, 1,   TumCI↓, 29,   TumCMig↓, 28,   TumCP↓, 69,   TumMeta↓, 26,   Twist↓, 14,   uPA↓, 17,   uPA↝, 1,   Vim?, 1,   Vim↓, 24,   Zeb1↓, 7,   Zeb1↑, 1,   ZEB2↓, 1,   ZO-1↑, 1,   α-SMA↓, 2,   α-SMA↑, 1,   α-tubulin↓, 1,   β-catenin/ZEB1↓, 16,   β-catenin/ZEB1↑, 1,  

Angiogenesis & Vasculature

angioG↓, 36,   angioG↑, 1,   ATF4↓, 1,   ATF4↑, 10,   EGFR↓, 20,   p‑EGFR↓, 1,   EGR1↑, 1,   Endoglin↑, 1,   eNOS↓, 1,   eNOS↑, 1,   EPR↝, 1,   HIF-1↓, 1,   Hif1a↓, 35,   Hif1a↑, 2,   KDR/FLK-1↓, 1,   LOX1↓, 1,   NO↓, 2,   NO↑, 7,   PDGFR-BB↓, 1,   PHDs↓, 1,   TAMS↝, 1,   VEGF↓, 47,   VEGFR2↓, 8,  

Barriers & Transport

BBB↑, 3,   CellMemb↓, 1,   GLUT1↓, 8,   GLUT3↓, 1,   GLUT4↓, 3,   NHE1↓, 2,   P-gp↓, 7,   P-gp↑, 1,   SMCT1∅, 1,   sonoP↑, 1,  

Immune & Inflammatory Signaling

ASC↑, 1,   CCR7↓, 1,   CD4+↓, 1,   CD4+↑, 1,   COX1↓, 1,   COX2↓, 38,   COX2↑, 1,   CRP↓, 2,   CXCR4↓, 5,   ICAM-1↓, 1,   IFN-γ↓, 3,   IFN-γ↑, 1,   IKKα↓, 3,   IKKα↑, 3,   p‑IKKα↓, 1,   IL1↓, 5,   IL1↑, 1,   IL10↓, 5,   IL17↓, 1,   IL1β↓, 10,   IL1β↑, 1,   IL2↑, 1,   IL4↓, 1,   IL6↓, 22,   IL6↑, 1,   IL8↓, 4,   IL8↑, 1,   Inflam↓, 18,   IRAK4↓, 1,   IκB↑, 1,   p‑IκB↓, 1,   p‑IκB↑, 1,   JAK↓, 3,   JAK1↓, 2,   JAK2↓, 1,   Macrophages↓, 1,   MCP1↓, 3,   MDSCs↓, 1,   Neut↓, 1,   NF-kB↓, 82,   NF-kB↑, 7,   p‑NF-kB↓, 1,   p50↓, 1,   p65↓, 9,   p65↑, 1,   p‑p65↓, 1,   p‑p65↑, 1,   PD-1↓, 2,   PD-L1↓, 4,   PGE2↓, 9,   PSA↓, 3,   RANTES?, 1,   T-Cell↑, 2,   Th1 response↑, 1,   TLR1↑, 1,   TLR4↓, 6,   TNF-α↓, 16,  

Cellular Microenvironment

NOX↑, 1,   pH↝, 1,   i-pH↑, 1,  

Protein Aggregation

NLRP3↓, 3,  

Hormonal & Nuclear Receptors

AR↓, 5,   CDK6↓, 9,   CDK6↑, 1,   ER(estro)↓, 1,   SXR↑, 1,  

Drug Metabolism & Resistance

ABC↓, 1,   BioAv↓, 21,   BioAv↑, 14,   BioAv↝, 3,   BioEnh↑, 1,   ChemoSen↓, 2,   ChemoSen↑, 56,   ChemoSen⇅, 1,   ChemoSen↝, 1,   CYP1A2↑, 1,   CYP2A3/CYP2A6↓, 1,   Dose?, 5,   Dose↓, 2,   Dose↑, 6,   Dose⇅, 1,   Dose↝, 17,   Dose∅, 18,   eff↓, 70,   eff↑, 150,   eff↝, 11,   Half-Life↓, 5,   Half-Life↝, 8,   MDR1↓, 1,   P450↓, 3,   P450↝, 1,   RadioS↑, 33,   selectivity↓, 2,   selectivity↑, 92,  

Clinical Biomarkers

AFP↓, 1,   ALAT↓, 2,   ALAT∅, 1,   ALP↓, 1,   AR↓, 5,   AST↓, 1,   AST∅, 1,   BMD↑, 1,   BRCA1↓, 1,   CRP↓, 2,   E6↓, 2,   E7↓, 2,   EGFR↓, 20,   p‑EGFR↓, 1,   EZH2↓, 1,   FOXM1↓, 1,   GutMicro↑, 2,   GutMicro↝, 2,   HER2/EBBR2↓, 7,   hTERT/TERT↓, 7,   IL6↓, 22,   IL6↑, 1,   Ki-67↓, 9,   KRAS↓, 1,   LDH↓, 11,   LDH↑, 2,   LDH↝, 1,   e-LDH↑, 1,   i-LDH↓, 1,   Myc↓, 4,   PD-L1↓, 4,   PSA↓, 3,   RAGE↓, 1,   TP53↓, 3,   TP53↑, 3,  

Functional Outcomes

AntiCan↑, 30,   AntiTum↑, 11,   cardioP↑, 10,   chemoP↑, 12,   ChemoSideEff↓, 3,   cognitive↑, 1,   hepatoP↑, 5,   K17↓, 1,   neuroP↑, 5,   OS↑, 8,   radioP↑, 1,   RenoP↑, 6,   Risk↓, 8,   toxicity↓, 5,   toxicity↑, 1,   toxicity↝, 1,   toxicity∅, 6,   TumVol↓, 12,   TumW↓, 6,   Weight∅, 1,  

Infection & Microbiome

Bacteria↓, 1,   CD8+↑, 2,   Sepsis↓, 1,  
Total Targets: 806

Pathway results for Effect on Normal Cells:


Redox & Oxidative Stress

antiOx↓, 3,   antiOx↑, 53,   Catalase↑, 23,   Ferroptosis↓, 1,   GPx↑, 8,   GPx1↑, 2,   GPx4↑, 1,   GSH↓, 1,   GSH↑, 25,   GSR↑, 3,   GSTs↑, 4,   H2O2↓, 3,   HDL↑, 1,   HO-1↓, 1,   HO-1↑, 12,   Keap1↓, 2,   lipid-P↓, 13,   lipid-P↑, 1,   mt-lipid-P↓, 1,   MDA↓, 9,   MDA↑, 2,   Mets↝, 1,   MPO↓, 4,   NQO1↑, 1,   Nrf1↑, 1,   NRF2↑, 23,   p‑NRF2↑, 1,   OXPHOS↓, 2,   OXPHOS↑, 2,   PARK2↑, 2,   Prx↑, 2,   ROS?, 1,   ROS↓, 75,   ROS↑, 8,   ROS⇅, 1,   ROS∅, 6,   mt-ROS↓, 2,   SIRT3↑, 3,   SOD↑, 28,   SOD1↑, 1,   SOD2↑, 2,   TOS↓, 1,   Trx↑, 2,   Trx1↑, 1,   VitC↑, 1,   VitE↑, 1,  

Metal & Cofactor Biology

IronCh↑, 4,  

Mitochondria & Bioenergetics

ATP↓, 1,   ATP↑, 6,   ATP∅, 1,   ETC↓, 1,   ETC↝, 1,   mitResp↓, 1,   mitResp↑, 1,   MMP↓, 10,   MMP↑, 52,   MMP⇅, 1,   MMP↝, 1,   MMP∅, 3,   MPT↑, 1,   mtDam↓, 2,   OCR↓, 1,   OCR↑, 2,   PGC-1α↑, 6,   PINK1↑, 1,  

Core Metabolism/Glycolysis

ALAT↓, 3,   ALDOA↑, 1,   AMPK↑, 6,   BMAL1↑, 1,   cAMP↑, 1,   cMyc↓, 1,   p‑cMyc↑, 1,   CREB↑, 1,   p‑CREB↑, 1,   ECAR↓, 1,   glucose↓, 2,   GlucoseCon↑, 1,   GlutMet↑, 1,   Glycolysis↓, 1,   Glycolysis↑, 2,   GPI↑, 1,   HK2↑, 2,   LDH↓, 4,   LDHA↑, 2,   LDL↓, 1,   lipidLev↓, 1,   NADH:NAD↑, 1,   NADPH↓, 2,   PFKL↑, 2,   PFKM↑, 1,   PFKP↑, 1,   PKM1↑, 1,   PKM2↑, 1,   PPARα↑, 2,   PPARγ↑, 4,   SIRT1↑, 6,   SIRT2↑, 1,  

Cell Death

Akt↓, 2,   p‑Akt↑, 1,   APAF1↓, 1,   Apoptosis↓, 15,   Apoptosis∅, 1,   BAX↓, 5,   BAX↑, 4,   Bax:Bcl2↓, 1,   Bax:Bcl2↑, 2,   Bcl-2↓, 3,   Bcl-2↑, 4,   Bcl-2∅, 1,   Bcl-xL↓, 1,   Casp1↓, 1,   Casp3?, 1,   Casp3↓, 8,   Casp3↑, 4,   Casp3∅, 1,   cl‑Casp3↓, 1,   cl‑Casp3↑, 1,   Casp8↑, 1,   cl‑Casp8↑, 1,   Casp9↓, 1,   Casp9↑, 1,   cl‑Casp9↓, 1,   cl‑Casp9↑, 1,   Cyt‑c↓, 5,   Cyt‑c↑, 2,   Cyt‑c∅, 3,   Fas↑, 2,   Ferroptosis↓, 1,   iNOS↓, 8,   iNOS↑, 1,   JNK↑, 2,   p‑JNK↓, 2,   MAPK↓, 4,   MAPK↑, 1,   necrosis↓, 1,   p38↓, 2,   p‑p38↓, 1,  

Transcription & Epigenetics

Ach↑, 3,   other↓, 1,   other↑, 2,   other↝, 4,   tumCV↓, 1,  

Protein Folding & ER Stress

ATF6↓, 2,   CHOP↓, 2,   CHOP↑, 1,   cl‑eIF2α↑, 1,   ER Stress↓, 4,   GRP78/BiP↓, 3,   GRP78/BiP↑, 1,   HSP70/HSPA5↝, 1,   HSPs↑, 1,   IRE1↓, 1,   PERK↓, 1,   p‑PERK↑, 1,   UPR↓, 1,  

Autophagy & Lysosomes

Beclin-1↓, 1,   LC3A↑, 1,   LC3II↑, 1,   MitoP↑, 1,   p62↓, 2,   p62↑, 2,  

DNA Damage & Repair

DNAdam↓, 1,   p16↓, 1,   P53↓, 1,   P53↑, 2,   cl‑PARP↑, 2,   PCNA↓, 1,  

Cell Cycle & Senescence

CDK2↓, 2,   CDK4↓, 1,   cycA1/CCNA1↓, 1,   cycD1/CCND1↓, 2,   cycE/CCNE↓, 1,   cycE/CCNE↑, 1,   P21↓, 2,   P21↑, 2,   RB1↓, 1,   TumCCA↑, 2,  

Proliferation, Differentiation & Cell State

Diff↑, 1,   ERK↑, 4,   p‑ERK↓, 2,   FOXO↑, 1,   GSK‐3β↓, 3,   GSK‐3β↑, 1,   p‑GSK‐3β↑, 1,   IGF-1↓, 1,   IGF-1↑, 2,   IGFBP3↑, 1,   mTOR↓, 1,   PI3K↓, 2,   PTEN↑, 1,   Src↓, 1,   STAT3↓, 1,   STAT3↑, 1,   TumCG↓, 1,  

Migration

AntiAg↑, 1,   AP-1↓, 1,   Ca+2?, 1,   Ca+2↓, 9,   Ca+2↝, 2,   i-Ca+2↓, 1,   cal2↓, 3,   Cartilage↑, 1,   CXCL12↑, 1,   MMP2↓, 1,   MMP3↓, 1,   MMP9↓, 4,   MMP9↑, 1,   MMPs↓, 1,   TGF-β↓, 2,   TIMP1↓, 1,   TumCI↓, 1,   TumCP↓, 2,   TXNIP↓, 1,   ZO-1↑, 1,   β-catenin/ZEB1↑, 1,  

Angiogenesis & Vasculature

angioG↓, 1,   angioG↑, 3,   CLDN5↑, 1,   NO↓, 4,   PDI↓, 1,   VEGF↓, 1,   VEGF↑, 1,  

Barriers & Transport

BBB?, 1,   BBB↓, 1,   BBB↑, 10,   BBB↝, 1,   GLUT1↑, 2,   GLUT3↑, 1,   GLUT4↑, 1,   P-gp↓, 1,  

Immune & Inflammatory Signaling

COX2↓, 11,   CRP↓, 2,   HMGB1↓, 1,   IFN-γ↓, 1,   IL10↓, 2,   IL10↑, 3,   IL12↓, 2,   IL17↓, 2,   IL1β↓, 13,   IL2↓, 1,   IL22↓, 1,   IL4↓, 2,   IL6↓, 7,   IL8↓, 1,   Imm↑, 1,   Inflam↓, 46,   IP-10/CXCL-10↓, 1,   MCP1↓, 2,   MyD88↓, 1,   NF-kB↓, 21,   NF-kB↑, 1,   p65↓, 1,   PAR-2↓, 1,   PGE2↓, 4,   TLR1↓, 1,   TLR2↓, 1,   TLR4↓, 3,   TNF-α↓, 16,   TRIF↓, 1,  

Cellular Microenvironment

pH↝, 1,  

Synaptic & Neurotransmission

AChE↓, 10,   BChE↓, 2,   BDNF↑, 4,   GABA↑, 1,   tau↓, 2,   p‑tau↓, 4,  

Protein Aggregation

Aβ↓, 18,   NLRP3↓, 2,   XO↓, 1,   β-Amyloid↓, 1,  

Drug Metabolism & Resistance

BioAv↓, 16,   BioAv↑, 14,   BioAv↝, 2,   Dose↝, 8,   Dose∅, 1,   eff↓, 2,   eff↑, 11,   Half-Life↓, 5,   Half-Life↑, 1,   Half-Life↝, 3,   P450↓, 1,   P450↑, 1,   selectivity↑, 1,  

Clinical Biomarkers

ALAT↓, 3,   ALP↓, 1,   AST↓, 4,   BG↓, 2,   BMD↑, 1,   BP↓, 2,   creat↓, 2,   CRP↓, 2,   GutMicro↑, 3,   IL6↓, 7,   LDH↓, 4,  

Functional Outcomes

AntiAge↑, 4,   AntiCan↑, 3,   AntiDiabetic↑, 3,   AntiTum↑, 1,   cardioP↑, 13,   chemoP↑, 1,   cognitive↑, 13,   hepatoP↑, 12,   memory↑, 17,   motorD↓, 1,   motorD↑, 6,   neuroP↓, 1,   neuroP↑, 50,   Pain↓, 2,   radioP↑, 4,   RenoP↑, 3,   Risk↓, 2,   Strength↑, 2,   toxicity↓, 21,   toxicity↑, 2,   toxicity↝, 3,   toxicity∅, 7,  

Infection & Microbiome

AntiViral↑, 1,   Bacteria↓, 3,   IRF3↓, 1,   Sepsis↓, 1,  
Total Targets: 320

Scientific Paper Hit Count for: MMP, ΔΨm, mitochondrial membrane potential
29 Silver-NanoParticles
21 Quercetin
17 Betulinic acid
16 Fisetin
16 Propolis -bee glue
15 Shikonin
14 Berberine
14 Sulforaphane (mainly Broccoli)
14 Thymoquinone
13 Apigenin (mainly Parsley)
13 Baicalein
12 Magnetic Fields
12 Curcumin
12 Emodin
11 Chrysin
10 Selenium
10 Resveratrol
10 Silymarin (Milk Thistle) silibinin
9 Ashwagandha(Withaferin A)
9 Vitamin K2
8 Capsaicin
8 Graviola
7 Allicin (mainly Garlic)
7 EGCG (Epigallocatechin Gallate)
7 Honokiol
7 Phenylbutyrate
7 Phenethyl isothiocyanate
6 Radiotherapy/Radiation
6 chitosan
6 Dichloroacetate
6 Luteolin
5 Alpha-Lipoic-Acid
5 Gambogic Acid
5 Lycopene
5 Parthenolide
5 salinomycin
5 Ursolic acid
4 Boswellia (frankincense)
4 doxorubicin
4 Rosmarinic acid
4 Vitamin C (Ascorbic Acid)
4 Taurine
3 Metformin
3 Boron
3 Cisplatin
3 Date Fruit Extract
3 Ellagic acid
3 Ferulic acid
3 Garcinol
3 HydroxyTyrosol
3 Juglone
3 Magnetic Field Rotating
3 SonoDynamic Therapy UltraSound
3 Propyl gallate
3 Piperlongumine
3 Spermidine
3 Urolithin
2 5-fluorouracil
2 Citric Acid
2 Coenzyme Q10
2 Copper and Cu NanoParticlex
2 Gallic acid
2 γ-linolenic acid (Borage Oil)
2 Gold NanoParticles
2 Hyperthermia
2 Photodynamic Therapy
2 Psoralidin
2 VitK3,menadione
1 2-DeoxyGlucose
1 alpha Linolenic acid
1 Andrographis
1 Artemisinin
1 Astaxanthin
1 Butyrate
1 Baicalin
1 D-limonene
1 Chemotherapy
1 Caffeic acid
1 Celastrol
1 Vitamin E
1 Disulfiram
1 Electrical Pulses
1 Fenbendazole
1 Shilajit/Fulvic Acid
1 hydroxychloroquine
1 Paclitaxel
1 Ginkgo biloba
1 Hydroxycinnamic-acid
1 Methylene blue
1 Magnolol
1 Methyl Jasmonate
1 Methylglyoxal
1 Moringa oleifera
1 Mushroom Chaga
1 Nimbolide
1 Oleuropein
1 temozolomide
1 Piperine
1 Plumbagin
1 Pterostilbene
1 Kaempferol
1 Oxaliplatin
1 Sanguinarine
1 polyethylene glycol
1 Selenite
1 Auranofin
1 Camptothecin
1 Gemcitabine (Gemzar)
1 Glucose
1 Vitamin B1/Thiamine
1 Vitamin B5,Pantothenic Acid
Query results interpretion may depend on "conditions" listed in the research papers.
Such Conditions may include : 
  -low or high Dose
  -format for product, such as nano of lipid formations
  -different cell line effects
  -synergies with other products 
  -if effect was for normal or cancerous cells
Filter Conditions: Pro/AntiFlg:%  IllCat:%  CanType:%  Cells:%  prod#:%  Target#:197  State#:%  Dir#:%
wNotes=0 sortOrder:rid,rpid

 

Home Page