| Source: |
| Type: |
| NANOG is a transcription factor in embryonic stem cells (ESCs); Nanog is one of the key transcription factors, along with Oct4 and Sox2, involved in maintaining pluripotency in embryonic stem cells.’ Increased expression of Nanog has been associated with the aggressive nature of certain cancers, highlighting its role in promoting cancer stem cell characteristics.; Nanog's role in metastasis includes promoting the survival and proliferation of cancer stem cells in secondary sites, aiding their ability to establish new tumors. Nanog is often expressed in cancer stem cells (CSCs). High levels of Nanog expression have been correlated with increased tumor aggressiveness, metastasis, and the ability to evade apoptosis (programmed cell death). |
| 419- | Api, | Apigenin inhibited hypoxia induced stem cell marker expression in a head and neck squamous cell carcinoma cell line |
| - | in-vitro, | SCC, | HN30 | - | in-vitro, | SCC, | HN8 |
| 308- | Api, | Apigenin Inhibits Cancer Stem Cell-Like Phenotypes in Human Glioblastoma Cells via Suppression of c-Met Signaling |
| - | in-vitro, | GBM, | U87MG | - | in-vitro, | GBM, | U373MG |
| 1547- | Api, | Apigenin: Molecular Mechanisms and Therapeutic Potential against Cancer Spreading |
| - | Review, | NA, | NA |
| 570- | ART/DHA, | Artemisinin and its derivatives can significantly inhibit lung tumorigenesis and tumor metastasis through Wnt/β-catenin signaling |
| - | vitro+vivo, | NSCLC, | A549 | - | vitro+vivo, | NSCLC, | H1299 |
| 3156- | Ash, | Withaferin A: From ayurvedic folk medicine to preclinical anti-cancer drug |
| - | Review, | Var, | NA |
| 4821- | ASTX, | Astaxanthin Reduces Stemness Markers in BT20 and T47D Breast Cancer Stem Cells by Inhibiting Expression of Pontin and Mutant p53 |
| - | in-vitro, | BC, | SkBr3 | - | in-vitro, | BC, | BT20 | - | in-vitro, | BC, | T47D |
| 1298- | CGA, | Chlorogenic acid regulates apoptosis and stem cell marker-related gene expression in A549 human lung cancer cells |
| - | in-vitro, | Lung, | A549 |
| 2688- | CUR, | Effects of resveratrol, curcumin, berberine and other nutraceuticals on aging, cancer development, cancer stem cells and microRNAs |
| - | Review, | Var, | NA | - | Review, | AD, | NA |
| 4672- | CUR, | An old spice with new tricks: Curcumin targets adenoma and colorectal cancer stem-like cells associated with poor survival outcomes |
| - | vitro+vivo, | CRC, | HCT116 |
| 4674- | CUR, | Curcumin Shows Promise in Targeting Colorectal Cancer Stem-like Cells: Mechanistic Insights and Clinical Implications |
| - | Review, | CRC, | NA |
| 420- | CUR, | Anti-metastasis activity of curcumin against breast cancer via the inhibition of stem cell-like properties and EMT |
| - | in-vitro, | BC, | MCF-7 | - | in-vitro, | BC, | MDA-MB-231 |
| 1860- | dietFMD, | Chemo, | Fasting-mimicking diet blocks triple-negative breast cancer and cancer stem cell escape |
| - | in-vitro, | BC, | SUM159 | - | in-vitro, | BC, | 4T1 |
| 22- | EGCG, | Inhibition of sonic hedgehog pathway and pluripotency maintaining factors regulate human pancreatic cancer stem cell characteristics |
| - | in-vitro, | PC, | CD133+ | - | in-vitro, | PC, | CD44+ | - | in-vitro, | PC, | CD24+ | - | in-vitro, | PC, | ESA+ |
| 685- | EGCG, | CUR, | SFN, | RES, | GEN | The “Big Five” Phytochemicals Targeting Cancer Stem Cells: Curcumin, EGCG, Sulforaphane, Resveratrol and Genistein |
| - | Analysis, | NA, | NA |
| 4681- | EGCG, | Epigallocatechin-3-Gallate Prevents the Acquisition of a Cancer Stem Cell Phenotype in Ovarian Cancer Tumorspheres through the Inhibition of Src/JAK/STAT3 Signaling |
| - | in-vitro, | Ovarian, | ES-2 |
| 4682- | EGCG, | Human cancer stem cells are a target for cancer prevention using (−)-epigallocatechin gallate |
| - | Review, | Var, | NA |
| 4683- | EGCG, | Epigallocatechin-3-gallate inhibits self-renewal ability of lung cancer stem-like cells through inhibition of CLOCK |
| - | in-vitro, | Lung, | A549 | - | in-vitro, | Lung, | H1299 | - | in-vivo, | Lung, | A549 |
| 2864- | HNK, | Honokiol: A Review of Its Anticancer Potential and Mechanisms |
| - | Review, | Var, | NA |
| 3500- | MF, | Moderate Static Magnet Fields Suppress Ovarian Cancer Metastasis via ROS-Mediated Oxidative Stress |
| - | in-vitro, | Ovarian, | SKOV3 |
| 4630- | OLE, | Targeting resistant breast cancer stem cells in a three-dimensional culture model with oleuropein encapsulated in methacrylated alginate microparticles |
| - | in-vitro, | BC, | NA |
| 4956- | PEITC, | Inhibition of cancer growth in vitro and in vivo by a novel ROS-modulating agent with ability to eliminate stem-like cancer cells |
| - | vitro+vivo, | Lung, | A549 |
| 2948- | PL, | The promising potential of piperlongumine as an emerging therapeutics for cancer |
| - | Review, | Var, | NA |
| 4692- | PTS, | Pterostilbene Suppresses both Cancer Cells and Cancer Stem-Like Cells in Cervical Cancer with Superior Bioavailability to Resveratrol |
| - | in-vitro, | Cerv, | HeLa |
| 4689- | PTS, | Pterostilbene Suppresses both Cancer Cells and Cancer Stem-Like Cells in Cervical Cancer with Superior Bioavailability to Resveratrol |
| - | in-vitro, | Pca, | CD44+ | - | in-vitro, | NA, | CD133+ | - | in-vitro, | NA, | PC3 | - | in-vitro, | NA, | LNCaP |
| 4686- | QC, | Quercetin suppresses endometrial cancer stem cells via ERα-mediated inhibition of STAT3 signaling |
| - | in-vitro, | EC, | EMN8 | - | in-vitro, | EC, | EMN21 |
| 2687- | RES, | Effects of resveratrol, curcumin, berberine and other nutraceuticals on aging, cancer development, cancer stem cells and microRNAs |
| - | Review, | NA, | NA | - | Review, | AD, | NA |
| 4657- | RES, | Resveratrol, cancer and cancer stem cells: A review on past to future |
| - | Review, | Var, | NA |
| 4995- | Sal, | Salinomycin possesses anti-tumor activity and inhibits breast cancer stem-like cells via an apoptosis-independent pathway |
| - | vitro+vivo, | BC, | MDA-MB-231 |
| 3199- | SFN, | Sulforaphane improves chemotherapy efficacy by targeting cancer stem cell-like properties via the miR-124/IL-6R/STAT3 axis |
| - | in-vitro, | GC, | NA |
| 3198- | SFN, | Sulforaphane and TRAIL induce a synergistic elimination of advanced prostate cancer stem-like cells |
| - | in-vitro, | Pca, | NA |
| 1733- | SFN, | Sonic Hedgehog Signaling Inhibition Provides Opportunities for Targeted Therapy by Sulforaphane in Regulating Pancreatic Cancer Stem Cell Self-Renewal |
| - | in-vitro, | PC, | PanCSC | - | in-vitro, | Nor, | HPNE | - | in-vitro, | Nor, | HNPSC |
| 1731- | SFN, | Targeting cancer stem cells with sulforaphane, a dietary component from broccoli and broccoli sprouts |
| - | Review, | Var, | NA |
| 1730- | SFN, | Sulforaphane: An emergent anti-cancer stem cell agent |
| - | Review, | Var, | NA |
| 384- | SNP, | Dual functions of silver nanoparticles in F9 teratocarcinoma stem cells, a suitable model for evaluating cytotoxicity- and differentiation-mediated cancer therapy |
| - | in-vitro, | Testi, | F9 |
| 2365- | VitD3, | Vitamin D Affects the Warburg Effect and Stemness Maintenance of Non- Small-Cell Lung Cancer Cells by Regulating the PI3K/AKT/mTOR Signaling Pathway |
| - | in-vitro, | Lung, | A549 | - | in-vitro, | Lung, | H1975 | - | in-vivo, | NA, | NA |
Query results interpretion may depend on "conditions" listed in the research papers. Such Conditions may include : -low or high Dose -format for product, such as nano of lipid formations -different cell line effects -synergies with other products -if effect was for normal or cancerous cells
Filter Conditions: Pro/AntiFlg:% IllCat:% CanType:% Cells:% prod#:% Target#:212 State#:% Dir#:%
wNotes=0 sortOrder:rid,rpid