Database Query Results : , , PARP

PARP, poly ADP-ribose polymerase (PARP) cleavage: Click to Expand ⟱
Source:
Type:
Poly (ADP-ribose) polymerase (PARP) cleavage is a hallmark of caspase activation. PARP (Poly (ADP-ribose) polymerase) is a family of proteins involved in a variety of cellular processes, including DNA repair, genomic stability, and programmed cell death. PARP enzymes play a crucial role in repairing single-strand breaks in DNA.
PARP has gained significant attention, particularly in the treatment of certain types of tumors, such as those with BRCA1 or BRCA2 mutations. These mutations impair the cell's ability to repair double-strand breaks in DNA through homologous recombination. Cancer cells with these mutations can become reliant on PARP for survival, making them particularly sensitive to PARP inhibitors.
PARP inhibitors, such as olaparib, rucaparib, and niraparib, have been developed as targeted therapies for cancers associated with BRCA mutations.

PARP Family:
The poly (ADP-ribose) polymerases (PARPs) are a family of enzymes involved in a number of cellular processes, including DNA repair, genomic stability, and programmed cell death.
PARP1 is the predominant family member responsible for detecting DNA strand breaks and initiating repair processes, especially through base excision repair (BER).

PARP1 Overexpression:
In several cancer types—including breast, ovarian, prostate, and lung cancers—elevated PARP1 expression and/or activity has been reported.
High PARP1 expression in certain cancers has been associated with aggressive tumor behavior and resistance to therapies (especially those that induce DNA damage).
Increased PARP1 activity may correlate with poorer overall survival in tumors that rely on DNA repair for survival.


Scientific Papers found: Click to Expand⟱
233- AL,  5-FU,    Allicin sensitizes hepatocellular cancer cells to anti-tumor activity of 5-fluorouracil through ROS-mediated mitochondrial pathway
- in-vivo, Liver, NA
ROS↑, MMP↓, Casp3↑, PARP↑, Bcl-2↓,
2655- AL,    Allicin and Digestive System Cancers: From Chemical Structure to Its Therapeutic Opportunities
- Review, GC, NA
TGF-β↓, cycD1/CCND1↓, cycE/CCNE↓, CDK1↓, DNAdam↑, ROS↑, BAX↑, JNK↑, MMP↓, p38↑, MAPK↑, Fas↑, Cyt‑c↑, Casp8↑, PARP↑, Casp3↑, Casp9↑, Ca+2↑, ER Stress↑, P21↑, CDK2↓, CDK6↑, TumCCA↑, CDK4↓,
586- Api,  5-FU,    5-Fluorouracil combined with apigenin enhances anticancer activity through mitochondrial membrane potential (ΔΨm)-mediated apoptosis in hepatocellular carcinoma
- in-vivo, HCC, NA
ROS↑, MMP↓, Bcl-2↓, Casp3↑, PARP↑,
180- Api,    Induction of caspase-dependent apoptosis by apigenin by inhibiting STAT3 signaling in HER2-overexpressing MDA-MB-453 breast cancer cells
- in-vitro, BC, MDA-MB-231
cl‑Casp8↑, cl‑Casp3↑, cl‑PARP↑, BAX∅, Bcl-2∅, Bcl-xL∅, p‑STAT3↓, P53↑, P21↑, p‑JAK2↓, VEGF↓,
206- Api,    Inhibition of glutamine utilization sensitizes lung cancer cells to apigenin-induced apoptosis resulting from metabolic and oxidative stress
- in-vitro, Lung, H1299 - in-vitro, Lung, H460 - in-vitro, Lung, A549 - in-vitro, CRC, HCT116 - in-vitro, Melanoma, A375 - in-vitro, Lung, H2030 - in-vitro, CRC, SW480
Glycolysis↓, NA?, PGK1↓, ALDOA↓, GLUT1↓, ENO1↓, ATP↓, Casp9↑, Casp3↑, cl‑PARP↑, PI3K/Akt↓, HK1↓, HK2↓,
242- Api,    Apigenin inhibits proliferation and invasion, and induces apoptosis and cell cycle arrest in human melanoma cells
- in-vitro, Melanoma, A375 - in-vitro, Melanoma, C8161
ERK↓, PI3k/Akt/mTOR↓, Casp3↑, PARP↑, p‑mTOR↓, p‑Akt↓,
243- Api,    Apigenin Attenuates Melanoma Cell Migration by Inducing Anoikis through Integrin and Focal Adhesion Kinase Inhibition
- in-vitro, Melanoma, A375 - in-vitro, Melanoma, A2058
p‑FAK↓, ERK↓, Casp3↑, PARP↑, ITGA5↓,
178- Api,    Autophagy inhibition enhances apigenin-induced apoptosis in human breast cancer cells
- in-vivo, BC, MDA-MB-231 - in-vitro, BC, T47D
Casp3↑, cl‑PARP↑, Bcl-2↓, Bcl-xL↓, BAX↑,
173- Api,    Apigenin-induced apoptosis is enhanced by inhibition of autophagy formation in HCT116 human colon cancer cells
- in-vitro, Colon, HCT116
CycB/CCNB1↓, cDC2↓, CDC25↓, P53↑, P21↑, cl‑PARP↑, proCasp8↓, proCasp9↓, proCasp3↓,
270- Api,    Apigenin induces apoptosis in human leukemia cells and exhibits anti-leukemic activity in vivo via inactivation of Akt and activation of JNK
- in-vivo, AML, U937
Akt↓, JNK↑, Mcl-1↓, cl‑Bcl-2↓, Casp3↑, Casp7↑, Casp9↑, cl‑PARP↑, mTOR↓, GSK‐3β↓,
268- Api,    Induction of apoptosis by apigenin and related flavonoids through cytochrome c release and activation of caspase-9 and caspase-3 in leukaemia HL-60 cells
- in-vitro, AML, HL-60
Casp3↑, PARP↑,
1536- Api,    Apigenin causes necroptosis by inducing ROS accumulation, mitochondrial dysfunction, and ATP depletion in malignant mesothelioma cells
- in-vitro, MM, MSTO-211H - in-vitro, MM, H2452
tumCV↓, ROS↑, MMP↓, ATP↓, Apoptosis↑, Necroptosis↑, DNAdam↑, TumCCA↑, Casp3↑, cl‑PARP↑, MLKL↑, p‑RIP3↑, Bax:Bcl2↑, eff↓, eff↓,
1548- Api,    A comprehensive view on the apigenin impact on colorectal cancer: Focusing on cellular and molecular mechanisms
- Review, Colon, NA
*BioAv↓, *Half-Life∅, selectivity↑, *toxicity↓, Wnt/(β-catenin)↓, P53↑, P21↑, PI3K↓, Akt↓, mTOR↓, TumCCA↑, TumCI↓, TumCMig↓, STAT3↓, PKM2↓, EMT↓, cl‑PARP↑, Casp3↑, Bax:Bcl2↑, VEGF↓, Hif1a↓, Dose∅, GLUT1↓, GlucoseCon↓,
1563- Api,  MET,    Metformin-induced ROS upregulation as amplified by apigenin causes profound anticancer activity while sparing normal cells
- in-vitro, Nor, HDFa - in-vitro, PC, AsPC-1 - in-vitro, PC, MIA PaCa-2 - in-vitro, Pca, DU145 - in-vitro, Pca, LNCaP - in-vivo, NA, NA
selectivity↑, selectivity↑, selectivity↓, ROS↑, eff↑, tumCV↓, MMP↓, Dose∅, eff↓, DNAdam↑, Apoptosis↑, TumAuto↑, Necroptosis↑, p‑P53↑, BIM↑, BAX↑, p‑PARP↑, Casp3↑, Casp8↑, Casp9↑, Cyt‑c↑, Bcl-2↓, AIF↑, p62↑, LC3B↑, MLKL↑, p‑MLKL↓, RIP3↑, p‑RIP3↑, TumCG↑, TumW↓,
2640- Api,    Apigenin: A Promising Molecule for Cancer Prevention
- Review, Var, NA
chemoPv↑, ITGB4↓, TumCI↓, TumMeta↓, Akt↓, ERK↓, p‑JNK↓, *Inflam↓, *PKCδ↓, *MAPK↓, EGFR↓, CK2↓, TumCCA↑, CDK1↓, P53↓, P21↑, Bax:Bcl2↑, Cyt‑c↑, APAF1↑, Casp↑, cl‑PARP↑, VEGF↓, Hif1a↓, IGF-1↓, IGFBP3↑, E-cadherin↑, β-catenin/ZEB1↓, HSPs↓, Telomerase↓, FASN↓, MMPs↓, HER2/EBBR2↓, CK2↓, eff↑, AntiAg↑, eff↑, FAK↓, ROS↑, Bcl-2↓, Cyt‑c↑, cl‑Casp3↑, cl‑Casp7↑, cl‑Casp8↑, cl‑Casp9↑, cl‑IAP2↑, AR↓, PSA↓, p‑pRB↓, p‑GSK‐3β↓, CDK4↓, ChemoSen↑, Ca+2↑, cal2↑,
2639- Api,    Plant flavone apigenin: An emerging anticancer agent
- Review, Var, NA
*antiOx↑, *Inflam↓, AntiCan↑, ChemoSen↑, BioEnh↑, chemoPv↑, IL6↓, STAT3↓, NF-kB↓, IL8↓, eff↝, Akt↓, PI3K↓, HER2/EBBR2↓, cycD1/CCND1↓, CycD3↓, p27↑, FOXO3↑, STAT3↓, MMP2↓, MMP9↓, VEGF↓, Twist↓, MMP↓, ROS↑, NADPH↑, NRF2↓, SOD↓, COX2↓, p38↑, Telomerase↓, HDAC↓, HDAC1↓, HDAC3↓, Hif1a↓, angioG↓, uPA↓, Ca+2↑, Bax:Bcl2↑, Cyt‑c↑, Casp9↑, Casp12↑, Casp3↑, cl‑PARP↑, E-cadherin↑, β-catenin/ZEB1↓, cMyc↓, CDK4↓, CDK2↓, CDK6↓, IGF-1↓, CK2↓, CSCs↓, FAK↓, Gli↓, GLUT1↓,
3383- ART/DHA,    Dihydroartemisinin: A Potential Natural Anticancer Drug
- Review, Var, NA
TumCP↓, Apoptosis↑, TumMeta↓, angioG↓, TumAuto↑, ER Stress↑, ROS↑, Ca+2↑, p38↑, HSP70/HSPA5↓, PPARγ↑, GLUT1↓, Glycolysis↓, PI3K↓, Akt↓, Hif1a↓, PKM2↓, lactateProd↓, GlucoseCon↓, EMT↓, Slug↓, Zeb1↓, ZEB2↓, Twist↓, Snail?, CAFs/TAFs↓, TGF-β↓, p‑STAT3↓, M2 MC↓, uPA↓, HH↓, AXL↓, VEGFR2↓, JNK↑, Beclin-1↑, GRP78/BiP↑, eff↑, eff↑, eff↑, eff↑, eff↑, eff↑, IL4↓, DR5↑, Cyt‑c↑, Fas↑, FADD↑, cl‑PARP↑, cycE/CCNE↓, CDK2↓, CDK4↓, Mcl-1↓, Ki-67↓, Bcl-2↓, CDK6↓, VEGF↓, COX2↓, MMP9↓,
2323- ART/DHA,    Dihydroartemisinin represses esophageal cancer glycolysis by down-regulating pyruvate kinase M2
- in-vitro, ESCC, Eca109 - in-vitro, ESCC, EC9706
PKM2↓, lactateProd↓, GlucoseCon↓, cycD1/CCND1↓, Bcl-2↓, MMP2↓, VEGF↓, Casp3↑, cl‑PARP↑, BAX↑, DNAdam↑, ROS↑,
1364- Ash,    Withaferin a Triggers Apoptosis and DNA Damage in Bladder Cancer J82 Cells through Oxidative Stress
- in-vitro, Bladder, J82
cl‑Casp3↑, cl‑Casp8↑, cl‑Casp9↑, cl‑PARP↑, ROS↑, MMP↓, DNAdam↑, eff↓,
1360- Ash,  immuno,    Withaferin A Increases the Effectiveness of Immune Checkpoint Blocker for the Treatment of Non-Small Cell Lung Cancer
- in-vitro, Lung, H1650 - in-vitro, Lung, A549 - in-vitro, CRC, HCT116 - in-vitro, BC, MDA-MB-231 - in-vivo, NA, NA
PD-L1↑, eff↓, ROS↑, ER Stress↑, Apoptosis↑, BAX↑, Bak↑, BAD↑, Bcl-2↓, XIAP↓, survivin↓, cl‑PARP↑, CHOP↑, p‑eIF2α↑, ICD↑, eff↑,
1369- Ash,    Withaferin A inhibits cell proliferation of U266B1 and IM-9 human myeloma cells by inducing intrinsic apoptosis
- in-vitro, Melanoma, U266
tumCV↓, Apoptosis↑, BAX↑, Cyt‑c↑, Bcl-2↓, cl‑PARP↑, cl‑Casp3↑, cl‑Casp9↑, ROS↑, eff↓,
1371- Ash,    Reactive oxygen species generation and mitochondrial dysfunction in the apoptotic cell death of human myeloid leukemia HL-60 cells by a dietary compound withaferin A with concomitant protection by N-acetyl cysteine
- in-vitro, AML, HL-60
ROS↑, MMP↓, cl‑Casp3↑, cl‑Casp9↑, cl‑PARP↑, eff↓,
3155- Ash,    Overview of the anticancer activity of withaferin A, an active constituent of the Indian ginseng Withania somnifera
- Review, Var, NA
Half-Life↝, Inflam↓, antiOx↓, angioG↓, ROS↑, BAX↑, Bak↑, E6↓, E7↓, P53↑, Casp3↑, cl‑PARP↑, STAT3↓, eff↑, HSP90↓, TGF-β↓, TNF-α↓, EMT↑, mTOR↓, NOTCH1↓, p‑Akt↓, NF-kB↓, Dose↝,
3160- Ash,    Withaferin A: A Pleiotropic Anticancer Agent from the Indian Medicinal Plant Withania somnifera (L.) Dunal
- Review, Var, NA
TumCCA↑, H3↑, P21↑, cycA1/CCNA1↓, CycB/CCNB1↓, cycE/CCNE↓, CDC2↓, CHK1↓, Chk2↓, p38↑, MAPK↑, E6↓, E7↓, P53↑, Akt↓, FOXO3↑, ROS↑, γH2AX↑, MMP↓, mitResp↓, eff↑, TumCD↑, Mcl-1↓, ER Stress↑, ATF4↑, ATF3↑, CHOP↑, NOTCH↓, NF-kB↓, Bcl-2↓, STAT3↓, CDK1↓, β-catenin/ZEB1↓, N-cadherin↓, EMT↓, Cyt‑c↑, eff↑, CDK4↓, p‑RB1↓, PARP↑, cl‑Casp3↑, cl‑Casp9↑, NRF2↑, ER-α36↓, LDHA↓, lipid-P↑, AP-1↓, COX2↓, RenoP↑, PDGFR-BB↓, SIRT3↑, MMP2↓, MMP9↓, NADPH↑, NQO1↑, GSR↑, HO-1↑, *SOD2↑, *Prx↑, *Casp3?, eff↑, Snail↓, Slug↓, Vim↓, CSCs↓, HEY1↓, MMPs↓, VEGF↓, uPA↓, *toxicity↓, CDK2↓, CDK4↓, HSP90↓,
3167- Ash,    Withaferin A Inhibits the Proteasome Activity in Mesothelioma In Vitro and In Vivo
- in-vitro, MM, H226
TumCP↓, cMyc↓, cFos↓, cJun↓, TIMP2↑, Vim↓, ROS↑, BAX↑, IKKα↑, Casp3↑, cl‑PARP↑,
1524- Ba,    Baicalein Induces Caspase‐dependent Apoptosis Associated with the Generation of ROS and the Activation of AMPK in Human Lung Carcinoma A549 Cells
- in-vitro, Lung, A549
DR5↑, FADD↑, FasL↑, Casp8↑, cFLIP↓, Casp3↑, Casp9↑, cl‑PARP↑, MMP↓, BID↑, Cyt‑c↑, ROS↑, eff↓, AMPK↑, Apoptosis↑, TumCCA↑, DR5↑, FasL↑, DR4∅, cFLIP↓, FADD↑, MMPs↓,
1525- Ba,  almon,    Synergistic antitumor activity of baicalein combined with almonertinib in almonertinib-resistant non-small cell lung cancer cells through the reactive oxygen species-mediated PI3K/Akt pathway
- in-vitro, Lung, H1975 - in-vivo, Lung, NA
eff↑, TumCP↓, Apoptosis↑, cl‑Casp3↑, cl‑PARP↑, cl‑Casp9↑, p‑PI3K↓, p‑Akt↓, ROS↑, eff↓,
1528- Ba,    Inhibiting reactive oxygen species-dependent autophagy enhanced baicalein-induced apoptosis in oral squamous cell carcinoma
- in-vitro, OS, CAL27
Apoptosis↑, ROS↑, eff↓, TumAuto↑, cl‑PARP↑, Bax:Bcl2↑, Beclin-1↑, p62↓,
1526- Ba,    Baicalein induces apoptosis through ROS-mediated mitochondrial dysfunction pathway in HL-60 cells
- in-vitro, AML, HL-60
Apoptosis↑, cl‑PARP↑, DNAdam↑, cl‑BID↑, Cyt‑c↑, Casp3↑, Casp8↑, Casp9?, H2O2↑, ROS↑,
2047- BA,    Sodium butyrate inhibits migration and induces AMPK-mTOR pathway-dependent autophagy and ROS-mediated apoptosis via the miR-139-5p/Bmi-1 axis in human bladder cancer cells
- in-vitro, CRC, T24 - in-vitro, Nor, SV-HUC-1 - in-vitro, Bladder, 5637 - in-vivo, NA, NA
HDAC↓, AntiTum↑, TumCMig↓, AMPK↑, mTOR↑, TumAuto↑, ROS↑, miR-139-5p↑, BMI1↓, TumCI?, E-cadherin↑, N-cadherin↓, Vim↓, Snail↓, cl‑PARP↑, cl‑Casp3↑, BAX↑, Bcl-2↓, Bcl-xL↓, MMP↓, PINK1↑, PARK2↑, TumMeta↓, TumCG↓, LC3II↑, p62↓, eff↓,
2600- Ba,    Baicalein Induces Apoptosis and Autophagy via Endoplasmic Reticulum Stress in Hepatocellular Carcinoma Cells
- in-vitro, HCC, SMMC-7721 cell - in-vitro, HCC, Bel-7402
ER Stress↑, Bcl-2↓, Ca+2↑, JNK↑, CHOP↑, Casp9↑, Casp3↑, PARP↑, Apoptosis↑, UPR↑,
2603- Ba,    Baicalein inhibits prostate cancer cell growth and metastasis via the caveolin-1/AKT/mTOR pathway
- in-vitro, Pca, DU145 - in-vitro, Pca, PC3
TumCG↓, Apoptosis↑, Cav1↓, p‑Akt↓, p‑mTOR↓, Bax:Bcl2↑, survivin↓, cl‑PARP↑, BioAv↓,
2627- Ba,  Cisplatin,    Baicalein, a Bioflavonoid, Prevents Cisplatin-Induced Acute Kidney Injury by Up-Regulating Antioxidant Defenses and Down-Regulating the MAPKs and NF-κB Pathways
RenoP↑, *iNOS↑, *TNF-α↓, *IL6↓, *NF-kB↓, *MAPK↓, *ERK↓, *JNK↓, *antiOx↑, *NRF2↓, *HO-1↑, *Cyt‑c∅, *Casp3∅, *Casp9∅, *PARP∅,
2296- Ba,    The most recent progress of baicalein in its anti-neoplastic effects and mechanisms
- Review, Var, NA
CDK1↓, Cyc↓, p27↑, P21↑, P53↑, TumCCA↑, TumCI↓, MMP2↓, MMP9↓, E-cadherin↑, N-cadherin↓, Vim↓, LC3A↑, p62↓, p‑mTOR↓, PD-L1↓, CAFs/TAFs↓, VEGF↓, ROCK1↓, Bcl-2↓, Bcl-xL↓, BAX↑, ROS↑, cl‑PARP↑, Casp3↑, Casp9↑, PTEN↑, MMP↓, Cyt‑c↑, Ca+2↑, PERK↑, IRE1↑, CHOP↑, Copper↑, Snail↓, Vim↓, Twist↓, GSH↓, NRF2↓, HO-1↓, GPx4↓, XIAP↓, survivin↓, DR5↑,
2474- Ba,    Anticancer properties of baicalein: a review
- Review, Var, NA - in-vitro, Nor, BV2
ROS⇅, ROS↑, ER Stress↑, Ca+2↑, Apoptosis↑, eff↑, DR5↑, 12LOX↓, Cyt‑c↑, Casp7↑, Casp9↑, Casp3↑, cl‑PARP↑, TumCCA↑, cycE/CCNE↑, CDK4↓, cycD1/CCND1↓, VEGF↓, cMyc↓, Hif1a↓, NF-kB↓, BioEnh↑, BioEnh↑, P450↓, *Hif1a↓, *iNOS↓, *COX2↓, *VEGF↓, *ROS↓, *PI3K↓, *Akt↓,
2476- Ba,    Baicalein Induces Caspase-dependent Apoptosis Associated with the Generation of ROS and the Activation of AMPK in Human Lung Carcinoma A549 Cells
- in-vitro, Lung, A549
TumCG↓, Apoptosis↑, DR5↑, FasL↑, FADD↑, Casp8↑, cFLIP↓, Casp9↑, Casp3↑, cl‑PARP↑, MMP↓, BID↑, BAX↑, Cyt‑c↑, ROS↑, eff↓, AMPK↑,
2023- BBR,    Berberine Induces Caspase-Independent Cell Death in Colon Tumor Cells through Activation of Apoptosis-Inducing Factor
- in-vitro, Colon, NA - in-vitro, Nor, YAMC
TumCD↑, *toxicity↓, selectivity↑, ROS↑, *ROS∅, MMP↓, *MMP∅, PARP↑, BioAv↝,
1402- BBR,    Berberine-induced apoptosis in human glioblastoma T98G cells is mediated by endoplasmic reticulum stress accompanying reactive oxygen species and mitochondrial dysfunction
- in-vitro, GBM, T98G
tumCV↓, ROS↑, Ca+2↑, ER Stress↑, eff↓, Bax:Bcl2↑, MMP↓, Casp9↑, Casp3↑, cl‑PARP↑,
1404- BBR,    Berberine-induced apoptosis in human prostate cancer cells is initiated by reactive oxygen species generation
- in-vitro, Pca, PC3
Apoptosis↑, *Apoptosis∅, MMP↓, cl‑Casp3↑, cl‑Casp9↑, cl‑PARP↑, ROS↑, eff↓, Cyt‑c↑,
2691- BBR,    Berberine induces FasL-related apoptosis through p38 activation in KB human oral cancer cells
- in-vitro, Oral, KB
tumCV↓, DNAdam↑, Casp3↑, Casp7↑, FasL↑, Casp8↑, Casp9↑, PARP↑, BAX↑, BAD↑, APAF1↑, MMP2↓, MMP9↓, p‑p38↑, ERK↑, MAPK↑,
2754- BetA,    Betulinic acid inhibits prostate cancer growth through inhibition of specificity protein transcription factors
- in-vitro, Pca, LNCaP
VEGF↓, survivin↓, Sp1/3/4↓, Casp↑, PARP↑, survivin↓, angioG↓,
2744- BetA,    Betulin and betulinic acid: triterpenoids derivatives with a powerful biological potential
- Review, Var, NA
Apoptosis↓, TumCCA↑, Casp9↑, Casp3↑, Casp7↑, cl‑PARP↑, MMP↓, ROS↑, TOP1↓, NF-kB↓,
2718- BetA,    The anti-cancer effect of betulinic acid in u937 human leukemia cells is mediated through ROS-dependent cell cycle arrest and apoptosis
- in-vitro, AML, U937
TumCCA↑, Apoptosis↑, i-ROS↑, cycA1/CCNA1↓, CycB/CCNB1↓, P21↑, Cyt‑c↑, MMP↓, Bax:Bcl2↑, Casp9↑, Casp3↑, PARP↓, eff↓, *antiOx↑, *Inflam↓, *hepatoP↑, selectivity↑, NF-kB↓, *ROS↓,
2719- BetA,    Betulinic Acid Restricts Human Bladder Cancer Cell Proliferation In Vitro by Inducing Caspase-Dependent Cell Death and Cell Cycle Arrest, and Decreasing Metastatic Potential
- in-vitro, CRC, T24 - in-vitro, Bladder, UMUC3 - in-vitro, Bladder, 5637
TumCD↑, Apoptosis↑, TumCCA↑, CycB/CCNB1↓, cycA1/CCNA1↓, CDK2↓, CDC25↓, mtDam↑, BAX↑, cl‑PARP↑, Casp3↑, Casp8↑, Casp9↑, Snail↓, Slug↓, MMP9↓, selectivity↑, MMP↓, ROS∅, TumCMig↓, TumCI↓,
763- Bor,    Investigation of The Apoptotic and Antiproliferative Effects of Boron on CCL-233 Human Colon Cancer Cells
- in-vitro, Colon, CCl233
TumCP↓, PARP↓, VEGF↓,
748- Bor,    A Study on the Anticarcinogenic Effects of Calcium Fructoborate
- in-vitro, BC, MDA-MB-231
p‑ATM↑, p‑P53↑, Casp9↑, PARP↓, VEGF↓, Casp3↑,
1185- Bos,    The journey of boswellic acids from synthesis to pharmacological activities
- Review, NA, NA
BAX↑, NF-kB↓, cl‑PARP↑, Casp3↑, Casp8↑,
1424- Bos,    Boswellia sacra essential oil induces tumor cell-specific apoptosis and suppresses tumor aggressiveness in cultured human breast cancer cells
- in-vitro, BC, T47D - in-vitro, BC, MCF-7 - in-vitro, BC, MDA-MB-231
tumCV↓, Apoptosis↑, cl‑Casp8↑, cl‑Casp9↑, cl‑PARP↑,
1448- Bos,    A triterpenediol from Boswellia serrata induces apoptosis through both the intrinsic and extrinsic apoptotic pathways in human leukemia HL-60 cells
- in-vitro, AML, HL-60
TumCP↓, Apoptosis↑, ROS↑, NO↑, cl‑Bcl-2↑, BAX↑, MMP↓, Cyt‑c↑, AIF↑, Diablo↑, survivin↓, ICAD↓, Casp↑, cl‑PARP↑, DR4↑, TNFR 1↑,
2767- Bos,    The potential role of boswellic acids in cancer prevention and treatment
- Review, Var, NA
*Inflam↓, AntiCan↑, *MAPK↑, *Ca+2↝, p‑ERK↓, TumCI↓, cycD1/CCND1↓, cycE/CCNE↓, CDK2↓, CDK4↓, p‑RB1↓, *NF-kB↓, *TNF-α↓, NF-kB↓, IKKα↓, MCP1↓, IL1α↓, MIP2↓, VEGF↓, Tf↓, COX2↓, MMP9↓, CXCR4↓, VEGF↓, eff↑, PPARα↓, lipid-P?, STAT3↓, TOP1↓, TOP2↑, 5HT↓, p‑PDGFR-BB↓, PDGF↓, AR↓, DR5↑, angioG↓, DR4↑, Casp3↑, Casp8↑, cl‑PARP↑, eff↑, chemoPv↑, Wnt↓, β-catenin/ZEB1↓, ascitic↓, Let-7↑, miR-200b↑, eff↑, MMP1↓, MMP2↓, eff↑, BioAv↓, BioAv↑, Half-Life↓, toxicity↓, Dose↑, BioAv↑, ChemoSen↑,
2776- Bos,    Anti-inflammatory and anti-cancer activities of frankincense: Targets, treatments and toxicities
- Review, Var, NA
*5LO↓, *TNF-α↓, *MMP3↓, *COX1↓, *COX2↓, *PGE2↓, *Th2↑, *Catalase↑, *SOD↑, *NO↑, *PGE2↑, *IL1β↓, *IL6↓, *Th1 response↓, *Th2↑, *iNOS↓, *NO↓, *p‑JNK↓, *p38↓, GutMicro↑, p‑Akt↓, GSK‐3β↓, cycD1/CCND1↓, Akt↓, STAT3↓, CSCs↓, AR↓, P21↑, DR5↑, CHOP↑, Casp3↑, Casp8↑, cl‑PARP↑, DNAdam↑, p‑RB1↓, FOXM1↓, TOP2↓, CDC25↓, p‑CDK1↓, p‑ERK↓, MMP9↓, VEGF↓, angioG↓, ROS↑, Cyt‑c↑, AIF↑, Diablo↑, survivin↓, ICAD↓, ChemoSen↑, SOX9↓, ER Stress↑, GRP78/BiP↑, cal2↓, AMPK↓, mTOR↓, ROS↓,
2775- Bos,    The journey of boswellic acids from synthesis to pharmacological activities
- Review, Var, NA - Review, AD, NA - Review, PSA, NA
ROS↑, ER Stress↑, TumCG↓, Apoptosis↑, Inflam↓, ChemoSen↑, Casp↑, ERK↓, cl‑PARP↑, AR↓, cycD1/CCND1↓, VEGFR2↓, CXCR4↓, radioP↑, NF-kB↓, VEGF↓, P21↑, Wnt↓, β-catenin/ZEB1↓, Cyt‑c↑, MMP2↓, MMP1↓, MMP9↓, PI3K↓, MAPK↓, JNK↑, *5LO↓, *NRF2↑, *HO-1↑, *MDA↓, *SOD↑, *hepatoP↑, *ALAT↓, *AST↓, *LDH↑, *CRP↓, *COX2↓, *GSH↑, *ROS↓, *Imm↑, *Dose↝, *eff↑, *neuroP↑, *cognitive↑, *IL6↓, *TNF-α↓,
3032- CA,    Carnosic Acid Induces Apoptosis Through Reactive Oxygen Species-mediated Endoplasmic Reticulum Stress Induction in Human Renal Carcinoma Caki Cells
- in-vitro, Kidney, Caki-1
cl‑PARP↑, ROS↑, ER Stress↑, ATF4↑, CHOP↑, selectivity↑,
2012- CAP,    Capsaicin induces cytotoxicity in human osteosarcoma MG63 cells through TRPV1-dependent and -independent pathways
- NA, OS, MG63
AntiTum↑, Apoptosis↑, TRPV1↑, ROS↑, SOD↓, AMPK↑, P53↑, JNK↑, Bcl-2↓, Cyt‑c↑, cl‑Casp3↑, cl‑PARP↑, Ca+2↑, MMP↓,
2020- CAP,    Capsaicinoids and Their Effects on Cancer: The “Double-Edged Sword” Postulate from the Molecular Scale
- Review, Var, NA
AntiTum↑, selectivity↑, TRPV1↑, MMP↓, Ca+2↑, ER Stress↑, angioG↓, Casp3?, cl‑PARP↑, selectivity↑, ROS↑, *ROS∅, selectivity↑,
1517- CAP,    Capsaicin Inhibits Multiple Bladder Cancer Cell Phenotypes by Inhibiting Tumor-Associated NADH Oxidase (tNOX) and Sirtuin1 (SIRT1)
- in-vitro, Bladder, TSGH8301 - in-vitro, CRC, T24
ENOX2↓, TumCCA↑, ERK↓, p‑FAK↓, p‑pax↓, TumCMig↓, EMT↓, SIRT1↓, Dose∅, ROS↑, MMP↓, Bcl-2↓, Bak↑, cl‑PARP↑, Casp3↑, SIRT1↓, ac‑P53↑, BIM↑, p‑RB1↓, cycD1/CCND1↓, Dose∅, β-catenin/ZEB1↓, N-cadherin↓, E-cadherin↑,
2800- CHr,    Chrysin Activates Notch1 Signaling and Suppresses Tumor Growth of Anaplastic Thyroid Carcinoma In vitro and In vivo
- in-vitro, Thyroid, NA
TumCG↓, NOTCH↑, cl‑PARP↑, Apoptosis↑,
2804- CHr,  Rad,    Gamma-Irradiated Chrysin Improves Anticancer Activity in HT-29 Colon Cancer Cells Through Mitochondria-Related Pathway
- in-vitro, CRC, HT29
RadioS↑, ROS↑, MMP↓, Casp3↑, Casp9↑, cl‑PARP↑,
2807- CHr,    Evidence-based mechanistic role of chrysin towards protection of cardiac hypertrophy and fibrosis in rats
- in-vivo, Nor, NA
*antiOx↑, Inflam↓, *cardioP↑, *GSH↑, *SOD↑, *Catalase↑, *GAPDH↑, *BAX↓, *Bcl-2↑, *PARP↓, *Cyt‑c↓, *Casp3↓, *NOX4↓, *NRF2↑, *HO-1↑, *HSP70/HSPA5↑,
2785- CHr,    Emerging cellular and molecular mechanisms underlying anticancer indications of chrysin
- Review, Var, NA
*NF-kB↓, *COX2↓, *iNOS↓, angioG↓, TOP1↓, HDAC↓, TNF-α↓, IL1β↓, cardioP↑, RenoP↑, neuroP↑, LDL↓, BioAv↑, eff↑, cycD1/CCND1↓, hTERT/TERT↓, MMP-10↓, Akt↓, STAT3↓, VEGF↓, EGFR↓, Snail↓, Slug↓, Vim↓, E-cadherin↑, eff↑, TET1↑, ROS↑, mTOR↓, PPARα↓, ER Stress↑, Ca+2↑, ERK↓, MMP↑, Cyt‑c↑, Casp3↑, HK2↓, NRF2↓, HO-1↓, MMP2↓, MMP9↓, Fibronectin↓, GRP78/BiP↑, XBP-1↓, p‑eIF2α↑, *AST↓, ALAT↓, ALP↓, LDH↓, COX2↑, Bcl-xL↓, IL6↓, PGE2↓, iNOS↓, DNAdam↑, UPR↑, Hif1a↓, EMT↓, Twist↓, lipid-P↑, CLDN1↓, PDK1↓, IL10↓, TLR4↓, NOTCH1↑, PARP↑, Mcl-1↓, XIAP↓,
2786- CHr,    Chemopreventive and therapeutic potential of chrysin in cancer: mechanistic perspectives
- Review, Var, NA
Apoptosis↑, TumCCA↑, angioG↓, TumCI↓, TumMeta↑, *toxicity↓, selectivity↑, chemoPv↑, *GSTs↑, *NADPH↑, *GSH↑, HDAC8↓, Hif1a↓, *ROS↓, *NF-kB↓, SCF↓, cl‑PARP↑, survivin↓, XIAP↓, Casp3↑, Casp9↑, GSH↓, ChemoSen↑, Fenton↑, P21↑, P53↑, cycD1/CCND1↓, CDK2↓, STAT3↓, VEGF↓, Akt↓, NRF2↓,
1576- Citrate,    Targeting citrate as a novel therapeutic strategy in cancer treatment
- Review, Var, NA
TCA↓, T-Cell↝, Glycolysis↓, PKM2↓, PFK2?, SDH↓, PDH↓, β-oxidation↓, CPT1A↓, FASN↑, Casp3↑, Casp2↑, Casp8↑, Casp9↑, cl‑PARP↑, Hif1a↓, GLUT1↓, angioG↓, Ca+2↓, ROS↓, eff↓, Dose↓, eff↑, Mcl-1↓, HK2↓, IGF-1R↓, PTEN↑, citrate↓, Dose∅, eff↑, eff↑, eff↑, eff↑,
1580- Citrate,    Citrate activates autophagic death of prostate cancer cells via downregulation CaMKII/AKT/mTOR pathway
- in-vitro, Pca, PC3 - in-vivo, PC, NA - in-vitro, Pca, LNCaP - in-vitro, Pca, WPMY-1
Apoptosis↑, Ca+2↓, Akt↓, mTOR↓, selectivity↑, TumCP↓, cl‑Casp3↑, cl‑PARP↑, LC3‑Ⅱ/LC3‑Ⅰ↑, p62↓, ATG5↑, ATG7↑, Beclin-1↑, TumAuto↑, CaMKII ↓,
1593- Citrate,    Citrate Induces Apoptotic Cell Death: A Promising Way to Treat Gastric Carcinoma?
- in-vitro, GC, BGC-823 - in-vitro, GC, SGC-7901
PFK↓, Glycolysis↓, tumCV↓, cl‑Casp3↑, cl‑PARP↑, Apoptosis↑, ATP↓, ChemoSen↑, Mcl-1↓, glucoNG↑, FBPase↑, OXPHOS↓, TCA↓, β-oxidation↓, HK2↓, PDH↓, ROS↑,
4772- CoQ10,    The anti-tumor activities of coenzyme Q0 through ROS-mediated autophagic cell death in human triple-negative breast cells
- in-vitro, BC, MDA-MB-468 - in-vitro, BC, MDA-MB-231
TumCP↓, Apoptosis↑, Casp3↑, cl‑PARP↑, LC3II↑, eff↓, TumCG↓, Bax:Bcl2↑, Beclin-1↑, TumAuto↑, ROS↑,
1980- CUR,  Rad,    Thioredoxin reductase-1 (TxnRd1) mediates curcumin-induced radiosensitization of squamous carcinoma cells
- in-vitro, Cerv, HeLa - in-vitro, Laryn, FaDu
selectivity↑, RadioS↑, TrxR↓, ROS↑, ERK↑, Dose∅, cl‑PARP↑,
4671- CUR,    Targeting colorectal cancer stem cells using curcumin and curcumin analogues: insights into the mechanism of the therapeutic efficacy
- in-vitro, CRC, NA
CSCs↓, TumCG↓, ChemoSen↑, Wnt↓, β-catenin/ZEB1↓, Shh↓, NOTCH↓, DNMT1↓, STAT3↓, NF-kB↓, EGFR↓, IGFR↓, TumCCA↓, cl‑PARP↑, BAX↑, ECM/TCF↓,
152- CUR,    Anti-cancer activity of curcumin loaded nanoparticles in prostate cancer
- in-vivo, Pca, NA
β-catenin/ZEB1↓, AR↓, STAT3↓, p‑Akt↓, Mcl-1↓, Bcl-xL↓, cl‑PARP↑, miR-21↓, miR-205↑,
136- CUR,  docx,    Combinatorial effect of curcumin with docetaxel modulates apoptotic and cell survival molecules in prostate cancer
- in-vitro, Pca, DU145 - in-vitro, Pca, PC3
Bcl-2↓, Bcl-xL↓, Mcl-1↓, BAX↑, BID↑, PARP↑, NF-kB↓, CDK1↓, COX2↓, RTK-RAS↓, PI3K/Akt↓, EGFR↓, HER2/EBBR2↓, P53↑,
118- CUR,    Curcumin analog WZ35 induced cell death via ROS-dependent ER stress and G2/M cell cycle arrest in human prostate cancer cells
- in-vitro, Pca, PC3 - in-vitro, Pca, DU145
ROS↑, Bcl-2↓, PARP↑, cDC2↓, CycB/CCNB1↓, MDM2↓,
434- CUR,    Curcumin induces apoptosis in lung cancer cells by 14-3-3 protein-mediated activation of Bad
- in-vitro, Lung, A549
14-3-3 proteins↓, p‑BAD↓, p‑Akt↓, Akt↓, cl‑Casp9↑, cl‑PARP↑,
477- CUR,    Curcumin induces G2/M arrest and triggers autophagy, ROS generation and cell senescence in cervical cancer cells
- in-vitro, Cerv, SiHa
TumCP↓, TumCCA↑, Apoptosis↑, TumAuto↑, CycB/CCNB1↓, CDC25↓, ROS↑, p62↑, LC3‑Ⅱ/LC3‑Ⅰ↑, cl‑Casp3↑, cl‑PARP↑, P53↑, P21↑,
462- CUR,    Curcumin promotes cancer-associated fibroblasts apoptosis via ROS-mediated endoplasmic reticulum stress
- in-vitro, Pca, PC3
Bcl-2↓, MMP↓, cl‑Casp3↑, BAX↑, BIM↑, p‑PARP↑, PUMA↑, p‑P53↑, ROS↑, p‑ERK↑, p‑eIF2α↑, CHOP↑, ATF4↑,
471- CUR,    Curcumin induces apoptotic cell death and protective autophagy by inhibiting AKT/mTOR/p70S6K pathway in human ovarian cancer cells
- in-vitro, Ovarian, SKOV3 - in-vitro, Ovarian, A2780S
Apoptosis↑, TumAuto↑, p62↓, p‑Akt↓, p‑mTOR↓, p‑P70S6K↓, Casp9↑, PARP↑, ATG3↑, Beclin-1↑, LC3‑Ⅱ/LC3‑Ⅰ↑,
475- CUR,    Curcumin induces apoptotic cell death in human pancreatic cancer cells via the miR-340/XIAP signaling pathway
- in-vitro, PC, PANC1
Apoptosis↑, cl‑Casp3↑, miR-340↑, cl‑PARP↑, XIAP↓,
448- CUR,    Heat shock protein 27 influences the anti-cancer effect of curcumin in colon cancer cells through ROS production and autophagy activation
- in-vitro, CRC, HT-29
Apoptosis↑, TumCCA↑, p‑Akt↓, Akt↓, Bcl-2↓, p‑BAD↓, BAD↑, cl‑PARP↑, ROS↑, HSP27↑, Beclin-1↑, p62↑, GPx1↓, GPx4↓,
457- CUR,    Curcumin regulates proliferation, autophagy, and apoptosis in gastric cancer cells by affecting PI3K and P53 signaling
- in-vitro, GC, SGC-7901 - in-vitro, GC, BGC-823
TumCP↓, Apoptosis↑, TumAuto↑, P53↑, PI3K↓, P21↑, p‑Akt↓, p‑mTOR↓, Bcl-2↓, Bcl-xL↓, LC3I↓, BAX↑, Beclin-1↑, cl‑Casp3↑, cl‑PARP↑, LC3II↑, ATG3↑, ATG5↑,
1871- DAP,    Targeting PDK1 with dichloroacetophenone to inhibit acute myeloid leukemia (AML) cell growth
- in-vitro, AML, U937 - in-vivo, AML, NA
TumCP↓, Apoptosis↑, TumCG↓, PDK1↓, cl‑PARP↑, Bcl-xL↓, Bcl-2↓, Beclin-1↓, ATG3↓, PI3K↓, Akt↓, eff↑,
1864- DCA,  MET,    Dichloroacetate Enhances Apoptotic Cell Death via Oxidative Damage and Attenuates Lactate Production in Metformin-Treated Breast Cancer Cells
- in-vitro, BC, MCF-7 - in-vitro, BC, T47D - in-vitro, Nor, MCF10
PDKs↓, eff↑, ROS↑, PDK1↓, lactateProd↓, p‑PDH↑, Dose∅, OCR↑, DNA-PK↑, γH2AX↑, cl‑PARP↑, selectivity↑, *toxicity∅,
1621- EA,    The multifaceted mechanisms of ellagic acid in the treatment of tumors: State-of-the-art
- Review, Var, NA
AntiCan↑, Apoptosis↑, TumCP↓, TumMeta↓, TumCI↓, TumAuto↑, VEGFR2↓, MAPK↓, PI3K↓, Akt↓, PD-1↓, NOTCH↓, PCNA↓, Ki-67↓, cycD1/CCND1↓, CDK2↑, CDK6↓, Bcl-2↓, cl‑PARP↑, BAX↑, Casp3↑, DR4↑, DR5↑, Snail↓, MMP2↓, MMP9↓, TGF-β↑, PKCδ↓, β-catenin/ZEB1↓, SIRT1↓, HO-1↓, ROS↑, CHOP↑, Cyt‑c↑, MMP↓, OCR↓, AMPK↑, Hif1a↓, NF-kB↓, E-cadherin↑, Vim↓, EMT↓, LC3II↑, CIP2A↓, GLUT1↓, PDH↝, MAD↓, LDH↓, GSTs↑, NOTCH↓, survivin↓, XIAP↓, ER Stress↑, ChemoSideEff↓, ChemoSen↑,
1605- EA,    Ellagic Acid and Cancer Hallmarks: Insights from Experimental Evidence
- Review, Var, NA
*BioAv↓, antiOx↓, Inflam↓, TumCP↓, TumCCA↑, cycD1/CCND1↓, cycE/CCNE↓, P53↑, P21↑, COX2↓, NF-kB↓, Akt↑, NOTCH↓, CDK2↓, CDK6↓, JAK↓, STAT3↓, EGFR↓, p‑ERK↓, p‑Akt↓, p‑STAT3↓, TGF-β↓, SMAD3↓, CDK6↓, Wnt/(β-catenin)↓, Myc↓, survivin↓, CDK8↓, PKCδ↓, tumCV↓, RadioS↑, eff↑, MDM2↓, XIAP↓, p‑RB1↓, PTEN↑, p‑FAK↓, Bax:Bcl2↑, Bcl-xL↓, Mcl-1↓, PUMA↑, NOXA↑, MMP↓, Cyt‑c↑, ROS↑, Ca+2↝, Endoglin↑, Diablo↑, AIF↑, iNOS↓, Casp9↑, Casp3↑, cl‑PARP↑, RadioS↑, Hif1a↓, HO-1↓, HO-2↓, SIRT1↓, selectivity↑, Dose∅, NHE1↓, Glycolysis↓, GlucoseCon↓, lactateProd↓, PDK1?, PDK1?, ECAR↝, COX1↓, Snail↓, Twist↓, cMyc↓, Telomerase↓, angioG↓, MMP2↓, MMP9↓, VEGF↓, Dose↝, PD-L1↓, eff↑, SIRT6↑, DNAdam↓,
989- EGCG,  Citrate,    In vitro and in vivo study of epigallocatechin-3-gallate-induced apoptosis in aerobic glycolytic hepatocellular carcinoma cells involving inhibition of phosphofructokinase activity
- in-vitro, HCC, NA - in-vivo, NA, NA
PFK↓, Glycolysis↓, lactateProd↓, GlucoseCon↓, TumCP↓, TumCCA↑, Casp3↑, cl‑PARP↑, Apoptosis↑, Casp8↑, Casp9↑, Cyt‑c↝, MMP↓, BAD↑, GLUT2↓, PKM2∅,
26- EGCG,  QC,  docx,    Green tea and quercetin sensitize PC-3 xenograft prostate tumors to docetaxel chemotherapy
- vitro+vivo, Pca, PC3
BAD↓, PARP↑, Casp7↑, IκB↓, Ki-67↓, VEGF↓, EGFR↓, FGF↓, TGF-β↓, TNF-α↓, SCF↓, Bax:Bcl2↑, NF-kB↓,
689- EGCG,    EGCG inhibited bladder cancer SW780 cell proliferation and migration both in vitro and in vivo via down regulation of NF-κB and MMP-9
- vitro+vivo, Bladder, SW780
Casp8↑, Casp9↑, Casp3↑, BAX↑, PARP↑, TumVol↓, NF-kB↓, MMP9↓,
680- EGCG,    Cancer preventive and therapeutic effects of EGCG, the major polyphenol in green tea
- Review, NA, NA
NF-kB↓, STAT3↓, PI3K↓, HGF/c-Met↓, Akt↓, ERK↓, MAPK↓, AR↓, Casp↑, Ki-67↓, PARP↑, Bcl-2↓, BAX↑, PCNA↓, p27↑, P21↑,
3206- EGCG,    Insights on the involvement of (-)-epigallocatechin gallate in ER stress-mediated apoptosis in age-related macular degeneration
- Review, AMD, NA
*Ca+2↓, *ROS↓, *Apoptosis↓, *GRP78/BiP↓, *CHOP↓, *PERK↓, *IRE1↓, *p‑PARP↓, *Casp3↓, *Casp12↓, *ER Stress↓, *UPR↓,
3205- EGCG,    The Role of Epigallocatechin-3-Gallate in Autophagy and Endoplasmic Reticulum Stress (ERS)-Induced Apoptosis of Human Diseas
- Review, Var, NA - Review, AD, NA
Beclin-1↑, ROS↑, Apoptosis↑, ER Stress↑, *Inflam↓, *cardioP↑, *antiOx↑, *LDL↓, *NF-kB↓, *MPO↓, *glucose↓, *ROS↓, ATG5↑, LC3B↑, MMP↑, lactateProd↓, VEGF↓, Zeb1↑, Wnt↑, IGF-1R↑, Fas↑, Bak↑, BAD↑, TP53↓, Myc↓, Casp8↓, LC3II↑, NOTCH3↓, eff↑, p‑Akt↓, PARP↑, *Cyt‑c↓, *BAX↓, *memory↑, *neuroP↑, *Ca+2?, GRP78/BiP↑, CHOP↑, ATF4↑, Casp3↑, Casp8↑, UPR↑,
3201- EGCG,    Epigallocatechin Gallate (EGCG): Pharmacological Properties, Biological Activities and Therapeutic Potential
- Review, NA, NA
*AntiCan↑, *cardioP↑, *neuroP↑, *BioAv↝, *BioAv↓, *BioAv↓, *Dose↝, *Half-Life↝, *BioAv↑, *BBB↑, *hepatoP↓, *other↓, *Inflam↓, *NF-kB↓, *AP-1↓, *iNOS↓, *COX2↓, *ROS↓, *RNS↓, *IL8↓, *JAK↓, *PDGFR-BB↓, *IGF-1R↓, *MMP2↓, *P53↓, *NRF2↑, *TNF-α↓, *IL6↓, *E2Fs↑, *SOD1↑, *SOD2↑, Casp3↑, Cyt‑c↑, PARP↑, DNMTs↓, Telomerase↓, Hif1a↓, MMPs↓, BAX↑, Bak↑, Bcl-2↓, Bcl-xL↓, P53↑, PTEN↑, TumCP↓, MAPK↓, HGF/c-Met↓, TIMP1↑, HDAC↓, MMP9↓, uPA↓, GlutMet↓, ChemoSen↑, chemoP↑,
1516- EGCG,    Epigallocatechin Gallate (EGCG): Pharmacological Properties, Biological Activities and Therapeutic Potential
- Review, NA, NA
*Dose∅, Half-Life∅, BioAv∅, BBB↑, toxicity∅, eff↓, Apoptosis↑, Casp3↑, Cyt‑c↑, cl‑PARP↑, DNMTs↓, Telomerase↓, angioG↓, Hif1a↓, NF-kB↓, MMPs↓, BAX↑, Bak↑, Bcl-2↓, Bcl-xL↓, P53↑, PTEN↑, IGF-1↓, H3↓, HDAC1↓, *LDH↓, *ROS↓,
1318- EMD,    Aloe-emodin Induces Apoptosis in Human Liver HL-7702 Cells through Fas Death Pathway and the Mitochondrial Pathway by Generating Reactive Oxygen Species
- in-vitro, Nor, HL7702
*TumCCA↑, *ROS↑, *MMP↓, *Fas↑, *P53↑, *P21↓, *Bax:Bcl2↑, *cl‑Casp3↑, *cl‑Casp8↑, *cl‑Casp9↑, *cl‑PARP↑,
1332- EMD,    Induction of Apoptosis in HepaRG Cell Line by Aloe-Emodin through Generation of Reactive Oxygen Species and the Mitochondrial Pathway
- in-vivo, Nor, HepaRG
*tumCV↓, *ROS↑, *MMP↓, *Fas↑, *P53↑, *P21↑, *Bax:Bcl2↑, *Casp3↑, *Casp8↑, *Casp9↑, *cl‑PARP↑, *TumCCA↑, *P21↑, *cycE/CCNE↑, *cycA1/CCNA1↓, *CDK2↓,
1331- EMD,    Aloe-emodin induces apoptosis of human nasopharyngeal carcinoma cells via caspase-8-mediated activation of the mitochondrial death pathway
- in-vitro, NPC, NA
TumCCA↑, CycB/CCNB1↑, DNAdam↑, Casp3↑, cl‑PARP↑, MMP↓, Ca+2↑, ROS↑,
1155- F,    The anti-cancer effects of fucoidan: a review of both in vivo and in vitro investigations
- Review, NA, NA
*toxicity↓, Casp3↑, Casp7↑, Casp8↑, Casp9↑, VEGF↓, angioG↓, PI3K↓, Akt↓, PARP↑, Bak↑, BID↑, Fas↑, Mcl-1↓, survivin↓, XIAP↓, ERK↓, EMT↓, EM↑, IM↓, Snail↓, Slug↓, Twist↓,
1656- FA,    Ferulic Acid: A Natural Phenol That Inhibits Neoplastic Events through Modulation of Oncogenic Signaling
- Review, Var, NA
tyrosinase↓, CK2↓, TumCP↓, TumCMig↓, FGF↓, FGFR1↓, PI3K↓, Akt↓, VEGF↓, FGFR1↓, FGFR2↓, PDGF↓, ALAT↓, AST↓, TumCCA↑, CDK2↓, CDK4↓, CDK6↓, BAX↓, Bcl-2↓, MMP2↓, MMP9↓, P53↑, PARP↑, PUMA↑, NOXA↑, Casp3↑, Casp9↑, TIMP1↑, lipid-P↑, mtDam↑, EMT↓, Vim↓, E-cadherin↓, p‑STAT3↓, COX2↓, CDC25↓, RadioS↑, ROS↑, DNAdam↑, γH2AX↑, PTEN↑, LC3II↓, Beclin-1↓, SOD↓, Catalase↓, GPx↓, Fas↑, *BioAv↓, cMyc↓, Beclin-1↑, LC3‑Ⅱ/LC3‑Ⅰ↓,
2845- FIS,    Fisetin: A bioactive phytochemical with potential for cancer prevention and pharmacotherapy
- Review, Var, NA
PI3K↓, Akt↓, mTOR↓, p38↓, *antiOx↑, *neuroP↑, Casp3↑, Bcl-2↓, Mcl-1↓, BAX↑, BIM↑, BAD↑, AMPK↑, ACC↑, DNAdam↑, MMP↓, eff↑, ROS↑, cl‑PARP↑, Cyt‑c↑, Diablo↑, P53↑, p65↓, Myc↓, HSP70/HSPA5↓, HSP27↓, COX2↓, Wnt↓, EGFR↓, NF-kB↓, TumCCA↑, CDK2↓, CDK4↓, cycD1/CCND1↓, cycA1/CCNA1↓, P21↑, MMP2↓, MMP9↓, TumMeta↓, MMP1↓, MMP3↓, MMP7↓, MET↓, N-cadherin↓, Vim↓, Snail↓, Fibronectin↓, E-cadherin↑, uPA↓, ChemoSen↑, EMT↓, Twist↓, Zeb1↓, cFos↓, cJun↓, EGF↓, angioG↓, VEGF↓, eNOS↓, *NRF2↑, HO-1↑, NRF2↓, GSTs↓, ATF4↓,
2855- FIS,    Fisetin Induces Apoptosis Through p53-Mediated Up-Regulation of DR5 Expression in Human Renal Carcinoma Caki Cells
- in-vitro, RCC, Caki-1
TumCCA↑, cl‑PARP↑, Apoptosis↑, Casp↑, P53↑, DR5↑, CHOP↑, ROS↑, ER Stress↑, ATF4↑, XBP-1↑, eff∅,
2857- FIS,    A review on the chemotherapeutic potential of fisetin: In vitro evidences
- Review, Var, NA
COX2↓, PGE2↓, EGFR↓, Wnt↓, β-catenin/ZEB1↓, TCF↑, Apoptosis↑, Casp3↑, cl‑PARP↑, Bcl-2↓, Mcl-1↓, BAX↑, BIM↑, BAD↑, Akt↓, mTOR↓, ACC↑, Cyt‑c↑, Diablo↑, cl‑Casp8↑, Fas↑, DR5↑, TRAIL↑, Securin↓, CDC2↓, CDC25↓, HSP70/HSPA5↓, CDK2↓, CDK4↓, cycD1/CCND1↓, MMP2↓, uPA↓, NF-kB↓, cFos↓, cJun↓, MEK↓, p‑ERK↓, N-cadherin↓, Vim↓, Snail↓, Fibronectin↓, E-cadherin↓, NF-kB↑, ROS↑, DNAdam↑, MMP↓, CHOP↑, eff↑, ChemoSen↑,
2842- FIS,    Fisetin inhibits cellular proliferation and induces mitochondria-dependent apoptosis in human gastric cancer cells
- in-vitro, GC, AGS
TumCCA↑, CDK2↓, P53↑, selectivity↑, MMP↓, DNAdam↑, cl‑PARP↑, mt-ROS↑, eff↓, survivin↓,
2824- FIS,    Fisetin in Cancer: Attributes, Developmental Aspects, and Nanotherapeutics
- Review, Var, NA
*antiOx↑, *Inflam↓, angioG↓, BioAv↓, BioAv↑, TumCP↓, TumCI↓, TumCMig↓, *neuroP↑, EMT↓, ROS↑, selectivity↑, EGFR↓, NF-kB↓, VEGF↓, MMP9↓, MMP↓, cl‑PARP↑, Casp7↑, Casp8↑, Casp9↑, *ROS↓, uPA↓, MMP1↓, Wnt↓, Akt↓, PI3K↓, ERK↓, Half-Life↝,
2825- FIS,    Exploring the molecular targets of dietary flavonoid fisetin in cancer
- Review, Var, NA
*Inflam↓, *antiOx↓, *ERK↑, *p‑cMyc↑, *NRF2↑, *GSH↑, *HO-1↑, mTOR↓, PI3K↓, Akt↓, TumCCA↑, cycD1/CCND1↓, cycE/CCNE↓, CDK2↓, CDK4↓, CDK6↓, P21↑, p27↑, JNK↑, MMP2↓, MMP9↓, uPA↓, NF-kB↓, cFos↓, cJun↓, E-cadherin↑, Vim↓, N-cadherin↓, EMT↓, MMP↓, Cyt‑c↑, Diablo↑, Casp↑, cl‑PARP↑, P53↑, COX2↓, PGE2↓, HSP70/HSPA5↓, HSP27↓, DNAdam↑, Casp3↑, Casp9↑, ROS↑, AMPK↑, NO↑, Ca+2↑, mTORC1↓, p70S6↓, ROS↓, ER Stress↑, IRE1↑, ATF4↑, GRP78/BiP↑, eff↑, eff↑, eff↑, RadioS↑, ChemoSen↑, Half-Life↝,
2827- FIS,    The Potential Role of Fisetin, a Flavonoid in Cancer Prevention and Treatment
- Review, Var, NA
*antiOx↑, *Inflam↓, neuroP↑, hepatoP↑, RenoP↑, cycD1/CCND1↓, TumCCA↑, MMPs↓, VEGF↓, MAPK↓, NF-kB↓, angioG↓, Beclin-1↑, LC3s↑, ATG5↑, Bcl-2↓, BAX↑, Casp↑, TNF-α↓, Half-Life↓, MMP↓, mt-ROS↑, cl‑PARP↑, CDK2↓, CDK4↓, Cyt‑c↑, Diablo↑, DR5↑, Fas↑, PCNA↓, Ki-67↓, p‑H3↓, chemoP↑, Ca+2↑, Dose↝, CDC25↓, CDC2↓, CHK1↑, Chk2↑, ATM↑, PCK1↓, RAS↓, p‑p38↓, Rho↓, uPA↓, MMP7↓, MMP13↓, GSK‐3β↑, E-cadherin↑, survivin↓, VEGFR2↓, IAP2↓, STAT3↓, JAK1↓, mTORC1↓, mTORC2↓, NRF2↑,
2828- FIS,    Fisetin, a Potent Anticancer Flavonol Exhibiting Cytotoxic Activity against Neoplastic Malignant Cells and Cancerous Conditions: A Scoping, Comprehensive Review
- Review, Var, NA
*neuroP↑, *antiOx↑, *Inflam↓, RenoP↑, COX2↓, Wnt↓, EGFR↓, NF-kB↓, Casp3↑, Ca+2↑, Casp8↑, TumCCA↑, CDK1↓, PI3K↓, Akt↓, mTOR↓, MAPK↓, *P53↓, *P21↓, *p16↓, mTORC1↓, mTORC2↓, P53↑, P21↑, cycD1/CCND1↓, cycA1/CCNA1↓, CDK2↓, CDK4↓, BAX↑, Bcl-2↓, PCNA↓, HER2/EBBR2↓, Cyt‑c↑, MMP↓, cl‑Casp9↑, MMP2↓, MMP9↓, cl‑PARP↑, uPA↓, DR4↑, DR5↑, ROS↓, AIF↑, CDC25↓, Dose↑, CHOP↑, ROS↑, cMyc↓, cardioP↑,
2829- FIS,    Fisetin: An anticancer perspective
- Review, Var, NA
TumCP↓, TumCI↓, TumCCA↑, TumCG↓, Apoptosis↑, cl‑PARP↑, PKCδ↓, ROS↓, ERK↓, NF-kB↓, survivin↓, ROS↑, PI3K↓, Akt↓, mTOR↓, MAPK↓, p38↓, HER2/EBBR2↓, EMT↓, PTEN↑, HO-1↑, NRF2↑, MMP2↓, MMP9↓, MMP↓, Casp8↑, Casp9↑, TRAILR↑, Cyt‑c↑, XIAP↓, P53↑, CDK2↓, CDK4↓, CDC25↓, CDC2↓, VEGF↓, DNAdam↑, TET1↓, CHOP↑, CD44↓, CD133↓, uPA↓, CSCs↓,
2832- FIS,    Fisetin's Promising Antitumor Effects: Uncovering Mechanisms and Targeting for Future Therapies
- Review, Var, NA
MMP↓, mtDam↑, Cyt‑c↑, Diablo↑, Casp↑, cl‑PARP↑, Bak↑, BIM↑, Bcl-xL↓, Bcl-2↓, P53↑, ROS↑, AMPK↑, Casp9↑, Casp3↑, BID↑, AIF↑, Akt↓, mTOR↓, MAPK↓, Wnt↓, β-catenin/ZEB1↓, TumCCA↑, P21↑, p27↑, cycD1/CCND1↓, cycE/CCNE↓, CDK2↓, CDK4↓, CDK6↓, TumMeta↓, uPA↓, E-cadherin↑, Vim↓, EMT↓, Twist↓, DNAdam↑, ROS↓, COX2↓, PGE2↓, HSF1↓, cFos↓, cJun↓, AP-1↓, Mcl-1↓, NF-kB↓, IRE1↑, ER Stress↑, ATF4↑, GRP78/BiP↑, MMP2↓, MMP9↓, TCF-4↓, MMP7↓, RadioS↑, TOP1↓, TOP2↓,
2838- FIS,    Fisetin induces apoptosis in colorectal cancer cells by suppressing autophagy and down-regulating nuclear factor erythroid 2-related factor 2 (Nrf2)
cl‑Casp3↑, cl‑PARP↑, MMP↓, Cyt‑c↑, ROS↑, NRF2↓,
2843- FIS,    Fisetin and Quercetin: Promising Flavonoids with Chemopreventive Potential
- Review, Var, NA
NRF2↑, Keap1↓, ChemoSen↑, BioAv↓, Cyt‑c↑, Casp3↑, Casp9↑, BAX↑, tumCV↓, Mcl-1↓, cl‑PARP↑, IGF-1↓, Akt↓, CDK6↓, TumCCA↑, P53?, cycD1/CCND1↓, cycE/CCNE↓, CDK2↓, CDK4↓, CDK6↓, MMP2↓, MMP9↓, MMP1↓, MMP7↓, MMP3↓, VEGF↓, PI3K↓, mTOR↓, COX2↓, Wnt↓, EGFR↓, NF-kB↓, ERK↓, ROS↑, angioG↓, TNF-α↓, PGE2↓, iNOS↓, NO↓, IL6↓, HSP70/HSPA5↝, HSP27↝,
1086- GA,    Anti-leukemic effects of gallic acid on human leukemia K562 cells: downregulation of COX-2, inhibition of BCR/ABL kinase and NF-κB inactivation
- in-vitro, AML, K562
tumCV↓, TumCCA↑, P21↑, p27↑, cycD1/CCND1↓, cycE/CCNE↓, Bax:Bcl2↑, Cyt‑c↑, cl‑PARP↓, DNAdam↑, Casp3↑, FASN↓, Casp8↑,
1967- GamB,    Gambogic acid induces apoptotic cell death in T98G glioma cells
- in-vitro, GBM, T98G
BAX↑, AIF↑, Cyt‑c↑, cl‑Casp3↑, cl‑Casp8↑, cl‑Casp9↑, cl‑PARP↓, Bcl-2↓, ROS↑,
1961- GamB,    Effects of gambogic acid on the activation of caspase-3 and downregulation of SIRT1 in RPMI-8226 multiple myeloma cells via the accumulation of ROS
- in-vitro, Melanoma, RPMI-8226
TumCG↓, Apoptosis↑, ROS↑, Casp3↑, cl‑PARP↑, SIRT1↓, eff↓,
1966- GamB,  Cisplatin,    Gambogic acid synergistically potentiates cisplatin-induced apoptosis in non-small-cell lung cancer through suppressing NF-κB and MAPK/HO-1 signalling
- in-vitro, Lung, A549 - in-vitro, Lung, NCIH1299
TumCCA↑, PARP↑, eff↑, ROS↑, ChemoSen↑,
831- GAR,  CUR,    Induction of apoptosis by garcinol and curcumin through cytochrome c release and activation of caspases in human leukemia HL-60 cells
- in-vitro, AML, HL-60
Apoptosis↑, Casp3↑, MMP↓, Cyt‑c↑, proCasp9↑, Bcl-2↓, BAX↑, PARP↓, DNAdam↑, DFF45↓,
821- GAR,    Garcinol inhibits cell growth in hepatocellular carcinoma Hep3B cells through induction of ROS-dependent apoptosis
- in-vitro, Liver, Hep3B
ROS↑, CHOP↑, MMP↓, Bax:Bcl2↑, Casp8↑, Casp3↑, Casp9↑, cl‑PARP↑, DFF45↑,
820- GAR,    Garcinol in gastrointestinal cancer prevention: recent advances and future prospects
- Review, NA, NA
Fas↑, TRAIL↑, PARP↑, BAX↑, Bcl-2↓, ROS↑, STAT3↓, Apoptosis↑, MMP2↓, MMP9↓,
828- GAR,  Cisplatin,    Garcinol Alone and in Combination With Cisplatin Affect Cellular Behavior and PI3K/AKT Protein Phosphorylation in Human Ovarian Cancer Cells
- in-vitro, Ovarian, OVCAR-3
tumCV↓, cl‑PARP↑, cl‑Casp3↑, BAX↑, p‑PI3K↓, p‑Akt↓, NF-kB↓,
810- GAR,  GEM,    Garcinol sensitizes human pancreatic adenocarcinoma cells to gemcitabine in association with microRNA signatures
- in-vitro, PC, NA
TumCP↓, Apoptosis↑, PARP↝, VEGF↝, MMPs↝, Casp↝, NF-kB↝, miR-21↝,
795- GAR,    Garcinol—A Natural Histone Acetyltransferase Inhibitor and New Anti-Cancer Epigenetic Drug
- Review, NA, NA
HATs↓, BAX↑, PARP↑, Bcl-2↓, Casp3↑, Casp9↑, DR5↑, cFLIP↓, MMP2↓, MMP9↓, STAT3↓, p‑Akt↓,
843- Gra,    Graviola (Annona muricata) Exerts Anti-Proliferative, Anti-Clonogenic and Pro-Apoptotic Effects in Human Non-Melanoma Skin Cancer UW-BCC1 and A431 Cells In Vitro: Involvement of Hedgehog Signaling
- in-vitro, NMSC, A431 - in-vitro, NMSC, UW-BCC1 - in-vitro, Nor, NHEKn
TumCG↓, TumCCA↑, Cyc↓, Apoptosis↑, cl‑Casp3↑, cl‑Casp8↑, cl‑PARP↑, HH↓, Smo↓, Gli1↓, GLI2↓, Shh↓, Sufu↑, BAX↑, Bcl-2↓, *toxicity↓,
1657- HCAs,    Anticancer Activity of Sinapic Acid by Inducing Apoptosis in HT-29 Human Colon Cancer Cell Line 2023
- in-vitro, CRC, HT-29
cl‑Casp3↑, BAX↑, cl‑PARP↑, γH2AX↑, Cyt‑c↑,
1912- HCQ,  TMZ,    Chloroquine enhances temozolomide cytotoxicity in malignant gliomas by blocking autophagy
- in-vivo, GBM, U87MG
LC3B-II↑, CHOP↑, cl‑PARP↑,
1154- HNK,  MET,    Honokiol inhibits the growth of hormone-resistant breast cancer cells: its promising effect in combination with metformin
- in-vitro, BC, MCF-7 - in-vitro, BC, SkBr3 - in-vitro, BC, MDA-MB-231
cl‑PARP↑, Bcl-2↓, ERα/ESR1↓,
2885- HNK,    Honokiol: a novel natural agent for cancer prevention and therapy
NF-kB↓, STAT3↓, EGFR↓, mTOR↓, BioAv↝, Inflam↓, TumCP↓, angioG↓, TumCI↓, TumMeta↓, cSrc↓, JAK1↓, JAK2↓, ERK↓, Akt↓, PTEN↑, ChemoSen↑, chemoP↑, COX2↓, PGE2↓, TNF-α↓, IL1β↓, IL6↓, Casp3↑, Casp8↑, Casp9↑, cl‑PARP↑, DNAdam↑, Cyt‑c↑, RadioS↑, RAS↓, BBB↑, BioAv↓, Half-Life↝, Half-Life↝, toxicity↓,
2864- HNK,    Honokiol: A Review of Its Anticancer Potential and Mechanisms
- Review, Var, NA
TumCCA↑, CDK2↓, EMT↓, MMPs↓, AMPK↑, TumCI↓, TumCMig↓, TumMeta↓, VEGFR2↓, *antiOx↑, *Inflam↓, *BBB↑, *neuroP↑, *ROS↓, Dose↝, selectivity↑, Casp3↑, Casp9↑, NOTCH1↓, cycD1/CCND1↓, cMyc↓, P21?, DR5↑, cl‑PARP↑, P53↑, Mcl-1↑, p65↓, NF-kB↓, ROS↑, JNK↑, NRF2↑, cJun↑, EF-1α↓, MAPK↓, PI3K↓, mTORC1↓, CSCs↓, OCT4↓, Nanog↓, SOX4↓, STAT3↓, CDK4↓, p‑RB1↓, PGE2↓, COX2↓, β-catenin/ZEB1↑, IKKα↓, HDAC↓, HATs↑, H3↑, H4↑, LC3II↑, c-Raf↓, SIRT3↑, Hif1a↓, ER Stress↑, GRP78/BiP↑, cl‑CHOP↑, MMP↓, PCNA↓, Zeb1↓, NOTCH3↓, CD133↓, Nestin↓, ATG5↑, ATG7↑, survivin↓, ChemoSen↑, SOX2↓, OS↑, P-gp↓, Half-Life↓, Half-Life↝, eff↑, BioAv↓,
2867- HNK,    Honokiol ameliorates oxidative stress-induced DNA damage and apoptosis of c2c12 myoblasts by ROS generation and mitochondrial pathway
- in-vitro, Nor, C2C12
*antiOx↑, *ROS↓, *Bcl-2↑, *BAX↓, Casp9∅, Casp3∅, cl‑PARP∅, Cyt‑c?,
1286- HNK,    The natural product honokiol induces caspase-dependent apoptosis in B-cell chronic lymphocytic leukemia (B-CLL) cells
- in-vitro, CLL, NA
Apoptosis↑, Casp3↑, Casp8↑, Casp9↑, cl‑PARP↑, Bcl-2↓, BAX↑,
2073- HNK,    Honokiol induces apoptosis and autophagy via the ROS/ERK1/2 signaling pathway in human osteosarcoma cells in vitro and in vivo
- in-vitro, OS, U2OS - in-vivo, NA, NA
TumCD↑, TumAuto↑, Apoptosis↑, TumCCA↑, GRP78/BiP↑, ROS↑, eff↓, p‑ERK↑, selectivity↑, Ca+2↑, MMP↓, Casp3↑, Casp9↑, cl‑PARP↑, Bcl-2↓, Bcl-xL↓, survivin↓, LC3B-II↑, ATG5↑, TumVol↓, TumW↓, ER Stress↑,
4639- HT,    Hydroxytyrosol Induces Apoptosis, Cell Cycle Arrest and Suppresses Multiple Oncogenic Signaling Pathways in Prostate Cancer Cells
- in-vitro, Pca, LNCaP - in-vitro, Pca, C4-2B
TumCP↓, selectivity↑, TumCCA↑, cycD1/CCND1↓, cycE/CCNE↓, CDK2↓, CDK4↓, P21↑, p27↑, Apoptosis↑, Casp↑, cl‑PARP↑, Bax:Bcl2↑, p‑Akt↓, p‑STAT3↓, NF-kB↓, AR↓, ROS↑, *BioAv↓, *toxicity∅,
1918- JG,    ROS -mediated p53 activation by juglone enhances apoptosis and autophagy in vivo and in vitro
- in-vitro, Liver, HepG2 - in-vivo, NA, NA
TumCG↓, TumCP↓, Apoptosis↑, TumAuto↑, AMPK↑, mTOR↑, P53↑, H2O2↑, ROS↑, toxicity↝, p62↓, DR5↑, Casp8↑, PARP↑, cl‑Casp3↑,
2351- lamb,    Anti-Warburg effect via generation of ROS and inhibition of PKM2/β-catenin mediates apoptosis of lambertianic acid in prostate cancer cells
- in-vitro, Pca, DU145 - in-vitro, Pca, PC3
proCasp3↓, proPARP↓, LDHA↓, Glycolysis↓, HK2↓, PKM2↓, lactateProd↓, p‑STAT3↓, cycD1/CCND1↓, cMyc↓, β-catenin/ZEB1↓, p‑GSK‐3β↓, ROS↑, eff↓,
2919- LT,    Luteolin as a potential therapeutic candidate for lung cancer: Emerging preclinical evidence
- Review, Var, NA
RadioS↑, ChemoSen↑, chemoP↑, *lipid-P↓, *Catalase↑, *SOD↑, *GPx↑, *GSTs↑, *GSH↑, *TNF-α↓, *IL1β↓, *Casp3↓, *IL10↑, NRF2↓, HO-1↓, NQO1↓, GSH↓, MET↓, p‑MET↓, p‑Akt↓, HGF/c-Met↓, NF-kB↓, Bcl-2↓, SOD2↓, Casp8↑, Casp3↑, PARP↑, MAPK↓, NLRP3↓, ASC↓, Casp1↓, IL6↓, IKKα↓, p‑p65↓, p‑p38↑, MMP2↓, ICAM-1↓, EGFR↑, p‑PI3K↓, E-cadherin↓, ZO-1↑, N-cadherin↓, CLDN1↓, β-catenin/ZEB1↓, Snail↓, Vim↑, ITGB1↓, FAK↓, p‑Src↓, Rac1↓, Cdc42↓, Rho↓, PCNA↓, Tyro3↓, AXL↓, CEA↓, NSE↓, SOD↓, Catalase↓, GPx↓, GSR↓, GSTs↓, GSH↓, VitE↓, VitC↓, CYP1A1↓, cFos↑, AR↓, AIF↑, p‑STAT6↓, p‑MDM2↓, NOTCH1↓, VEGF↓, H3↓, H4↓, HDAC↓, SIRT1↓, ROS↑, DR5↑, Cyt‑c↑, p‑JNK↑, PTEN↓, mTOR↓, CD34↓, FasL↑, Fas↑, XIAP↓, p‑eIF2α↑, CHOP↑, LC3II↑, PD-1↓, STAT3↓, IL2↑, EMT↓, cachexia↓, BioAv↑, *Half-Life↝, *eff↑,
2914- LT,    Therapeutic Potential of Luteolin on Cancer
- Review, Var, NA
*antiOx↑, *IronCh↑, *toxicity↓, *BioAv↓, *BioAv↑, DNAdam↑, TumCP↓, DR5↑, P53↑, JNK↑, BAX↑, cl‑Casp3↑, cl‑Casp8↑, cl‑Casp9↑, cl‑PARP↑, survivin↓, cycD1/CCND1↓, CycB/CCNB1↓, CDC2↓, P21↑, angioG↓, MMP2↓, AEG1↓, VEGF↓, VEGFR2↓, MMP9↓, CXCR4↓, PI3K↓, Akt↓, ERK↓, TumAuto↑, LC3B-II↑, EMT↓, E-cadherin↑, N-cadherin↓, Wnt↓, ROS↑, NICD↓, p‑GSK‐3β↓, iNOS↓, COX2↓, NRF2↑, Ca+2↑, ChemoSen↑, ChemoSen↓, IFN-γ↓, RadioS↑, MDM2↓, NOTCH1↓, AR↓, TIMP1↑, TIMP2↑, ER Stress↑, CDK2↓, Telomerase↓, p‑NF-kB↑, p‑cMyc↑, hTERT/TERT↓, RAS↓, YAP/TEAD↓, TAZ↓, NF-kB↓, NRF2↓, HO-1↓, MDR1↓,
3277- Lyco,    Recent trends and advances in the epidemiology, synergism, and delivery system of lycopene as an anti-cancer agent
- Review, Var, NA
antiOx↑, TumCP↓, Apoptosis↑, TumMeta↑, ChemoSen↑, BioAv↓, Dose↝, BioAv↓, BioAv↑, SOD↑, Catalase↑, GPx↑, IL2↑, IL4↑, IL1↑, TNF-α↑, GSH↑, GPx↑, GSTA1↑, GSR↑, PPARγ↑, Casp3↑, NF-kB↓, COX2↓, Bcl-2↑, BAX↓, P53↓, CHK1↓, Chk2↓, γH2AX↓, DNAdam↓, ROS↓, P21↑, PCNA↓, β-catenin/ZEB1↓, PGE2↓, ERK↓, cMyc↓, cycE/CCNE↓, JAK1↓, STAT3↓, SIRT1↑, cl‑PARP↑, cycD1/CCND1↓, TNF-α↓, IL6↓, p65↓, MMP2↓, MMP9↓, Wnt↓,
4786- Lyco,    Anti-proliferative and apoptosis-inducing activity of lycopene against three subtypes of human breast cancer cell lines
- in-vitro, BC, MDA-MB-468 - in-vitro, BC, MCF-7 - in-vitro, BC, SkBr3
TumCP↓, TumCCA↑, cl‑PARP↑, ERK↑, cycD1/CCND1↓, P21↓, p‑Akt↓, mTOR↓, BAX↑, AntiCan↑, Risk↓,
2533- M-Blu,  PDT,    Methylene blue-mediated photodynamic therapy enhances apoptosis in lung cancer cells
- in-vitro, Lung, A549
MMP↓, p‑MAPK↑, ROS↑, cl‑PARP↑, Bcl-2↓, Mcl-1↓, eff↓,
4531- MAG,    Magnolol-induced apoptosis in HCT-116 colon cancer cells is associated with the AMP-activated protein kinase signaling pathway
- in-vitro, CRC, HCT116
Apoptosis↑, DNAdam↑, Casp3↑, cl‑PARP↑, p‑AMPK↑, Bcl-2↓, P53↑, BAX↑, Cyt‑c↑, TumCMig↓, TumCI↓,
4537- MAG,    Effects of magnolol on UVB-induced skin cancer development in mice and its possible mechanism of action
- in-vivo, Melanoma, NA - in-vitro, Melanoma, A431
*cl‑Casp8↑, *PARP↑, *P21↑, tumCV↓, TumCP↓, TumCCA↑, CycB/CCNB1↓, cycA1/CCNA1↓, CDK4↓, CDC2↓, P21↑, Apoptosis↑,
2375- MET,    Metformin inhibits gastric cancer via the inhibition of HIF1α/PKM2 signaling
- in-vitro, GC, SGC-7901
tumCV↓, TumCI↓, TumCMig↓, Apoptosis↑, PARP↓, PI3K↓, Akt↓, Hif1a↓, PKM2↓, COX2↓,
2374- MET,    Metformin Induces Apoptosis and Downregulates Pyruvate Kinase M2 in Breast Cancer Cells Only When Grown in Nutrient-Poor Conditions
- in-vitro, BC, MCF-7 - in-vitro, BC, SkBr3 - in-vitro, BC, MDA-MB-231
eff↑, Apoptosis↑, Glycolysis↓, PKM2↓, mTOR↓, PARP↓,
4353- MF,  Chemo,    Pulsed Electromagnetic Field Enhances Doxorubicin-induced Reduction in the Viability of MCF-7 Breast Cancer Cells
- in-vitro, BC, MCF-7
TumCCA↑, Apoptosis↑, eff↑, TumCCA↑, Casp↝, p‑CDK2↓, cycE/CCNE↓, Fas↑, BAX↑, survivin↓, Mcl-1↓, cl‑PARP↑, cl‑Casp7↑, cl‑Casp8↑, cl‑Casp9↑,
3486- MF,    Pulsed electromagnetic field potentiates etoposide-induced MCF-7 cell death
- in-vitro, NA, NA
ChemoSen↑, tumCV↓, cl‑PARP↑, Casp7↑, Casp9↑, survivin↓, BAX↑, DNAdam↑, ROS↑, eff↓,
496- MF,    Low-Frequency Magnetic Fields (LF-MFs) Inhibit Proliferation by Triggering Apoptosis and Altering Cell Cycle Distribution in Breast Cancer Cells
- in-vitro, BC, MCF-7 - in-vitro, BC, ZR-75-1 - in-vitro, BC, T47D - in-vitro, BC, MDA-MB-231
ROS↑, PI3K↓, Akt↓, GSK‐3β↑, Apoptosis↑, cl‑PARP↑, cl‑Casp3↑, BAX↑, Bcl-2↓, CycB/CCNB1↓, TumCCA↑, p‑Akt↓, p‑Akt↓,
1128- Myr,    Myricetin suppresses TGF-β-induced epithelial-to-mesenchymal transition in ovarian cancer
- vitro+vivo, Ovarian, NA
MAPK↓, ERK↓, PI3K↓, Akt↓, p‑PARP↑, cl‑Casp3↑, Bax:Bcl2↑, TumCMig↓, SMAD3↓,
4977- Nimb,    Nimbolide Inhibits SOD2 to Control Pancreatic Ductal Adenocarcinoma Growth and Metastasis
- vitro+vivo, PC, AsPC-1 - in-vitro, PC, PANC1
SOD2↑, TumCG↓, TumMeta↓, ROS↑, Apoptosis↑, PI3K↓, Akt↓, EMT↓, BAX↑, cl‑Casp3↑, cl‑Casp8↑, cl‑PARP↑, Bcl-2↓,
4976- Nimb,    Nimbolide inhibits pancreatic cancer growth and metastasis through ROS-mediated apoptosis and inhibition of epithelial-to-mesenchymal transition
- vitro+vivo, PC, NA
ROS↑, Apoptosis↑, TumAuto↑, TumCP↓, TumCMig↓, TumCI↓, EMT↓, Dose↓, selectivity↑, Akt↓, eff↓, BAX↑, cl‑Casp3↑, cl‑PARP↑, Bcl-2↓,
4643- OLE,  HT,    Use of Oleuropein and Hydroxytyrosol for Cancer Prevention and Treatment: Considerations about How Bioavailability and Metabolism Impact Their Adoption in Clinical Routine
- Review, Var, NA
TumCCA↑, Apoptosis↑, ER Stress↑, UPR↑, CHOP↑, ROS↑, Bcl-2↓, NOX4↑, Hif1a↓, MMP2↓, MMP↓, VEGF↓, Akt↓, NF-kB↓, p65↓, SIRT3↓, mTOR↓, Catalase↓, SOD2↓, FASN↓, STAT3↓, HDAC2↓, HDAC3↓, BAD↑, BAX↑, Bak↑, Casp3↑, Casp9↑, PARP↑, P53↑, P21↑, p27↑, Half-Life↝, BioAv↓, BioAv↓, selectivity↑, RadioS↑, *ROS↓, *GSH↑, *MDA↓, *SOD↑, *Catalase↑, *NRF2↑, *chemoP↑, *Inflam↓, PPARγ↑,
2057- PB,    Trichomonas vaginalis induces apoptosis via ROS and ER stress response through ER–mitochondria crosstalk in SiHa cells
- in-vitro, Cerv, SiHa
ROS↓, tumCV∅, cl‑PARP↓, cl‑Casp3↓, MMP∅, ER Stress↓,
2070- PB,    Phenylbutyrate-induced apoptosis is associated with inactivation of NF-kappaB IN HT-29 colon cancer cells
- in-vitro, CRC, HT-29
TumCG↓, Apoptosis↑, MMP↓, Casp3↑, PARP↓, NF-kB↓, eff↑,
1664- PBG,    Anticancer Activity of Propolis and Its Compounds
- Review, Var, NA
Apoptosis↑, TumCMig↓, TumCCA↑, TumCP↓, angioG↓, P21↑, p27↑, CDK1↓, p‑CDK1↓, cycA1/CCNA1↓, CycB/CCNB1↓, P70S6K↓, CLDN2↓, HK2↓, PFK↓, PKM2↓, LDHA↓, TLR4↓, H3↓, α-tubulin↓, ROS↑, Akt↓, GSK‐3β↓, FOXO3↓, NF-kB↓, cycD1/CCND1↓, MMP↓, ROS↑, i-Ca+2↑, lipid-P↑, ER Stress↑, UPR↑, PERK↑, eIF2α↑, GRP78/BiP↑, BAX↑, PUMA↑, ROS↑, MMP↓, Cyt‑c↑, cl‑Casp8↑, cl‑Casp8↑, cl‑Casp3↑, cl‑PARP↑, eff↑, eff↑, RadioS↑, ChemoSen↑, eff↑,
1682- PBG,    Honey, Propolis, and Royal Jelly: A Comprehensive Review of Their Biological Actions and Health Benefits
- Review, Var, NA
i-LDH↓, Akt↓, MAPK↓, NF-kB↓, IL1β↓, IL6↓, TNF-α↓, iNOS↓, COX2↓, ROS↓, Bcl-2↓, PARP↓, P53↑, BAX↑, Casp3↑, TumCCA↑, Cyt‑c↑, MMP↓, eff↑,
1674- PBG,  SDT,  HPT,    Study on the effect of a triple cancer treatment of propolis, thermal cycling-hyperthermia, and low-intensity ultrasound on PANC-1 cells
- in-vitro, PC, PANC1 - in-vitro, Nor, H6c7
tumCV↓, ROS↑, eff↑, Dose∅, selectivity↑, MMP↓, mtDam↑, cl‑PARP↑, p‑ERK↓, p‑JNK↑, p‑p38↑, eff↓, ChemoSen↑,
1676- PBG,    Use of Stingless Bee Propolis and Geopropolis against Cancer—A Literature Review of Preclinical Studies
- Review, Var, NA
ROS↑, MMP↓, Bcl-2↓, eff↑, tumCV↓, TumCCA↑, angioG↓, PAK1↓, HDAC1↓, HDAC2↓, P53↑, PCNA↓, cycD1/CCND1↓, cycE/CCNE↓, P21?, BAX↑, cl‑Casp3↑, cl‑PARP↑, ChemoSen↑,
4929- PEITC,  PacT,    Phenethyl isothiocyanate and paclitaxel synergistically enhanced apoptosis and alpha-tubulin hyperacetylation in breast cancer cells
- in-vitro, BC, MCF-7 - in-vitro, BC, MDA-MB-231
ChemoSen↑, Apoptosis↑, TumCCA↑, eff↑, CDK1↓, Bcl-2↓, BAX↑, cl‑PARP↑, SAL↑,
4960- PEITC,    Phenethyl isothiocyanate upregulates death receptors 4 and 5 and inhibits proliferation in human cancer stem-like cells
- in-vivo, Cerv, HeLa
CD44↓, CD24↓, CSCs↓, cl‑PARP↑, DR4↑, DR5↑, TumCP↓,
4957- PEITC,    Phenethyl Isothiocyanate (PEITC) from Cruciferous Vegetables Targets Human Cancer Stem-Like Cells
- vitro+vivo, Cerv, HeLa
CSCs↓, ALDH↓, CD44↓, CD24↓, cl‑PARP↑, DR4↑, DR5↑,
1768- PG,    Propyl gallate reduces the growth of lung cancer cells through caspase‑dependent apoptosis and G1 phase arrest of the cell cycle
- in-vitro, Lung, Calu-6 - in-vitro, Lung, A549
TumCG↓, TumCCA↓, Dose∅, Bcl-2↓, cl‑PARP↑, MMP↓, Casp3↑, Casp8↑,
1941- PL,    Piperlongumine selectively kills cancer cells and increases cisplatin antitumor activity in head and neck cancer
- in-vitro, HNSCC, NA
selectivity↑, eff↑, ROS↑, toxicity↑, GSH↓, GSSG↑, *GSSG∅, cl‑PARP↑, PUMA↑, GSTP1/GSTπ↓, ChemoSen↑,
1947- PL,    Piperlongumine as a direct TrxR1 inhibitor with suppressive activity against gastric cancer
- in-vitro, GC, SGC-7901 - in-vitro, GC, NA
TrxR1↓, ROS↑, ER Stress↑, mtDam↑, selectivity↑, NO↑, TumCCA↑, mt-ROS↑, Casp9↑, Bcl-2↓, Bcl-xL↓, cl‑PARP↑, eff↓, lipid-P↑,
2956- PL,    Piperlongumine rapidly induces the death of human pancreatic cancer cells mainly through the induction of ferroptosis
- in-vitro, PC, NA
ROS↑, Ferroptosis↓, GSH↓, GPx↓, cl‑PARP∅, cl‑Casp3∅, eff↑, eff↑,
2955- PL,    Heme Oxygenase-1 Determines the Differential Response of Breast Cancer and Normal Cells to Piperlongumine
- in-vitro, BC, MCF-7 - in-vitro, Nor, MCF10
ROS?, *ROS∅, other⇅, HO-1↑, *HO-1↑, NRF2↑, Keap1↓, cl‑PARP↑, selectivity↑, GSH↓, GSSG↑,
2946- PL,    Piperlongumine, a potent anticancer phytotherapeutic: Perspectives on contemporary status and future possibilities as an anticancer agent
- Review, Var, NA
ROS↑, GSH↓, DNAdam↑, ChemoSen↑, RadioS↑, BioEnh↑, selectivity↑, BioAv↓, eff↑, p‑Akt↓, mTOR↓, GSK‐3β↓, β-catenin/ZEB1↓, HK2↓, Glycolysis↓, Cyt‑c↑, Casp9↑, Casp3↑, Casp7↑, cl‑PARP↑, TrxR↓, ER Stress↑, ATF4↝, CHOP↑, Prx4↑, NF-kB↓, cycD1/CCND1↓, CDK4↓, CDK6↓, p‑RB1↓, RAS↓, cMyc↓, TumCCA↑, selectivity↑, STAT3↓, NRF2↑, HO-1↑, PTEN↑, P-gp↓, MDR1↓, MRP1↓, survivin↓, Twist↓, AP-1↓, Sp1/3/4↓, STAT1↓, STAT6↓, SOX4↑, XBP-1↑, P21↑, eff↑, Inflam↓, COX2↓, IL6↓, MMP9↓, TumMeta↓, TumCI↓, ICAM-1↓, CXCR4↓, VEGF↓, angioG↓, Half-Life↝, BioAv↑,
2944- PL,    Piperlongumine, a Potent Anticancer Phytotherapeutic, Induces Cell Cycle Arrest and Apoptosis In Vitro and In Vivo through the ROS/Akt Pathway in Human Thyroid Cancer Cells
- in-vitro, Thyroid, IHH4 - in-vitro, Thyroid, 8505C - in-vivo, NA, NA
ROS↑, selectivity↑, tumCV↓, TumCCA↑, Apoptosis↑, ERK↑, Akt↓, mTOR↓, neuroP↑, Bcl-2↓, Casp3↑, PARP↑, JNK↑, *toxicity↓, eff↓, TumW↓,
3350- QC,    Quercetin and the mitochondria: A mechanistic view
- Review, NA, NA
*antiOx↑, *Inflam↓, *NRF2↑, ROS⇅, *NRF2↑, *HO-1↑, *PPARα↑, *PGC-1α↑, *SIRT1↑, *ATP↑, ATP↓, ERK↓, cl‑PARP↑, Casp9↑, Casp8↑, BAX↑, MMP↓, Cyt‑c↑, Casp3↑, HSP27↓, HSP72↓, RAS↓, Raf↓,
3343- QC,    Quercetin, a Flavonoid with Great Pharmacological Capacity
- Review, Var, NA - Review, AD, NA - Review, Arthritis, NA
*antiOx↑, *ROS↓, *angioG↓, *Inflam↓, *BioAv↓, *Half-Life↑, *GSH↑, *SOD↑, *Catalase↑, *Nrf1↑, *BP↓, *cardioP↑, *IL10↓, *TNF-α↓, *Aβ↓, *GSK‐3β↓, *tau↓, *neuroP↑, *Pain↓, *COX2↓, *NRF2↑, *HO-1↑, *IL1β↓, *IL17↓, *MCP1↓, PKCδ↓, ERK↓, BAX↓, cMyc↓, KRAS↓, ROS↓, selectivity↑, tumCV↓, Apoptosis↑, TumCCA↑, eff↑, P-gp↓, eff↑, eff↑, eff↑, eff↑, CycB/CCNB1↓, CDK1↓, CDK4↓, CDK2↓, TOP2↓, Cyt‑c↑, cl‑PARP↑, MMP↓, HSP70/HSPA5↓, HSP90↓, MDM2↓, RAS↓, eff↑,
3371- QC,    Quercetin induces MGMT+ glioblastoma cells apoptosis via dual inhibition of Wnt3a/β-Catenin and Akt/NF-κB signaling pathways
- in-vitro, GBM, T98G
TIMP2↑, TumCG↓, TumCMig↓, Apoptosis↑, TumCCA↑, MMP↓, ROS↑, Bax:Bcl2↑, cl‑Casp9↑, cl‑Casp3↑, DNAdam↑, γH2AX↑, MGMT↓, cl‑PARP↑,
3369- QC,    Pharmacological basis and new insights of quercetin action in respect to its anti-cancer effects
- Review, Pca, NA
FAK↓, TumCCA↑, p‑pRB↓, CDK2↑, CycB/CCNB1↓, CDK1↓, EMT↓, PI3K↓, MAPK↓, Wnt↓, ROS↑, miR-21↑, Akt↓, NF-kB↓, FasL↑, Bak↑, BAX↑, Bcl-2↓, Casp3↓, Casp9↑, P53↑, p38↑, MAPK↑, Cyt‑c↑, PARP↓, CHOP↑, ROS↓, LDH↑, GRP78/BiP↑, ERK↑, MDA↓, SOD↑, GSH↑, NRF2↑, VEGF↓, PDGF↓, EGF↓, FGF↓, TNF-α↓, TGF-β↓, VEGFR2↓, EGFR↓, FGFR1↓, mTOR↓, cMyc↓, MMPs↓, LC3B-II↑, Beclin-1↑, IL1β↓, CRP↓, IL10↓, COX2↓, IL6↓, TLR4↓, Shh↓, HER2/EBBR2↓, NOTCH↓, DR5↑, HSP70/HSPA5↓, CSCs↓, angioG↓, MMP2↓, MMP9↓, IGFBP3↑, uPA↓, uPAR↓, RAS↓, Raf↓, TSP-1↑,
66- QC,    Emerging impact of quercetin in the treatment of prostate cancer
- in-vitro, Pca, NA
CycB/CCNB1↓, CDK1↓, EMT↓, PI3K↓, MAPK↓, Wnt/(β-catenin)↓, PSA↓, VEGF↓, PARP↑, Casp3↑, Casp9↑, DR5↑, ROS⇅, Shh↓, P53↑, P21↑, EGFR↓,
71- QC,    Role of Bax in quercetin-induced apoptosis in human prostate cancer cells
- in-vitro, Pca, LNCaP - in-vitro, Pca, PrEC - in-vitro, Pca, YPEN-1 - in-vitro, Pca, HCT116
Casp8↑, Casp9↑, PARP↑, BAD↓, BAX↑, PI3K/Akt↓,
41- QC,    Quercetin induces mitochondrial-derived apoptosis via reactive oxygen species-mediated ERK activation in HL-60 leukemia cells and xenograft
- vitro+vivo, AML, HL-60
Casp8↑, Casp9↑, Casp3↑, ROS↑, ERK↑, PARP↑, MMP↓,
86- QC,    Quercetin regulates insulin like growth factor signaling and induces intrinsic and extrinsic pathway mediated apoptosis in androgen independent prostate cancer cells (PC-3)
- in-vitro, Pca, PC3
BAD↑, IGFBP3↑, Cyt‑c↑, cl‑Casp9↑, Casp10↑, cl‑PARP↑, Casp3↑, IGF-1R↓, PI3K↓, p‑Akt↓, cycD1/CCND1↓, IGF-1↓, IGF-2↓, IGF-1R↓,
90- QC,  HP,    Combination of quercetin and hyperoside inhibits prostate cancer cell growth and metastasis via regulation of microRNA‑21
- in-vitro, Pca, PC3
ROS↑, cl‑Casp3↑, cl‑PARP↑, miR-21↓, PDCD4↑,
923- QC,    Quercetin as an innovative therapeutic tool for cancer chemoprevention: Molecular mechanisms and implications in human health
- Review, Var, NA
ROS↑, GSH↓, Ca+2↝, MMP↓, Casp3↑, Casp8↑, Casp9↑, other↓, *ROS↓, *NRF2↑, HO-1↑, TumCCA↑, Inflam↓, STAT3↓, DR5↑, P450↓, MMPs↓, IFN-γ↓, IL6↓, COX2↓, IL8↓, iNOS↓, TNF-α↓, cl‑PARP↑, Apoptosis↑, P53↑, Sp1/3/4↓, survivin↓, TRAILR↑, Casp10↑, DFF45↑, TNFR 1↑, Fas↑, NF-kB↓, IKKα↓, cycD1/CCND1↓, Bcl-2↓, BAX↑, PI3K↓, Akt↓, E-cadherin↓, Vim↓, β-catenin/ZEB1↓, cMyc↓, EMT↓, MMP2↓, NOTCH1↓, MMP7↓, angioG↓, TSP-1↑, CSCs↓, XIAP↓, Snail↓, Slug↓, LEF1↓, P-gp↓, EGFR↓, GSK‐3β↓, mTOR↓, RAGE↓, HSP27↓, VEGF↓, TGF-β↓, COL1↓, COL3A1↓,
104- RES,  QC,    Resveratrol and Quercetin in Combination Have Anticancer Activity in Colon Cancer Cells and Repress Oncogenic microRNA-27a
- in-vitro, Colon, HT-29
Casp3↑, PARP↑, survivin↓, miR-27a-3p↓, Sp1/3/4↓, ZBTB10↑,
2439- RES,    By reducing hexokinase 2, resveratrol induces apoptosis in HCC cells addicted to aerobic glycolysis and inhibits tumor growth in mice
- in-vitro, HCC, HCCLM3 - in-vitro, Nor, L02 - in-vitro, HCC, SMMC-7721 cell - in-vitro, HCC, Bel-7402 - in-vitro, HCC, HUH7
HK2↓, ChemoSen↑, other↑, Glycolysis↓, lactateProd↓, TumCP↓, Casp3↑, cl‑PARP↑, PKM2↓,
2981- RES,    Resveratrol suppresses IGF-1 induced human colon cancer cell proliferation and elevates apoptosis via suppression of IGF-1R/Wnt and activation of p53 signaling pathways
- in-vitro, Colon, HT-29 - in-vitro, Colon, SW48
TumCCA↑, p27↑, cycD1/CCND1↓, TumCP↓, IGF-1R↓, Akt↓, Wnt↓, P53↑, Apoptosis↑, Sp1/3/4↓, cl‑PARP↑, β-catenin/ZEB1↓, MDM2↓,
3097- RES,    Resveratrol Induces Notch2-mediated Apoptosis and Suppression of Neuroendocrine Markers in Medullary Thyroid Cancer
- in-vitro, Thyroid, TT
TumCG↓, cl‑Casp3↑, p‑PARP↑, NOTCH2↑,
3001- RosA,    Therapeutic Potential of Rosmarinic Acid: A Comprehensive Review
- Review, Var, NA
TumCP↓, Apoptosis↑, TumMeta↓, Inflam↓, *antiOx↑, *AntiAge↑, *ROS↓, BioAv↑, Dose↝, NRF2↑, P-gp↑, ATP↑, MMPs↓, cl‑PARP↓, Hif1a↓, GlucoseCon↓, lactateProd↓, Warburg↓, TNF-α↓, COX2↓, IL6↓, HDAC2↓, GSH↑, ROS↓, ChemoSen↑, *BG↓, *IL1β↓, *TNF-α↓, *IL6↓, *p‑JNK↓, *p38↓, *Catalase↑, *SOD↑, *GSTs↑, *VitC↑, *VitE↑, *GSH↑, *GutMicro↑, *cardioP↑, *ROS↓, *MMP↓, *lipid-P↓, *NRF2↑, *hepatoP↑, *neuroP↑, *P450↑, *HO-1↑, *AntiAge↑, *motorD↓,
3002- RosA,    Anticancer Effects of Rosemary (Rosmarinus officinalis L.) Extract and Rosemary Extract Polyphenols
- Review, Var, NA
TumCG↓, TumCP↓, TumCCA↑, ChemoSen↑, NRF2↑, PERK↑, SESN2↑, HO-1↑, cl‑Casp3↑, ROS↑, UPR↑, ER Stress↑, CHOP↑, HER2/EBBR2↓, ER-α36↓, PSA↓, BAX↑, AR↓, P-gp↓, Cyt‑c↑, HSP70/HSPA5↑, eff↑, p‑Akt↓, p‑mTOR↓, p‑P70S6K↓, cl‑PARP↑, eff↑,
4906- Sal,    A Concise Review of Prodigious Salinomycin and Its Derivatives Effective in Treatment of Breast Cancer: (2012–2022)
- Review, BC, NA
CSCs↓, Casp3↑, cl‑PARP↝, Apoptosis↑, ROS↑, ABC↓, OXPHOS↓, Glycolysis↓, eff↑, TumAuto↑, DNAdam↑, Wnt↓, Ferritin↓, Iron↑,
5002- Sal,  SFN,    Salinomycin and Sulforaphane Exerted Synergistic Antiproliferative and Proapoptotic Effects on Colorectal Cancer Cells by Inhibiting the PI3K/Akt Signaling Pathway in vitro and in vivo
- in-vivo, CRC, Caco-2 - vitro+vivo, CRC, CX-1
Apoptosis↑, PI3K↓, Akt↓, P53↑, BAX↑, Bax:Bcl2↑, p‑PARP↑, TumCMig↓,
4504- Se,  Chit,  FA,  doxoR,    pH-responsive selenium nanoparticles stabilized by folate-chitosan delivering doxorubicin for overcoming drug-resistant cancer cells
- in-vitro, Var, NA
ChemoSen↑, Apoptosis↑, Casp3↑, PARP↝,
1002- Sel,  Osi,  Adag,    Selenite as a dual apoptotic and ferroptotic agent synergizes with EGFR and KRAS inhibitors with epigenetic interference
- in-vitro, Lung, H1975 - in-vitro, Lung, H385
Apoptosis↑, Ferroptosis↑, DNMT1↓, TET1↑, TumCCA↑, cl‑PARP↑, cl‑Casp3↑, Cyt‑c↑, BIM↑, NOXA↑, Apoptosis↑, ROS↑, ER Stress↑, UPR↑,
2448- SFN,    Sulforaphane and bladder cancer: a potential novel antitumor compound
- Review, Bladder, NA
Apoptosis↑, TumCG↓, TumCI↓, TumMeta↓, glucoNG↓, ChemoSen↑, TumCCA↑, Casp3↑, Casp7↑, cl‑PARP↑, survivin↓, EGFR↓, HER2/EBBR2↓, ATP↓, Glycolysis↓, mt-OXPHOS↓, AKT1↓, HK2↓, Hif1a↓, ROS↑, NRF2↑, EMT↓, COX2↓, MMP2↓, MMP9↓, Zeb1↓, Snail↓, HDAC↓, HATs↓, MMP↓, Cyt‑c↓, Shh↓, Smo↓, Gli1↓, BioAv↝, BioAv↝, Dose↝,
1726- SFN,    Sulforaphane: A Broccoli Bioactive Phytocompound with Cancer Preventive Potential
- Review, Var, NA
Dose↝, eff↝, IL1β↓, IL6↓, IL12↓, TNF-α↓, COX2↓, CXCR4↓, MPO↓, HSP70/HSPA5↓, HSP90↓, VCAM-1↓, IKKα↓, NF-kB↓, HO-1↑, Casp3↑, Casp7↑, Casp8↑, Casp9↑, cl‑PARP↑, Cyt‑c↑, Diablo↑, CHOP↑, survivin↓, XIAP↓, p38↑, Fas↑, PUMA↑, VEGF↓, Hif1a↓, Twist↓, Zeb1↓, Vim↓, MMP2↓, MMP9↓, E-cadherin↑, N-cadherin↓, Snail↓, CD44↓, cycD1/CCND1↓, cycA1/CCNA1↓, CycB/CCNB1↓, cycE/CCNE↓, CDK4↓, CDK6↓, p50↓, P53↑, P21↑, GSH↑, SOD↑, GSTs↑, mTOR↓, Akt↓, PI3K↓, β-catenin/ZEB1↓, IGF-1↓, cMyc↓, CSCs↓,
1723- SFN,    Sulforaphane as a potential remedy against cancer: Comprehensive mechanistic review
- Review, Var, NA
*NRF2↑, ROS↑, MMP↓, Cyt‑c↑, cl‑PARP↑, Apoptosis↑, AMPK↑, GSH↓,
1482- SFN,    Sulforaphane induces apoptosis in T24 human urinary bladder cancer cells through a reactive oxygen species-mediated mitochondrial pathway: the involvement of endoplasmic reticulum stress and the Nrf2 signaling pathway
- in-vitro, Bladder, T24
tumCV↓, Apoptosis↑, Cyt‑c↑, Bax:Bcl2↑, Casp9↑, Casp3↑, Casp8∅, cl‑PARP↑, ROS↑, MMP↓, eff↓, ER Stress↑, p‑NRF2↑, HO-1↑,
1456- SFN,    Sulforaphane regulates cell proliferation and induces apoptotic cell death mediated by ROS-cell cycle arrest in pancreatic cancer cells
- in-vitro, PC, MIA PaCa-2 - in-vitro, PC, PANC1
tumCV↓, TumCP↓, cl‑PARP↑, cl‑Casp3↑, TumCCA↑, ROS↑, MMP↓, γH2AX↑, eff↓, *toxicity↓,
1458- SFN,    Sulforaphane Impact on Reactive Oxygen Species (ROS) in Bladder Carcinoma
- Review, Bladder, NA
HDAC↓, eff↓, TumW↓, TumW↓, angioG↓, *toxicity↓, GutMicro↝, AntiCan↑, ROS↑, MMP↓, Cyt‑c↑, Bax:Bcl2↑, Casp3↑, Casp9↑, Casp8∅, cl‑PARP↑, TRAIL↑, DR5↑, eff↓, NRF2↑, ER Stress↑, COX2↓, EGFR↓, HER2/EBBR2↓, ChemoSen↑, NF-kB↓, TumCCA?, p‑Akt↓, p‑mTOR↓, p70S6↓, p19↑, P21↑, CD44↓, CSCs↓,
1459- SFN,  Aur,    Auranofin Enhances Sulforaphane-Mediated Apoptosis in Hepatocellular Carcinoma Hep3B Cells through Inactivation of the PI3K/Akt Signaling Pathway
- in-vitro, Liver, Hep3B - in-vitro, Liver, HepG2
eff↑, TumCCA↑, Apoptosis↑, MMP↓, BAX↑, cl‑PARP↑, Casp3↑, Casp8↑, Casp9↑, ROS↑, eff↓, PI3K↓, Akt↓, TrxR↓, BAX↑, Bcl-2∅,
1463- SFN,    Sulforaphane induces reactive oxygen species-mediated mitotic arrest and subsequent apoptosis in human bladder cancer 5637 cells
- in-vitro, Bladder, 5637
tumCV↓, CycB/CCNB1↑, p‑CDK1↑, Apoptosis↑, Casp8↑, Casp9↑, Casp3↑, cl‑PARP↑, ROS↑, eff↓,
1508- SFN,    Nrf2 targeting by sulforaphane: A potential therapy for cancer treatment
- Review, Var, NA
*BioAv↑, HDAC↓, TumCCA↓, eff↓, Wnt↓, β-catenin/ZEB1↓, Casp12?, Bcl-2↓, cl‑PARP↑, Bax:Bcl2↑, IAP1↓, Casp3↑, Casp9↑, Telomerase↓, hTERT/TERT↓, ROS?, DNMTs↓, angioG↓, VEGF↓, Hif1a↓, cMYB↓, MMP1↓, MMP2↓, MMP9↓, ERK↑, E-cadherin↑, CD44↓, MMP2↓, eff↑, IL2↑, IFN-γ↑, IL1β↓, IL6↓, TNF-α↓, NF-kB↓, ERK↓, NRF2↑, RadioS↑, ChemoSideEff↓,
3304- SIL,    Silymarin induces inhibition of growth and apoptosis through modulation of the MAPK signaling pathway in AGS human gastric cancer cells
- in-vitro, GC, AGS - in-vivo, NA, NA
BAX↑, p‑JNK↑, p‑p38↑, cl‑PARP↑, Bcl-2↓, p‑ERK↓, TumVol↓, Apoptosis↑, tumCV↓,
3305- SIL,    Silymarin inhibits proliferation of human breast cancer cells via regulation of the MAPK signaling pathway and induction of apoptosis
- in-vitro, BC, MDA-MB-231 - in-vitro, BC, MCF-7 - in-vivo, NA, NA
TumCP↓, tumCV↓, BAX↑, cl‑PARP↑, Casp9↑, p‑JNK↑, Bcl-2↓, p‑p38↓, p‑ERK↓, *toxicity∅, Dose↝, *hepatoP↑, Inflam↓, AntiCan↑,
3296- SIL,    Silibinin induces oral cancer cell apoptosis and reactive oxygen species generation by activating the JNK/c-Jun pathway
- in-vitro, Oral, Ca9-22 - in-vivo, Oral, YD10B
TumCP↓, TumCCA↑, ROS↑, SOD1↓, SOD2↓, *JNK↑, toxicity?, TumCMig↓, TumCI↓, N-cadherin↓, Vim↓, E-cadherin↑, EMT↓, P53↑, cl‑Casp3↑, cl‑PARP↑, BAX↑, Bcl-2↓, SOD↓,
3293- SIL,    Silymarin (milk thistle extract) as a therapeutic agent in gastrointestinal cancer
- Review, Var, NA
hepatoP↑, TumMeta↓, Inflam↓, chemoP↑, radioP↑, Half-Life↝, *GSTs↑, p‑JNK↑, BAX↑, p‑p38↑, cl‑PARP↑, Bcl-2↓, p‑ERK↓, TumVol↓, eff↑, TumCCA↑, STAT3↓, Mcl-1↓, survivin↓, Bcl-xL↓, Casp3↑, Casp9↑, eff↑, CXCR4↓, Dose↝,
2355- SK,    Pharmacological properties and derivatives of shikonin-A review in recent years
- Review, Var, NA
AntiCan↑, TumCP↓, TumCMig↓, Apoptosis↑, TumAuto↑, Necroptosis↑, ROS↑, TrxR1↓, PKM2↓, RIP1↓, RIP3↓, Src↓, FAK↓, PI3K↓, Akt↓, mTOR↓, GRP58↓, MMPs↓, ATF2↓, cl‑PARP↑, Casp3↑, p‑p38↑, p‑JNK↑, p‑ERK↓,
2232- SK,    Shikonin Induces Autophagy and Apoptosis in Esophageal Cancer EC9706 Cells by Regulating the AMPK/mTOR/ULK Axis
- in-vitro, ESCC, EC9706
tumCV↓, TumCMig↓, TumCI↓, TumAuto↑, Apoptosis↑, Bcl-2↓, BAX↑, cl‑Casp3↑, cl‑Casp8↑, cl‑PARP↑, AMPK↑, mTOR↑, TumVol↓, OS↑, LC3I↑,
2228- SK,    Shikonin induced Apoptosis Mediated by Endoplasmic Reticulum Stress in Colorectal Cancer Cells
- in-vitro, CRC, HCT116 - in-vitro, CRC, HCT15 - in-vivo, NA, NA
Apoptosis↑, Bcl-2↓, Casp3↑, Casp9↑, cl‑PARP↑, GRP78/BiP↑, PERK↑, eIF2α↑, ATF4↑, CHOP↑, JNK↑, eff↓, ER Stress↑, ROS↑, TumCG↓,
2469- SK,    Shikonin induces the apoptosis and pyroptosis of EGFR-T790M-mutant drug-resistant non-small cell lung cancer cells via the degradation of cyclooxygenase-2
- in-vitro, Lung, H1975
Apoptosis↑, Pyro↑, Casp↑, cl‑PARP↑, GSDME↑, ROS↑, COX2↓, PDK1↓, Akt↓, ERK↓, eff↓, eff↓, eff↑,
3047- SK,    Shikonin suppresses colon cancer cell growth and exerts synergistic effects by regulating ADAM17 and the IL-6/STAT3 signaling pathway
- in-vitro, CRC, HCT116 - in-vitro, CRC, SW48
TumCG↓, p‑STAT3↓, ADAM17↓, Apoptosis↑, Casp3↑, cl‑PARP↑, cycD1/CCND1↓, cycE/CCNE↓, TumCCA↑, JAK1?, p‑JAK1↓, p‑JAK2↓, p‑eIF2α↑, eff↓, ROS↑, IL6↓,
1312- SK,    Shikonin induces apoptosis through reactive oxygen species/extracellular signal-regulated kinase pathway in osteosarcoma cells
- in-vitro, OS, 143B
ROS↑, p‑ERK↑, Bcl-2↓, cl‑PARP↑, Apoptosis↑, TumCCA↑, Bcl-2↑, proCasp3↓,
1344- SK,    Novel multiple apoptotic mechanism of shikonin in human glioma cells
- in-vitro, GBM, U87MG - in-vitro, GBM, Hs683 - in-vitro, GBM, M059K
ROS↑, GSH↓, MMP↓, P53↑, cl‑PARP↑, Catalase↓, SOD1↑, Bcl-2↓, BAX↑, eff↓,
2010- SK,    Shikonin inhibits gefitinib-resistant non-small cell lung cancer by inhibiting TrxR and activating the EGFR proteasomal degradation pathway
- in-vitro, Lung, H1975 - in-vitro, Lung, H1650 - in-vitro, Nor, CCD19
EGFR↓, selectivity↑, Casp↑, PARP↑, Apoptosis↑, ROS↑, eff↓, selectivity↑,
4584- SNP,    Silver Nanoparticles Synthesized Using Carica papaya Leaf Extract (AgNPs-PLE) Causes Cell Cycle Arrest and Apoptosis in Human Prostate (DU145) Cancer Cells
- in-vitro, Pca, DU145
selectivity↑, ROS↑, BAX↑, cl‑Casp3↑, p‑PARP↑, TumCCA↑, cycD1/CCND1↓, p27↑, P21↑, AntiCan↑,
3416- TQ,    Thymoquinone induces apoptosis in bladder cancer cell via endoplasmic reticulum stress-dependent mitochondrial pathway
- in-vitro, Bladder, T24 - in-vitro, Bladder, 253J - in-vitro, Nor, SV-HUC-1
TumCP↓, Apoptosis↑, ER Stress↑, cl‑Casp3↑, cl‑Casp8↑, cl‑Casp7↑, cl‑PARP↑, Cyt‑c↑, PERK↑, IRE1↑, ATF6↑, p‑eIF2α↑, ATF4↑, GRP78/BiP↑, CHOP↑,
3397- TQ,    Thymoquinone: A Promising Therapeutic Agent for the Treatment of Colorectal Cancer
- Review, CRC, NA
ChemoSen↑, *Half-Life↝, *BioAv↝, *antiOx↑, *Inflam↓, *hepatoP↑, TumCP↓, TumCCA↑, Apoptosis↑, angioG↑, selectivity↑, JNK↑, p38↑, p‑NF-kB↑, ERK↓, PI3K↓, PTEN↑, Akt↓, mTOR↓, EMT↓, Twist↓, E-cadherin↓, ROS⇅, *Catalase↑, *SOD↑, *GSTA1↑, *GPx↑, *PGE2↓, *IL1β↓, *COX2↓, *MMP13↓, MMPs↓, TumMeta↓, VEGF↓, STAT3↓, BAX↑, Bcl-2↑, Casp9↑, Casp7↑, Casp3↑, cl‑PARP↑, survivin↓, cMyc↓, cycD1/CCND1↓, p27↑, P21↑, GSK‐3β↓, β-catenin/ZEB1↓, chemoP↑,
3422- TQ,    Thymoquinone, as a Novel Therapeutic Candidate of Cancers
- Review, Var, NA
selectivity↑, P53↑, PTEN↑, NF-kB↓, PPARγ↓, cMyc↓, Casp↑, *BioAv↓, BioAv↝, eff↑, survivin↓, Bcl-xL↓, Bcl-2↓, Akt↓, BAX↑, cl‑PARP↑, CXCR4↓, MMP9↓, VEGFR2↓, Ki-67↓, COX2↓, JAK2↓, cSrc↓, Apoptosis↑, p‑STAT3↓, cycD1/CCND1↓, Casp3↑, Casp7↑, Casp9↑, N-cadherin↓, Vim↓, Twist↓, E-cadherin↑, ChemoSen↑, eff↑, EMT↓, ROS↑, DNMT1↓, eff↑, EZH2↓, hepatoP↑, Zeb1↓, RadioS↑, HDAC↓, HDAC1↓, HDAC2↓, HDAC3↓, *NAD↑, *SIRT1↑, SIRT1↓, *Inflam↓, *CRP↓, *TNF-α↓, *IL6↓, *IL1β↓, *eff↑, *MDA↓, *NO↓, *GSH↑, *SOD↑, *Catalase↑, *GPx↑, PI3K↓, mTOR↓,
3415- TQ,    The anti-neoplastic impact of thymoquinone from Nigella sativa on small cell lung cancer: In vitro and in vivo investigations
- in-vitro, Lung, H446
tumCV↓, TumCCA↑, ROS↓, CycB/CCNB1↑, CycD3↑, cycA1/CCNA1↓, cycE/CCNE↓, cDC2↓, antiOx↑, PARP↓, NRF2↓, ARE/EpRE↑, eff↑,
3413- TQ,    Thymoquinone induces apoptosis in human colon cancer HCT116 cells through inactivation of STAT3 by blocking JAK2- and Src‑mediated phosphorylation of EGF receptor tyrosine kinase
- in-vitro, CRC, HCT116
tumCV↓, Apoptosis↓, BAX↑, Bcl-2↓, Casp9↑, Casp7↑, Casp3↑, cl‑PARP↑, STAT3↓, survivin↓, cMyc↓, cycD1/CCND1↓, p27↑, P21↑, EGFR↓, ROS↑,
3414- TQ,    Thymoquinone induces apoptosis through inhibition of JAK2/STAT3 signaling via production of ROS in human renal cancer Caki cells
- in-vitro, RCC, Caki-1
tumCV↓, Apoptosis↑, P53↑, BAX↑, Cyt‑c↑, cl‑Casp9↑, cl‑Casp3↑, cl‑PARP↑, Bcl-2↓, Bcl-xL↓, p‑STAT3↓, p‑JAK2↓, STAT3↓, survivin↓, cycD1/CCND1↓, ROS↑, eff↓,
2129- TQ,  doxoR,    Thymoquinone up-regulates PTEN expression and induces apoptosis in doxorubicin-resistant human breast cancer cells
- in-vitro, BC, MCF-7
ChemoSen↑, PTEN↑, p‑Akt↓, TumCCA↑, P53↑, P21↑, Apoptosis↑, MMP↓, Casp↑, cl‑PARP↑, Bax:Bcl2↑, eff↓, DNAdam↓, p‑γH2AX↑, ROS↑,
2127- TQ,    Therapeutic Potential of Thymoquinone in Glioblastoma Treatment: Targeting Major Gliomagenesis Signaling Pathways
- Review, GBM, NA
chemoP↑, ChemoSen↑, BioAv↑, PTEN↑, PI3K↓, Akt↓, TumCCA↓, NF-kB↓, p‑Akt↓, p65↓, XIAP↓, Bcl-2↓, COX2↓, VEGF↓, mTOR↓, RAS↓, Raf↓, MEK↓, ERK↓, MMP2↓, MMP9↓, TumCMig↓, TumCI↓, Casp↑, cl‑PARP↑, ROS⇅, ROS↑, MMP↓, eff↑, Telomerase↓, DNAdam↑, Apoptosis↑, STAT3↓, RadioS↑,
2123- TQ,    Thymoquinone suppresses growth and induces apoptosis via generation of reactive oxygen species in primary effusion lymphoma
- in-vitro, lymphoma, PEL
Akt↓, ROS↑, BAX↓, MMP↓, Cyt‑c↑, eff↑, Casp9↑, Casp3↑, cl‑PARP↑, DR5↑,
2097- TQ,    Crude extract of Nigella sativa inhibits proliferation and induces apoptosis in human cervical carcinoma HeLa cells
- in-vitro, Cerv, HeLa
Cyt‑c↑, Bax:Bcl2↑, Casp3↑, Casp9↑, Casp8↑, cl‑PARP↑, cMyc↓, hTERT/TERT↓, cycD1/CCND1↓, CDK4↓, P53↑, P21↑, TumCP↓, Apoptosis↓, selectivity↑,
2095- TQ,    Review on the Potential Therapeutic Roles of Nigella sativa in the Treatment of Patients with Cancer: Involvement of Apoptosis
- Review, Var, NA
TumCCA↑, Apoptosis↑, ROS↑, Cyt‑c↑, Bax:Bcl2↑, Casp3↑, Casp9↑, cl‑PARP↑, P53↑, P21↑, cMyc↓, hTERT/TERT↓, cycD1/CCND1↓, CDK4↓, NF-kB↓, IAP1↓, IAP2↓, XIAP↓, Bcl-xL↓, survivin↓, COX2↓, MMP9↓, VEGF↓, eff↑,
2108- TQ,    Anti-cancer properties and mechanisms of action of thymoquinone, the major active ingredient of Nigella sativa
- Review, Var, NA
HDAC↓, TumCCA↑, cycD1/CCND1↓, p16↑, P53↑, Bax:Bcl2↑, Bcl-xL↓, NF-kB↓, IAP1↓, IAP2↓, XIAP↓, survivin↓, COX2↓, cMyc↓, ROS↑, Casp3↑, cl‑PARP↑, Cyt‑c↑, STAT3↓,
2085- TQ,    Anticancer Activities of Nigella Sativa (Black Cumin)
- Review, Var, NA
MMP↓, Casp3↑, Casp8↑, Casp9↓, cl‑PARP↑, Cyt‑c↑, Bax:Bcl2↑, NF-kB↓, IAP1↓, IAP2↓, XIAP↓, Bcl-xL↓, survivin↓, cJun↑, p38↑, Akt↑, chemoP↑, *radioP↑,
2084- TQ,    Thymoquinone, as an anticancer molecule: from basic research to clinical investigation
- Review, Var, NA
*ROS↓, *chemoPv↑, ROS↑, ROS⇅, MUC4↓, selectivity↑, AR↓, cycD1/CCND1↓, Bcl-2↓, Bcl-xL↓, survivin↓, Mcl-1↓, VEGF↓, cl‑PARP↑, ROS↑, HSP70/HSPA5↑, P53↑, miR-34a↑, Rac1↓, TumCCA↑, NOTCH↓, NF-kB↓, IκB↓, p‑p65↓, IAP1↓, IAP2↑, XIAP↓, TNF-α↓, COX2↓, Inflam↓, α-tubulin↓, Twist↓, EMT↓, mTOR↓, PI3K↓, Akt↓, BioAv↓, ChemoSen↑, BioAv↑, PTEN↑, chemoPv↑, RadioS↑, *Half-Life↝, *BioAv↝,
1020- UA,    Root Bark of Morus alba L. and Its Bioactive Ingredient, Ursolic Acid, Suppress the Proliferation of Multiple Myeloma Cells by Inhibiting Wnt/β-Catenin Pathway
- in-vitro, Melanoma, RPMI-8226
β-catenin/ZEB1↓, TCF↓, cMyc↓, cycD1/CCND1↓, TumCP↓, TumCCA↑, Apoptosis↑, cl‑Casp3↑, cl‑PARP↑, Casp7↑,
1310- UA,    Ursolic acid triggers apoptosis and Bcl-2 downregulation in MCF-7 breast cancer cells
- in-vitro, BC, MCF-7
GR↝, AP-1↝, cl‑PARP↑, Bcl-2↓,
4856- Uro,    Study on the biological mechanism of urolithin a on nasopharyngeal carcinoma in vitro
- in-vitro, NPC, CNE1 - in-vitro, NPC, CNE2
Apoptosis↑, MMP↓, ROS↑, E-cadherin↑, BAX↑, cl‑Casp3↑, PARP↑, MMP2↓, MMP9↓, N-cadherin↓, Vim↓, Snail↓, eff↓, TumCP↓, TumCMig↓, TumCI↓, EMT↓,
4837- Uro,    Urolithins: The Gut Based Polyphenol Metabolites of Ellagitannins in Cancer Prevention, a Review
- Review, Var, NA
AntiCan↑, TumCCA↑, Apoptosis↑, TumAuto↑, *BioAv↝, *BioAv↑, RAS↓, ERK↓, AR↓, TumCP↓, PI3K↓, Akt↓, NF-kB↓, COX2↓, IL6↓, IL1β↓, Wnt↓, β-catenin/ZEB1↓, cMyc↓, P53↑, Casp3↑, PARP↑, ROS↓, toxicity↓,
633- VitC,    Diverse antitumor effects of ascorbic acid on cancer cells and the tumor microenvironment
- Analysis, NA, NA
Fenton↑, ROS↑, EMT↓, DNAdam↑, PARP↑, NAD↓, ATP↓, Apoptosis↑,
632- VitC,    High-Dose Vitamin C: Preclinical Evidence for Tailoring Treatment in Cancer Patients
- Review, NA, NA
SVCT-2∅, ROS↑, Hif1a↓, PARP∅, TET2↑,
627- VitC,    High-Dose Vitamin C for Cancer Therapy
- Review, NA, NA
ROS↑, PARP↑, GAPDH↓, DNAdam↑, ATP↓,
3138- VitC,    The Hypoxia-inducible Factor Renders Cancer Cells More Sensitive to Vitamin C-induced Toxicity
- in-vitro, RCC, RCC4 - in-vitro, CRC, HCT116 - in-vitro, BC, MDA-MB-435 - in-vitro, Ovarian, SKOV3 - in-vitro, Colon, SW48 - in-vitro, GBM, U251
eff↑, Warburg↓, BioAv↑, ROS↑, DNAdam↑, ATP↓, eff↑, necrosis↑, PARP↑,
3133- VitC,    Vitamin C supplementation had no side effect in non-cancer, but had anticancer properties in ovarian cancer cells
- in-vitro, Ovarian, NA
*SVCT-2↑, *GLUT1↓, SVCT-2↓, GLUT1↑, TumCP↓, CDK2↓, PARP↓, selectivity↑,
4468- VitC,  Se,    Selenium modulates cancer cell response to pharmacologic ascorbate
- in-vivo, GBM, U87MG - in-vitro, CRC, HCT116
eff↓, TumCD↑, ChemoSen↑, ROS⇅, DNAdam↑, PARP↑, NAD↓, Glycolysis↓, Fenton↑, lipid-P↑, eff↓, H2O2↑, other↝,

* indicates research on normal cells as opposed to diseased cells
Total Research Paper Matches: 226

Pathway results for Effect on Cancer / Diseased Cells:


NA, unassigned

chemoPv↑, 5,   NA?, 1,  

Redox & Oxidative Stress

antiOx↓, 2,   antiOx↑, 2,   ARE/EpRE↑, 1,   ATF3↑, 1,   Catalase↓, 4,   Catalase↑, 1,   Copper↑, 1,   CYP1A1↓, 1,   ENOX2↓, 1,   Fenton↑, 3,   Ferroptosis↓, 1,   Ferroptosis↑, 1,   GPx↓, 3,   GPx↑, 2,   GPx1↓, 1,   GPx4↓, 2,   GSH↓, 11,   GSH↑, 4,   GSR↓, 1,   GSR↑, 2,   GSSG↑, 2,   GSTA1↑, 1,   GSTP1/GSTπ↓, 1,   GSTs↓, 2,   GSTs↑, 2,   H2O2↑, 3,   HK1↓, 1,   HO-1↓, 6,   HO-1↑, 9,   HO-2↓, 1,   ICD↑, 1,   Iron↑, 1,   Keap1↓, 2,   lipid-P?, 1,   lipid-P↑, 6,   MAD↓, 1,   MDA↓, 1,   MPO↓, 1,   NOX4↑, 1,   NQO1↓, 1,   NQO1↑, 1,   NRF2↓, 9,   NRF2↑, 14,   p‑NRF2↑, 1,   OXPHOS↓, 2,   mt-OXPHOS↓, 1,   PARK2↑, 1,   Prx4↑, 1,   ROS?, 2,   ROS↓, 14,   ROS↑, 127,   ROS⇅, 7,   ROS∅, 1,   i-ROS↑, 1,   mt-ROS↑, 3,   SIRT3↓, 1,   SIRT3↑, 2,   SOD↓, 5,   SOD↑, 3,   SOD1↓, 1,   SOD1↑, 1,   SOD2↓, 3,   SOD2↑, 1,   TrxR↓, 3,   TrxR1↓, 2,   VitC↓, 1,   VitE↓, 1,  

Metal & Cofactor Biology

Ferritin↓, 1,   Tf↓, 1,  

Mitochondria & Bioenergetics

AIF↑, 8,   ATP↓, 8,   ATP↑, 1,   CDC2↓, 6,   CDC25↓, 9,   EGF↓, 2,   FGFR1↓, 3,   MEK↓, 2,   mitResp↓, 1,   MMP↓, 69,   MMP↑, 2,   MMP∅, 1,   mtDam↑, 5,   OCR↓, 1,   OCR↑, 1,   PINK1↑, 1,   Raf↓, 3,   c-Raf↓, 1,   SDH↓, 1,   XIAP↓, 17,  

Core Metabolism/Glycolysis

12LOX↓, 1,   ACC↑, 2,   AKT1↓, 1,   ALAT↓, 2,   ALDOA↓, 1,   AMPK↓, 1,   AMPK↑, 12,   p‑AMPK↑, 1,   ATG7↑, 2,   Cav1↓, 1,   citrate↓, 1,   cMyc↓, 22,   p‑cMyc↑, 1,   CPT1A↓, 1,   ECAR↝, 1,   ENO1↓, 1,   FASN↓, 3,   FASN↑, 1,   FBPase↑, 1,   GAPDH↓, 1,   glucoNG↓, 1,   glucoNG↑, 1,   GlucoseCon↓, 6,   GLUT2↓, 1,   GlutMet↓, 1,   Glycolysis↓, 13,   HK2↓, 9,   lactateProd↓, 9,   LDH↓, 2,   LDH↑, 1,   i-LDH↓, 1,   LDHA↓, 3,   LDL↓, 1,   NAD↓, 2,   NADPH↑, 2,   PCK1↓, 1,   PDH↓, 2,   PDH↝, 1,   p‑PDH↑, 1,   PDK1?, 2,   PDK1↓, 4,   PDKs↓, 1,   PFK↓, 3,   PFK2?, 1,   PGK1↓, 1,   PI3K/Akt↓, 3,   PI3k/Akt/mTOR↓, 1,   PKM2↓, 10,   PKM2∅, 1,   PPARα↓, 2,   PPARγ↓, 1,   PPARγ↑, 3,   SIRT1↓, 7,   SIRT1↑, 1,   TCA↓, 2,   Warburg↓, 2,   β-oxidation↓, 2,  

Cell Death

14-3-3 proteins↓, 1,   Akt↓, 50,   Akt↑, 2,   p‑Akt↓, 25,   APAF1↑, 2,   Apoptosis↓, 3,   Apoptosis↑, 95,   ATF2↓, 1,   BAD↓, 2,   BAD↑, 9,   p‑BAD↓, 2,   Bak↑, 10,   BAX↓, 4,   BAX↑, 70,   BAX∅, 1,   Bax:Bcl2↑, 25,   Bcl-2↓, 69,   Bcl-2↑, 3,   Bcl-2∅, 2,   cl‑Bcl-2↓, 1,   cl‑Bcl-2↑, 1,   Bcl-xL↓, 21,   Bcl-xL∅, 1,   BID↑, 5,   cl‑BID↑, 1,   BIM↑, 7,   Casp↑, 15,   Casp↝, 2,   Casp1↓, 1,   Casp10↑, 2,   Casp12?, 1,   Casp12↑, 1,   Casp2↑, 1,   Casp3?, 1,   Casp3↓, 1,   Casp3↑, 100,   Casp3∅, 1,   cl‑Casp3↓, 1,   cl‑Casp3↑, 42,   cl‑Casp3∅, 1,   proCasp3↓, 3,   Casp7↑, 15,   cl‑Casp7↑, 3,   Casp8↓, 1,   Casp8↑, 34,   Casp8∅, 2,   cl‑Casp8↑, 14,   proCasp8↓, 1,   Casp9?, 1,   Casp9↓, 1,   Casp9↑, 61,   Casp9∅, 1,   cl‑Casp9↑, 16,   proCasp9↓, 1,   proCasp9↑, 1,   cFLIP↓, 4,   Chk2↓, 2,   Chk2↑, 1,   CK2↓, 4,   Cyt‑c↓, 1,   Cyt‑c↑, 60,   Cyt‑c↝, 1,   Cyt‑c?, 1,   Diablo↑, 9,   DR4↑, 6,   DR4∅, 1,   DR5↑, 25,   FADD↑, 4,   Fas↑, 12,   FasL↑, 6,   Ferroptosis↓, 1,   Ferroptosis↑, 1,   GRP58↓, 1,   GSDME↑, 1,   HEY1↓, 1,   HGF/c-Met↓, 3,   hTERT/TERT↓, 5,   IAP1↓, 5,   IAP2↓, 4,   IAP2↑, 1,   cl‑IAP2↑, 1,   ICAD↓, 2,   iNOS↓, 6,   JNK↑, 12,   p‑JNK↓, 1,   p‑JNK↑, 6,   MAPK↓, 14,   MAPK↑, 4,   p‑MAPK↑, 1,   Mcl-1↓, 18,   Mcl-1↑, 1,   MDM2↓, 5,   p‑MDM2↓, 1,   MLKL↑, 2,   p‑MLKL↓, 1,   Myc↓, 3,   Necroptosis↑, 3,   necrosis↑, 1,   NICD↓, 1,   NOXA↑, 3,   p27↑, 13,   p38↓, 2,   p38↑, 8,   p‑p38↓, 2,   p‑p38↑, 6,   PDCD4↑, 1,   PUMA↑, 6,   Pyro↑, 1,   RIP1↓, 1,   survivin↓, 33,   Telomerase↓, 8,   TNFR 1↑, 2,   TRAIL↑, 3,   TRAILR↑, 2,   TRPV1↑, 2,   TumCD↑, 5,   YAP/TEAD↓, 1,  

Kinase & Signal Transduction

CaMKII ↓, 1,   cSrc↓, 2,   EF-1α↓, 1,   HER2/EBBR2↓, 9,   p70S6↓, 2,   RTK-RAS↓, 1,   SOX9↓, 1,   Sp1/3/4↓, 5,  

Transcription & Epigenetics

cJun↓, 5,   cJun↑, 2,   EZH2↓, 1,   H3↓, 3,   H3↑, 2,   p‑H3↓, 1,   H4↓, 1,   H4↑, 1,   HATs↓, 2,   HATs↑, 1,   miR-205↑, 1,   miR-21↓, 2,   miR-21↑, 1,   miR-21↝, 1,   miR-27a-3p↓, 1,   other↓, 1,   other↑, 1,   other⇅, 1,   other↝, 1,   p‑pRB↓, 2,   tumCV↓, 27,   tumCV∅, 1,  

Protein Folding & ER Stress

ATF6↑, 1,   CHOP↑, 23,   cl‑CHOP↑, 1,   eIF2α↑, 2,   p‑eIF2α↑, 6,   ER Stress↓, 1,   ER Stress↑, 30,   GRP78/BiP↑, 12,   HSF1↓, 1,   HSP27↓, 4,   HSP27↑, 1,   HSP27↝, 1,   HSP70/HSPA5↓, 7,   HSP70/HSPA5↑, 2,   HSP70/HSPA5↝, 1,   HSP72↓, 1,   HSP90↓, 4,   HSPs↓, 1,   IRE1↑, 4,   PERK↑, 5,   UPR↑, 7,   XBP-1↓, 1,   XBP-1↑, 2,  

Autophagy & Lysosomes

ATG3↓, 1,   ATG3↑, 2,   ATG5↑, 6,   Beclin-1↓, 2,   Beclin-1↑, 11,   LC3‑Ⅱ/LC3‑Ⅰ↓, 1,   LC3‑Ⅱ/LC3‑Ⅰ↑, 3,   LC3A↑, 1,   LC3B↑, 2,   LC3B-II↑, 4,   LC3I↓, 1,   LC3I↑, 1,   LC3II↓, 1,   LC3II↑, 7,   LC3s↑, 1,   p62↓, 6,   p62↑, 3,   SESN2↑, 1,   TumAuto↑, 18,  

DNA Damage & Repair

ATM↑, 1,   p‑ATM↑, 1,   CHK1↓, 2,   CHK1↑, 1,   DFF45↓, 1,   DFF45↑, 2,   DNA-PK↑, 1,   DNAdam↓, 3,   DNAdam↑, 31,   DNMT1↓, 3,   DNMTs↓, 3,   MGMT↓, 1,   p16↑, 1,   P53?, 1,   P53↓, 2,   P53↑, 45,   p‑P53↑, 3,   ac‑P53↑, 1,   PARP↓, 11,   PARP↑, 40,   PARP↝, 2,   PARP∅, 1,   p‑PARP↑, 6,   cl‑PARP↓, 4,   cl‑PARP↑, 152,   cl‑PARP↝, 1,   cl‑PARP∅, 2,   proPARP↓, 1,   PCNA↓, 8,   SIRT6↑, 1,   TP53↓, 1,   γH2AX↓, 1,   γH2AX↑, 6,   p‑γH2AX↑, 1,  

Cell Cycle & Senescence

CDK1↓, 11,   p‑CDK1↓, 2,   p‑CDK1↑, 1,   CDK2↓, 23,   CDK2↑, 2,   p‑CDK2↓, 1,   CDK4↓, 25,   Cyc↓, 2,   cycA1/CCNA1↓, 9,   CycB/CCNB1↓, 14,   CycB/CCNB1↑, 3,   cycD1/CCND1↓, 44,   CycD3↓, 1,   CycD3↑, 1,   cycE/CCNE↓, 16,   cycE/CCNE↑, 1,   p19↑, 1,   P21?, 2,   P21↓, 1,   P21↑, 36,   p‑RB1↓, 7,   Securin↓, 1,   TumCCA?, 1,   TumCCA↓, 4,   TumCCA↑, 70,  

Proliferation, Differentiation & Cell State

ALDH↓, 1,   BMI1↓, 1,   CD133↓, 2,   CD24↓, 2,   CD34↓, 1,   CD44↓, 6,   cDC2↓, 3,   CDK8↓, 1,   cFos↓, 5,   cFos↑, 1,   CIP2A↓, 1,   cMYB↓, 1,   CSCs↓, 13,   EMT↓, 28,   EMT↑, 1,   ERK↓, 22,   ERK↑, 7,   p‑ERK↓, 9,   p‑ERK↑, 3,   FGF↓, 3,   FGFR2↓, 1,   FOXM1↓, 1,   FOXO3↓, 1,   FOXO3↑, 2,   Gli↓, 1,   Gli1↓, 2,   GSK‐3β↓, 6,   GSK‐3β↑, 2,   p‑GSK‐3β↓, 3,   HDAC↓, 11,   HDAC1↓, 4,   HDAC2↓, 4,   HDAC3↓, 3,   HDAC8↓, 1,   HH↓, 2,   IGF-1↓, 6,   IGF-1R↓, 4,   IGF-1R↑, 1,   IGF-2↓, 1,   IGFBP3↑, 3,   IGFR↓, 1,   Let-7↑, 1,   miR-34a↑, 1,   mTOR↓, 28,   mTOR↑, 3,   p‑mTOR↓, 7,   mTORC1↓, 4,   mTORC2↓, 2,   Nanog↓, 1,   Nestin↓, 1,   NOTCH↓, 7,   NOTCH↑, 1,   NOTCH1↓, 5,   NOTCH1↑, 1,   NOTCH2↑, 1,   NOTCH3↓, 2,   OCT4↓, 1,   P70S6K↓, 1,   p‑P70S6K↓, 2,   PI3K↓, 35,   p‑PI3K↓, 3,   PTEN↓, 1,   PTEN↑, 14,   RAS↓, 9,   SAL↑, 1,   SCF↓, 2,   Shh↓, 5,   Smo↓, 2,   SOX2↓, 1,   Src↓, 1,   p‑Src↓, 1,   STAT1↓, 1,   STAT3↓, 29,   p‑STAT3↓, 9,   STAT6↓, 1,   p‑STAT6↓, 1,   Sufu↑, 1,   TAZ↓, 1,   TCF↓, 1,   TCF↑, 1,   TCF-4↓, 1,   TOP1↓, 4,   TOP2↓, 3,   TOP2↑, 1,   TumCG↓, 21,   TumCG↑, 1,   tyrosinase↓, 1,   Wnt↓, 16,   Wnt↑, 1,   Wnt/(β-catenin)↓, 3,  

Migration

AEG1↓, 1,   AntiAg↑, 1,   AP-1↓, 3,   AP-1↝, 1,   AXL↓, 2,   Ca+2↓, 2,   Ca+2↑, 17,   Ca+2↝, 2,   i-Ca+2↑, 1,   CAFs/TAFs↓, 2,   cal2↓, 1,   cal2↑, 1,   Cdc42↓, 1,   CEA↓, 1,   CLDN1↓, 2,   CLDN2↓, 1,   COL1↓, 1,   COL3A1↓, 1,   E-cadherin↓, 5,   E-cadherin↑, 17,   EM↑, 1,   ER-α36↓, 2,   FAK↓, 5,   p‑FAK↓, 3,   Fibronectin↓, 3,   GLI2↓, 1,   ITGA5↓, 1,   ITGB1↓, 1,   ITGB4↓, 1,   Ki-67↓, 6,   KRAS↓, 1,   LEF1↓, 1,   MET↓, 2,   p‑MET↓, 1,   miR-139-5p↑, 1,   miR-200b↑, 1,   miR-340↑, 1,   MMP-10↓, 1,   MMP1↓, 6,   MMP13↓, 1,   MMP2↓, 32,   MMP3↓, 2,   MMP7↓, 5,   MMP9↓, 35,   MMPs↓, 12,   MMPs↝, 1,   MUC4↓, 1,   N-cadherin↓, 13,   PAK1↓, 1,   p‑pax↓, 1,   PDGF↓, 3,   PKCδ↓, 4,   Rac1↓, 2,   RAGE↓, 1,   Rho↓, 2,   RIP3↓, 1,   RIP3↑, 1,   p‑RIP3↑, 2,   ROCK1↓, 1,   Slug↓, 6,   SMAD3↓, 2,   Snail?, 1,   Snail↓, 15,   SOX4↓, 1,   SOX4↑, 1,   TET1↓, 1,   TET1↑, 2,   TGF-β↓, 7,   TGF-β↑, 1,   TIMP1↑, 3,   TIMP2↑, 3,   TSP-1↑, 2,   TumCI?, 1,   TumCI↓, 20,   TumCMig↓, 19,   TumCP↓, 43,   TumMeta↓, 14,   TumMeta↑, 2,   Twist↓, 13,   Tyro3↓, 1,   uPA↓, 13,   uPAR↓, 1,   VCAM-1↓, 1,   Vim↓, 17,   Vim↑, 1,   Zeb1↓, 6,   Zeb1↑, 1,   ZEB2↓, 1,   ZO-1↑, 1,   α-tubulin↓, 2,   β-catenin/ZEB1↓, 22,   β-catenin/ZEB1↑, 1,  

Angiogenesis & Vasculature

angioG↓, 26,   angioG↑, 1,   ATF4↓, 1,   ATF4↑, 9,   ATF4↝, 1,   ECM/TCF↓, 1,   EGFR↓, 19,   EGFR↑, 1,   Endoglin↑, 1,   eNOS↓, 1,   Hif1a↓, 20,   NO↓, 1,   NO↑, 3,   PDGFR-BB↓, 1,   p‑PDGFR-BB↓, 1,   VEGF↓, 41,   VEGF↝, 1,   VEGFR2↓, 8,   ZBTB10↑, 1,  

Barriers & Transport

BBB↑, 2,   GLUT1↓, 6,   GLUT1↑, 1,   NHE1↓, 1,   P-gp↓, 5,   P-gp↑, 1,   SVCT-2↓, 1,   SVCT-2∅, 1,  

Immune & Inflammatory Signaling

ASC↓, 1,   COX1↓, 1,   COX2↓, 33,   COX2↑, 1,   CRP↓, 1,   CXCR4↓, 7,   ICAM-1↓, 2,   IFN-γ↓, 2,   IFN-γ↑, 1,   IKKα↓, 5,   IKKα↑, 1,   IL1↑, 1,   IL10↓, 2,   IL12↓, 1,   IL1α↓, 1,   IL1β↓, 7,   IL2↑, 3,   IL4↓, 1,   IL4↑, 1,   IL6↓, 15,   IL8↓, 2,   Inflam↓, 11,   IκB↓, 2,   JAK↓, 1,   JAK1?, 1,   JAK1↓, 3,   p‑JAK1↓, 1,   JAK2↓, 2,   p‑JAK2↓, 3,   M2 MC↓, 1,   MCP1↓, 1,   MIP2↓, 1,   NF-kB↓, 50,   NF-kB↑, 1,   NF-kB↝, 1,   p‑NF-kB↑, 2,   p50↓, 1,   p65↓, 5,   p‑p65↓, 2,   PD-1↓, 2,   PD-L1↓, 2,   PD-L1↑, 1,   PGE2↓, 8,   PSA↓, 3,   T-Cell↝, 1,   TLR4↓, 3,   TNF-α↓, 14,   TNF-α↑, 1,  

Cellular Microenvironment

ADAM17↓, 1,   IM↓, 1,  

Synaptic & Neurotransmission

5HT↓, 1,  

Protein Aggregation

NLRP3↓, 1,  

Hormonal & Nuclear Receptors

AR↓, 12,   CDK6↓, 12,   CDK6↑, 1,   ERα/ESR1↓, 1,   GR↝, 1,  

Drug Metabolism & Resistance

ABC↓, 1,   BioAv↓, 12,   BioAv↑, 11,   BioAv↝, 5,   BioAv∅, 1,   BioEnh↑, 4,   ChemoSen↓, 1,   ChemoSen↑, 39,   Dose↓, 2,   Dose↑, 2,   Dose↝, 10,   Dose∅, 10,   eff↓, 46,   eff↑, 77,   eff↝, 2,   eff∅, 1,   Half-Life↓, 3,   Half-Life↝, 9,   Half-Life∅, 1,   MDR1↓, 2,   MRP1↓, 1,   P450↓, 2,   RadioS↑, 17,   selectivity↓, 1,   selectivity↑, 38,   TET2↑, 1,  

Clinical Biomarkers

ALAT↓, 2,   ALP↓, 1,   AR↓, 12,   ascitic↓, 1,   AST↓, 1,   CEA↓, 1,   CRP↓, 1,   E6↓, 2,   E7↓, 2,   EGFR↓, 19,   EGFR↑, 1,   ERα/ESR1↓, 1,   EZH2↓, 1,   Ferritin↓, 1,   FOXM1↓, 1,   GutMicro↑, 1,   GutMicro↝, 1,   HER2/EBBR2↓, 9,   hTERT/TERT↓, 5,   IL6↓, 15,   Ki-67↓, 6,   KRAS↓, 1,   LDH↓, 2,   LDH↑, 1,   i-LDH↓, 1,   Myc↓, 3,   NSE↓, 1,   PD-L1↓, 2,   PD-L1↑, 1,   PSA↓, 3,   RAGE↓, 1,   TP53↓, 1,  

Functional Outcomes

AntiCan↑, 9,   AntiTum↑, 3,   cachexia↓, 1,   cardioP↑, 2,   chemoP↑, 8,   ChemoSideEff↓, 2,   hepatoP↑, 3,   neuroP↑, 3,   OS↑, 2,   radioP↑, 2,   RenoP↑, 5,   Risk↓, 1,   toxicity?, 1,   toxicity↓, 3,   toxicity↑, 1,   toxicity↝, 1,   toxicity∅, 1,   TumVol↓, 5,   TumW↓, 5,  
Total Targets: 739

Pathway results for Effect on Normal Cells:


NA, unassigned

chemoPv↑, 1,  

Redox & Oxidative Stress

antiOx↓, 1,   antiOx↑, 16,   Catalase↑, 8,   GPx↑, 3,   GSH↑, 9,   GSSG∅, 1,   GSTA1↑, 1,   GSTs↑, 4,   HO-1↑, 8,   lipid-P↓, 2,   MDA↓, 3,   MPO↓, 1,   NOX4↓, 1,   Nrf1↑, 1,   NRF2↓, 1,   NRF2↑, 12,   Prx↑, 1,   RNS↓, 1,   ROS↓, 17,   ROS↑, 2,   ROS∅, 3,   SOD↑, 9,   SOD1↑, 1,   SOD2↑, 2,   VitC↑, 1,   VitE↑, 1,  

Metal & Cofactor Biology

IronCh↑, 1,  

Mitochondria & Bioenergetics

ATP↑, 1,   MMP↓, 3,   MMP∅, 1,   PGC-1α↑, 1,  

Core Metabolism/Glycolysis

ALAT↓, 1,   p‑cMyc↑, 1,   GAPDH↑, 1,   glucose↓, 1,   LDH↓, 1,   LDH↑, 1,   LDL↓, 1,   NAD↑, 1,   NADPH↑, 1,   PPARα↑, 1,   SIRT1↑, 2,  

Cell Death

Akt↓, 1,   Apoptosis↓, 1,   Apoptosis∅, 1,   BAX↓, 3,   Bax:Bcl2↑, 2,   Bcl-2↑, 2,   Casp12↓, 1,   Casp3?, 1,   Casp3↓, 3,   Casp3↑, 1,   Casp3∅, 1,   cl‑Casp3↑, 1,   Casp8↑, 1,   cl‑Casp8↑, 2,   Casp9↑, 1,   Casp9∅, 1,   cl‑Casp9↑, 1,   Cyt‑c↓, 2,   Cyt‑c∅, 1,   Fas↑, 2,   iNOS↓, 4,   iNOS↑, 1,   JNK↓, 1,   JNK↑, 1,   p‑JNK↓, 2,   MAPK↓, 2,   MAPK↑, 1,   p38↓, 2,  

Transcription & Epigenetics

other↓, 1,   tumCV↓, 1,  

Protein Folding & ER Stress

CHOP↓, 1,   ER Stress↓, 1,   GRP78/BiP↓, 1,   HSP70/HSPA5↑, 1,   IRE1↓, 1,   PERK↓, 1,   UPR↓, 1,  

DNA Damage & Repair

p16↓, 1,   P53↓, 2,   P53↑, 2,   PARP↓, 1,   PARP↑, 1,   PARP∅, 1,   p‑PARP↓, 1,   cl‑PARP↑, 2,  

Cell Cycle & Senescence

CDK2↓, 1,   cycA1/CCNA1↓, 1,   cycE/CCNE↑, 1,   E2Fs↑, 1,   P21↓, 2,   P21↑, 3,   TumCCA↑, 2,  

Proliferation, Differentiation & Cell State

ERK↓, 1,   ERK↑, 1,   GSK‐3β↓, 1,   IGF-1R↓, 1,   PI3K↓, 1,  

Migration

5LO↓, 2,   AP-1↓, 1,   Ca+2?, 1,   Ca+2↓, 1,   Ca+2↝, 1,   MMP13↓, 1,   MMP2↓, 1,   MMP3↓, 1,   PKCδ↓, 1,  

Angiogenesis & Vasculature

angioG↓, 1,   Hif1a↓, 1,   NO↓, 2,   NO↑, 1,   PDGFR-BB↓, 1,   VEGF↓, 1,  

Barriers & Transport

BBB↑, 2,   GLUT1↓, 1,   SVCT-2↑, 1,  

Immune & Inflammatory Signaling

COX1↓, 1,   COX2↓, 7,   CRP↓, 2,   IL10↓, 1,   IL10↑, 1,   IL17↓, 1,   IL1β↓, 6,   IL6↓, 6,   IL8↓, 1,   Imm↑, 1,   Inflam↓, 16,   JAK↓, 1,   MCP1↓, 1,   NF-kB↓, 6,   PGE2↓, 2,   PGE2↑, 1,   Th1 response↓, 1,   Th2↑, 2,   TNF-α↓, 9,  

Synaptic & Neurotransmission

tau↓, 1,  

Protein Aggregation

Aβ↓, 1,  

Drug Metabolism & Resistance

BioAv↓, 9,   BioAv↑, 4,   BioAv↝, 4,   Dose↝, 2,   Dose∅, 1,   eff↑, 3,   Half-Life↑, 1,   Half-Life↝, 4,   Half-Life∅, 1,   P450↑, 1,  

Clinical Biomarkers

ALAT↓, 1,   AST↓, 2,   BG↓, 1,   BP↓, 1,   CRP↓, 2,   GutMicro↑, 1,   IL6↓, 6,   LDH↓, 1,   LDH↑, 1,  

Functional Outcomes

AntiAge↑, 2,   AntiCan↑, 1,   cardioP↑, 5,   chemoP↑, 1,   cognitive↑, 1,   hepatoP↓, 1,   hepatoP↑, 5,   memory↑, 1,   motorD↓, 1,   neuroP↑, 9,   Pain↓, 1,   radioP↑, 1,   toxicity↓, 10,   toxicity∅, 3,  
Total Targets: 172

Scientific Paper Hit Count for: PARP, poly ADP-ribose polymerase (PARP) cleavage
14 Apigenin (mainly Parsley)
14 Thymoquinone
13 Curcumin
12 Quercetin
12 Fisetin
10 Baicalein
10 Sulforaphane (mainly Broccoli)
8 EGCG (Epigallocatechin Gallate)
8 Shikonin
7 Ashwagandha(Withaferin A)
6 Boswellia (frankincense)
6 Garcinol
6 Honokiol
6 Piperlongumine
6 Vitamin C (Ascorbic Acid)
5 Metformin
5 Chrysin
4 Berberine
4 Betulinic acid
4 Citric Acid
4 Propolis -bee glue
4 Resveratrol
4 Silymarin (Milk Thistle) silibinin
3 Cisplatin
3 Capsaicin
3 Emodin
3 Gambogic Acid
3 Magnetic Fields
3 Phenethyl isothiocyanate
2 Allicin (mainly Garlic)
2 5-fluorouracil
2 Artemisinin
2 Boron
2 Radiotherapy/Radiation
2 Docetaxel
2 Ellagic acid
2 HydroxyTyrosol
2 Luteolin
2 Lycopene
2 Magnolol
2 Nimbolide
2 Phenylbutyrate
2 Rosmarinic acid
2 salinomycin
2 Selenium
2 doxorubicin
2 Ursolic acid
2 Urolithin
1 immunotherapy
1 almonertinib
1 Butyrate
1 Carnosic acid
1 Coenzyme Q10
1 Dichloroacetophenone(2,2-)
1 Dichloroacetate
1 Fucoidan
1 Ferulic acid
1 Gallic acid
1 Gemcitabine (Gemzar)
1 Graviola
1 Hydroxycinnamic-acid
1 hydroxychloroquine
1 temozolomide
1 Juglone
1 lambertianic acid
1 Methylene blue
1 Photodynamic Therapy
1 Chemotherapy
1 Myricetin
1 Oleuropein
1 SonoDynamic Therapy UltraSound
1 Hyperthermia
1 Paclitaxel
1 Propyl gallate
1 Hyperoside
1 chitosan
1 Folic Acid
1 Selenite
1 Osimertinib
1 Adagrasib
1 Auranofin
1 Silver-NanoParticles
Query results interpretion may depend on "conditions" listed in the research papers.
Such Conditions may include : 
  -low or high Dose
  -format for product, such as nano of lipid formations
  -different cell line effects
  -synergies with other products 
  -if effect was for normal or cancerous cells
Filter Conditions: Pro/AntiFlg:%  IllCat:%  CanType:%  Cells:%  prod#:%  Target#:239  State#:%  Dir#:%
wNotes=0 sortOrder:rid,rpid

 

Home Page