Database Query Results : , , BAX

BAX, Apoptosis regulator BAX: Click to Expand ⟱
Source:
Type: Proapototic protein
BAX is a member of the Bcl-2 gene family.
Pro-apoptotic protein that forms heterodimers with anti-apoptotic BCL2 proteins; involved in various cellular activities and regulated by p53; mediates the release of cytochrome c from mitochondria.


Scientific Papers found: Click to Expand⟱
4774- 5-FU,  TQ,  CoQ10,    Exploring potential additive effects of 5-fluorouracil, thymoquinone, and coenzyme Q10 triple therapy on colon cancer cells in relation to glycolysis and redox status modulation
- in-vitro, CRC, NA
AntiCan↑, TumCCA↑, Apoptosis↑, eff↑, Bcl-2↓, survivin↓, P21↑, p27↑, BAX↑, Cyt‑c↑, Casp3↑, PI3K↓, Akt↓, mTOR↓, Hif1a↓, PTEN↑, AMPKα↑, PDH↑, LDHA↓, antiOx↓, ROS↑, AntiCan↑,
234- AL,    Allicin Induces Anti-human Liver Cancer Cells through the p53 Gene Modulating Apoptosis and Autophagy
- in-vitro, HCC, Hep3B
ROS↑, *toxicity∅, MMP↓, BAX↑, Bcl-2↓, AIF↑, Casp3↑, Casp8↑, Casp9↑, eff↓, γH2AX↑, selectivity↑, DNA-PK↑,
235- AL,    Allicin inhibits cell growth and induces apoptosis in U87MG human glioblastoma cells through an ERK-dependent pathway
- in-vitro, GBM, U87MG
Apoptosis↑, Bcl-2↓, BAX↑, MAPK↑, p‑ERK↑, ROS↑, eff↓,
239- AL,    Allicin induces apoptosis in gastric cancer cells through activation of both extrinsic and intrinsic pathways
- in-vitro, GC, SGC-7901
Apoptosis↑, Cyt‑c↑, Casp3↑, Casp8↑, Casp9↑, BAX↑, Fas↑, tumCV↓, DNAdam↑, ROS↑, Telomerase↓,
245- AL,    Allicin: a promising modulator of apoptosis and survival signaling in cancer
- Review, Var, NA
Fas↑, Bcl-2↓, BAX↑, PI3k/Akt/mTOR↝, Casp3↑, Casp8↑, Casp9↑, Apoptosis↓, *toxicity↓, Cyt‑c↑,
246- AL,    Allicin induces apoptosis of the MGC-803 human gastric carcinoma cell line through the p38 mitogen-activated protein kinase/caspase-3 signaling pathway
- in-vitro, GC, MGC803
Apoptosis↑, cl‑Casp3↑, p38↑, tumCV↓, BAX↑, Bcl-2↑,
248- AL,    Allicin inhibits cell growth and induces apoptosis in U87MG human glioblastoma cells through an ERK-dependent pathway
- in-vitro, GBM, U87MG
Bcl-2↓, BAX↑, MAPK↑, ERK↑, ROS↑, p38↑, JNK↑,
249- AL,    Allicin induces apoptosis of the MGC-803 human gastric carcinoma cell line through the p38 mitogen-activated protein kinase/caspase-3 signaling pathway
- in-vitro, GC, MGC803
Casp3↑, p38↑, BAX↑, Bcl-2↓, p38↑, MAPK↑,
251- AL,    Inhibition of allicin in Eca109 and EC9706 cells via G2/M phase arrest and mitochondrial apoptosis pathway
- in-vitro, ESCC, Eca109 - in-vitro, ESCC, EC9706 - in-vivo, NA, NA
Apoptosis↑, P53↑, P21↑, CHK1↑, CycB/CCNB1↓, BAX↑, Casp3↑, Casp9↑, Cyt‑c↑,
254- AL,    Allicin and Cancer Hallmarks
- Review, Var, NA
NRF2⇅, BAX↑, Bcl-2↓, Fas↑, MMP↓, Bax:Bcl2↑, Cyt‑c↑, Casp3↑, Casp12↑, GSH↓, TumCCA↑, ROS↑, antiOx↓,
1290- AL,    Effect of allicin on the expression of Bcl-2 and Bax protein in LM-8 cells
- in-vitro, OS, LM8
Bcl-2↓, BAX↑, Apoptosis↑, TumCG↓,
2655- AL,    Allicin and Digestive System Cancers: From Chemical Structure to Its Therapeutic Opportunities
- Review, GC, NA
TGF-β↓, cycD1/CCND1↓, cycE/CCNE↓, CDK1↓, DNAdam↑, ROS↑, BAX↑, JNK↑, MMP↓, p38↑, MAPK↑, Fas↑, Cyt‑c↑, Casp8↑, PARP↑, Casp3↑, Casp9↑, Ca+2↑, ER Stress↑, P21↑, CDK2↓, CDK6↑, TumCCA↑, CDK4↓,
278- ALA,    The Multifaceted Role of Alpha-Lipoic Acid in Cancer Prevention, Occurrence, and Treatment
- Review, NA, NA
ROS↑, NRF2↑, Inflam↓, frataxin↑, *BioAv↓, ChemoSen↑, Hif1a↓, eff↑, FAK↓, ITGB1↓, MMP2↓, MMP9↓, EMT↓, Snail↓, Vim↓, Zeb1↓, P53↑, MGMT↓, Mcl-1↓, Bcl-xL↓, Bcl-2↓, survivin↓, Casp3↑, Casp9↑, BAX↑, p‑Akt↓, GSK‐3β↓, *antiOx↑, *ROS↓, selectivity↑, angioG↓, MMPs↓, NF-kB↓, ITGB3↓, NADPH↓,
277- ALA,    α-lipoic acid modulates prostate cancer cell growth and bone cell differentiation
- in-vitro, Pca, 22Rv1 - in-vitro, Pca, C4-2B
ROS↑, Hif1a↑, JNK↑, Casp3↑, P21↑, BAX↑, Bcl-xL↓, cFos↓,
260- ALA,    The effects of alpha-lipoic acid on breast of female albino rats exposed to malathion: Histopathological and immunohistochemical study
- in-vivo, BC, NA
PCNA↓, P53↓, Apoptosis↑, BAX↑,
259- ALA,    Increased ROS generation and p53 activation in alpha-lipoic acid-induced apoptosis of hepatoma cells
- in-vitro, Liver, HepG2 - in-vitro, Liver, FaO
Cyc↓, P21↑, ROS↑, p‑P53↑, BAX↑, Cyt‑c↑, Casp↑, survivin↓, JNK↑, Akt↓,
258- ALA,    Effects of α-lipoic acid on cell proliferation and apoptosis in MDA-MB-231 human breast cells
- in-vitro, BC, MDA-MB-231
TumCG↓, p‑Akt↓, Akt↓, HER2/EBBR2↓, Bcl-2↓, BAX↑, Casp3↑,
1158- And,  GEM,    Andrographolide causes apoptosis via inactivation of STAT3 and Akt and potentiates antitumor activity of gemcitabine in pancreatic cancer
TumCP↓, TumCCA↑, Apoptosis↑, STAT3↓, Akt↓, P21↑, BAX↑, cycD1/CCND1↓, cycE/CCNE↓, survivin↓, XIAP↓, Bcl-2↓, eff↑,
1351- And,  MEL,    Impact of Andrographolide and Melatonin Combinatorial Drug Therapy on Metastatic Colon Cancer Cells and Organoids
- in-vitro, CRC, T84 - in-vitro, CRC, COLO205 - in-vitro, CRC, HT-29 - in-vitro, CRC, DLD1
eff↑, Ki-67↓, Casp3↑, ER Stress↑, ROS↑, BAX↑, XBP-1↑, CHOP↑, eff↑,
1294- And,  5-FU,    Andrographolide reversed 5-FU resistance in human colorectal cancer by elevating BAX expression
- in-vitro, CRC, HCT116
Apoptosis↑, BAX↑,
1279- And,    Andrographolide Exhibits Anticancer Activity against Breast Cancer Cells (MCF-7 and MDA-MB-231 Cells) through Suppressing Cell Proliferation and Inducing Cell Apoptosis via Inactivation of ER-α Receptor and PI3K/AKT/mTOR Signaling
- in-vitro, BC, MDA-MB-231 - in-vitro, BC, MCF-7
Apoptosis↑, Bcl-2↓, BAX↑, ERα/ESR1↓, PI3K↓, mTOR↓,
1151- Api,    Plant flavone apigenin inhibits HDAC and remodels chromatin to induce growth arrest and apoptosis in human prostate cancer cells: In vitro and in vivo study
- in-vitro, Pca, PC3 - in-vitro, Pca, 22Rv1 - in-vivo, NA, NA
TumCCA↑, Apoptosis↑, HDAC↓, P21↑, BAX↑, TumCG↓, Bcl-2↓, Bax:Bcl2↑, HDAC1↓, HDAC3↓,
208- Api,    Apigenin induces apoptosis by targeting inhibitor of apoptosis proteins and Ku70–Bax interaction in prostate cancer
- in-vivo, Pca, PC3 - in-vivo, Pca, DU145
XIAP↓, survivin↓, Bcl-xL↓, Bcl-2↓, BAX↑,
180- Api,    Induction of caspase-dependent apoptosis by apigenin by inhibiting STAT3 signaling in HER2-overexpressing MDA-MB-453 breast cancer cells
- in-vitro, BC, MDA-MB-231
cl‑Casp8↑, cl‑Casp3↑, cl‑PARP↑, BAX∅, Bcl-2∅, Bcl-xL∅, p‑STAT3↓, P53↑, P21↑, p‑JAK2↓, VEGF↓,
211- Api,    Suppression of NF-κB and NF-κB-Regulated Gene Expression by Apigenin through IκBα and IKK Pathway in TRAMP Mice
- in-vivo, Pca, NA
IKKα↓, NF-kB↓, cycD1/CCND1↓, COX2↓, Bcl-2↓, Bcl-xL↓, VEGF↓, PCNA↓, BAX↑,
178- Api,    Autophagy inhibition enhances apigenin-induced apoptosis in human breast cancer cells
- in-vivo, BC, MDA-MB-231 - in-vitro, BC, T47D
Casp3↑, cl‑PARP↑, Bcl-2↓, Bcl-xL↓, BAX↑,
310- Api,    Apigenin inhibits renal cell carcinoma cell proliferation
- vitro+vivo, RCC, ACHN - in-vitro, RCC, 786-O - in-vitro, RCC, Caki-1 - in-vitro, RCC, HK-2
TumCCA↑, p‑ATM↑, p‑CHK1↑, p‑CDC25↑, p‑cDC2↑, P53↑, BAX↑, Casp9↑, Casp3↑,
1301- Api,    Bcl-2 inhibitor and apigenin worked synergistically in human malignant neuroblastoma cell lines and increased apoptosis with activation of extrinsic and intrinsic pathways
- in-vitro, neuroblastoma, NA
BAX↑, Bcl-2↓, Cyt‑c↑, cal2↑, Casp3↑,
1537- Api,    Apigenin as Tumor Suppressor in Cancers: Biotherapeutic Activity, Nanodelivery, and Mechanisms With Emphasis on Pancreatic Cancer
- Review, PC, NA
TumCP↓, TumCCA↑, Apoptosis↑, MMPs↓, Akt↓, *BioAv↑, *BioAv↓, Half-Life∅, Hif1a↓, GLUT1↓, VEGF↓, ChemoSen↑, ROS↑, Bcl-2↓, Bcl-xL↓, BAX↑, BIM↑,
1564- Api,    Apigenin-induced prostate cancer cell death is initiated by reactive oxygen species and p53 activation
- in-vitro, Pca, 22Rv1 - in-vivo, NA, NA
MDM2↓, NF-kB↓, p65↓, P21↑, ROS↑, GSH↓, MMP↓, Cyt‑c↑, Apoptosis↑, P53↑, eff↓, Bcl-xL↓, Bcl-2↓, BAX↑, Casp↑, TumCG↓, TumVol↓, TumW↓,
1545- Api,    The Potential Role of Apigenin in Cancer Prevention and Treatment
- Review, NA, NA
TNF-α↓, IL6↓, IL1α↓, P53↑, Bcl-xL↓, Bcl-2↓, BAX↑, Hif1a↓, VEGF↓, TumCCA↑, DNAdam↑, Apoptosis↑, CycB/CCNB1↓, cycA1/CCNA1↓, CDK1↓, PI3K↓, Akt↓, mTOR↓, IKKα↓, ERK↓, p‑Akt↓, p‑P70S6K↓, p‑S6↓, p‑ERK↓, p‑P90RSK↑, STAT3↓, MMP2↓, MMP9↓, TumCP↓, TumCMig↓, TumCI↓, Wnt/(β-catenin)↓,
1563- Api,  MET,    Metformin-induced ROS upregulation as amplified by apigenin causes profound anticancer activity while sparing normal cells
- in-vitro, Nor, HDFa - in-vitro, PC, AsPC-1 - in-vitro, PC, MIA PaCa-2 - in-vitro, Pca, DU145 - in-vitro, Pca, LNCaP - in-vivo, NA, NA
selectivity↑, selectivity↑, selectivity↓, ROS↑, eff↑, tumCV↓, MMP↓, Dose∅, eff↓, DNAdam↑, Apoptosis↑, TumAuto↑, Necroptosis↑, p‑P53↑, BIM↑, BAX↑, p‑PARP↑, Casp3↑, Casp8↑, Casp9↑, Cyt‑c↑, Bcl-2↓, AIF↑, p62↑, LC3B↑, MLKL↑, p‑MLKL↓, RIP3↑, p‑RIP3↑, TumCG↑, TumW↓,
2632- Api,    Apigenin inhibits migration and induces apoptosis of human endometrial carcinoma Ishikawa cells via PI3K-AKT-GSK-3β pathway and endoplasmic reticulum stress
- in-vitro, EC, NA
TumCP↓, TumCCA↑, Apoptosis↑, Bcl-2↓, BAX↑, Bak↑, Casp↑, ER Stress↑, Ca+2↑, ATF4↑, CHOP↑, ROS↑, MMP↓, TumCMig↓, TumCI↓, eff↑, P53↑, P21↑, Cyt‑c↑, Casp9↑, Casp3↑, Bcl-xL↓,
2634- Api,    Apigenin induces both intrinsic and extrinsic pathways of apoptosis in human colon carcinoma HCT-116 cells
- in-vitro, CRC, HCT116
TumCG↓, TumCCA↑, MMP↓, ROS↑, Ca+2↑, ER Stress↑, mtDam↑, CHOP↑, DR5↑, cl‑BID↑, BAX↑, Cyt‑c↑, cl‑Casp3↑, cl‑Casp8↑, cl‑Casp9↑, Apoptosis↑,
2633- Api,    Apigenin induces ROS-dependent apoptosis and ER stress in human endometriosis cells
- in-vitro, EC, NA
TumCP↓, TumCCA↑, MMP↓, Ca+2↑, BAX↑, Cyt‑c↑, ROS↑, lipid-P↑, ER Stress↑, UPR↑, p‑ERK↓, ERK↓, JNK↑,
3382- ART/DHA,    Repurposing Artemisinin and its Derivatives as Anticancer Drugs: A Chance or Challenge?
- Review, Var, NA
AntiCan↑, toxicity↑, Ferroptosis↑, ROS↑, TumCCA↑, BioAv↝, eff↝, Half-Life↓, Ferritin↓, GPx4↓, NADPH↓, GSH↓, BAX↑, Cyt‑c↑, cl‑Casp3↑, VEGF↓, IL8↓, COX2↓, MMP9↓, E-cadherin↑, MMP2↓, NF-kB↓, p16↑, CDK4↓, cycD1/CCND1↓, p62↓, LC3II↑, EMT↓, CSCs↓, Wnt↓, β-catenin/ZEB1↓, uPA↓, TumAuto↑, angioG↓, ChemoSen↑,
3391- ART/DHA,    Antitumor Activity of Artemisinin and Its Derivatives: From a Well-Known Antimalarial Agent to a Potential Anticancer Drug
- Review, Var, NA
TumCP↓, TumMeta↓, angioG↓, TumVol↓, BioAv↓, Half-Life↓, BioAv↑, eff↑, eff↓, ROS↑, selectivity↑, TumCCA↑, survivin↓, BAX↑, Casp3↓, Casp8↑, Casp9↑, CDC25↓, CycB/CCNB1↓, NF-kB↓, cycD1/CCND1↓, cycE/CCNE↓, E2Fs↓, P21↑, p27↑, ADP:ATP↑, MDM2↓, VEGF↓, IL8↓, COX2↓, MMP9↓, ER Stress↓, cMyc↓, GRP78/BiP↑, DNAdam↑, AP-1↓, MMP2↓, PKCδ↓, Raf↓, ERK↓, JNK↓, PCNA↓, CDK2↓, CDK4↓, TOP2↓, uPA↓, MMP7↓, TIMP2↑, Cdc42↑, E-cadherin↑,
2323- ART/DHA,    Dihydroartemisinin represses esophageal cancer glycolysis by down-regulating pyruvate kinase M2
- in-vitro, ESCC, Eca109 - in-vitro, ESCC, EC9706
PKM2↓, lactateProd↓, GlucoseCon↓, cycD1/CCND1↓, Bcl-2↓, MMP2↓, VEGF↓, Casp3↑, cl‑PARP↑, BAX↑, DNAdam↑, ROS↑,
1079- ART/DHA,    Artesunate inhibits the growth and induces apoptosis of human gastric cancer cells by downregulating COX-2
- in-vitro, GC, BGC-823 - in-vitro, GC, HGC27 - in-vitro, GC, MGC803
TumCP↓, Apoptosis↑, COX2↓, BAX↑, Bcl-2↓, Casp3↑, Casp9↑, MMP↓,
1295- AS,  Cisplatin,    Chemosensitizing Effect of Astragalus Polysaccharides on Nasopharyngeal Carcinoma Cells by Inducing Apoptosis and Modulating Expression of Bax/Bcl-2 Ratio and Caspases
- in-vivo, Laryn, NA
AntiTum↑, Apoptosis↑, Bcl-2↓, BAX↑, Casp3↑, Casp9↑, Bax:Bcl2↑,
1304- ASA,    Aspirin Inhibits Colorectal Cancer via the TIGIT-BCL2-BAX pathway in T Cells
- in-vitro, CRC, NA - in-vivo, NA, NA
TumCP↓, Apoptosis↑, Bcl-2↓, BAX↑, IL10↓, TNF-β↓,
1360- Ash,  immuno,    Withaferin A Increases the Effectiveness of Immune Checkpoint Blocker for the Treatment of Non-Small Cell Lung Cancer
- in-vitro, Lung, H1650 - in-vitro, Lung, A549 - in-vitro, CRC, HCT116 - in-vitro, BC, MDA-MB-231 - in-vivo, NA, NA
PD-L1↑, eff↓, ROS↑, ER Stress↑, Apoptosis↑, BAX↑, Bak↑, BAD↑, Bcl-2↓, XIAP↓, survivin↓, cl‑PARP↑, CHOP↑, p‑eIF2α↑, ICD↑, eff↑,
1369- Ash,    Withaferin A inhibits cell proliferation of U266B1 and IM-9 human myeloma cells by inducing intrinsic apoptosis
- in-vitro, Melanoma, U266
tumCV↓, Apoptosis↑, BAX↑, Cyt‑c↑, Bcl-2↓, cl‑PARP↑, cl‑Casp3↑, cl‑Casp9↑, ROS↑, eff↓,
1355- Ash,    Withaferin A-Induced Apoptosis in Human Breast Cancer Cells Is Mediated by Reactive Oxygen Species
- in-vitro, BC, MDA-MB-231 - in-vitro, BC, MCF-7 - in-vitro, Nor, HMEC
eff↑, mt-ROS↑, mitResp↓, OXPHOS↓, compIII↑, BAX↑, Bak↑, other↓, ATP∅, *ROS∅,
1433- Ash,  SFN,    A Novel Combination of Withaferin A and Sulforaphane Inhibits Epigenetic Machinery, Cellular Viability and Induces Apoptosis of Breast Cancer Cells
- in-vitro, BC, MCF-7 - in-vitro, BC, MDA-MB-231
eff↑, Bcl-2↓, BAX↑, tumCV↓, DNMT1↓, DNMT3A↓, HDAC↓,
3155- Ash,    Overview of the anticancer activity of withaferin A, an active constituent of the Indian ginseng Withania somnifera
- Review, Var, NA
Half-Life↝, Inflam↓, antiOx↓, angioG↓, ROS↑, BAX↑, Bak↑, E6↓, E7↓, P53↑, Casp3↑, cl‑PARP↑, STAT3↓, eff↑, HSP90↓, TGF-β↓, TNF-α↓, EMT↑, mTOR↓, NOTCH1↓, p‑Akt↓, NF-kB↓, Dose↝,
3156- Ash,    Withaferin A: From ayurvedic folk medicine to preclinical anti-cancer drug
- Review, Var, NA
MAPK↑, p38↑, BAX↑, BIM↑, CHOP↑, ROS↑, DR5↑, Apoptosis↑, Ferroptosis↑, GPx4↓, BioAv↝, HSP90↓, RET↓, E6↓, E7↓, Akt↓, cMET↓, Glycolysis↓, TCA↓, NOTCH1↓, STAT3↓, AP-1↓, PI3K↓, eIF2α↓, HO-1↑, TumCCA↑, CDK1↓, *hepatoP↑, *GSH↑, *NRF2↑, Wnt↓, EMT↓, uPA↓, CSCs↓, Nanog↓, SOX2↓, CD44↓, lactateProd↓, Iron↑, NF-kB↓,
3162- Ash,    Molecular insights into cancer therapeutic effects of the dietary medicinal phytochemical withaferin A
- Review, Var, NA
lipid-P↓, SOD↑, GPx↑, P53↑, Bcl-2↑, E6↓, E7↓, pRB↑, CycB/CCNB1↑, CDC2↑, P21↑, PCNA↓, ALDH1A1↓, Vim↓, Glycolysis↓, cMyc↓, BAX↑, NF-kB↓, Casp3↑, CHOP↑, DR5↑, ERK↓, Wnt↓, β-catenin/ZEB1↓, Akt↓, HSP90↓,
3167- Ash,    Withaferin A Inhibits the Proteasome Activity in Mesothelioma In Vitro and In Vivo
- in-vitro, MM, H226
TumCP↓, cMyc↓, cFos↓, cJun↓, TIMP2↑, Vim↓, ROS↑, BAX↑, IKKα↑, Casp3↑, cl‑PARP↑,
4806- ASTX,    Astaxanthin's Impact on Colorectal Cancer: Examining Apoptosis, Antioxidant Enzymes, and Gene Expression
- in-vitro, CRC, HCT116
BAX↑, Casp3↑, Apoptosis↑, Bcl-2↓, MDA↓, ROS↓, SOD↑, Catalase↑, GPx↑, antiOx↑, TumCG↓, TumCP↓,
4810- ASTX,    Effects of Astaxanthin on the Proliferation and Migration of Breast Cancer Cells In Vitro
- in-vitro, BC, MDA-MB-231 - in-vitro, Nor, MCF10
TumCP↓, TumCMig↓, selectivity↑, *BDNF↑, *ROS↓, *TNF-α↓, *IL6↓, *IFN-γ↓, *NF-kB↓, BAX⇅, Bcl-2↓, *antiOx↑, radioP↑, ChemoSen↑,
4820- ASTX,    Astaxanthin suppresses the malignant behaviors of nasopharyngeal carcinoma cells by blocking PI3K/AKT and NF-κB pathways via miR-29a-3p
- in-vitro, NPC, NA
TumCP↓, TumCI↓, Apoptosis↑, TumCCA↑, cycD1/CCND1↓, Bcl-2↓, P21↑, BAX↑, PI3K↓, Akt↓, NF-kB↓, miR-29b↑,
4823- ASTX,    Astaxanthin increases radiosensitivity in esophageal squamous cell carcinoma through inducing apoptosis and G2/M arrest
- in-vitro, ESCC, NA
RadioS↑, Apoptosis↑, TumCCA↑, Bcl-2↓, CycB/CCNB1↓, CDC2↓, BAX↑,
1302- AV,    Quantitative measurement of Bax and Bcl2 genes and protein expression in MCF7 cell-line when treated by Aloe Vera extract
- in-vitro, BC, MCF-7
BAX↑, Bcl-2↓,
874- B-Gluc,    Potential promising anticancer applications of β-glucans: a review
- Review, NA, NA
AntiCan↑, TumCG↓, BAX↑, Bcl-2↓, IFN-γ↑, PI3K/Akt↑, MAPK↑, NFAT↑, NF-kB↑, ROS↑, NK cell↑, TumCCA↑, ERK↓, Telomerase↓,
1288- Ba,    The Traditional Chinese Medicine Baicalein Potently Inhibits Gastric Cancer Cells
- in-vitro, GC, SGC-7901
TumCG↓, TumCCA↑, Apoptosis↑, MMP↓, Bcl-2↓, BAX↑,
1533- Ba,    Baicalein, as a Prooxidant, Triggers Mitochondrial Apoptosis in MCF-7 Human Breast Cancer Cells Through Mobilization of Intracellular Copper and Reactive Oxygen Species Generation
- in-vitro, BrCC, MCF-7 - in-vitro, Nor, MCF10
tumCV↓, i-ROS↑, MMP↓, Bcl-2↓, BAX↑, Cyt‑c↑, Casp9↑, Casp3↑, eff↓, selectivity↑, *toxicity∅, Apoptosis↑, Fenton↑,
1521- Ba,    Baicalein induces apoptosis via ROS-dependent activation of caspases in human bladder cancer 5637 cells
- in-vitro, Bladder, 5637
TumCG↓, Apoptosis↑, IAP1↓, IAP2↓, Casp3↑, Casp9↑, BAX↑, Bcl-2↓, MMP↓, Casp8↑, BID↑, ROS?, eff↓, DR4↑, DR5↑, FasL↑, TRAIL↑,
1523- Ba,    Baicalein induces human osteosarcoma cell line MG-63 apoptosis via ROS-induced BNIP3 expression
- in-vitro, OS, MG63 - in-vitro, Nor, hFOB1.19
TumCD↑, Apoptosis↑, ROS↑, eff↓, Casp3↑, Bcl-2↓, selectivity↑, Cyt‑c↑, LDH?, BNIP3?, BAX↑,
1532- Ba,    Baicalein as Promising Anticancer Agent: A Comprehensive Analysis on Molecular Mechanisms and Therapeutic Perspectives
- Review, NA, NA
ROS↑, ER Stress↑, Ca+2↑, MMPs↓, Cyt‑c↑, Casp3↑, ROS↑, DR5↑, ROS↑, BAX↑, Bcl-2↓, MMP↓, Casp3↑, Casp9↑, P53↑, p16↑, P21↑, p27↑, HDAC10↑, MDM2↓, Apoptosis↑, PI3K↓, Akt↓, p‑Akt↓, p‑mTOR↓, NF-kB↓, p‑IκB↓, IκB↑, BAX↑, Bcl-2↓, ROS⇅, BNIP3↑, p38↑, 12LOX↓, Mcl-1↓, Wnt?, GLI2↓, AR↓, eff↑,
2047- BA,    Sodium butyrate inhibits migration and induces AMPK-mTOR pathway-dependent autophagy and ROS-mediated apoptosis via the miR-139-5p/Bmi-1 axis in human bladder cancer cells
- in-vitro, CRC, T24 - in-vitro, Nor, SV-HUC-1 - in-vitro, Bladder, 5637 - in-vivo, NA, NA
HDAC↓, AntiTum↑, TumCMig↓, AMPK↑, mTOR↑, TumAuto↑, ROS↑, miR-139-5p↑, BMI1↓, TumCI?, E-cadherin↑, N-cadherin↓, Vim↓, Snail↓, cl‑PARP↑, cl‑Casp3↑, BAX↑, Bcl-2↓, Bcl-xL↓, MMP↓, PINK1↑, PARK2↑, TumMeta↓, TumCG↓, LC3II↑, p62↓, eff↓,
2597- Ba,    Baicalein – An Intriguing Therapeutic Phytochemical in Pancreatic Cancer
- Review, PC, NA
chemoP↑, ChemoSen↑, 12LOX?, Bcl-2↓, BAX↑, Mcl-1↓, ERK↓, Prx6↑, Dose↝, BioAv↓, eff↑,
2606- Ba,    Baicalein: A review of its anti-cancer effects and mechanisms in Hepatocellular Carcinoma
- Review, HCC, NA
ChemoSen↑, TumCP↓, TumCCA↑, TumCMig↓, TumCI↓, MMPs↓, MAPK↓, TGF-β↓, ZFX↓, p‑MEK↓, ERK↓, MMP2↓, MMP9↓, uPA↓, TIMP1↓, TIMP2↓, NF-kB↓, p65↓, p‑IKKα↓, Fas↑, Casp2↑, Casp3↑, Casp8↑, Casp9↑, Bcl-xL↓, BAX↑, ER Stress↑, Ca+2↑, JNK↑, P53↑, ROS↑, H2O2↑, cMyc↓, CD24↓, 12LOX↓,
2626- Ba,    Molecular targets and therapeutic potential of baicalein: a review
- Review, Var, NA - Review, AD, NA - Review, Stroke, NA
AntiCan↓, *neuroP↑, *cardioP↑, *hepatoP↑, *RenoP↑, TumCCA↑, CDK4↓, cycD1/CCND1↓, cycE/CCNE↑, BAX↑, Bcl-2↓, VEGF↓, Hif1a↓, cMyc↓, NF-kB↓, ROS↑, BNIP3↑, *neuroP↑, *cognitive↑, *NO↓, *iNOS↓, *COX2↓, *PGE2↓, *NRF2↑, *p‑AMPK↑, *Ferroptosis↓, *lipid-P↓, *ALAT↓, *AST↓, *Fas↓, *BAX↓, *Apoptosis↓,
2617- Ba,    Potential of baicalein in the prevention and treatment of cancer: A scientometric analyses based review
- Review, Var, NA
Ca+2↑, MMP2↓, MMP9↓, Vim↓, Snail↓, E-cadherin↑, Wnt↓, β-catenin/ZEB1↓, p‑Akt↓, p‑mTOR↓, NF-kB↓, i-ROS↑, Bcl-2↓, BAX↑, Cyt‑c↑, Casp3↑, Casp9↑, STAT3↓, IL6↓, MMP2↓, MMP9↓, NOTCH↓, PPARγ↓, p‑NRF2↓, HK2↓, LDHA↓, PDK1↓, Glycolysis↓, PTEN↑, Akt↓, Hif1a↓, MMP↓, VEGF↓, VEGFR2↓, TOP2↓, uPA↓, TIMP1↓, TIMP2↓, cMyc↓, TrxR↓, ASK1↑, Vim↓, ZO-1↑, E-cadherin↑, SOX2↓, OCT4↓, Shh↓, Smo↓, Gli1↓, N-cadherin↓, XIAP↓,
2629- Ba,    Baicalein, a Component of Scutellaria baicalensis, Attenuates Kidney Injury Induced by Myocardial Ischemia and Reperfusion
- in-vivo, Nor, NA
*RenoP↑, *Apoptosis↓, *TNF-α↓, *IL1↓, *Bcl-2↑, *BAX↓, *Akt↑,
2296- Ba,    The most recent progress of baicalein in its anti-neoplastic effects and mechanisms
- Review, Var, NA
CDK1↓, Cyc↓, p27↑, P21↑, P53↑, TumCCA↑, TumCI↓, MMP2↓, MMP9↓, E-cadherin↑, N-cadherin↓, Vim↓, LC3A↑, p62↓, p‑mTOR↓, PD-L1↓, CAFs/TAFs↓, VEGF↓, ROCK1↓, Bcl-2↓, Bcl-xL↓, BAX↑, ROS↑, cl‑PARP↑, Casp3↑, Casp9↑, PTEN↑, MMP↓, Cyt‑c↑, Ca+2↑, PERK↑, IRE1↑, CHOP↑, Copper↑, Snail↓, Vim↓, Twist↓, GSH↓, NRF2↓, HO-1↓, GPx4↓, XIAP↓, survivin↓, DR5↑,
2477- Ba,    Baicalein induces apoptosis via a mitochondrial-dependent caspase activation pathway in T24 bladder cancer cells
- in-vitro, CRC, T24
TumCG↓, TumCCA↑, MMP↓, Cyt‑c↑, Casp9↑, Casp3↑, p‑Akt↓, Bcl-2↓, BAX↑, Bax:Bcl2↑, 12LOX↓,
2478- Ba,    The role of Ca2+ in baicalein-induced apoptosis in human breast MDA-MB-231 cancer cells through mitochondria- and caspase-3-dependent pathway
- in-vitro, BC, MDA-MB-231
Bcl-2↓, BAX↓, Cyt‑c↑, Casp3↑, Ca+2↓,
2476- Ba,    Baicalein Induces Caspase-dependent Apoptosis Associated with the Generation of ROS and the Activation of AMPK in Human Lung Carcinoma A549 Cells
- in-vitro, Lung, A549
TumCG↓, Apoptosis↑, DR5↑, FasL↑, FADD↑, Casp8↑, cFLIP↓, Casp9↑, Casp3↑, cl‑PARP↑, MMP↓, BID↑, BAX↑, Cyt‑c↑, ROS↑, eff↓, AMPK↑,
2021- BBR,    Berberine: An Important Emphasis on Its Anticancer Effects through Modulation of Various Cell Signaling Pathways
- Review, NA, NA
*antiOx?, *Inflam↓, Apoptosis↑, TumCCA↑, BAX↑, eff↑, VEGF↓, PI3K↓, Akt↓, mTOR↓, Telomerase↓, β-catenin/ZEB1↓, Wnt↓, EGFR↓, AP-1↓, NF-kB↓, COX2↑, NRF2↓, RadioS↑, STAT3↓, ERK↓, AR↓, ROS↑, eff↑, selectivity↑, selectivity↑, BioAv↓, DNMT1↓, cMyc↓,
1390- BBR,  Rad,    Berberine Inhibited Radioresistant Effects and Enhanced Anti-Tumor Effects in the Irradiated-Human Prostate Cancer Cells
- in-vitro, Pca, PC3
RadioS↑, Apoptosis↑, ROS↑, eff↑, BAX↑, Casp3↑, P53↑, p38↑, JNK↑, Bcl-2↓, ERK↓, HO-1↓,
1398- BBR,    Berberine inhibits the progression of renal cell carcinoma cells by regulating reactive oxygen species generation and inducing DNA damage
- in-vitro, Kidney, NA
TumCP↓, TumCMig↓, ROS↑, Apoptosis↑, BAX↑, BAD↑, Bak↑, Cyt‑c↑, cl‑Casp3↑, cl‑Casp9↑, E-cadherin↑, TIMP1↑, γH2AX↑, Bcl-2↓, N-cadherin↓, Vim↓, Snail↓, RAD51↓, PCNA↓,
1393- BBR,  EPI,    Berberine promotes antiproliferative effects of epirubicin in T24 bladder cancer cells by enhancing apoptosis and cell cycle arrest
- in-vitro, Bladder, T24
ChemoSen↑, TumCCA↑, Apoptosis↑, cl‑Casp3↑, cl‑Casp9↑, BAX↑, P53↑, P21↑, Bcl-2↓, ROS↑,
1386- BBR,    Berberine-induced apoptosis in human breast cancer cells is mediated by reactive oxygen species generation and mitochondrial-related apoptotic pathway
- in-vitro, BC, MCF-7 - in-vitro, BC, MDA-MB-231
tumCV↓, ROS↑, JNK↑, MMP↓, Bcl-2↓, BAX↑, Cyt‑c↑, AIF↝,
2674- BBR,    Berberine: A novel therapeutic strategy for cancer
- Review, Var, NA - Review, IBD, NA
Inflam↓, AntiCan↑, Apoptosis↑, TumAuto↑, TumCCA↑, TumMeta↓, TumCI↓, eff↑, eff↑, CD4+↓, TNF-α↓, IL1↓, BioAv↓, BioAv↓, other↓, AMPK↑, MAPK↓, NF-kB↓, IL6↓, MCP1↓, PGE2↓, COX2↓, *ROS↓, *antiOx↑, *GPx↑, *Catalase↑, AntiTum↑, TumCP↓, angioG↓, Fas↑, FasL↑, ROS↑, ATM↑, P53↑, RB1↑, Casp9↑, Casp8↑, Casp3↓, BAX↑, Bcl-2↓, Bcl-xL↓, IAP1↓, XIAP↓, survivin↓, MMP2↓, MMP9↓, CycB/CCNB1↓, CDC25↓, CDC25↓, Cyt‑c↑, MMP↓, RenoP↑, mTOR↓, MDM2↓, LC3II↑, ERK↓, COX2↓, MMP3↓, TGF-β↓, EMT↑, ROCK1↓, FAK↓, RAS↓, Rho↓, NF-kB↓, uPA↓, MMP1↓, MMP13↓, ChemoSen↑,
2689- BBR,    Berberine protects against glutamate-induced oxidative stress and apoptosis in PC12 and N2a cells
- in-vitro, Nor, PC12 - in-vitro, AD, NA - in-vitro, Stroke, NA
*ROS↓, *lipid-P↓, *DNAdam↓, *GSH↑, *SOD↑, *eff↑, *cl‑Casp3↓, *BAX↓, *neuroP↑, *Dose↝, *Ca+2↓,
2691- BBR,    Berberine induces FasL-related apoptosis through p38 activation in KB human oral cancer cells
- in-vitro, Oral, KB
tumCV↓, DNAdam↑, Casp3↑, Casp7↑, FasL↑, Casp8↑, Casp9↑, PARP↑, BAX↑, BAD↑, APAF1↑, MMP2↓, MMP9↓, p‑p38↑, ERK↑, MAPK↑,
1285- BetA,    Betulinic acid decreases expression of bcl-2 and cyclin D1, inhibits proliferation, migration and induces apoptosis in cancer cells
- in-vitro, Var, NA
Apoptosis↑, Bcl-2↓, cycD1/CCND1↓, BAX↑,
1305- BetA,    Betulinic acid decreases expression of bcl-2 and cyclin D1, inhibits proliferation, migration and induces apoptosis in cancer cells
- in-vitro, UEC, NA
Apoptosis↑, Bcl-2↓, BAX↑,
2746- BetA,    Betulinic acid induces apoptosis and inhibits metastasis of human colorectal cancer cells in vitro and in vivo
- in-vitro, CRC, HCT116 - in-vivo, CRC, NA
TumCG↓, BAX↑, Bcl-2↓, ROS↑, MMP↓, TIMP2↑, TumVol↓,
2743- BetA,    Betulinic acid and the pharmacological effects of tumor suppression
- Review, Var, NA
ROS↓, MMP↓, Cyt‑c↑, Apoptosis↑, TumCCA↑, Sp1/3/4↓, STAT3↓, NF-kB↓, EMT↓, TOP1↓, MAPK↑, p38↑, JNK↑, Casp↑, Bcl-2↓, BAX↑, VEGF↓, LAMs↓,
2719- BetA,    Betulinic Acid Restricts Human Bladder Cancer Cell Proliferation In Vitro by Inducing Caspase-Dependent Cell Death and Cell Cycle Arrest, and Decreasing Metastatic Potential
- in-vitro, CRC, T24 - in-vitro, Bladder, UMUC3 - in-vitro, Bladder, 5637
TumCD↑, Apoptosis↑, TumCCA↑, CycB/CCNB1↓, cycA1/CCNA1↓, CDK2↓, CDC25↓, mtDam↑, BAX↑, cl‑PARP↑, Casp3↑, Casp8↑, Casp9↑, Snail↓, Slug↓, MMP9↓, selectivity↑, MMP↓, ROS∅, TumCMig↓, TumCI↓,
2721- BetA,    Proteomic Investigation into Betulinic Acid-Induced Apoptosis of Human Cervical Cancer HeLa Cells
- in-vitro, Cerv, HeLa
ROS↑, Dose↝, Bcl-2↓, BAX↑, ER Stress↑,
2733- BetA,    Betulinic Acid Inhibits Cell Proliferation in Human Oral Squamous Cell Carcinoma via Modulating ROS-Regulated p53 Signaling
- in-vitro, Oral, KB - in-vivo, NA, NA
TumCP↓, TumVol↓, mt-Apoptosis↑, Casp3↑, Casp9↑, BAX↑, Bcl-2↑, OCR↓, TumCCA↑, ROS↑, eff↓, P53↑, STAT3↓, cycD1/CCND1↑,
2732- BetA,  Chemo,    Betulinic acid chemosensitizes breast cancer by triggering ER stress-mediated apoptosis by directly targeting GRP78
- in-vitro, BC, MCF-7 - in-vitro, BC, MDA-MB-231 - in-vitro, Nor, MCF10
ChemoSen↑, selectivity↑, GRP78/BiP↑, ER Stress↑, PERK↑, Ca+2↑, Cyt‑c↑, BAX↑, Bcl-2↓,
726- Bor,    Redox Mechanisms Underlying the Cytostatic Effects of Boric Acid on Cancer Cells—An Issue Still Open
- Review, NA, NA
NAD↝, SAM-e↝, PSA↓, IGF-1↓, Cyc↓, P21↓, p‑MEK↓, p‑ERK↓, ROS↑, SOD↓, Catalase↓, MDA↑, GSH↓, IL1↓, IL6↓, TNF-α↓, BRAF↝, MAPK↝, PTEN↝, PI3K/Akt↝, eIF2α↑, ATF4↑, ATF6↑, NRF2↑, BAX↑, BID↑, Casp3↑, Casp9↑, Bcl-2↓, Bcl-xL↓,
742- Bor,    In Vitro Effects of Boric Acid on Cell Cycle, Apoptosis, and miRNAs in Medullary Thyroid Cancer Cells
- in-vitro, Thyroid, NA
NOXA↑, APAF1↑, BAX↑, Casp3↑, Casp9↑, Bcl-2↓, Bcl-xL↓, miR-21↓,
743- Bor,    Boric Acid (Boron) Attenuates AOM-Induced Colorectal Cancer in Rats by Augmentation of Apoptotic and Antioxidant Mechanisms
- in-vitro, CRC, NA
BAX↑, Bcl-2↓, GPx↑, SOD↑, Catalase↑, MDA↓, TNF-α↓, IL6↓, IL10↑,
750- Bor,    Calcium fructoborate regulate colon cancer (Caco-2) cytotoxicity through modulation of apoptosis
- in-vitro, CRC, Caco-2
Bcl-2↓, BAX↑, Akt↓, p70S6↓, PTEN↑, TSC2↑,
1185- Bos,    The journey of boswellic acids from synthesis to pharmacological activities
- Review, NA, NA
BAX↑, NF-kB↓, cl‑PARP↑, Casp3↑, Casp8↑,
1420- Bos,    Acetyl-11-keto-β-boswellic acid inhibits proliferation and induces apoptosis of gastric cancer cells through the phosphatase and tensin homolog /Akt/ cyclooxygenase-2 signaling pathway
- vitro+vivo, GC, BGC-823
TumCP↓, TumCG↓, PTEN↑, BAX↑, Bcl-2↓, p‑Akt↓, COX2↓,
1426- Bos,  CUR,  Chemo,    Novel evidence for curcumin and boswellic acid induced chemoprevention through regulation of miR-34a and miR-27a in colorectal cancer
- in-vivo, CRC, NA - in-vitro, CRC, HCT116 - in-vitro, CRC, RKO - in-vitro, CRC, SW480 - in-vitro, RCC, SW-620 - in-vitro, RCC, HT-29 - in-vitro, CRC, Caco-2
miR-34a↑, miR-27a-3p↓, TumCG↓, BAX↑, Bcl-2↓, PARP1↓, TumCCA↑, Apoptosis↑, cMyc↓, CDK4↓, CDK6↓, cycD1/CCND1↓, ChemoSen↑, miR-34a↑, miR-27a-3p↓,
1448- Bos,    A triterpenediol from Boswellia serrata induces apoptosis through both the intrinsic and extrinsic apoptotic pathways in human leukemia HL-60 cells
- in-vitro, AML, HL-60
TumCP↓, Apoptosis↑, ROS↑, NO↑, cl‑Bcl-2↑, BAX↑, MMP↓, Cyt‑c↑, AIF↑, Diablo↑, survivin↓, ICAD↓, Casp↑, cl‑PARP↑, DR4↑, TNFR 1↑,
1651- CA,  PBG,    Caffeic acid and its derivatives as potential modulators of oncogenic molecular pathways: New hope in the fight against cancer
- Review, Var, NA
Apoptosis↑, TumCCA↓, TumCMig↓, TumMeta↓, ChemoSen↑, eff↑, eff↑, eff↓, eff↝, Dose∅, AMPK↑, p62↓, LC3II↑, Ca+2↑, Bax:Bcl2↑, CDK4↑, CDK6↑, RB1↑, EMT↓, E-cadherin↑, Vim↓, β-catenin/ZEB1↓, NF-kB↓, angioG↑, VEGF↓, TSP-1↑, MMP9↓, MMP2↓, ChemoSen↑, eff↑, ROS↑, CSCs↓, Fas↑, P53↑, BAX↑, Casp↑, β-catenin/ZEB1↓, NDRG1↑, STAT3↓, MAPK↑, ERK↑, eff↑, eff↑, eff↑,
1652- CA,    Caffeic Acid and Diseases—Mechanisms of Action
- Review, Var, NA
Dose∅, ROS⇅, NF-kB↓, STAT3↓, VEGF↓, MMP9↓, HSP70/HSPA5↑, AST↝, ALAT↝, ALP↝, Hif1a↓, IL6↓, IGF-1R↓, P21↑, iNOS↓, ERK↓, Snail↓, BID↑, BAX↑, Casp3↑, Casp7↑, Casp9↑, cycD1/CCND1↓, Vim↓, β-catenin/ZEB1↓, COX2↓, ROS↑,
1640- CA,  MET,    Caffeic Acid Targets AMPK Signaling and Regulates Tricarboxylic Acid Cycle Anaplerosis while Metformin Downregulates HIF-1α-Induced Glycolytic Enzymes in Human Cervical Squamous Cell Carcinoma Lines
- in-vitro, Cerv, SiHa
GLS↓, NADPH↓, ROS↑, TumCD↑, AMPK↑, Hif1a↓, GLUT1↓, GLUT3↓, HK2↓, PFK↓, PKM2↓, LDH↓, cMyc↓, BAX↓, cycD1/CCND1↓, PDH↓, ROS↑, Apoptosis↑, eff↑, ACLY↓, FASN↓, Bcl-2↓, Glycolysis↓,
1262- CAP,    Capsaicin Inhibits Proliferation and Induces Apoptosis in Breast Cancer by Down-Regulating FBI-1-Mediated NF-κB Pathway
- vitro+vivo, BC, NA
FBI-1↓, Ki-67↓, Bcl-2↓, survivin↓, BAX↑, Casp3↑, TumCP↓, Apoptosis↑,
2013- CAP,    Capsaicin, a component of red peppers, inhibits the growth of androgen-independent, p53 mutant prostate cancer cells
- in-vitro, Pca, PC3 - in-vitro, Pca, LNCaP - in-vitro, Pca, DU145 - in-vivo, NA, NA
TumCP↓, P53↑, P21↑, BAX↑, PSA↓, AR↓, NF-kB↓, Proteasome↓, TumVol↓, eff∅,
1287- CAR,    Carvacrol induces apoptosis in human breast cancer cells via Bcl-2/CytC signaling pathway
- in-vitro, BC, HCC1937
TumCP↓, TumCCA↑, Apoptosis↑, BAX↑, Cyt‑c↑, Casp3↑, Bcl-2↓,
1298- CGA,    Chlorogenic acid regulates apoptosis and stem cell marker-related gene expression in A549 human lung cancer cells
- in-vitro, Lung, A549
Bcl-2↓, BAX↑, Casp3↑, p38↑, JNK↑, Nanog↓, SOX2↓, OCT4↓,
4487- Chit,  PreB,    Unravelling the Role of Chitin and Chitosan in Prebiotic Activity and Correlation With Cancer: A Narrative Review
- Review, NA, NA
*GutMicro↑, Apoptosis↑, BAX↑, Bcl-2↓, *Inflam↓, AntiTum↑,
1145- CHr,    Chrysin inhibits propagation of HeLa cells by attenuating cell survival and inducing apoptotic pathways
- in-vitro, Cerv, HeLa
tumCV↓, BAX↑, BID↑, BOK↑, APAF1↑, TNF-α↑, FasL↑, Fas↑, FADD↑, Casp3↑, Casp7↑, Casp8↑, Casp9↑, Mcl-1↓, NAIP↓, Bcl-2↓, CDK4↓, CycB/CCNB1↓, cycD1/CCND1↓, cycE1↓, TRAIL↑, p‑Akt↓, Akt↓, mTOR↓, PDK1↓, BAD↓, GSK‐3β↑, AMPK↑, p27↑, P53↑,
2795- CHr,    Combination of chrysin and cisplatin promotes the apoptosis of Hep G2 cells by up-regulating p53
- in-vitro, Liver, HepG2
ChemoSen↑, P53↑, ERK↑, BAX↑, DR5↑, Bcl-2↓, Casp8↑, Cyt‑c↑, Casp9↑,
2807- CHr,    Evidence-based mechanistic role of chrysin towards protection of cardiac hypertrophy and fibrosis in rats
- in-vivo, Nor, NA
*antiOx↑, Inflam↓, *cardioP↑, *GSH↑, *SOD↑, *Catalase↑, *GAPDH↑, *BAX↓, *Bcl-2↑, *PARP↓, *Cyt‑c↓, *Casp3↓, *NOX4↓, *NRF2↑, *HO-1↑, *HSP70/HSPA5↑,
2780- CHr,    Anti-cancer Activity of Chrysin in Cancer Therapy: a Systematic Review
- Review, Var, NA
*antiOx↑, Inflam↓, *hepatoP↑, AntiCan↑, Cyt‑c↑, Casp3↑, XIAP↓, p‑Akt↓, PI3K↑, Apoptosis↑, COX2↓, FAK↓, AMPK↑, STAT3↑, MMP↓, DNAdam↑, BAX↑, Bak↑, Casp9↑, p38↑, MAPK↑, TumCCA↑, ChemoSen↑, HDAC8↓, Wnt↓, NF-kB↓, angioG↓, BioAv↓,
2782- CHr,    Broad-Spectrum Preclinical Antitumor Activity of Chrysin: Current Trends and Future Perspectives
- Review, Var, NA - Review, Stroke, NA - Review, Park, NA
*antiOx↑, *Inflam↓, *hepatoP↑, *neuroP↑, *BioAv↓, *cardioP↑, *lipidLev↓, *RenoP↑, *TNF-α↓, *IL2↓, *PI3K↓, *Akt↓, *ROS↓, *cognitive↑, eff↑, cycD1/CCND1↓, hTERT/TERT↓, VEGF↓, p‑STAT3↓, TumMeta↓, TumCP↓, eff↑, eff↑, IL1β↓, IL6↓, NF-kB↓, ROS↑, MMP↓, Cyt‑c↑, Apoptosis↑, ER Stress↑, Ca+2↑, TET1↑, Let-7↑, Twist↓, EMT↓, TumCCA↑, Casp3↑, Casp9↑, BAX↑, HK2↓, GlucoseCon↓, lactateProd↓, Glycolysis↓, SHP1↑, N-cadherin↓, E-cadherin↑, UPR↑, PERK↑, ATF4↑, eIF2α↑, RadioS↑, NOTCH1↑, NRF2↓, BioAv↑, eff↑,
1585- Citrate,    Sodium citrate targeting Ca2+/CAMKK2 pathway exhibits anti-tumor activity through inducing apoptosis and ferroptosis in ovarian cancer
- in-vitro, Ovarian, SKOV3 - in-vitro, Ovarian, A2780S - in-vitro, Nor, HEK293
Apoptosis↑, Ferroptosis↑, Ca+2↓, CaMKII ↓, Akt↓, mTOR↓, Hif1a↓, ROS↑, ChemoSen↑, Casp3↑, Casp9↑, BAX↑, Bcl-2↓, Cyt‑c↑, GlucoseCon↓, lactateProd↓, Pyruv↓, GLUT1↓, HK2↓, PFKP↓, Glycolysis↓, Hif1a↓, p‑Akt↓, p‑mTOR↓, Iron↑, lipid-P↑, MDA↑, ROS↑, H2O2↑, mtDam↑, GSH↓, GPx↓, GPx4↓, NADPH/NADP+↓, eff↓, FTH1↓, LC3‑Ⅱ/LC3‑Ⅰ↑, NCOA4↑, eff↓, TumCG↓,
3630- Croc,    Crocin Improves Cognitive Behavior in Rats with Alzheimer's Disease by Regulating Endoplasmic Reticulum Stress and Apoptosis
- in-vivo, AD, NA
*memory↑, *Bcl-2↑, *BAX↓, *Casp3↓, *GRP78/BiP↓, *CHOP↓, *Dose↝,
3631- Croc,    Investigation of the neuroprotective effects of crocin via antioxidant activities in HT22 cells and in mice with Alzheimer's disease
- in-vitro, AD, HT22 - in-vivo, AD, NA
*ROS↓, *Ca+2↓, *BAX↓, *BAD↓, *Casp3↓, *cognitive↑, *memory↑, *Aβ↓, *GPx↑, *SOD↑, *ChAT↑, *Ach↑, *AChE↓, *ROS↓, *p‑Akt↑, *p‑mTOR↑, *neuroP↑,
1572- Cu,    Recent Advances in Cancer Therapeutic Copper-Based Nanomaterials for Antitumor Therapy
- Review, NA, NA
eff↑, Fenton↑, ROS↑, eff↑, mtDam↑, BAX↑, Bcl-2↓, MMP↓, Cyt‑c↑, Casp3↑, ER Stress↑, CHOP↑, Apoptosis↑, selectivity↑, eff↑, Pyro↑, Paraptosis↑, Cupro↑, ChemoSen↑, eff↑,
1609- CUR,  EA,    Curcumin and Ellagic acid synergistically induce ROS generation, DNA damage, p53 accumulation and apoptosis in HeLa cervical carcinoma cells
- in-vitro, Cerv, NA
eff↑, Dose∅, ROS↑, DNAdam↑, P53↑, P21↑, BAX↑, Dose∅,
4826- CUR,    The Bright Side of Curcumin: A Narrative Review of Its Therapeutic Potential in Cancer Management
- Review, Var, NA
*antiOx↑, *Inflam↑, *ROS↓, Apoptosis↑, TumCP↓, BioAv↓, Half-Life↓, eff↑, TumCCA↑, BAX↑, Bak↑, PUMA↑, BIM↑, NOXA↑, TRAIL↑, Bcl-2↓, Bcl-xL↓, survivin↓, XIAP↓, cMyc↓, Casp↑, NF-kB↓, STAT3↓, AP-1↓, angioG↓, TumMeta↑, VEGF↓, MMPs↓, DNMTs↓, HDAC↓, ROS↑,
4671- CUR,    Targeting colorectal cancer stem cells using curcumin and curcumin analogues: insights into the mechanism of the therapeutic efficacy
- in-vitro, CRC, NA
CSCs↓, TumCG↓, ChemoSen↑, Wnt↓, β-catenin/ZEB1↓, Shh↓, NOTCH↓, DNMT1↓, STAT3↓, NF-kB↓, EGFR↓, IGFR↓, TumCCA↓, cl‑PARP↑, BAX↑, ECM/TCF↓,
141- CUR,    Effect of curcumin on Bcl-2 and Bax expression in nude mice prostate cancer
- in-vivo, Pca, PC3
BAX↑, Bcl-2↓,
136- CUR,  docx,    Combinatorial effect of curcumin with docetaxel modulates apoptotic and cell survival molecules in prostate cancer
- in-vitro, Pca, DU145 - in-vitro, Pca, PC3
Bcl-2↓, Bcl-xL↓, Mcl-1↓, BAX↑, BID↑, PARP↑, NF-kB↓, CDK1↓, COX2↓, RTK-RAS↓, PI3K/Akt↓, EGFR↓, HER2/EBBR2↓, P53↑,
170- CUR,    Curcumin sensitizes TRAIL-resistant xenografts: molecular mechanisms of apoptosis, metastasis and angiogenesis
- vitro+vivo, Pca, PC3
TRAILR↑, BAX↑, P21↑, p27↑, NF-kB↓, cycD1/CCND1↓, VEGF↓, uPA↓, MMP2↓, MMP9↓, Bcl-2↓, Bcl-xL↓,
15- CUR,  UA,    Effects of curcumin and ursolic acid in prostate cancer: A systematic review
NF-kB↝, Akt↝, AR↝, Apoptosis↝, Bcl-2↝, Casp3↝, BAX↝, P21↝, ROS↝, Apoptosis↝, Bcl-xL↝, JNK↝, MMP2↝, P53↝, PSA↝, VEGF↝, COX2↝, cycD1/CCND1↝, EGFR↝, IL6↝, β-catenin/ZEB1↝, mTOR↝, NRF2↝, p‑Akt↝, AP-1↝, Cyt‑c↝, PI3K↝, PTEN↝, Cyc↝, TNF-α↝,
130- CUR,    Maspin Enhances the Anticancer Activity of Curcumin in Hormone-refractory Prostate Cancer Cells
- in-vitro, Pca, DU145 - in-vitro, Pca, PC3
BAD↝, BAX↝, eff↑,
425- CUR,    Curcumin inhibits proliferation and promotes apoptosis of breast cancer cells
- in-vitro, BC, T47D - in-vitro, BC, MCF-7 - in-vitro, BC, MDA-MB-231 - in-vitro, BC, MDA-MB-468
CDC25↓, cDC2↓, P21↑, p‑Akt↓, p‑mTOR↓, Bcl-2↓, BAX↑, Casp3↑,
426- CUR,    Use of cancer chemopreventive phytochemicals as antineoplastic agents
- in-vitro, BC, MDA-MB-231 - in-vitro, BC, CAL51
Bcl-2↓, ROS↑, BAX↑, RAD51↑, γH2AX↑,
432- CUR,    Curcumin-Induced Global Profiling of Transcriptomes in Small Cell Lung Cancer Cells
- in-vitro, Lung, H446
Bcl-2↓, cycF↓, LOX1↓, VEGF↓, MRGPRF↓, BAX↑, Cyt‑c↑, miR-548ah-5p↑,
461- CUR,    Curcumin inhibits prostate cancer progression by regulating the miR-30a-5p/PCLAF axis
- in-vitro, Pca, PC3 - in-vitro, Pca, DU145
TumCP↓, TumCMig↓, TumCI↓, Apoptosis↑, miR-30a-5p↑, PCLAF↓, Bcl-2↓, Casp3↓, BAX↑, cl‑Casp3↑,
462- CUR,    Curcumin promotes cancer-associated fibroblasts apoptosis via ROS-mediated endoplasmic reticulum stress
- in-vitro, Pca, PC3
Bcl-2↓, MMP↓, cl‑Casp3↑, BAX↑, BIM↑, p‑PARP↑, PUMA↑, p‑P53↑, ROS↑, p‑ERK↑, p‑eIF2α↑, CHOP↑, ATF4↑,
472- CUR,    Curcumin inhibits ovarian cancer progression by regulating circ-PLEKHM3/miR-320a/SMG1 axis
- vitro+vivo, Ovarian, SKOV3 - vitro+vivo, Ovarian, A2780S
TumCP↓, Apoptosis↑, PCNA↓, miR-320a↓, BAX↑, cl‑Casp3↑, circ‑PLEKHM3↑, SMG1↑,
444- CUR,  Cisplatin,    LncRNA KCNQ1OT1 is a key factor in the reversal effect of curcumin on cisplatin resistance in the colorectal cancer cells
- vitro+vivo, CRC, HCT8
TumVol↓, Apoptosis↑, Bcl-2↓, Cyt‑c↑, BAX↑, cl‑Casp3↑, cl‑PARP1↑, miR-497↑, KCNQ1OT1↓,
453- CUR,    Cellular uptake and apoptotic properties of gemini curcumin in gastric cancer cells
- in-vitro, GC, AGS
Bcl-2↓, survivin↓, BAX↑, TumCCA↑,
457- CUR,    Curcumin regulates proliferation, autophagy, and apoptosis in gastric cancer cells by affecting PI3K and P53 signaling
- in-vitro, GC, SGC-7901 - in-vitro, GC, BGC-823
TumCP↓, Apoptosis↑, TumAuto↑, P53↑, PI3K↓, P21↑, p‑Akt↓, p‑mTOR↓, Bcl-2↓, Bcl-xL↓, LC3I↓, BAX↑, Beclin-1↑, cl‑Casp3↑, cl‑PARP↑, LC3II↑, ATG3↑, ATG5↑,
479- CUR,    Curcumin Has Anti-Proliferative and Pro-Apoptotic Effects on Tongue Cancer in vitro: A Study with Bioinformatics Analysis and in vitro Experiments
- in-vitro, Tong, CAL27
TumCP↓, TumCMig↓, Apoptosis↑, TumCCA↑, Bcl-2↓, BAX↑, cl‑Casp3↑,
1878- DCA,  5-FU,    Synergistic Antitumor Effect of Dichloroacetate in Combination with 5-Fluorouracil in Colorectal Cancer
- in-vitro, CRC, LS174T - in-vitro, CRC, LoVo - in-vitro, CRC, SW-620 - in-vitro, CRC, HT-29
tumCV↓, eff↑, PDKs↓, lactateProd↓, Glycolysis↓, mitResp↑, TumCCA↑, Bcl-2↓, BAX↑, Casp3↑,
4455- DFE,    Ajwa Date (Phoenix dactylifera L.) Extract Inhibits Human Breast Adenocarcinoma (MCF7) Cells In Vitro by Inducing Apoptosis and Cell Cycle Arrest
- in-vitro, BC, MCF-7 - in-vitro, Nor, 3T3
TumCCA↑, P53↑, BAX↑, Casp3↑, MMP↓, Fas↑, FasL↑, Bcl-2↓, Apoptosis↑, TumCP↓, TUNEL↑, eff↑, selectivity↑,
27- EA,    Ellagic acid inhibits human pancreatic cancer growth in Balb c nude mice
- in-vivo, PC, NA
HH↓, Gli1↓, GLI2↓, cycD1/CCND1↓, CDK1/2/5/9↓, p‑Akt↓, NOTCH1↓, Akt↓, Shh↓, Snail↓, MMP2↓, MMP9↓, BAX↑, E-cadherin↑, NOTCH3↓, HEY1↓,
1621- EA,    The multifaceted mechanisms of ellagic acid in the treatment of tumors: State-of-the-art
- Review, Var, NA
AntiCan↑, Apoptosis↑, TumCP↓, TumMeta↓, TumCI↓, TumAuto↑, VEGFR2↓, MAPK↓, PI3K↓, Akt↓, PD-1↓, NOTCH↓, PCNA↓, Ki-67↓, cycD1/CCND1↓, CDK2↑, CDK6↓, Bcl-2↓, cl‑PARP↑, BAX↑, Casp3↑, DR4↑, DR5↑, Snail↓, MMP2↓, MMP9↓, TGF-β↑, PKCδ↓, β-catenin/ZEB1↓, SIRT1↓, HO-1↓, ROS↑, CHOP↑, Cyt‑c↑, MMP↓, OCR↓, AMPK↑, Hif1a↓, NF-kB↓, E-cadherin↑, Vim↓, EMT↓, LC3II↑, CIP2A↓, GLUT1↓, PDH↝, MAD↓, LDH↓, GSTs↑, NOTCH↓, survivin↓, XIAP↓, ER Stress↑, ChemoSideEff↓, ChemoSen↑,
1610- EA,    Anticancer Effect of Pomegranate Peel Polyphenols against Cervical Cancer
- Review, Cerv, NA
TumCCA↑, STAT3↓, P21↑, IGFBP7↑, Akt↓, mTOR↓, ROS↑, DNAdam↑, P53↑, P21↑, BAX↑,
1613- EA,    Ellagitannins in Cancer Chemoprevention and Therapy
- Review, Var, NA
ROS↑, angioG↓, ChemoSen↑, BAX↑, Bak↑, Bcl-2↓, Bcl-xL↓, CDK2↓, CDK4↓, CDK6↓, cycD1/CCND1↓, cycE1↓, TumCG↓, VEGF↓, Hif1a↓, eff↑, COX2↓, TumCCA↑, selectivity↑, Wnt/(β-catenin)↓, *toxicity∅,
1620- EA,  Rad,    Radiosensitizing effect of ellagic acid on growth of Hepatocellular carcinoma cells: an in vitro study
- in-vitro, Liver, HepG2
ROS↑, P53↑, TumCCA↑, IL6↓, COX2↓, TNF-α↓, MMP↓, angioG↓, MMP9↓, BAX↑, Casp3↑, Apoptosis↑, RadioS↑, TBARS↑, GSH↓, Bax:Bcl2↑, p‑NF-kB↓, p‑STAT3↓,
23- EGCG,    (-)-Epigallocatechin-3-gallate induces apoptosis and suppresses proliferation by inhibiting the human Indian Hedgehog pathway in human chondrosarcoma cells
- in-vitro, Chon, SW1353 - in-vitro, Chon, CRL-7891
HH↓, Gli1↓, PTCH1↓, Bcl-2↓, BAX↑,
20- EGCG,    Potential Therapeutic Targets of Epigallocatechin Gallate (EGCG), the Most Abundant Catechin in Green Tea, and Its Role in the Therapy of Various Types of Cancer
- in-vivo, Liver, NA - in-vivo, Tong, NA
HH↓, Gli1↓, Smo↓, TNF-α↓, COX2↓, *antiOx↑, Hif1a↓, NF-kB↓, VEGF↓, STAT3↓, Bcl-2↓, P53↑, Akt↓, p‑Akt↓, p‑mTOR↓, EGFR↓, AP-1↓, BAX↑, ROS↑, Casp3↑, Apoptosis↑, NRF2↑, *H2O2↓, *NO↓, *SOD↑, *Catalase↑, *GPx↑, *ROS↓,
651- EGCG,    Epigallocatechin-3-Gallate Therapeutic Potential in Cancer: Mechanism of Action and Clinical Implications
ROS↑, p‑AMPK↑, mTOR↓, FAK↓, Smo↓, Gli1↓, HH↓, TumCMig↓, TumCI↓, NOTCH↓, JAK↓, STAT↓, Bcl-2↓, Bcl-xL↓, BAX↑, Casp9↑,
689- EGCG,    EGCG inhibited bladder cancer SW780 cell proliferation and migration both in vitro and in vivo via down regulation of NF-κB and MMP-9
- vitro+vivo, Bladder, SW780
Casp8↑, Casp9↑, Casp3↑, BAX↑, PARP↑, TumVol↓, NF-kB↓, MMP9↓,
680- EGCG,    Cancer preventive and therapeutic effects of EGCG, the major polyphenol in green tea
- Review, NA, NA
NF-kB↓, STAT3↓, PI3K↓, HGF/c-Met↓, Akt↓, ERK↓, MAPK↓, AR↓, Casp↑, Ki-67↓, PARP↑, Bcl-2↓, BAX↑, PCNA↓, p27↑, P21↑,
668- EGCG,    The Potential Role of Epigallocatechin-3-Gallate (EGCG) in Breast Cancer Treatment
- Review, BC, MCF-7 - Review, BC, MDA-MB-231
HER2/EBBR2↓, EGFR↓, mtDam↑, ROS↑, PI3K/Akt↓, P53↑, P21↑, Casp3↑, Casp9↑, BAX↑, PTEN↑, Bcl-2↓, hTERT/TERT↓, STAT3↓, TumCCA↑, Hif1a↓,
3205- EGCG,    The Role of Epigallocatechin-3-Gallate in Autophagy and Endoplasmic Reticulum Stress (ERS)-Induced Apoptosis of Human Diseas
- Review, Var, NA - Review, AD, NA
Beclin-1↑, ROS↑, Apoptosis↑, ER Stress↑, *Inflam↓, *cardioP↑, *antiOx↑, *LDL↓, *NF-kB↓, *MPO↓, *glucose↓, *ROS↓, ATG5↑, LC3B↑, MMP↑, lactateProd↓, VEGF↓, Zeb1↑, Wnt↑, IGF-1R↑, Fas↑, Bak↑, BAD↑, TP53↓, Myc↓, Casp8↓, LC3II↑, NOTCH3↓, eff↑, p‑Akt↓, PARP↑, *Cyt‑c↓, *BAX↓, *memory↑, *neuroP↑, *Ca+2?, GRP78/BiP↑, CHOP↑, ATF4↑, Casp3↑, Casp8↑, UPR↑,
3201- EGCG,    Epigallocatechin Gallate (EGCG): Pharmacological Properties, Biological Activities and Therapeutic Potential
- Review, NA, NA
*AntiCan↑, *cardioP↑, *neuroP↑, *BioAv↝, *BioAv↓, *BioAv↓, *Dose↝, *Half-Life↝, *BioAv↑, *BBB↑, *hepatoP↓, *other↓, *Inflam↓, *NF-kB↓, *AP-1↓, *iNOS↓, *COX2↓, *ROS↓, *RNS↓, *IL8↓, *JAK↓, *PDGFR-BB↓, *IGF-1R↓, *MMP2↓, *P53↓, *NRF2↑, *TNF-α↓, *IL6↓, *E2Fs↑, *SOD1↑, *SOD2↑, Casp3↑, Cyt‑c↑, PARP↑, DNMTs↓, Telomerase↓, Hif1a↓, MMPs↓, BAX↑, Bak↑, Bcl-2↓, Bcl-xL↓, P53↑, PTEN↑, TumCP↓, MAPK↓, HGF/c-Met↓, TIMP1↑, HDAC↓, MMP9↓, uPA↓, GlutMet↓, ChemoSen↑, chemoP↑,
3238- EGCG,    Green tea catechin, epigallocatechin-3-gallate (EGCG): mechanisms, perspectives and clinical applications
- Review, Var, NA
Telomerase↓, DNMTs↓, cycD1/CCND1↓, cycE/CCNE↓, CDK2↓, CDK4↓, CDK6↓, HATs↓, HDAC↓, selectivity↑, uPA↓, NF-kB↓, TNF-α↓, *ROS↓, *antiOx↑, Hif1a↓, VEGF↓, MMP2↓, MMP9↓, FAK↓, TIMP2↑, Mcl-1↓, survivin↓, XIAP↓, PCNA↓, p16↑, P21↑, p27↑, pRB↑, P53↑, MDM2↑, ROS↑, Casp3↑, Casp8↑, Casp9↑, Cyt‑c↑, Diablo↑, BAX⇅, cl‑PPARα↓, PDGF↓, EGFR↓, FOXO↑, AP-1↓, JNK↓, COX2↓, angioG↓,
1516- EGCG,    Epigallocatechin Gallate (EGCG): Pharmacological Properties, Biological Activities and Therapeutic Potential
- Review, NA, NA
*Dose∅, Half-Life∅, BioAv∅, BBB↑, toxicity∅, eff↓, Apoptosis↑, Casp3↑, Cyt‑c↑, cl‑PARP↑, DNMTs↓, Telomerase↓, angioG↓, Hif1a↓, NF-kB↓, MMPs↓, BAX↑, Bak↑, Bcl-2↓, Bcl-xL↓, P53↑, PTEN↑, IGF-1↓, H3↓, HDAC1↓, *LDH↓, *ROS↓,
1303- EGCG,    (-)-Epigallocatechin-3-gallate induces apoptosis in human endometrial adenocarcinoma cells via ROS generation and p38 MAP kinase activation
- in-vitro, EC, NA
TumCP↓, ER-α36↓, cycD1/CCND1↓, ERK↑, Jun↓, BAX↑, Bcl-2↓, cl‑Casp3↑, ROS↑, p38↑,
1324- EMD,    Is Emodin with Anticancer Effects Completely Innocent? Two Sides of the Coin
- Review, Var, NA
*toxicity↑, *BioAv↓, Akt↓, ERK↓, ROS↑, MMP↓, Bcl-2↓, BAX↑, TumCCA↑,
1325- EMD,  PacT,    Emodin enhances antitumor effect of paclitaxel on human non-small-cell lung cancer cells in vitro and in vivo
- vitro+vivo, Lung, A549
TumCP↓, Apoptosis↑, BAX↑, Casp3↑, Bcl-2↓, p‑Akt↓, p‑ERK↓, ChemoSideEff∅, ChemoSen↑,
1326- EMD,    Emodin induces a reactive oxygen species-dependent and ATM-p53-Bax mediated cytotoxicity in lung cancer cells
- in-vitro, Lung, A549
Apoptosis↑, ROS↑, P53↑, BAX↑, ATM↑,
1327- EMD,    Emodin induces apoptosis in human lung adenocarcinoma cells through a reactive oxygen species-dependent mitochondrial signaling pathway
- in-vitro, Lung, A549
Cyt‑c↑, Casp2↑, Casp3↑, Casp9↑, ERK↓, Akt↓, ROS↑, MMP↓, Bcl-2↓, BAX↑,
1296- EMD,    Emodin inhibits LOVO colorectal cancer cell proliferation via the regulation of the Bcl-2/Bax ratio and cytochrome c
- in-vitro, CRC, LoVo
BAX↑, Bcl-2↓, MMP↓, Cyt‑c↑,
1330- EMD,    Aloe emodin-induced apoptosis in t-HSC/Cl-6 cells involves a mitochondria-mediated pathway
- in-vitro, NA, NA
tumCV↓, Casp3↑, Casp9↑, MMP↓, Cyt‑c↑, BAX↑, Bax:Bcl2↑,
3460- EP,    Picosecond pulsed electric fields induce apoptosis in HeLa cells via the endoplasmic reticulum stress and caspase-dependent signaling pathways
- in-vitro, Cerv, HeLa
tumCV↓, Apoptosis↑, TumCCA↑, GRP78/BiP↑, GRP94↑, CEBPA↑, CHOP↑, Ca+2↑, Casp12↑, Casp9↑, Casp3↑, Cyt‑c↑, BAX↑, Bcl-2↓, ER Stress↑, MMP↓,
1289- FA,    Cytotoxic and Apoptotic Effects of Ferulic Acid on Renal Carcinoma Cell Line (ACHN)
- in-vitro, RCC, NA
Bcl-2↓, BAX↑, Apoptosis↑,
1656- FA,    Ferulic Acid: A Natural Phenol That Inhibits Neoplastic Events through Modulation of Oncogenic Signaling
- Review, Var, NA
tyrosinase↓, CK2↓, TumCP↓, TumCMig↓, FGF↓, FGFR1↓, PI3K↓, Akt↓, VEGF↓, FGFR1↓, FGFR2↓, PDGF↓, ALAT↓, AST↓, TumCCA↑, CDK2↓, CDK4↓, CDK6↓, BAX↓, Bcl-2↓, MMP2↓, MMP9↓, P53↑, PARP↑, PUMA↑, NOXA↑, Casp3↑, Casp9↑, TIMP1↑, lipid-P↑, mtDam↑, EMT↓, Vim↓, E-cadherin↓, p‑STAT3↓, COX2↓, CDC25↓, RadioS↑, ROS↑, DNAdam↑, γH2AX↑, PTEN↑, LC3II↓, Beclin-1↓, SOD↓, Catalase↓, GPx↓, Fas↑, *BioAv↓, cMyc↓, Beclin-1↑, LC3‑Ⅱ/LC3‑Ⅰ↓,
1654- FA,    Molecular mechanism of ferulic acid and its derivatives in tumor progression
- Review, Var, NA
AntiCan↑, Inflam↓, RadioS↑, ROS↑, Apoptosis↑, TumCCA↑, TumCMig↑, TumCI↓, angioG↓, ChemoSen↑, ChemoSideEff↓, P53↑, cycD1/CCND1↓, CDK4↓, CDK6↓, TumW↓, miR-34a↑, Bcl-2↓, Casp3↑, BAX↑, β-catenin/ZEB1↓, cMyc↓, Bax:Bcl2↑, SOD↓, GSH↓, LDH↓, ERK↑, eff↑, JAK2↓, STAT6↓, NF-kB↓, PYCR1↓, PI3K↓, Akt↓, mTOR↓, Ki-67↓, VEGF↓, FGFR1↓, EMT↓, CAIX↓, LC3II↑, p62↑, PKM2↓, Glycolysis↓, *BioAv↓,
2844- FIS,    Fisetin, a dietary flavonoid induces apoptosis via modulating the MAPK and PI3K/Akt signalling pathways in human osteosarcoma (U-2 OS) cells
- in-vitro, OS, U2OS
tumCV↓, Apoptosis↑, Casp3↑, Casp8↑, Casp9↑, BAX↑, BAD↑, Bcl-2↓, Bcl-xL↓, PI3K↓, Akt↓, ERK↓, p‑JNK↑, p‑cJun↑, p‑p38↑, ROS↑, MMP↓, mTORC1↓, PTEN↑, p‑GSK‐3β↓, GSK‐3β↑, NF-kB↓, IKKα↑, Cyt‑c↑,
2845- FIS,    Fisetin: A bioactive phytochemical with potential for cancer prevention and pharmacotherapy
- Review, Var, NA
PI3K↓, Akt↓, mTOR↓, p38↓, *antiOx↑, *neuroP↑, Casp3↑, Bcl-2↓, Mcl-1↓, BAX↑, BIM↑, BAD↑, AMPK↑, ACC↑, DNAdam↑, MMP↓, eff↑, ROS↑, cl‑PARP↑, Cyt‑c↑, Diablo↑, P53↑, p65↓, Myc↓, HSP70/HSPA5↓, HSP27↓, COX2↓, Wnt↓, EGFR↓, NF-kB↓, TumCCA↑, CDK2↓, CDK4↓, cycD1/CCND1↓, cycA1/CCNA1↓, P21↑, MMP2↓, MMP9↓, TumMeta↓, MMP1↓, MMP3↓, MMP7↓, MET↓, N-cadherin↓, Vim↓, Snail↓, Fibronectin↓, E-cadherin↑, uPA↓, ChemoSen↑, EMT↓, Twist↓, Zeb1↓, cFos↓, cJun↓, EGF↓, angioG↓, VEGF↓, eNOS↓, *NRF2↑, HO-1↑, NRF2↓, GSTs↓, ATF4↓,
2849- FIS,    Activation of reactive oxygen species/AMP activated protein kinase signaling mediates fisetin-induced apoptosis in multiple myeloma U266 cells
- in-vitro, Melanoma, U266
TumCD↑, TumCCA↑, Casp3↑, Bcl-2↓, Mcl-1↓, BAX↑, BIM↑, BAD↑, AMPK↑, ACC↑, p‑Akt↓, p‑mTOR↓, ROS↑, eff↓,
2857- FIS,    A review on the chemotherapeutic potential of fisetin: In vitro evidences
- Review, Var, NA
COX2↓, PGE2↓, EGFR↓, Wnt↓, β-catenin/ZEB1↓, TCF↑, Apoptosis↑, Casp3↑, cl‑PARP↑, Bcl-2↓, Mcl-1↓, BAX↑, BIM↑, BAD↑, Akt↓, mTOR↓, ACC↑, Cyt‑c↑, Diablo↑, cl‑Casp8↑, Fas↑, DR5↑, TRAIL↑, Securin↓, CDC2↓, CDC25↓, HSP70/HSPA5↓, CDK2↓, CDK4↓, cycD1/CCND1↓, MMP2↓, uPA↓, NF-kB↓, cFos↓, cJun↓, MEK↓, p‑ERK↓, N-cadherin↓, Vim↓, Snail↓, Fibronectin↓, E-cadherin↓, NF-kB↑, ROS↑, DNAdam↑, MMP↓, CHOP↑, eff↑, ChemoSen↑,
2827- FIS,    The Potential Role of Fisetin, a Flavonoid in Cancer Prevention and Treatment
- Review, Var, NA
*antiOx↑, *Inflam↓, neuroP↑, hepatoP↑, RenoP↑, cycD1/CCND1↓, TumCCA↑, MMPs↓, VEGF↓, MAPK↓, NF-kB↓, angioG↓, Beclin-1↑, LC3s↑, ATG5↑, Bcl-2↓, BAX↑, Casp↑, TNF-α↓, Half-Life↓, MMP↓, mt-ROS↑, cl‑PARP↑, CDK2↓, CDK4↓, Cyt‑c↑, Diablo↑, DR5↑, Fas↑, PCNA↓, Ki-67↓, p‑H3↓, chemoP↑, Ca+2↑, Dose↝, CDC25↓, CDC2↓, CHK1↑, Chk2↑, ATM↑, PCK1↓, RAS↓, p‑p38↓, Rho↓, uPA↓, MMP7↓, MMP13↓, GSK‐3β↑, E-cadherin↑, survivin↓, VEGFR2↓, IAP2↓, STAT3↓, JAK1↓, mTORC1↓, mTORC2↓, NRF2↑,
2828- FIS,    Fisetin, a Potent Anticancer Flavonol Exhibiting Cytotoxic Activity against Neoplastic Malignant Cells and Cancerous Conditions: A Scoping, Comprehensive Review
- Review, Var, NA
*neuroP↑, *antiOx↑, *Inflam↓, RenoP↑, COX2↓, Wnt↓, EGFR↓, NF-kB↓, Casp3↑, Ca+2↑, Casp8↑, TumCCA↑, CDK1↓, PI3K↓, Akt↓, mTOR↓, MAPK↓, *P53↓, *P21↓, *p16↓, mTORC1↓, mTORC2↓, P53↑, P21↑, cycD1/CCND1↓, cycA1/CCNA1↓, CDK2↓, CDK4↓, BAX↑, Bcl-2↓, PCNA↓, HER2/EBBR2↓, Cyt‑c↑, MMP↓, cl‑Casp9↑, MMP2↓, MMP9↓, cl‑PARP↑, uPA↓, DR4↑, DR5↑, ROS↓, AIF↑, CDC25↓, Dose↑, CHOP↑, ROS↑, cMyc↓, cardioP↑,
2839- FIS,    Dietary flavonoid fisetin for cancer prevention and treatment
- Review, Var, NA
DNAdam↑, ROS↑, Apoptosis↑, Bcl-2↓, BAX↑, cl‑Casp9↑, cl‑Casp3↑, Cyt‑c↑, lipid-P↓, TumCG↓, TumCA↓, TumCMig↓, TumCI↓, uPA↓, ERK↓, MMP9↓, NF-kB↓, cFos↓, cJun↓, AP-1↓, TumCCA↑, AR↓, mTORC1↓, mTORC2↓, TSC2↑, EGF↓, TGF-β↓, EMT↓, P-gp↓, PI3K↓, Akt↓, mTOR↓, eff↑, ROS↓, ER Stress↑, IRE1↑, ATF4↑, GRP78/BiP↑, ChemoSen↑, CDK2↓, CDK4↓, cycE/CCNE↓, cycD1/CCND1↓, P21↑, COX2↓, Wnt↓, EGFR↓, β-catenin/ZEB1↓, TCF-4↓, MMP7↓, RadioS↑, eff↑,
2843- FIS,    Fisetin and Quercetin: Promising Flavonoids with Chemopreventive Potential
- Review, Var, NA
NRF2↑, Keap1↓, ChemoSen↑, BioAv↓, Cyt‑c↑, Casp3↑, Casp9↑, BAX↑, tumCV↓, Mcl-1↓, cl‑PARP↑, IGF-1↓, Akt↓, CDK6↓, TumCCA↑, P53?, cycD1/CCND1↓, cycE/CCNE↓, CDK2↓, CDK4↓, CDK6↓, MMP2↓, MMP9↓, MMP1↓, MMP7↓, MMP3↓, VEGF↓, PI3K↓, mTOR↓, COX2↓, Wnt↓, EGFR↓, NF-kB↓, ERK↓, ROS↑, angioG↓, TNF-α↓, PGE2↓, iNOS↓, NO↓, IL6↓, HSP70/HSPA5↝, HSP27↝,
1300- GA,  PacT,  carbop,    Gallic acid potentiates the apoptotic effect of paclitaxel and carboplatin via overexpression of Bax and P53 on the MCF-7 human breast cancer cell line
- in-vitro, BC, MCF-7
TumCCA↑, Apoptosis↑, P53↑, BAX↑, Casp3↑, Bcl-2↓,
1967- GamB,    Gambogic acid induces apoptotic cell death in T98G glioma cells
- in-vitro, GBM, T98G
BAX↑, AIF↑, Cyt‑c↑, cl‑Casp3↑, cl‑Casp8↑, cl‑Casp9↑, cl‑PARP↓, Bcl-2↓, ROS↑,
1959- GamB,    Gambogic acid induces GSDME dependent pyroptotic signaling pathway via ROS/P53/Mitochondria/Caspase-3 in ovarian cancer cells
- in-vitro, Ovarian, NA - in-vivo, NA, NA
AntiCan↑, Pyro↑, tumCV?, CellMemb↓, cl‑Casp3↑, GSDME-N↑, ROS?, p‑P53↑, eff↓, MMP↓, Bcl-2↓, BAX↑, mtDam↑, Cyt‑c↑, TumCG↓, CD4+↑, CD8+↑,
831- GAR,  CUR,    Induction of apoptosis by garcinol and curcumin through cytochrome c release and activation of caspases in human leukemia HL-60 cells
- in-vitro, AML, HL-60
Apoptosis↑, Casp3↑, MMP↓, Cyt‑c↑, proCasp9↑, Bcl-2↓, BAX↑, PARP↓, DNAdam↑, DFF45↓,
823- GAR,    Garcinol Potentiates TRAIL-Induced Apoptosis through Modulation of Death Receptors and Antiapoptotic Proteins
- in-vitro, BC, MCF-7 - in-vitro, Nor, MCF10 - in-vitro, CRC, HCT116
Casp3↑, Casp9↑, Casp8↑, DR5↑, survivin↓, Bcl-2↓, XIAP↓, cFLIP↓, BAX↑, Cyt‑c↑, ROS↑, GSH↓, *eff↓,
820- GAR,    Garcinol in gastrointestinal cancer prevention: recent advances and future prospects
- Review, NA, NA
Fas↑, TRAIL↑, PARP↑, BAX↑, Bcl-2↓, ROS↑, STAT3↓, Apoptosis↑, MMP2↓, MMP9↓,
828- GAR,  Cisplatin,    Garcinol Alone and in Combination With Cisplatin Affect Cellular Behavior and PI3K/AKT Protein Phosphorylation in Human Ovarian Cancer Cells
- in-vitro, Ovarian, OVCAR-3
tumCV↓, cl‑PARP↑, cl‑Casp3↑, BAX↑, p‑PI3K↓, p‑Akt↓, NF-kB↓,
795- GAR,    Garcinol—A Natural Histone Acetyltransferase Inhibitor and New Anti-Cancer Epigenetic Drug
- Review, NA, NA
HATs↓, BAX↑, PARP↑, Bcl-2↓, Casp3↑, Casp9↑, DR5↑, cFLIP↓, MMP2↓, MMP9↓, STAT3↓, p‑Akt↓,
802- GAR,    Garcinol acts as an antineoplastic agent in human gastric cancer by inhibiting the PI3K/AKT signaling pathway
- in-vitro, GC, HGC27
TumCP↓, TumCI↓, Apoptosis↑, PI3K/Akt↓, Akt↓, p‑mTOR↓, cycD1/CCND1↓, MMP2↓, MMP9↓, BAX↑, Bcl-2↓,
805- GAR,  Cisplatin,  PacT,    Garcinol Exhibits Anti-Neoplastic Effects by Targeting Diverse Oncogenic Factors in Tumor Cells
- Review, NA, NA
ERK↓, PI3K/Akt↓, Wnt/(β-catenin)↓, STAT3↓, NF-kB↓, ChemoSen↑, COX2↓, Casp3↑, Casp9↑, BAX↑, Bcl-2↓, VEGF↓, TGF-β↓, HATs↓, E-cadherin↑, Vim↓, Zeb1↓, ZEB2↓, Let-7↑, MMP9↓, TumCCA↑, ROS↑, MMP↓, IL6↓, NOTCH1↓,
3723- Gb,    Can We Use Ginkgo biloba Extract to Treat Alzheimer’s Disease? Lessons from Preclinical and Clinical Studies
- Review, AD, NA
*memory↑, *antiOx↑, *Casp3↓, *APP↓, *AChE↓, *Aβ↓, *5HT↑, *SOD↓, *MDA↓, *NO↓, *GSH↑, *Bcl-2↑, *BAX↑, *TNF-α↓, *IL1β↑, *iNOS↓, *IL10↓, *p‑tau↓, *ROS↓, *MAOB↓, *cognitive↑, *neuroP↑, *Apoptosis↓,
4505- GLA,    Gamma linolenic acid suppresses hypoxia-induced proliferation and invasion of non-small cell lung cancer cells by inhibition of HIF1α
- in-vitro, NSCLC, Calu-1
TumCP↓, PCNA↓, Ki-67↓, MCM2↓, Bcl-2↓, BAX↑, cl‑Casp3↑, TumCMig↓, TumCI↓, Hif1a↓, VEGF↓,
401- GoldNP,  MF,    In vitro evaluation of electroporated gold nanoparticles and extremely-low frequency electromagnetic field anticancer activity against Hep-2 laryngeal cancer cells
- in-vitro, Laryn, HEp2
Casp3↑, P53↑, BAX↑, Bcl-2↓,
843- Gra,    Graviola (Annona muricata) Exerts Anti-Proliferative, Anti-Clonogenic and Pro-Apoptotic Effects in Human Non-Melanoma Skin Cancer UW-BCC1 and A431 Cells In Vitro: Involvement of Hedgehog Signaling
- in-vitro, NMSC, A431 - in-vitro, NMSC, UW-BCC1 - in-vitro, Nor, NHEKn
TumCG↓, TumCCA↑, Cyc↓, Apoptosis↑, cl‑Casp3↑, cl‑Casp8↑, cl‑PARP↑, HH↓, Smo↓, Gli1↓, GLI2↓, Shh↓, Sufu↑, BAX↑, Bcl-2↓, *toxicity↓,
841- Gra,    The Chemopotential Effect of Annona muricata Leaves against Azoxymethane-Induced Colonic Aberrant Crypt Foci in Rats and the Apoptotic Effect of Acetogenin Annomuricin E in HT-29 Cells: A Bioassay-Guided Approach
- in-vitro, CRC, HT-29 - in-vitro, Nor, CCD841
PCNA↓, Bcl-2↓, BAX↑, *MDA↓, lipid-P↓, TumCG↓, MMP↓, Cyt‑c↑, Casp3↑, Casp7↑, Casp9↑, *ROS↓, LDH↓, *toxicity↓, selectivity↑,
838- Gra,    Antiproliferative activity of aqueous leaf extract of Annona muricata L. on the prostate, BPH-1 cells, and some target genes
- in-vitro, Pca, BPH1
BAX↑, Bcl-2↓, TumVol↓,
835- Gra,    Annona muricata leaves induced apoptosis in A549 cells through mitochondrial-mediated pathway and involvement of NF-κB
- in-vitro, Lung, A549
ROS↑, MMP↓, BAX↑, Bcl-2↓, Cyt‑c↑, Casp9↑, Casp3↑, Apoptosis↑, TumCCA↑,
858- Gra,    Annona muricata leaves induce G₁ cell cycle arrest and apoptosis through mitochondria-mediated pathway in human HCT-116 and HT-29 colon cancer cells
- in-vitro, CRC, HT-29 - in-vitro, CRC, HCT116
TumCCA↑, Apoptosis↑, ROS↑, MMP↓, Cyt‑c↑, Casp↑, BAX↑, Bcl-2↓, TumCMig↓, TumCI↓,
1232- Gra,    Graviola: A Systematic Review on Its Anticancer Properties
- Review, NA, NA
EGFR↓, cycD1/CCND1↓, Bcl-2↓, TumCCA↑, Apoptosis↑, ROS↑, MMP↓, BAX↑, Cyt‑c↑, Hif1a↓, NF-kB↓, GLUT1↓, GLUT4↓, HK2↓, LDHA↓, ATP↓,
1234- Gra,    Graviola attenuates DMBA-induced breast cancer possibly through augmenting apoptosis and antioxidant pathway and downregulating estrogen receptors
- in-vivo, BC, NA
Apoptosis↑, BAX↑, P53↑, Casp3↑, ER-α36↓, lipid-P↓,
3764- H2,    Therapeutic Effects of Hydrogen Gas Inhalation on Trimethyltin-Induced Neurotoxicity and Cognitive Impairment in the C57BL/6 Mice Model
- in-vivo, AD, NA
*memory↑, *Aβ↓, *p‑tau↓, *BAX↓, *ROS↓, *NO↓, *Ca+2↓, *MDA↓, *Catalase↓, *GPx↓, *TNF-α↓, *Bcl-2↑, *VEGF↑, *Inflam↓, *cognitive↑,
1629- HCA,  Tam,    Hydroxycitric acid reverses tamoxifen resistance through inhibition of ATP citrate lyase
- in-vitro, BC, MCF-7
ACLY↓, eff↓, tumCV↓, eff↑, Casp3↑, BAX↑, Bcl-2↓,
1657- HCAs,    Anticancer Activity of Sinapic Acid by Inducing Apoptosis in HT-29 Human Colon Cancer Cell Line 2023
- in-vitro, CRC, HT-29
cl‑Casp3↑, BAX↑, cl‑PARP↑, γH2AX↑, Cyt‑c↑,
2865- HNK,    Liposomal Honokiol induces ROS-mediated apoptosis via regulation of ERK/p38-MAPK signaling and autophagic inhibition in human medulloblastoma
- in-vitro, MB, DAOY - vitro+vivo, NA, NA
BioAv↓, BioAv↓, TumCP↓, selectivity↑, P53↑, P21↑, CDK4↓, cycD1/CCND1↓, mtDam↑, ROS↑, eff↓, Casp3↑, BAX↑, LC3II↑, Beclin-1↑, ATG7↑, p62↑, eff↑, ChemoSen↑, *toxicity↓,
2867- HNK,    Honokiol ameliorates oxidative stress-induced DNA damage and apoptosis of c2c12 myoblasts by ROS generation and mitochondrial pathway
- in-vitro, Nor, C2C12
*antiOx↑, *ROS↓, *Bcl-2↑, *BAX↓, Casp9∅, Casp3∅, cl‑PARP∅, Cyt‑c?,
2868- HNK,    Honokiol: A review of its pharmacological potential and therapeutic insights
- Review, Var, NA - Review, Sepsis, NA
*P-gp↓, *ROS↓, *TNF-α↓, *IL10↓, *IL6↓, eIF2α↑, CHOP↑, GRP78/BiP↑, BAX↑, cl‑Casp9↑, p‑PERK↑, ER Stress↑, Apoptosis↑, MMPs↓, cFLIP↓, CXCR4↓, Twist↓, HDAC↓, BMPs↑, p‑STAT3↓, mTOR↓, EGFR↓, NF-kB↓, Shh↓, VEGF↓, tumCV↓, TumCMig↓, TumCI↓, ERK↓, Akt↓, Bcl-2↓, Nestin↓, CD133↓, p‑cMET↑, RAS↑, chemoP↑, *NRF2↑, *NADPH↓, *p‑Rac1↓, *ROS↓, *IKKα↑, *NF-kB↓, *COX2↓, *PGE2↓, *Casp3↓, *hepatoP↑, *antiOx↑, *GSH↑, *Catalase↑, *RenoP↑, *ALP↓, *AST↓, *ALAT↓, *neuroP↑, *cardioP↑, *HO-1↑, *Inflam↓,
2082- HNK,    Revealing the role of honokiol in human glioma cells by RNA-seq analysis
- in-vitro, GBM, U87MG - in-vitro, GBM, U251
AntiCan↑, TumCP↑, TumAuto↑, Apoptosis↑, *BioAv↑, *neuroP↑, *NF-kB↑, MAPK↑, GPx4↑, Tf↑, BAX↑, Bcl-2↓, antiOx↑, Hif1a↓, Ferroptosis↑,
1286- HNK,    The natural product honokiol induces caspase-dependent apoptosis in B-cell chronic lymphocytic leukemia (B-CLL) cells
- in-vitro, CLL, NA
Apoptosis↑, Casp3↑, Casp8↑, Casp9↑, cl‑PARP↑, Bcl-2↓, BAX↑,
4640- HT,    The anti-cancer potential of hydroxytyrosol
- Review, Var, NA
selectivity↑, MMP↓, Cyt‑c↑, Casp9↑, Casp3↑, Bcl-2↓, BAX↑, MPT↑, Fas↑, PI3K↓, Akt↓, mTOR↓, Mcl-1↓, survivin↓, STAT3↓, EMT↓, TumCI↓, angioG↓, E-cadherin↑, N-cadherin↓, Snail↓, Twist↓, MMPs↓, MMP2↓, MMP9↓, VEGF↓, VEGFR2↓, Hif1a↓, CSCs↓, CD44↓, Wnt↓, β-catenin/ZEB1↓,
1927- JG,    Juglone-induced apoptosis in human gastric cancer SGC-7901 cells via the mitochondrial pathway
- in-vitro, GC, SGC-7901
Apoptosis↑, ROS↑, Bcl-2↓, BAX↑, MMP↓, Cyt‑c↑, Casp3?, Bax:Bcl2↑,
1926- JG,    Mechanism of juglone-induced apoptosis of MCF-7 cells by the mitochondrial pathway
- in-vitro, BC, MCF-7
TumCG↓, ROS↑, MMP↓, i-Ca+2↑, BAX↑, Bcl-2↓, Cyt‑c↑, Casp3?,
1923- JG,    Mechanism of Juglone-Induced Cell Cycle Arrest and Apoptosis in Ishikawa Human Endometrial Cancer Cells
- in-vitro, Endo, NA
TumCP↓, TumCCA↑, cycA1/CCNA1↓, ROS↑, P21↑, CDK2↓, CDK1↓, CDC25↓, Bcl-2↓, Bcl-xL↓, BAX↑, BAD↑, Cyt‑c↑,
1924- JG,    Juglone triggers apoptosis of non-small cell lung cancer through the reactive oxygen species -mediated PI3K/Akt pathway
- in-vitro, Lung, A549
TumCMig↓, TumCI↓, TumCCA↑, Apoptosis↑, cl‑Casp3↑, BAX↑, Cyt‑c↑, ROS↑, MDA↑, GPx4↓, SOD↓, PI3K↓, Akt↓, eff↓,
866- Lae,    Amygdalin from Apricot Kernels Induces Apoptosis and Causes Cell Cycle Arrest in Cancer Cells: An Updated Review
- Review, NA, NA
BAX↑, Casp3↑, Bcl-2↓, TumCCA↑,
862- Lae,    Molecular mechanism of amygdalin action in vitro: review of the latest research
- Review, NA, NA
BAX↑, Casp3↑, Bcl-2↓, Akt↓, mTOR↓, p19↑, TumCCA↑, other↓,
1306- LE,    Modulations of the Bcl-2/Bax family were involved in the chemopreventive effects of licorice root (Glycyrrhiza uralensis Fisch) in MCF-7 human breast cancer cell
- in-vitro, BC, MCF-7
Bcl-2↓, BAX↑, Apoptosis↑, TumCCA↑,
1317- LT,    Luteolin Suppresses Teratoma Cell Growth and Induces Cell Apoptosis via Inhibiting Bcl-2
- vitro+vivo, Ovarian, PA1
Bcl-2↓, BAX↑, Apoptosis↑, TumCG↓,
2915- LT,    Luteolin promotes apoptotic cell death via upregulation of Nrf2 expression by DNA demethylase and the interaction of Nrf2 with p53 in human colon cancer cells
- in-vitro, Colon, HT29 - in-vitro, CRC, SNU-407 - in-vitro, Nor, FHC
DNMTs↓, TET1↑, NRF2↑, HDAC↓, tumCV↓, BAX↑, Casp9↑, Casp3↑, Bcl-2↓, ROS↓, GSS↑, Catalase↑, HO-1↑, DNMT1↓, DNMT3A↓, TET1↑, TET3↑, TET2↓, P53↑, P21↑,
2916- LT,    Antioxidative and Anticancer Potential of Luteolin: A Comprehensive Approach Against Wide Range of Human Malignancies
- Review, Var, NA - Review, AD, NA - Review, Park, NA
proCasp9↓, CDC2↓, CycB/CCNB1↓, Casp9↑, Casp3↑, Cyt‑c↑, cycA1/CCNA1↑, CDK2↓, APAF1↑, TumCCA↑, P53↑, BAX↑, VEGF↓, Bcl-2↓, Apoptosis↑, p‑Akt↓, p‑EGFR↓, p‑ERK↓, p‑STAT3↓, cardioP↑, Catalase↓, SOD↓, *BioAv↓, *antiOx↑, *ROS↓, *NO↓, *GSTs↑, *GSR↑, *SOD↑, *Catalase↑, *lipid-P↓, PI3K↓, Akt↓, CDK2↓, BNIP3↑, hTERT/TERT↓, DR5↑, Beclin-1↑, TNF-α↓, NF-kB↓, IL1↓, IL6↓, EMT↓, FAK↓, E-cadherin↑, MDM2↓, NOTCH↓, MAPK↑, Vim↓, N-cadherin↓, Snail↓, MMP2↓, Twist↓, MMP9↓, ROS↑, MMP↓, *AChE↓, *MMP↑, *Aβ↓, *neuroP↑, Trx1↑, ROS↓, *NRF2↑, NRF2↓, *BBB↑, ChemoSen↑, GutMicro↑,
2921- LT,    Luteolin as a potential hepatoprotective drug: Molecular mechanisms and treatment strategies
- Review, Nor, NA
*hepatoP↑, *AMPK↑, *SIRT1↑, *ROS↓, STAT3↓, TNF-α↓, NF-kB↓, *IL2↓, *IFN-γ↓, *GSH↑, *SREBP1↓, *ZO-1↑, *TLR4↓, BAX↑, Bcl-2↓, XIAP↓, Fas↑, Casp8↑, Beclin-1↑, *TXNIP↓, *Casp1↓, *IL1β↓, *IL18↓, *NLRP3↓, *MDA↓, *SOD↑, *NRF2↑, *ER Stress↓, *ALAT↓, *AST↓, *iNOS↓, *IL6↓, *HO-1↑, *NQO1↑, *PPARα↑, *ATF4↓, *CHOP↓, *Inflam↓, *antiOx↑, *GutMicro↑,
2914- LT,    Therapeutic Potential of Luteolin on Cancer
- Review, Var, NA
*antiOx↑, *IronCh↑, *toxicity↓, *BioAv↓, *BioAv↑, DNAdam↑, TumCP↓, DR5↑, P53↑, JNK↑, BAX↑, cl‑Casp3↑, cl‑Casp8↑, cl‑Casp9↑, cl‑PARP↑, survivin↓, cycD1/CCND1↓, CycB/CCNB1↓, CDC2↓, P21↑, angioG↓, MMP2↓, AEG1↓, VEGF↓, VEGFR2↓, MMP9↓, CXCR4↓, PI3K↓, Akt↓, ERK↓, TumAuto↑, LC3B-II↑, EMT↓, E-cadherin↑, N-cadherin↓, Wnt↓, ROS↑, NICD↓, p‑GSK‐3β↓, iNOS↓, COX2↓, NRF2↑, Ca+2↑, ChemoSen↑, ChemoSen↓, IFN-γ↓, RadioS↑, MDM2↓, NOTCH1↓, AR↓, TIMP1↑, TIMP2↑, ER Stress↑, CDK2↓, Telomerase↓, p‑NF-kB↑, p‑cMyc↑, hTERT/TERT↓, RAS↓, YAP/TEAD↓, TAZ↓, NF-kB↓, NRF2↓, HO-1↓, MDR1↓,
2903- LT,    Luteolin induces apoptosis by ROS/ER stress and mitochondrial dysfunction in gliomablastoma
- in-vitro, GBM, U251 - in-vitro, GBM, U87MG - in-vivo, NA, NA
ER Stress↑, ROS↑, PERK↑, eIF2α↑, ATF4↑, CHOP↑, Casp12↑, eff↓, UPR↑, MMP↓, Cyt‑c↑, Bcl-2↓, BAX↑, TumCG↓, Weight∅, ALAT∅, AST∅,
2906- LT,    Luteolin, a flavonoid with potentials for cancer prevention and therapy
- Review, Var, NA
*Inflam↓, AntiCan↑, antiOx⇅, Apoptosis↑, TumCP↓, TumMeta↓, angioG↓, PI3K↓, Akt↓, NF-kB↓, XIAP↓, P53↑, *ROS↓, *GSTA1↑, *GSR↑, *SOD↑, *Catalase↑, *other↓, ROS↑, Dose↝, chemoP↑, NF-kB↓, JNK↑, p27↑, P21↑, DR5↑, Casp↑, Fas↑, BAX↑, MAPK↓, CDK2↓, IGF-1↓, PDGF↓, EGFR↓, PKCδ↓, TOP1↓, TOP2↓, Bcl-xL↓, FASN↓, VEGF↓, VEGFR2↓, MMP9↓, Hif1a↓, FAK↓, MMP1↓, Twist↓, ERK↓, P450↓, CYP1A1↓, CYP1A2↓, TumCCA↑,
2907- LT,    Protective effect of luteolin against oxidative stress‑mediated cell injury via enhancing antioxidant systems
- in-vitro, Nor, NA
*ROS↓, *Casp9↓, *Casp3↓, *Bcl-2↑, *BAX↓, *GSH↑, *SOD↑, *Catalase↑, *GPx↑, *HO-1↑, *antiOx↑, *lipid-P↓, *p‑γH2AX↓, eff↑,
2912- LT,    Luteolin: a flavonoid with a multifaceted anticancer potential
- Review, Var, NA
ROS↑, TumCCA↑, TumCP↓, angioG↓, ER Stress↑, mtDam↑, PERK↑, ATF4↑, eIF2α↑, cl‑Casp12↑, EMT↓, E-cadherin↑, N-cadherin↓, Vim↓, *neuroP↑, NF-kB↓, PI3K↓, Akt↑, XIAP↓, MMP↓, Ca+2↑, BAX↑, Casp3↑, Casp9↑, Bcl-2↓, Cyt‑c↑, IronCh↑, SOD↓, *ROS↓, *LDHA↑, *SOD↑, *GSH↑, *BioAv↓, Telomerase↓, cMyc↓, hTERT/TERT↓, DR5↑, Fas↑, FADD↑, BAD↑, BOK↑, BID↑, NAIP↓, Mcl-1↓, CDK2↓, CDK4↓, MAPK↓, AKT1↓, Akt2↓, *Beclin-1↓, Hif1a↓, LC3II↑, Beclin-1↑,
3277- Lyco,    Recent trends and advances in the epidemiology, synergism, and delivery system of lycopene as an anti-cancer agent
- Review, Var, NA
antiOx↑, TumCP↓, Apoptosis↑, TumMeta↑, ChemoSen↑, BioAv↓, Dose↝, BioAv↓, BioAv↑, SOD↑, Catalase↑, GPx↑, IL2↑, IL4↑, IL1↑, TNF-α↑, GSH↑, GPx↑, GSTA1↑, GSR↑, PPARγ↑, Casp3↑, NF-kB↓, COX2↓, Bcl-2↑, BAX↓, P53↓, CHK1↓, Chk2↓, γH2AX↓, DNAdam↓, ROS↓, P21↑, PCNA↓, β-catenin/ZEB1↓, PGE2↓, ERK↓, cMyc↓, cycE/CCNE↓, JAK1↓, STAT3↓, SIRT1↑, cl‑PARP↑, cycD1/CCND1↓, TNF-α↓, IL6↓, p65↓, MMP2↓, MMP9↓, Wnt↓,
3263- Lyco,    Lycopene protects against myocardial ischemia-reperfusion injury by inhibiting mitochondrial permeability transition pore opening
- in-vitro, Nor, H9c2 - in-vitro, Stroke, NA
*Apoptosis↓, *MMP↑, *Cyt‑c↓, *APAF1↓, *cl‑Casp9↓, *cl‑Casp3↓, *Bcl-2↑, *BAX↓, cardioP↑,
3531- Lyco,    Lycopene attenuates the inflammation and apoptosis in aristolochic acid nephropathy by targeting the Nrf2 antioxidant system
- in-vivo, Nor, NA
*NRF2↑, *HO-1↑, *NQO1↑, *ROS↓, *mtDam↓, *Bcl-2↑, *BAX↓, *Casp9↓, *Casp3↓, *Apoptosis↓, *RenoP↑, *lipid-P↓, *SOD↑, *GPx↑, *Inflam↓, *TNF-α↓, *IL6↓, *IL10↓,
4797- Lyco,    A mechanistic updated overview on lycopene as potential anticancer agent
- Review, Var, NA
AntiCan↑, antiOx↓, Apoptosis↓, TumCP↓, TumCCA↑, Risk↓, ROS↓, SOD↑, Catalase↑, GSTs↑, ARE↑, NRF2↑, cycD1/CCND1↓, cycE/CCNE↑, CDK2↑, p27↑, BAX↑, Bcl-2↓, P53↑, ChemoSen↑,
4795- Lyco,    Updates on the Anticancer Profile of Lycopene and its Probable Mechanism against Breast and Gynecological Cancer
- Review, BC, NA
TumCG↓, TumCCA↑, Apoptosis↑, P53↝, BAX↝, cycD1/CCND1↓, ERK↓, Akt↓, STAT3↓, NRF2↝, NF-kB↓, ITGB1↓, ITGA5↓, FAK↓, MMP9↓, EMT↓,
4794- Lyco,    Anticancer Effect of Lycopene in Gastric Carcinogenesis
- Review, GC, NA
*AntiCan↑, *ROS↓, *GSH↑, *GPx↑, *GSTs↑, TumCG↓, Apoptosis↑, ERK↓, Bcl-2↓, BAX↑, Cyt‑c↑, TumCCA↑, *DNAdam↓,
4791- Lyco,    Investigating into anti-cancer potential of lycopene: Molecular targets
- Review, Var, NA
*antiOx↑, TumCP↓, TumCCA↓, Apoptosis↑, TumCI↓, angioG↓, TumMeta↓, *Risk↓, cycD1/CCND1↓, CycD3↓, cycE/CCNE↓, CDK2↓, CDK4↓, Bcl-2↓, P21↑, p27↑, P53↑, BAX↑, selectivity↑, MMP↓, Cyt‑c↑, Wnt↓, eff↑, PPARγ↑, LDL↓, Akt↓, PI3K↓, mTOR↓, PDGF↓, NF-kB↓, eff↑,
4786- Lyco,    Anti-proliferative and apoptosis-inducing activity of lycopene against three subtypes of human breast cancer cell lines
- in-vitro, BC, MDA-MB-468 - in-vitro, BC, MCF-7 - in-vitro, BC, SkBr3
TumCP↓, TumCCA↑, cl‑PARP↑, ERK↑, cycD1/CCND1↓, P21↓, p‑Akt↓, mTOR↓, BAX↑, AntiCan↑, Risk↓,
1126- Lyco,    Lycopene Inhibits Epithelial–Mesenchymal Transition and Promotes Apoptosis in Oral Cancer via PI3K/AKT/m-TOR Signal Pathway
- vitro+vivo, Oral, NA
TumCP↓, TumCMig↓, TumCI↓, Apoptosis↑, EMT↓, PI3K↓, Akt↓, mTOR↓, E-cadherin↓, BAX↑, N-cadherin↓, p‑PI3K↓, p‑Akt↓, p‑mTOR↓, Bcl-2↓,
1715- Lyco,    Pro-oxidant Actions of Carotenoids in Triggering Apoptosis of Cancer Cells: A Review of Emerging Evidence
- Review, Var, NA
antiOx↑, ROS↑, ChemoSen↑, selectivity↑, eff↓, Casp3↑, Casp7↑, Casp9↑, P53↑, BAX↑, DNAdam↑, mtDam↑, eff↑,
4531- MAG,    Magnolol-induced apoptosis in HCT-116 colon cancer cells is associated with the AMP-activated protein kinase signaling pathway
- in-vitro, CRC, HCT116
Apoptosis↑, DNAdam↑, Casp3↑, cl‑PARP↑, p‑AMPK↑, Bcl-2↓, P53↑, BAX↑, Cyt‑c↑, TumCMig↓, TumCI↓,
4527- MAG,    Magnolol inhibits growth and induces apoptosis in esophagus cancer KYSE-150 cell lines via the MAP kinase pathway
- in-vitro, ESCC, TE1 - in-vitro, ESCC, Eca109 - vitro+vivo, SCC, KYSE150
TumCP↓, TumCMig↓, MMP2↓, Apoptosis↑, cl‑Casp3↑, cl‑Casp9↑, BAX↑, Bcl-2↓, p‑p38↓, TumCG↓,
4518- MAG,  Cisplatin,    Evaluating the Magnolol Anticancer Potential in MKN-45 Gastric Cancer Cells
- in-vitro, GC, MKN45
ChemoSen↑, tumCV↓, BAX↑, Bcl-2↓, P21↑, P53↑, MMP9↓,
1314- MAG,    Magnolol induces apoptosis via activation of both mitochondrial and death receptor pathways in A375-S2 cells
- in-vitro, Melanoma, A375
TumCP↓, Casp3↑, Casp8↑, Casp9↑, Bcl-2↓, BAX↑,
1782- MEL,    Melatonin in Cancer Treatment: Current Knowledge and Future Opportunities
- Review, Var, NA
AntiCan↑, Apoptosis↑, TumCP↓, TumCG↑, TumMeta↑, ChemoSideEff↓, radioP↑, ChemoSen↑, *ROS↓, *SOD↑, *GSH↑, *GPx↑, *Catalase↑, Dose∅, VEGF↓, eff↑, Hif1a↓, GLUT1↑, GLUT3↑, CAIX↑, P21↑, p27↑, PTEN↑, Warburg↓, PI3K↓, Akt↓, NF-kB↓, cycD1/CCND1↓, CDK4↓, CycB/CCNB1↓, CDK4↓, MAPK↑, IGF-1R↓, STAT3↓, MMP9↓, MMP2↓, MMP13↓, E-cadherin↑, Vim↓, RANKL↓, JNK↑, Bcl-2↓, P53↑, Casp3↑, Casp9↑, BAX↑, DNArepair↑, COX2↓, IL6↓, IL8↓, NO↓, T-Cell↑, NK cell↑, Treg lymp↓, FOXP3↓, CD4+↑, TNF-α↑, Th1 response↑, BioAv↝, RadioS↑, OS↑,
1063- MEL,    HDAC1 inhibition by melatonin leads to suppression of lung adenocarcinoma cells via induction of oxidative stress and activation of apoptotic pathways
- in-vitro, Lung, A549 - in-vitro, Lung, PC9
AntiCan↑, TumCMig↓, GSH↓, Casp3↑, Apoptosis↑, ROS↑, HDAC1↓, Ac-histone H3↑, PUMA↑, BAX↑, PCNA↓, Bcl-2↓,
4353- MF,  Chemo,    Pulsed Electromagnetic Field Enhances Doxorubicin-induced Reduction in the Viability of MCF-7 Breast Cancer Cells
- in-vitro, BC, MCF-7
TumCCA↑, Apoptosis↑, eff↑, TumCCA↑, Casp↝, p‑CDK2↓, cycE/CCNE↓, Fas↑, BAX↑, survivin↓, Mcl-1↓, cl‑PARP↑, cl‑Casp7↑, cl‑Casp8↑, cl‑Casp9↑,
3486- MF,    Pulsed electromagnetic field potentiates etoposide-induced MCF-7 cell death
- in-vitro, NA, NA
ChemoSen↑, tumCV↓, cl‑PARP↑, Casp7↑, Casp9↑, survivin↓, BAX↑, DNAdam↑, ROS↑, eff↓,
4112- MF,    Novel protective effects of pulsed electromagnetic field ischemia/reperfusion injury rats
- in-vivo, Stroke, NA
*cardioP↑, *Bcl-2↑, *BAX↓, *ROS↓,
496- MF,    Low-Frequency Magnetic Fields (LF-MFs) Inhibit Proliferation by Triggering Apoptosis and Altering Cell Cycle Distribution in Breast Cancer Cells
- in-vitro, BC, MCF-7 - in-vitro, BC, ZR-75-1 - in-vitro, BC, T47D - in-vitro, BC, MDA-MB-231
ROS↑, PI3K↓, Akt↓, GSK‐3β↑, Apoptosis↑, cl‑PARP↑, cl‑Casp3↑, BAX↑, Bcl-2↓, CycB/CCNB1↓, TumCCA↑, p‑Akt↓, p‑Akt↓,
520- MF,    Exposure to a 50-Hz magnetic field induced mitochondrial permeability transition through the ROS/GSK-3β signaling pathway
- in-vitro, Nor, NA
*MPT↑, *Cyt‑c↑, *ROS↑, *p‑GSK‐3β↑, *eff↓, *MMP∅, *BAX↓, *Bcl-2∅,
194- MF,    Electromagnetic Field as a Treatment for Cerebral Ischemic Stroke
- Review, Stroke, NA
*BAD↓, *BAX↓, *Casp3↓, *Bcl-xL↑, *p‑Akt↑, *MMP9↓, *p‑ERK↑, *HIF-1↓, *ROS↓, *VEGF↑, *Ca+2↓, *SOD↑, *IL2↑, *p38↑, *HSP70/HSPA5↑, *Apoptosis↓, *ROS↓, *NO↓,
2259- MFrot,  MF,    Method and apparatus for oncomagnetic treatment
- in-vitro, GBM, NA
MMP↓, Bcl-2↓, BAX↑, Bak↑, Cyt‑c↑, Casp3↑, Casp9↑, DNAdam↑, ROS↑, lactateProd↑, Apoptosis↑, MPT↑, *selectivity↑, eff↑, MMP↓, selectivity↑, TCA?, H2O2↑, eff↑, *antiOx↑, H2O2↑, eff↓, GSH/GSSG↓, *toxicity∅, OS↑,
1807- NarG,    A Systematic Review of the Preventive and Therapeutic Effects of Naringin Against Human Malignancies
- Review, NA, NA
AntiTum↑, TumCP↓, tumCV↓, TumCCA↑, Mcl-1↓, RAS↓, e-Raf↓, VEGF↓, AntiAg↑, MMP2↓, MMP9↓, TIMP2↑, TIMP1↑, p38↓, Wnt↓, β-catenin/ZEB1↑, Casp↑, P53↑, BAX↑, COX2↓, GLO-I↓, CYP1A1↑, lipid-P↓, p‑Akt↓, p‑mTOR↓, VCAM-1↓, P-gp↓, survivin↓, Bcl-2↓, ROS↑, ROS↑, MAPK↑, STAT3↓, chemoP↑,
1799- NarG,    Naringenin as potent anticancer phytocompound in breast carcinoma: from mechanistic approach to nanoformulations based therapeutics
- Review, NA, NA
TumCCA↑, BioAv↑, Half-Life∅, TNF-α↓, Casp8↑, BAX↑, Bak↑, EGF↓, mTOR↓, PI3K↓, ERK↓, Akt↓, NF-kB↓, VEGF↓, angioG↓, antiOx↑, EMT↓, OS↑, MAPK↓, ChemoSen↑, MMP9↓, MMP2↓, ROS↑, ROS↑, GSH↓, Casp3↑, ROS↑,
4977- Nimb,    Nimbolide Inhibits SOD2 to Control Pancreatic Ductal Adenocarcinoma Growth and Metastasis
- vitro+vivo, PC, AsPC-1 - in-vitro, PC, PANC1
SOD2↑, TumCG↓, TumMeta↓, ROS↑, Apoptosis↑, PI3K↓, Akt↓, EMT↓, BAX↑, cl‑Casp3↑, cl‑Casp8↑, cl‑PARP↑, Bcl-2↓,
4976- Nimb,    Nimbolide inhibits pancreatic cancer growth and metastasis through ROS-mediated apoptosis and inhibition of epithelial-to-mesenchymal transition
- vitro+vivo, PC, NA
ROS↑, Apoptosis↑, TumAuto↑, TumCP↓, TumCMig↓, TumCI↓, EMT↓, Dose↓, selectivity↑, Akt↓, eff↓, BAX↑, cl‑Casp3↑, cl‑PARP↑, Bcl-2↓,
4643- OLE,  HT,    Use of Oleuropein and Hydroxytyrosol for Cancer Prevention and Treatment: Considerations about How Bioavailability and Metabolism Impact Their Adoption in Clinical Routine
- Review, Var, NA
TumCCA↑, Apoptosis↑, ER Stress↑, UPR↑, CHOP↑, ROS↑, Bcl-2↓, NOX4↑, Hif1a↓, MMP2↓, MMP↓, VEGF↓, Akt↓, NF-kB↓, p65↓, SIRT3↓, mTOR↓, Catalase↓, SOD2↓, FASN↓, STAT3↓, HDAC2↓, HDAC3↓, BAD↑, BAX↑, Bak↑, Casp3↑, Casp9↑, PARP↑, P53↑, P21↑, p27↑, Half-Life↝, BioAv↓, BioAv↓, selectivity↑, RadioS↑, *ROS↓, *GSH↑, *MDA↓, *SOD↑, *Catalase↑, *NRF2↑, *chemoP↑, *Inflam↓, PPARγ↑,
4626- OLE,    A Comprehensive Review on the Anti-Cancer Effects of Oleuropein
- Review, Var, NA
Risk↓, Dose↑, TumCP↓, NF-kB↓, COX2↓, Akt↓, P53↑, BAX↑, Bcl-2↓, HIF-1↓, ROS↑, HO-1↑, chemoP↑, TumCCA↑, FASN↓,
4630- OLE,    Targeting resistant breast cancer stem cells in a three-dimensional culture model with oleuropein encapsulated in methacrylated alginate microparticles
- in-vitro, BC, NA
Bcl-2↓, BAX↑, Casp3↑, Casp9↑, Vim↓, Slug↓, E-cadherin↑, CSCs↓, P21↑, survivin↝, OCT4↑, Nanog↑, SOX4↑,
1995- Part,    The protective effect of parthenolide in an in vitro model of Parkinson's disease through its regulation of nuclear factor-kappa B and oxidative stress
- in-vitro, Park, SH-SY5Y
*Apoptosis↓, *ROS↓, *BAX↓, *NF-kB↓, *P53↓, *p‑NF-kB↓,
1994- Part,    Parthenolide Inhibits Tumor Cell Growth and Metastasis in Melanoma A2058 Cells
- in-vitro, Melanoma, A2058 - in-vitro, Nor, L929
tumCV↓, selectivity?, ROS?, BAX↑, TumCCA?, MMP2↓, MMP9↓, TumCMig↓, eff↑,
1993- Part,    Parthenolide induces apoptosis and autophagy through the suppression of PI3K/Akt signaling pathway in cervical cancer
- in-vitro, Cerv, HeLa
tumCV↓, TumAuto↑, Casp3↑, BAX↑, Beclin-1↑, ATG3↑, ATG5↑, Bcl-2↓, mTOR↓, PI3K↓, Akt↓, PTEN↑, ROS↑, MMP↓,
2028- PB,    Potential of Phenylbutyrate as Adjuvant Chemotherapy: An Overview of Cellular and Molecular Anticancer Mechanisms
- Review, Var, NA
HDAC↓, TumCCA↑, P21↑, Dose↝, Telomerase↓, IGFBP3↑, p‑p38↑, JNK↑, ERK↑, BAX↑, Casp3↑, Bcl-2↓, Cyt‑c↝, FAK↓, survivin↓, VEGF↓, angioG↓, DNArepair↓, TumMeta↓, HSP27↑, ASK1↑, ROS↑, eff↑, ER Stress↓, GRP78/BiP↓, CHOP↑, AR↓, other?,
2430- PBG,    The cytotoxic effects of propolis on breast cancer cells involve PI3K/Akt and ERK1/2 pathways, mitochondrial membrane potential, and reactive oxygen species generation
- in-vitro, BC, MDA-MB-231
TumCP↓, TP53↓, Casp3↓, BAX↓, P21↓, ROS↑, eff↓, MMP↓, LDH↑, ATP↓, Ca+2↑,
1664- PBG,    Anticancer Activity of Propolis and Its Compounds
- Review, Var, NA
Apoptosis↑, TumCMig↓, TumCCA↑, TumCP↓, angioG↓, P21↑, p27↑, CDK1↓, p‑CDK1↓, cycA1/CCNA1↓, CycB/CCNB1↓, P70S6K↓, CLDN2↓, HK2↓, PFK↓, PKM2↓, LDHA↓, TLR4↓, H3↓, α-tubulin↓, ROS↑, Akt↓, GSK‐3β↓, FOXO3↓, NF-kB↓, cycD1/CCND1↓, MMP↓, ROS↑, i-Ca+2↑, lipid-P↑, ER Stress↑, UPR↑, PERK↑, eIF2α↑, GRP78/BiP↑, BAX↑, PUMA↑, ROS↑, MMP↓, Cyt‑c↑, cl‑Casp8↑, cl‑Casp8↑, cl‑Casp3↑, cl‑PARP↑, eff↑, eff↑, RadioS↑, ChemoSen↑, eff↑,
1668- PBG,    Propolis: A Detailed Insight of Its Anticancer Molecular Mechanisms
- Review, Var, NA
antiOx↑, Inflam↓, AntiCan↑, TumCP↓, Apoptosis↑, eff↝, MMPs↓, TNF-α↓, iNOS↓, COX2↓, IL1β↑, *BioAv↓, BAX↑, Casp3↑, Cyt‑c↑, Bcl-2↓, eff↑, selectivity↑, P53↑, ROS↑, Casp↑, eff↑, ERK↓, Dose∅, TRAIL↑, NF-kB↑, ROS↑, Dose↑, MMP↓, DNAdam↑, TumAuto↑, LC3II↑, p62↓, EGF↓, Hif1a↓, VEGF↓, TLR4↓, GSK‐3β↓, NF-kB↓, Telomerase↓, ChemoSen↑, ChemoSideEff↓,
1672- PBG,    The Potential Use of Propolis as an Adjunctive Therapy in Breast Cancers
- Review, BC, NA
ChemoSen↓, RadioS↑, Inflam↓, AntiCan↑, Dose∅, mtDam↑, Apoptosis?, OCR↓, ATP↓, ROS↑, ROS↑, LDH↓, TP53↓, Casp3↓, BAX↓, P21↓, ROS↑, eNOS↑, iNOS↑, eff↑, hTERT/TERT↓, cycD1/CCND1↓, eff↑, eff↑, eff↑, eff↑, STAT3↓, TIMP1↓, IL4↓, IL10↓, OS↑, Dose∅, ER Stress↑, ROS↑, NF-kB↓, p65↓, MMP↓, TumAuto↑, LC3II↑, p62↓, TLR4↓, mtDam↑, LDH↓, ROS↑, Glycolysis↓, HK2↓, PFK↓, PKM2↓, LDH↓, IL10↓, HDAC8↓, eff↑, eff↑, P21↑,
1663- PBG,    Propolis and Their Active Constituents for Chronic Diseases
- Review, Var, NA
NF-kB↓, Casp↓, Fas↓, DNAdam↑, Casp3↑, P53↝, MMP↝, ROS↑, mtDam↑, Dose?, angioG↓, TumCP↓, TumCMig↓, BAX↑, selectivity↑, MMP↓, LDH↓, IL6↓, IL1β↓, TNF-α↓,
1661- PBG,    Propolis: a natural compound with potential as an adjuvant in cancer therapy - a review of signaling pathways
- Review, Var, NA
JNK↓, ERK↓, Akt↓, NF-kB↓, FAK↓, MAPK↓, PI3K↓, Akt↓, P21↑, p27↑, TRAIL↑, BAX↑, P53↑, ERK↓, ChemoSen↑, RadioS↑, Glycolysis↓, HK2↓, PKM2↓, LDHA↓, PFK↓,
1682- PBG,    Honey, Propolis, and Royal Jelly: A Comprehensive Review of Their Biological Actions and Health Benefits
- Review, Var, NA
i-LDH↓, Akt↓, MAPK↓, NF-kB↓, IL1β↓, IL6↓, TNF-α↓, iNOS↓, COX2↓, ROS↓, Bcl-2↓, PARP↓, P53↑, BAX↑, Casp3↑, TumCCA↑, Cyt‑c↑, MMP↓, eff↑,
1680- PBG,    Protection against Ultraviolet A-Induced Skin Apoptosis and Carcinogenesis through the Oxidative Stress Reduction Effects of N-(4-bromophenethyl) Caffeamide, a Propolis Derivative
- in-vitro, Nor, HS68
*ROS↓, *NRF2↑, *HO-1↑, *cJun↓, *MMP1↓, *MMP2↓, *p‑cJun↓, *cFos↓, *BAX↓, *Casp3↓, *DNAdam↓, *iNOS↓, *COX2↓, *IL6↓, *PGE2↓, *NO↓,
1678- PBG,  5-FU,  sericin,    In vitro and in vivo anti-colorectal cancer effect of the newly synthesized sericin/propolis/fluorouracil nanoplatform through modulation of PI3K/AKT/mTOR pathway
- in-vitro, CRC, Caco-2 - in-vivo, NA, NA
PI3K↓, Akt↓, mTOR↓, TumCP↓, Bcl-2↓, BAX↑, Casp3↑, Casp9↑, ROS↓, FOXO1↑, *toxicity∅, eff↑,
1675- PBG,    Portuguese Propolis Antitumoral Activity in Melanoma Involves ROS Production and Induction of Apoptosis
- in-vitro, Melanoma, A375 - in-vitro, Melanoma, WM983B
tumCV↓, ROS↑, antiOx↑, Apoptosis↑, BAX↑, P53↑, Casp3↑, Casp9↑,
1676- PBG,    Use of Stingless Bee Propolis and Geopropolis against Cancer—A Literature Review of Preclinical Studies
- Review, Var, NA
ROS↑, MMP↓, Bcl-2↓, eff↑, tumCV↓, TumCCA↑, angioG↓, PAK1↓, HDAC1↓, HDAC2↓, P53↑, PCNA↓, cycD1/CCND1↓, cycE/CCNE↓, P21?, BAX↑, cl‑Casp3↑, cl‑PARP↑, ChemoSen↑,
4929- PEITC,  PacT,    Phenethyl isothiocyanate and paclitaxel synergistically enhanced apoptosis and alpha-tubulin hyperacetylation in breast cancer cells
- in-vitro, BC, MCF-7 - in-vitro, BC, MDA-MB-231
ChemoSen↑, Apoptosis↑, TumCCA↑, eff↑, CDK1↓, Bcl-2↓, BAX↑, cl‑PARP↑, SAL↑,
4934- PEITC,    Differential induction of apoptosis in human breast cancer cell lines by phenethyl isothiocyanate, a glutathione depleting agent
- in-vitro, BC, MCF-7 - in-vitro, BC, MDA-MB-231
GSH↓, ROS↑, chemoPv↑, Apoptosis↑, Casp9↑, Casp3↑, eff↓, TumCG↓, TumCCA↑, BAX↑, Nrf1↑, GSH↓, GSSG↓, GSH/GSSG↓,
4940- PEITC,    Phenethyl Isothiocyanate (PEITC) Inhibits the Growth of Human Oral Squamous Carcinoma HSC-3 Cells through G 0/G 1 Phase Arrest and Mitochondria-Mediated Apoptotic Cell Death
- in-vitro, Oral, HSC3
TumCCA↑, Apoptosis↑, BAX↑, BID↑, Bcl-2↓, MMP↓, Cyt‑c↑, AIF↑, tumCV↓, ROS↑, Ca+2↑, CDC25↓, CDK6↓, cycD1/CCND1↓, CDK2↓, cycE/CCNE↓, P53↑, p27↑, P21↑, Casp9↑, Casp3↑, GRP78/BiP↑,
4947- PEITC,    Phenethyl Isothiocyanate (PEITC) Inhibits the Growth of Human Oral Squamous Carcinoma HSC-3 Cells through G0/G1   Phase Arrest and Mitochondria-Mediated Apoptotic Cell Death
- in-vitro, Oral, HSC3
AntiCan↑, chemoPv↑, TumCG↓, Apoptosis↑, TumCCA↑, P53↑, P21↑, BAX↑, BID↑, Bcl-2↓, MMP↓, Cyt‑c↑, AIF↑, ROS↑, Ca+2↑,
4946- PEITC,    Phenethyl Isothiocyanate Inhibits Oxidative Phosphorylation to Trigger Reactive Oxygen Species-mediated Death of Human Prostate Cancer Cells
- in-vitro, Pca, LNCaP - in-vitro, Pca, PC3
Apoptosis↑, TumAuto↑, ROS↑, OXPHOS↓, ATP↓, selectivity↑, ETC↓, eff↓, eff↓, BAX↑,
4943- PEITC,    Phenethyl isothiocyanate (PEITC) inhibits growth of ovarian cancer cells by inducing apoptosis: role of caspase and MAPK activation
- in-vitro, Ovarian, OVCAR-3
TumCD↑, TumCP↓, Apoptosis↑, Casp3↑, Casp9↑, Bcl-2↓, BAX↑, Akt↓, ERK↓, cMyc↓, p38↑, JNK↑, eff↓,
4942- PEITC,    Phenethyl Isothiocyanate (PEITC) Inhibits the Growth of Human Oral Squamous Carcinoma HSC-3 Cells through G(0)/G(1) Phase Arrest and Mitochondria-Mediated Apoptotic Cell Death
- in-vitro, Oral, HSC3
chemoPv↑, TumCG↓, TumCCA↑, Apoptosis↑, BAX↑, BID↑, Bcl-2↓, MMP↓, Cyt‑c↑, AIF↑, ROS↑, Ca+2↑,
3587- PI,    Piperine: A review of its biological effects
- Review, Park, NA - Review, AD, NA
*hepatoP↑, *Inflam↓, *neuroP↑, *antiOx↑, *angioG↑, *cardioP↑, *BioAv↑, *P450↓, *eff↑, *BioAv↑, E-cadherin↓, ER(estro)↓, MMP2↓, MMP9↓, VEGF↓, cMyc↓, BAX↑, P53↑, TumCG↓, OS↑, *cognitive↑, *GSK‐3β↓, *GSH↑, *Casp3↓, *Casp9↓, *Cyt‑c↓, *lipid-P↓, *motorD↑, *AChE↓, *memory↑, *cardioP↑, *ROS↓, *PPARγ↑, *ALAT↓, *AST↓, *ALP↓, *AMPK↑, *5HT↑, *SIRT1↑, *eff↑,
1944- PL,    Piperlongumine, a Novel TrxR1 Inhibitor, Induces Apoptosis in Hepatocellular Carcinoma Cells by ROS-Mediated ER Stress
- in-vitro, HCC, HUH7 - in-vitro, HCC, HepG2
ER Stress↑, TrxR1↓, ROS↑, eff↓, Bcl-2↓, proCasp3↓, BAX↓, cl‑Casp3↑, TumCCA↑, p‑PERK↑, ATF4↑, TumCG↓, lipid-P↑, selectivity↑,
2948- PL,    The promising potential of piperlongumine as an emerging therapeutics for cancer
- Review, Var, NA
tumCV↓, TumCP↓, TumCI↓, angioG↓, EMT↓, TumMeta↓, *hepatoP↑, *lipid-P↓, *GSH↑, cardioP↑, CycB/CCNB1↓, cycD1/CCND1↓, CDK2↓, CDK1↓, CDK4↓, CDK6↓, PCNA↓, Akt↓, mTOR↓, Glycolysis↓, NF-kB↓, IKKα↓, JAK1↓, JAK2↓, STAT3↓, ERK↓, cFos↓, Slug↓, E-cadherin↑, TOP2↓, P53↑, P21↑, Bcl-2↓, BAX↑, Casp3↑, Casp7↑, Casp8↑, p‑HER2/EBBR2↓, HO-1↑, NRF2↑, BIM↑, p‑FOXO3↓, Sp1/3/4↓, cMyc↓, EGFR↓, survivin↓, cMET↓, NQO1↑, SOD2↑, TrxR↓, MDM2↓, p‑eIF2α↑, ATF4↑, CHOP↑, MDA↑, Ki-67↓, MMP9↓, Twist↓, SOX2↓, Nanog↓, OCT4↓, N-cadherin↓, Vim↓, Snail↓, TumW↓, TumCG↓, HK2↓, RB1↓, IL6↓, IL8↓, SOD1↑, RadioS↑, ChemoSen↑, toxicity↓, Sp1/3/4↓, GSH↓, SOD↑,
2945- PL,    Piperlongumine induces ROS mediated cell death and synergizes paclitaxel in human intestinal cancer cells
- in-vitro, CRC, HCT116
ROS↑, SMAD4↑, ChemoSen↑, P53↑, P21↑, BAX↑, Bcl-2↓, survivin↓, TumCMig↓,
2005- Plum,    Plumbagin induces apoptosis in lymphoma cells via oxidative stress mediated glutathionylation and inhibition of mitogen-activated protein kinase phosphatases (MKP1/2)
- in-vivo, Nor, EL4 - in-vitro, AML, Jurkat
JNK↑, Cyt‑c↑, FasL↑, BAX↑, ROS↑, *ROS↑, MKP1↓, MKP2↓, selectivity∅, tumCV↑, Cyt‑c↑, Casp3↑, GSH/GSSG↓, ROS↑, mt-ROS↑, *ROS↑, eff↓,
4967- PSO,    Psoralidin's Anti-Cancer Mechanisms: A Technical Guide
- Review, Var, NA
NF-kB↓, PI3K↓, Akt↓, ITGB1↓, FAK↓, BAX↑, Casp3↑, Apoptosis↑, Bcl-2↓, DR5↑, TumCCA↑, TumAuto↑, TumMeta↓,
1237- PTS,    Pterostilbene induces cell apoptosis and inhibits lipogenesis in SKOV3 ovarian cancer cells by activation of AMPK-induced inhibition of Akt/mTOR signaling cascade
- in-vitro, Ovarian, SKOV3
TumCMig↓, TumCI↓, MDA↑, ROS↑, BAX↑, Casp3↑, Bcl-2↓, SREBP1↓, FASN↓, AMPK↓, p‑AMPK↑, p‑P53↑, p‑TSC2↑, p‑Akt↓, p‑mTOR↓, p‑S6K↓, p‑4E-BP1↓,
3930- PTS,    A Review of Pterostilbene Antioxidant Activity and Disease Modification
- Review, Var, NA - Review, adrenal, NA - Review, Stroke, NA
*BioAv↑, *antiOx↑, *neuroP↑, *Inflam↓, *ROS↓, *H2O2↓, *GSH↑, *GPx↑, *GSR↑, *SOD↑, TumCG↓, PTEN↑, HGF/c-Met↓, PI3K↓, Akt↓, NF-kB↓, TumMeta↓, MMP2↓, MMP9↓, Ki-67↓, Casp3↑, MMP↓, H2O2↑, ROS↑, ChemoSen↑, *cardioP↑, *CDK2↓, *CDK4↓, *cycE/CCNE↓, *cycD1/CCND1↓, *RB1↓, *PCNA↓, *CREB↑, *GABA↑, *memory↑, *IGF-1↑, *ERK↑, TIMP1↑, BAX↑, Cyt‑c↑, Diablo↑, SOD2↑,
3353- QC,    Quercetin triggers cell apoptosis-associated ROS-mediated cell death and induces S and G2/M-phase cell cycle arrest in KON oral cancer cells
- in-vitro, Oral, KON - in-vitro, Nor, MRC-5
tumCV↓, selectivity↑, TumCCA↑, TumCMig↓, TumCI↓, Apoptosis↑, TumMeta↓, Bcl-2↓, BAX↑, TIMP1↑, MMP2↓, MMP9↓, *Inflam↓, *neuroP↑, *cardioP↑, p38↓, MAPK↓, Twist↓, P21↓, cycD1/CCND1↓, Casp3↑, Casp9↑, p‑Akt↓, p‑ERK↓, CD44↓, CD24↓, ChemoSen↑, MMP↓, Cyt‑c↑, AIF↑, ROS↑, Ca+2↑, Hif1a↓, VEGF↓,
3357- QC,    The polyphenol quercetin induces cell death in leukemia by targeting epigenetic regulators of pro-apoptotic genes
- in-vitro, AML, HL-60 - NA, NA, U937
DNMT1↓, DNMT3A↓, HDAC↓, ac‑H3↑, ac‑H4↑, BAX↑, APAF1↑, BNIP3↑, STAT3↑,
3350- QC,    Quercetin and the mitochondria: A mechanistic view
- Review, NA, NA
*antiOx↑, *Inflam↓, *NRF2↑, ROS⇅, *NRF2↑, *HO-1↑, *PPARα↑, *PGC-1α↑, *SIRT1↑, *ATP↑, ATP↓, ERK↓, cl‑PARP↑, Casp9↑, Casp8↑, BAX↑, MMP↓, Cyt‑c↑, Casp3↑, HSP27↓, HSP72↓, RAS↓, Raf↓,
3343- QC,    Quercetin, a Flavonoid with Great Pharmacological Capacity
- Review, Var, NA - Review, AD, NA - Review, Arthritis, NA
*antiOx↑, *ROS↓, *angioG↓, *Inflam↓, *BioAv↓, *Half-Life↑, *GSH↑, *SOD↑, *Catalase↑, *Nrf1↑, *BP↓, *cardioP↑, *IL10↓, *TNF-α↓, *Aβ↓, *GSK‐3β↓, *tau↓, *neuroP↑, *Pain↓, *COX2↓, *NRF2↑, *HO-1↑, *IL1β↓, *IL17↓, *MCP1↓, PKCδ↓, ERK↓, BAX↓, cMyc↓, KRAS↓, ROS↓, selectivity↑, tumCV↓, Apoptosis↑, TumCCA↑, eff↑, P-gp↓, eff↑, eff↑, eff↑, eff↑, CycB/CCNB1↓, CDK1↓, CDK4↓, CDK2↓, TOP2↓, Cyt‑c↑, cl‑PARP↑, MMP↓, HSP70/HSPA5↓, HSP90↓, MDM2↓, RAS↓, eff↑,
3341- QC,    Antioxidant Activities of Quercetin and Its Complexes for Medicinal Application
- Review, Var, NA - Review, Stroke, NA
*antiOx↑, *BioAv↑, *GSH↑, *AChE↓, *BChE↓, *H2O2↓, *lipid-P↓, *SOD↑, *SOD2↑, *Catalase↑, *GPx↑, *neuroP↑, *HO-1↑, *cardioP↑, *MDA↓, *NF-kB↓, *IKKα↓, *ROS↓, *PI3K↑, *Akt↑, *hepatoP↑, P53↑, BAX↑, IGF-1R↓, Akt↓, AR↓, TumCP↓, GSH↑, SOD↑, Catalase↑, lipid-P↓, *TNF-α↓, *Ca+2↓,
3369- QC,    Pharmacological basis and new insights of quercetin action in respect to its anti-cancer effects
- Review, Pca, NA
FAK↓, TumCCA↑, p‑pRB↓, CDK2↑, CycB/CCNB1↓, CDK1↓, EMT↓, PI3K↓, MAPK↓, Wnt↓, ROS↑, miR-21↑, Akt↓, NF-kB↓, FasL↑, Bak↑, BAX↑, Bcl-2↓, Casp3↓, Casp9↑, P53↑, p38↑, MAPK↑, Cyt‑c↑, PARP↓, CHOP↑, ROS↓, LDH↑, GRP78/BiP↑, ERK↑, MDA↓, SOD↑, GSH↑, NRF2↑, VEGF↓, PDGF↓, EGF↓, FGF↓, TNF-α↓, TGF-β↓, VEGFR2↓, EGFR↓, FGFR1↓, mTOR↓, cMyc↓, MMPs↓, LC3B-II↑, Beclin-1↑, IL1β↓, CRP↓, IL10↓, COX2↓, IL6↓, TLR4↓, Shh↓, HER2/EBBR2↓, NOTCH↓, DR5↑, HSP70/HSPA5↓, CSCs↓, angioG↓, MMP2↓, MMP9↓, IGFBP3↑, uPA↓, uPAR↓, RAS↓, Raf↓, TSP-1↑,
3368- QC,    The potential anti-cancer effects of quercetin on blood, prostate and lung cancers: An update
- Review, Var, NA
*Inflam↓, *antiOx↑, *AntiCan↑, Casp3↓, p‑Akt↓, p‑mTOR↓, p‑ERK↓, β-catenin/ZEB1↓, Hif1a↓, AntiAg↓, VEGFR2↓, EMT↓, EGFR↓, MMP2↓, MMP↓, TumMeta↓, MMPs↓, Akt↓, Snail↓, N-cadherin↓, Vim↓, E-cadherin↑, STAT3↓, TGF-β↓, ROS↓, P53↑, BAX↑, PKCδ↓, PI3K↓, COX2↓, cFLIP↓, cycD1/CCND1↓, cMyc↓, IL6↓, IL10↓, Cyt‑c↑, TumCCA↑, DNMTs↓, HDAC↓, ac‑H3↑, ac‑H4↑, Diablo↑, Casp3↑, Casp9↑, PARP1↑, eff↑, PTEN↑, VEGF↓, NO↓, iNOS↓, ChemoSen↑, eff↑, eff↑, eff↑, uPA↓, CXCR4↓, CXCL12↓, CLDN2↓, CDK6↓, MMP9↓, TSP-1↑, Ki-67↓, PCNA↓, ROS↑, ER Stress↑,
71- QC,    Role of Bax in quercetin-induced apoptosis in human prostate cancer cells
- in-vitro, Pca, LNCaP - in-vitro, Pca, PrEC - in-vitro, Pca, YPEN-1 - in-vitro, Pca, HCT116
Casp8↑, Casp9↑, PARP↑, BAD↓, BAX↑, PI3K/Akt↓,
64- QC,    Quercetin enhances TRAIL-mediated apoptosis in colon cancer cells by inducing the accumulation of death receptors in lipid rafts
- in-vitro, Colon, HT-29 - in-vitro, Colon, SW-620 - in-vitro, Colon, Caco-2
Cyt‑c↑, BAX↑, Casp3↑,
50- QC,    Anticancer effect and mechanism of polymer micelle-encapsulated quercetin on ovarian cancer
- vitro+vivo, Ovarian, A2780S
Casp3↑, Casp9↑, Mcl-1↓, Bcl-2↓, BAX↑, angioG↓,
52- QC,    Effect of Quercetin on Cell Cycle and Cyclin Expression in Ovarian Carcinoma and Osteosarcoma Cell Lines
- in-vitro, BC, MCF-7
Bcl-2↓, BAX↑, PI3K/Akt↓,
55- QC,    Quercetin inhibits the growth of human gastric cancer stem cells by inducing mitochondrial-dependent apoptosis through the inhibition of PI3K/Akt signaling
- in-vitro, GC, GCSCs
Bcl-2↓, BAX↑, Cyt‑c↑, MMP↓, PI3K/Akt↓, Casp3↑, Casp9↑,
83- QC,    Quercetin induces p53-independent apoptosis in human prostate cancer cells by modulating Bcl-2-related proteins: a possible mediation by IGFBP-3
- in-vitro, Pca, PC3
Bcl-2↓, Bcl-xL↓, BAX↑, IGFBP3↑,
42- QC,    Quercetin induces apoptosis by activating caspase-3 and regulating Bcl-2 and cyclooxygenase-2 pathways in human HL-60 cells
- in-vitro, AML, HL-60
Bcl-2↓, BAX↑, Casp3↑, COX2↓,
39- QC,    A Comprehensive Analysis and Anti-Cancer Activities of Quercetin in ROS-Mediated Cancer and Cancer Stem Cells
- Analysis, NA, NA
ROS↑, GSH↓, IL6↓, COX2↓, IL8↓, iNOS↓, TNF-α↓, MAPK↑, ERK↑, SOD↑, ATP↓, Casp↑, PI3K/Akt↓, mTOR↓, NOTCH1↓, Bcl-2↓, BAX↑, IFN-γ↓, TumCP↓, TumCCA↑, Akt↓, P70S6K↓, *Keap1↓, *GPx↑, *Catalase↑, *HO-1↑, *NRF2↑, NRF2↑, eff↑, HIF-1↓,
36- QC,    Quercetin induces G2 phase arrest and apoptosis with the activation of p53 in an E6 expression-independent manner in HPV-positive human cervical cancer-derived cells
- in-vitro, Cerv, HeLa - in-vitro, Cerv, SiHa
P53↑, P21↑, BAX↑, Casp3↑, Casp7↑, TumCCA↑, ROS↑,
98- QC,    Quercetin postconditioning attenuates myocardial ischemia/reperfusion injury in rats through the PI3K/Akt pathway
- in-vivo, Stroke, NA
*Bcl-2↑, *BAX↓, *Bax:Bcl2↓, *cardioP↑, *Akt↑, *PI3K↑, *LDH↓,
84- QC,    Quercetin-induced growth inhibition and cell death in prostatic carcinoma cells (PC-3) are associated with increase in p21 and hypophosphorylated retinoblastoma proteins expression
- in-vitro, Pca, PC3
P21↑, cDC2↓, CDK1↓, CycB/CCNB1↓, Casp3↑, Bcl-2↓, Bcl-xL↓, BAX↑, pRB↓,
87- QC,    Quercetin inhibits prostate cancer by attenuating cell survival and inhibiting anti-apoptotic pathways
- in-vitro, Pca, LNCaP - in-vitro, Pca, DU145 - in-vitro, Pca, PC3
ROS⇅, BAX↑, PUMA⇅, β-catenin/ZEB1↓, Shc↓, TAp63α↑, MAPK↑, p‑p42↑, p‑p44↑, BIM↑,
91- QC,    The roles of endoplasmic reticulum stress and mitochondrial apoptotic signaling pathway in quercetin-mediated cell death of human prostate cancer PC-3 cells
- in-vitro, Pca, PC3
CDK2↓, cycE/CCNE↓, cycD1/CCND1↓, ATFs↑, GRP78/BiP↑, Bcl-2↓, BAX↑, Casp3↑, Casp8↑, Casp9↑, ER Stress↑, CHOP↑,
96- QC,  docx,    Quercetin reverses docetaxel resistance in prostate cancer via androgen receptor and PI3K/Akt signaling pathways
- vitro+vivo, Pca, LNCaP - in-vitro, Pca, PC3
PI3K/Akt↓, Ki-67↓, BAX↑, Bcl-2↓, EpCAM↓, Twist↓, E-cadherin↑, P-gp↓,
923- QC,    Quercetin as an innovative therapeutic tool for cancer chemoprevention: Molecular mechanisms and implications in human health
- Review, Var, NA
ROS↑, GSH↓, Ca+2↝, MMP↓, Casp3↑, Casp8↑, Casp9↑, other↓, *ROS↓, *NRF2↑, HO-1↑, TumCCA↑, Inflam↓, STAT3↓, DR5↑, P450↓, MMPs↓, IFN-γ↓, IL6↓, COX2↓, IL8↓, iNOS↓, TNF-α↓, cl‑PARP↑, Apoptosis↑, P53↑, Sp1/3/4↓, survivin↓, TRAILR↑, Casp10↑, DFF45↑, TNFR 1↑, Fas↑, NF-kB↓, IKKα↓, cycD1/CCND1↓, Bcl-2↓, BAX↑, PI3K↓, Akt↓, E-cadherin↓, Vim↓, β-catenin/ZEB1↓, cMyc↓, EMT↓, MMP2↓, NOTCH1↓, MMP7↓, angioG↓, TSP-1↑, CSCs↓, XIAP↓, Snail↓, Slug↓, LEF1↓, P-gp↓, EGFR↓, GSK‐3β↓, mTOR↓, RAGE↓, HSP27↓, VEGF↓, TGF-β↓, COL1↓, COL3A1↓,
4787- QC,    Quercetin: A Phytochemical with Pro-Apoptotic Effects in Colon Cancer Cells
- Review, CRC, NA
Inflam↓, AntiCan↑, Apoptosis↑, MMP↓, P53↑, BAX↑, Casp3↑, Casp9↑, Bcl-2↓, NF-kB↓, IL6↓, IL1β↓, *antiOx↑, *lipid-P↓, *ROS↓, MAPK↓, JAK↓, STAT↓, PI3K↓, Akt↓, chemoP↑, ROS⇅, DNAdam↑, ChemoSen↝,
4827- QC,  CUR,    Synthetic Pathways and the Therapeutic Potential of Quercetin and Curcumin
- Review, Var, NA
*AntiCan↑, *Inflam↓, *Bacteria↓, *AntiDiabetic↑, *ROS↓, *SOD↑, *Catalase↑, *GSH↑, *NRF2↑, *Trx↑, *IronCh↑, *MDA↑, cycD1/CCND1↓, PI3K↓, Casp3↑, BAX↑, ChemoSen↑, ROS↑, eff↑, MMP↓, Cyt‑c↑, Akt↓, ERK↓,
103- RES,  CUR,  QC,    The effect of resveratrol, curcumin and quercetin combination on immuno-suppression of tumor microenvironment for breast tumor-bearing mice
- vitro+vivo, BC, 4T1
ROS↑, MMP↓, Bcl-2↓, BAX↑, Casp9↑, T-Cell↑, TGF-β↓,
882- RES,    Resveratrol: A Double-Edged Sword in Health Benefits
- Review, NA, NA
AntiTum↑, Casp3↑, Casp9↑, BAX↑, Bcl-2↓, Bcl-xL↓, P53↑, NAF1↓, NRF2↑, ROS↑, Apoptosis↑, HDAC↓, TumCCA↑, TumAuto↑, angioG↓, iNOS↓,
1489- RES,    Molecular mechanisms of resveratrol as chemo and radiosensitizer in cancer
- Review, Var, NA
RadioS↑, ChemoSen↑, *BioAv↓, *BioAv↑, Ferroptosis↑, lipid-P↑, xCT↓, GPx4↓, *BioAv↑, COX2↓, cycD1/CCND1↓, FasL↓, FOXP3↓, HLA↑, p‑NF-kB↓, BAX↑, Bcl-2↓, MALAT1↓,
2329- RES,    Resveratrol induces apoptosis in human melanoma cell through negatively regulating Erk/PKM2/Bcl-2 axis
- in-vitro, Melanoma, A375
P53↑, Bcl-2↓, BAX↑, Cyt‑c↑, ERK↓, PKM2↓, Apoptosis↑, γH2AX↑, Casp3↑, cl‑PARP1↑,
3071- RES,    Resveratrol and Its Anticancer Effects
- Review, Var, NA
chemoPv↑, SIRT1↑, Hif1a↓, VEGF↓, STAT3↓, NF-kB↓, COX2↓, PI3K↓, mTOR↓, NRF2↑, NLRP3↓, H2O2↑, ROS↑, P53↑, PUMA↑, BAX↑,
3054- RES,    Resveratrol induced reactive oxygen species and endoplasmic reticulum stress-mediated apoptosis, and cell cycle arrest in the A375SM malignant melanoma cell line
- in-vitro, Melanoma, A375
TumCG↓, P21↑, p27↑, CycB/CCNB1↓, ROS↑, ER Stress↑, p‑p38↑, P53↑, p‑eIF2α↑, EP4↑, CHOP↑, Bcl-2↓, BAX↓, TumCCA↑, NRF2↓, ChemoSen↑, GSH↓,
3098- RES,    Regulation of Cell Signaling Pathways and miRNAs by Resveratrol in Different Cancers
- Review, Var, NA
NOTCH2↓, Wnt↓, β-catenin/ZEB1↓, p‑SMAD2↓, p‑SMAD3↓, PTCH1↓, Smo↓, Gli1↓, E-cadherin↑, NOTCH⇅, TAC?, NKG2D↑, DR4↑, survivin↓, DR5↑, BAX↑, p27↑, cycD1/CCND1↓, Bcl-2↓, STAT3↓, STAT5↓, JAK↓, DNAdam↑, γH2AX↑,
3088- RES,    Notch signaling mediated repressive effects of resveratrol in inducing caspasedependent apoptosis in MCF-7 breast cancer cells
- in-vitro, BC, MCF-7
NOTCH1↓, BAX↑, CDK4↝, Casp3↑, P21↑,
4286- RES,    Neuroprotective Properties of Resveratrol and Its Derivatives—Influence on Potential Mechanisms Leading to the Development of Alzheimer’s Disease
- Review, AD, NA
*neuroP↑, *Inflam↓, *antiOx↑, *GSH↑, *HO-1↑, *iNOS↓, *BDNF↑, *p‑CREB↑, *PKA↑, *Bcl-2↑, *BAX↓, *IL1β↓, *IL6↓, *MMP9↓, *memory↑, *AMPK↑, *PGC-1α↓, *NF-kB↓, *Aβ↓, *SIRT1↑, *p‑tau↓, *PP2A↑, *lipid-P↓, *NLRP3↓, *BACE↓,
1747- RosA,    Molecular Pathways of Rosmarinic Acid Anticancer Activity in Triple-Negative Breast Cancer Cells: A Literature Review
- Review, BC, MDA-MB-231 - Review, BC, MDA-MB-468
TumCCA↑, TNF-α↑, GADD45A↑, BNIP3↑, survivin↓, Bcl-2↓, BAX↑, HH↓, eff↑, ChemoSen↑, RadioS↑, TumCP↓, TumCMig↓, Apoptosis↑, RenoP↑, CardioT↓,
1748- RosA,    The Role of Rosmarinic Acid in Cancer Prevention and Therapy: Mechanisms of Antioxidant and Anticancer Activity
- Review, Var, NA
AntiCan↑, *BioAv↝, *CardioT↓, *Iron↓, *ROS↓, *SOD↑, *Catalase↑, *GPx↑, *NRF2↑, MARK4↓, MMP9↓, TumCCA↑, Bcl-2↓, BAX↑, Apoptosis↑, E-cadherin↑, N-cadherin↓, Vim↓, Gli1↓, HDAC2↓, Warburg↓, Hif1a↓, miR-155↓, p‑PI3K↑, ROS↑, *IronCh↑,
3025- RosA,    Rosmarinic acid alleviates intestinal inflammatory damage and inhibits endoplasmic reticulum stress and smooth muscle contraction abnormalities in intestinal tissues by regulating gut microbiota
- in-vivo, IBD, NA
*GutMicro↑, *ROCK1↓, *Rho↓, *CaMKII ↓, *Zeb1↓, *ZO-1↓, *E-cadherin↓, *IL1β↓, *IL6↓, *TNF-α↓, *GRP78/BiP↓, *PERK↓, *IRE1↓, *ATF6↓, *CHOP↓, *Casp12↓, *Casp9↓, *BAX↓, *Casp3↓, *Cyt‑c↓, *RIP1↓, *MLKL↓, *IL10↑, *Bcl-2↑, *ER Stress↓,
3002- RosA,    Anticancer Effects of Rosemary (Rosmarinus officinalis L.) Extract and Rosemary Extract Polyphenols
- Review, Var, NA
TumCG↓, TumCP↓, TumCCA↑, ChemoSen↑, NRF2↑, PERK↑, SESN2↑, HO-1↑, cl‑Casp3↑, ROS↑, UPR↑, ER Stress↑, CHOP↑, HER2/EBBR2↓, ER-α36↓, PSA↓, BAX↑, AR↓, P-gp↓, Cyt‑c↑, HSP70/HSPA5↑, eff↑, p‑Akt↓, p‑mTOR↓, p‑P70S6K↓, cl‑PARP↑, eff↑,
3005- RosA,    Nanoformulated rosemary extract impact on oral cancer: in vitro study
- in-vitro, Laryn, HEp2
TumCCA↑, ROS↑, Bcl-2↓, BAX↑, Casp3↑, P53↑, necrosis↑, eff↑, BioAv↑,
5002- Sal,  SFN,    Salinomycin and Sulforaphane Exerted Synergistic Antiproliferative and Proapoptotic Effects on Colorectal Cancer Cells by Inhibiting the PI3K/Akt Signaling Pathway in vitro and in vivo
- in-vivo, CRC, Caco-2 - vitro+vivo, CRC, CX-1
Apoptosis↑, PI3K↓, Akt↓, P53↑, BAX↑, Bax:Bcl2↑, p‑PARP↑, TumCMig↓,
323- Sal,  SNP,    Combination of salinomycin and silver nanoparticles enhances apoptosis and autophagy in human ovarian cancer cells: an effective anticancer therapy
- in-vitro, BC, MDA-MB-231 - in-vitro, Ovarian, A2780S
TumCD↑, LDH↓, MDA↑, SOD↓, ROS↑, GSH↓, Catalase↓, MMP↓, P53↑, P21↑, BAX↑, Bcl-2↓, Casp3↑, Casp9↑, Apoptosis↑, TumAuto↑,
1307- SANG,    Sanguinarine induces apoptosis of HT-29 human colon cancer cells via the regulation of Bax/Bcl-2 ratio and caspase-9-dependent pathway
- in-vitro, CRC, HT-29
Apoptosis↑, BAX↑, Bcl-2↓, Casp3↑, Casp9↑,
1388- Sco,    Scoulerine promotes cell viability reduction and apoptosis by activating ROS-dependent endoplasmic reticulum stress in colorectal cancer cells
- in-vitro, CRC, NA
tumCV↓, Apoptosis↑, Casp3↑, Casp7↑, BAX↑, Bcl-2↓, ROS↑, GSH↓, SOD↓, ER Stress↑, GRP78/BiP↑, CHOP↑, eff↓,
4486- Se,  Chit,    Selenium-Modified Chitosan Induces HepG2 Cell Apoptosis and Differential Protein Analysis
- in-vitro, Liver, HepG2
Apoptosis↑, TumCCA↑, MMP↓, Bcl-2↓, BAX↑, cl‑Casp9↑, cl‑Casp3↑, Risk↓, *BioAv↑, *toxicity↑, TumCG↓, AntiTum↑, ROS↑, Cyt‑c↑, Fas↑, FasL↑, FADD↑,
4484- Se,  Chit,  PEG,    Anti-cancer potential of selenium-chitosan-polyethylene glycol-carvacrol nanocomposites in multiple myeloma U266 cells
- in-vitro, Melanoma, U266
tumCV↓, selectivity↑, ROS↑, MMP↓, Apoptosis↑, BAX↑, Casp3↑, Casp9↑, Bcl-2↓,
1003- Sel,    Sodium selenite inhibits proliferation of lung cancer cells by inhibiting NF-κB nuclear translocation and down-regulating PDK1 expression which is a key enzyme in energy metabolism expression
- vitro+vivo, Lung, NA
NF-kB↓, PDK1↓, p‑p65↑, p‑IκB↑, BAX↑, lactateProd↓, MMP↓, Cyt‑c↑, mitResp↑, Apoptosis↑,
1722- SFN,    Sulforaphane as an anticancer molecule: mechanisms of action, synergistic effects, enhancement of drug safety, and delivery systems
- Review, Var, NA
TumCCA↑, CYP1A1↓, CYP3A4↓, Cyt‑c↑, Casp9↑, Apoptosis↑, ROS↑, MAPK↑, P53↑, BAX↑, ChemoSen↑, HDAC↓, GSH↓, HO-1↑,
1730- SFN,    Sulforaphane: An emergent anti-cancer stem cell agent
- Review, Var, NA
BioAv↓, BioAv↑, GSTA1↑, P450↓, TumCCA↑, HDAC↓, P21↑, p27↑, DNMT1↓, DNMT3A↓, cycD1/CCND1↑, DNAdam↑, BAX↑, Cyt‑c↑, Apoptosis↑, ROS↑, AIF↑, CDK1↑, Casp3↑, Casp8↑, Casp9↑, NRF2↑, NF-kB↓, TNF-α↓, IL1β↓, CSCs↓, CD133↓, CD44↓, ALDH↓, Nanog↓, OCT4↓, hTERT/TERT↓, MMP2↓, EMT↓, ALDH1A1↓, Wnt↓, NOTCH↓, ChemoSen↑, *Ki-67↓, *HDAC3↓, *HDAC↓,
1434- SFN,  GEM,    Sulforaphane Potentiates Gemcitabine-Mediated Anti-Cancer Effects against Intrahepatic Cholangiocarcinoma by Inhibiting HDAC Activity
- in-vitro, CCA, HuCCT1 - in-vitro, CCA, HuH28 - in-vivo, NA, NA
HDAC↓, ac‑H3↑, ChemoSen↑, tumCV↓, TumCP↓, TumCCA↑, Apoptosis↑, cl‑Casp3↑, TumCI↓, VEGF↓, VEGFR2↓, Hif1a↓, eNOS↓, EMT?, TumCG↓, Ki-67↓, TUNEL↑, P21↑, p‑Chk2↑, CDC25↓, BAX↑, *ROS↓, NQO1?,
1459- SFN,  Aur,    Auranofin Enhances Sulforaphane-Mediated Apoptosis in Hepatocellular Carcinoma Hep3B Cells through Inactivation of the PI3K/Akt Signaling Pathway
- in-vitro, Liver, Hep3B - in-vitro, Liver, HepG2
eff↑, TumCCA↑, Apoptosis↑, MMP↓, BAX↑, cl‑PARP↑, Casp3↑, Casp8↑, Casp9↑, ROS↑, eff↓, PI3K↓, Akt↓, TrxR↓, BAX↑, Bcl-2∅,
1464- SFN,    d,l-Sulforaphane Induces ROS-Dependent Apoptosis in Human Gliomablastoma Cells by Inactivating STAT3 Signaling Pathway
- in-vitro, GBM, NA
Apoptosis↑, Casp3↑, BAX↑, Bcl-2↓, ROS↑, p‑STAT3↓, JAK2↓, eff↓,
1469- SFN,    Sulforaphane enhances the therapeutic potential of TRAIL in prostate cancer orthotopic model through regulation of apoptosis, metastasis, and angiogenesis
- in-vitro, Pca, PC3 - in-vitro, Pca, LNCaP - in-vivo, Pca, NA
eff↑, ROS↑, MMP↓, Casp3↑, Casp9↑, DR4↑, DR5↑, BAX↑, Bak↑, BIM↑, NOXA↑, Bcl-2↓, Bcl-xL↓, Mcl-1↓, eff↓, TumCG↓, TumCP↓, eff↑, NF-kB↓, PI3K↓, Akt↓, MEK↓, ERK↓, angioG↓, FOXO3↑,
1315- SFN,    Sulforaphane Induces Apoptosis of Acute Human Leukemia Cells Through Modulation of Bax, Bcl-2 and Caspase-3
- in-vitro, AML, K562
TumCP↓, BAX↑, Casp3↑, Bcl-2↓,
3304- SIL,    Silymarin induces inhibition of growth and apoptosis through modulation of the MAPK signaling pathway in AGS human gastric cancer cells
- in-vitro, GC, AGS - in-vivo, NA, NA
BAX↑, p‑JNK↑, p‑p38↑, cl‑PARP↑, Bcl-2↓, p‑ERK↓, TumVol↓, Apoptosis↑, tumCV↓,
3305- SIL,    Silymarin inhibits proliferation of human breast cancer cells via regulation of the MAPK signaling pathway and induction of apoptosis
- in-vitro, BC, MDA-MB-231 - in-vitro, BC, MCF-7 - in-vivo, NA, NA
TumCP↓, tumCV↓, BAX↑, cl‑PARP↑, Casp9↑, p‑JNK↑, Bcl-2↓, p‑p38↓, p‑ERK↓, *toxicity∅, Dose↝, *hepatoP↑, Inflam↓, AntiCan↑,
3288- SIL,    Silymarin in cancer therapy: Mechanisms of action, protective roles in chemotherapy-induced toxicity, and nanoformulations
- Review, Var, NA
Inflam↓, lipid-P↓, TumMeta↓, angioG↓, chemoP↑, EMT↓, HDAC↓, HATs↑, MMPs↓, uPA↓, PI3K↓, Akt↓, VEGF↓, CD31↓, Hif1a↓, VEGFR2↓, Raf↓, MEK↓, ERK↓, BIM↓, BAX↑, Bcl-2↓, Bcl-xL↓, Casp↑, MAPK↓, P53↑, LC3II↑, mTOR↓, YAP/TEAD↓, *BioAv↓, MMP↓, Cyt‑c↑, PCNA↓, cMyc↓, cycD1/CCND1↓, β-catenin/ZEB1↓, survivin↓, APAF1↑, Casp3↑, MDSCs↓, IL10↓, IL2↑, IFN-γ↑, hepatoP↑, cardioP↑, GSH↑, neuroP↑,
3315- SIL,    Silymarin alleviates docetaxel-induced central and peripheral neurotoxicity by reducing oxidative stress, inflammation and apoptosis in rats
- in-vivo, Nor, NA
neuroP↑, *NRF2↑, *HO-1↑, *lipid-P↓, *GSH↑, *SOD↑, *Catalase↑, *GPx↑, *NF-kB↓, *TNF-α↓, *JNK↓, *Bcl-2↑, *BAX↑,
3296- SIL,    Silibinin induces oral cancer cell apoptosis and reactive oxygen species generation by activating the JNK/c-Jun pathway
- in-vitro, Oral, Ca9-22 - in-vivo, Oral, YD10B
TumCP↓, TumCCA↑, ROS↑, SOD1↓, SOD2↓, *JNK↑, toxicity?, TumCMig↓, TumCI↓, N-cadherin↓, Vim↓, E-cadherin↑, EMT↓, P53↑, cl‑Casp3↑, cl‑PARP↑, BAX↑, Bcl-2↓, SOD↓,
3293- SIL,    Silymarin (milk thistle extract) as a therapeutic agent in gastrointestinal cancer
- Review, Var, NA
hepatoP↑, TumMeta↓, Inflam↓, chemoP↑, radioP↑, Half-Life↝, *GSTs↑, p‑JNK↑, BAX↑, p‑p38↑, cl‑PARP↑, Bcl-2↓, p‑ERK↓, TumVol↓, eff↑, TumCCA↑, STAT3↓, Mcl-1↓, survivin↓, Bcl-xL↓, Casp3↑, Casp9↑, eff↑, CXCR4↓, Dose↝,
3290- SIL,    A review of therapeutic potentials of milk thistle (Silybum marianum L.) and its main constituent, silymarin, on cancer, and their related patents
- Analysis, Var, NA
hepatoP↑, chemoP↑, *lipid-P↓, *antiOx↑, tumCV↓, TumCMig↓, Apoptosis↑, ROS↑, GSH↓, Bcl-2↓, survivin↓, cycD1/CCND1↓, NOTCH1↓, BAX↑, NF-kB↓, COX2↓, LOX1↓, iNOS↓, TNF-α↓, IL1↓, Inflam↓, *toxicity↓, CXCR4↓, EGFR↓, ERK↓, MMP↓, Cyt‑c↑, TumCCA↑, RB1↑, P53↑, P21↑, p27↑, cycE/CCNE↓, CDK4↓, p‑pRB↓, Hif1a↓, cMyc↓, IL1β↓, IFN-γ↓, PCNA↓, PSA↓, CYP1A1↓,
3289- SIL,    Silymarin: a promising modulator of apoptosis and survival signaling in cancer
- Review, Var, NA
*BioAv↝, *BioAv↓, Fas↑, FasL↑, FADD↑, pro‑Casp8↑, Apoptosis↑, DR5↑, Bcl-2↑, BAX↑, Casp3↑, PI3K↓, FOXM1↓, p‑mTOR↓, p‑P70S6K↓, Hif1a↓, Akt↑, angioG↓, STAT3↓, NF-kB↓, lipid-P↓, eff↑, CDK1↓, survivin↓, CycB/CCNB1↓, Mcl-1↓, Casp9↑, AP-1↓, BioAv↑,
2217- SK,    Shikonin Inhibits Endoplasmic Reticulum Stress-Induced Apoptosis to Attenuate Renal Ischemia/Reperfusion Injury by Activating the Sirt1/Nrf2/HO-1 Pathway
- in-vivo, Nor, NA - in-vitro, Nor, HK-2
*ER Stress↓, *SIRT1↑, *NRF2↑, *HO-1↑, *eff↓, *RenoP↑, *GRP78/BiP↓, *CHOP↓, *Casp12↓, *BAX↓, *cl‑Casp3↓,
2232- SK,    Shikonin Induces Autophagy and Apoptosis in Esophageal Cancer EC9706 Cells by Regulating the AMPK/mTOR/ULK Axis
- in-vitro, ESCC, EC9706
tumCV↓, TumCMig↓, TumCI↓, TumAuto↑, Apoptosis↑, Bcl-2↓, BAX↑, cl‑Casp3↑, cl‑Casp8↑, cl‑PARP↑, AMPK↑, mTOR↑, TumVol↓, OS↑, LC3I↑,
3040- SK,    Pharmacological Properties of Shikonin – A Review of Literature since 2002
- Review, Var, NA - Review, IBD, NA - Review, Stroke, NA
*Half-Life↝, *BioAv↓, *BioAv↑, *BioAv↑, *Inflam↓, *TNF-α↓, *other↑, *MPO↓, *COX2↓, *NF-kB↑, *STAT3↑, *antiOx↑, *ROS↓, *neuroP↑, *SOD↑, *Catalase↑, *GPx↑, *Bcl-2↑, *BAX↓, cardioP↑, AntiCan↑, NF-kB↓, ROS↑, PKM2↓, TumCCA↑, Necroptosis↑, Apoptosis↑, DNAdam↑, MMP↓, Cyt‑c↑, LDH↝,
3043- SK,    Shikonin Induces Apoptosis by Inhibiting Phosphorylation of IGF-1 Receptor in Myeloma Cells.
- in-vitro, Melanoma, RPMI-8226
IGF-1↓, Apoptosis↑, TumCCA↑, MMP↓, Casp3↑, P53↑, BAX↑, Mcl-1↓, EGFR↓, Src↑, KDR/FLK-1↓, p‑IGF-1↓, PI3K↓, Akt↓,
3049- SK,    Shikonin Attenuates Chronic Cerebral Hypoperfusion-Induced Cognitive Impairment by Inhibiting Apoptosis via PTEN/Akt/CREB/BDNF Signaling
- in-vivo, Nor, NA - NA, Stroke, NA
*neuroP↑, *p‑PTEN↓, *p‑Akt↑, *Bcl-2↑, *BAX↓, *cognitive↑, *BDNF↑,
1344- SK,    Novel multiple apoptotic mechanism of shikonin in human glioma cells
- in-vitro, GBM, U87MG - in-vitro, GBM, Hs683 - in-vitro, GBM, M059K
ROS↑, GSH↓, MMP↓, P53↑, cl‑PARP↑, Catalase↓, SOD1↑, Bcl-2↓, BAX↑, eff↓,
2215- SK,  doxoR,    Shikonin alleviates doxorubicin-induced cardiotoxicity via Mst1/Nrf2 pathway in mice
- in-vivo, Nor, NA
*cardioP↑, *ROS↓, *Inflam↓, *Mst1↓, *NRF2↑, *eff↓, *antiOx↑, *SOD↑, *GSH↑, *TNF-α↓, BAX↓, Bcl-2↑,
2197- SK,    Shikonin derivatives for cancer prevention and therapy
- Review, Var, NA
ROS↑, Ca+2↑, BAX↑, Bcl-2↓, MMP9↓, NF-kB↓, PKM2↓, Hif1a↓, NRF2↓, P53↑, DNMT1↓, MDR1↓, COX2↓, VEGF↓, EMT↓, MMP7↓, MMP13↓, uPA↓, RIP1↑, RIP3↑, Casp3↑, Casp7↑, Casp9↑, P21↓, DFF45↓, TRAIL↑, PTEN↑, mTOR↓, AR↓, FAK↓, Src↓, Myc↓, RadioS↑,
1291- SM,    Tanshinone IIA inhibits human breast cancer cells through increased Bax to Bcl-xL ratios
- in-vitro, BC, MDA-MB-231
TumCP↓, TumCCA↑, BAX↑, Bcl-2↓,
335- SNP,  PDT,    Biogenic Silver Nanoparticles for Targeted Cancer Therapy and Enhancing Photodynamic Therapy
- Review, NA, NA
ROS↑, GSH↓, GPx↑, Catalase↓, SOD↓, p38↑, BAX↑, Bcl-2↓,
343- SNP,    Silver nanoparticles of different sizes induce a mixed type of programmed cell death in human pancreatic ductal adenocarcinoma
- in-vitro, PC, PANC1
BAX↑, Bcl-2↓, P53↑, TumAuto↑,
348- SNP,    Induction of p53 mediated mitochondrial apoptosis and cell cycle arrest in human breast cancer cells by plant mediated synthesis of silver nanoparticles from Bergenia ligulata (Whole plant)
- in-vitro, BC, MCF-7
Apoptosis↑, ROS↑, MMP↓, P53↑, BAX↑, cl‑Casp3↑,
350- SNP,    Cytotoxic and Apoptotic Effects of Green Synthesized Silver Nanoparticles via Reactive Oxygen Species-Mediated Mitochondrial Pathway in Human Breast Cancer Cells
- in-vitro, BC, MCF-7
ROS↑, MMP↓, P53↑, BAX↑, Casp3↑, Casp9↑, Bcl-2↓,
324- SNP,  CPT,    Silver Nanoparticles Potentiates Cytotoxicity and Apoptotic Potential of Camptothecin in Human Cervical Cancer Cells
- in-vitro, Cerv, HeLa
ROS↑, Casp3↑, Casp9↑, Casp6↑, GSH↓, SOD↓, GPx↓, MMP↓, P53↑, P21↑, Cyt‑c↑, BID↑, BAX↑, Bcl-2↓, Bcl-xL↓, Akt↓, Raf↓, ERK↓, MAP2K1/MEK1↓, JNK↑, p38↑,
386- SNP,  Tam,    Synergistic anticancer effects and reduced genotoxicity of silver nanoparticles and tamoxifen in breast cancer cells
- in-vitro, BC, MCF-7 - in-vitro, BC, MDA-MB-231
P53↑, BAX↑, Bcl-2↓, Casp3↑, DNAdam↑, TumCCA↑,
396- SNP,    Systemic Evaluation of Mechanism of Cytotoxicity in Human Colon Cancer HCT-116 Cells of Silver Nanoparticles Synthesized Using Marine Algae Ulva lactuca Extract
- in-vitro, Colon, HCT116
P53↑, BAX↑, P21↑, Bcl-2↓,
381- SNP,    Silver Nanoparticles Exert Apoptotic Activity in Bladder Cancer 5637 Cells Through Alteration of Bax/Bcl-2 Genes Expression
- in-vitro, Bladder, 5637
ROS↑, BAX↑, Bcl-2↓, Casp3↑, Casp7↑, Apoptosis↑,
382- SNP,    Investigation the apoptotic effect of silver nanoparticles (Ag-NPs) on MDA-MB 231 breast cancer epithelial cells via signaling pathways
- in-vitro, BC, MDA-MB-231
Apoptosis↑, BAX↑, Bcl-2↓, P53↑, PTEN↑, hTERT/TERT↓, p‑ERK↓, cycD1/CCND1↓,
383- SNP,    In vitro and in vivo evaluation of anti-tumorigenesis potential of nano silver for gastric cancer cells
- in-vitro, GC, MKN45
Ki-67↓, TumCP↓, CD34↓, BAX↑,
384- SNP,    Dual functions of silver nanoparticles in F9 teratocarcinoma stem cells, a suitable model for evaluating cytotoxicity- and differentiation-mediated cancer therapy
- in-vitro, Testi, F9
LDH↓, ROS↑, mtDam↑, DNAdam↑, P53↑, P21↑, BAX↑, Casp3↑, Bcl-2↓, Casp9↑, Nanog↓, OCT4↓,
397- SNP,  GEM,    Silver nanoparticles enhance the apoptotic potential of gemcitabine in human ovarian cancer cells: combination therapy for effective cancer treatment
- in-vitro, Ovarian, A2780S
P53↑, P21↑, BAX↑, Bak↑, Cyt‑c↑, Casp3↑, Casp9↑, Bcl-2↓, ROS↑, MMP↓,
395- SNP,    The apoptotic and genomic studies on A549 cell line induced by silver nitrate
- in-vitro, Lung, A549
BAX↑, MMP↓,
393- SNP,    Green synthesized plant-based silver nanoparticles: therapeutic prospective for anticancer and antiviral activity
- in-vitro, NA, HCT116
mtDam↑, ROS↑, TumCCA↑, Casp3↑, BAX↑, Bcl-2↓, P53↑,
388- SNP,    Apoptotic efficacy of multifaceted biosynthesized silver nanoparticles on human adenocarcinoma cells
- in-vitro, BC, MCF-7
ROS↑, Casp3↑, BAX↑, P53↑,
387- SNP,    Silver nanoparticles induce mitochondria-dependent apoptosis and late non-canonical autophagy in HT-29 colon cancer cells
- in-vitro, Colon, HT-29
Cyt‑c↑, P53↑, BAX↑, Casp3↑, Casp9↑, Casp12↑, Beclin-1↑, CHOP↑, LC3s↑, XBP-1↑,
363- SNP,    Silver nanoparticles induce oxidative cell damage in human liver cells through inhibition of reduced glutathione and induction of mitochondria-involved apoptosis
ROS↑, lipid-P↑, Apoptosis↑, BAX↑, Bcl-2↓, MMP↓, Cyt‑c↑, Casp3↑, Casp9↑, JNK↑,
369- SNP,    Silver nanoparticles induce oxidative cell damage in human liver cells through inhibition of reduced glutathione and induction of mitochondria-involved apoptosis
- in-vitro, Liver, NA
ROS↑, GSH↓, DNAdam↑, lipid-P↝, Apoptosis↑, BAX↑, Bcl-2↓, MMP↓, Casp9↑, Casp3↑, JNK↑,
2287- SNP,    Silver nanoparticles induce endothelial cytotoxicity through ROS-mediated mitochondria-lysosome damage and autophagy perturbation: The protective role of N-acetylcysteine
- in-vitro, Nor, HUVECs
*TumCP↓, *ROS↑, *eff↓, *MDA↑, *GSH↓, *MMP↓, *ATP↓, *LC3II↑, *p62↑, *Bcl-2↓, *BAX↑, *Casp3↑,
4427- SNP,    Silver nanoparticles induce apoptosis and G2/M arrest via PKCζ-dependent signaling in A549 lung cells
- in-vitro, Lung, A549
tumCV↓, LDH↑, TumCCA↑, BAX↑, BID↑, Bcl-2↓, PKCδ↓,
4430- SNP,    Evaluation of the Genotoxic and Oxidative Damage Potential of Silver Nanoparticles in Human NCM460 and HCT116 Cells
- in-vitro, Colon, HCT116 - in-vitro, Nor, NCM460
*Bacteria↓, ROS↑, p‑p38↑, BAX↑, Bcl-2↓, BAX↑, P21↑, TumCD↑, toxicity↝,
4438- SNP,  ART/DHA,    Biogenic synthesis of AgNPs using Artemisia oliveriana extract and their biological activities for an effective treatment of lung cancer
- in-vitro, Lung, A549
EPR↑, BAX↑, Bcl-2↑, Casp3↑, Casp9↑, DNAdam↑, TumCCA↑, Apoptosis↑,
4584- SNP,    Silver Nanoparticles Synthesized Using Carica papaya Leaf Extract (AgNPs-PLE) Causes Cell Cycle Arrest and Apoptosis in Human Prostate (DU145) Cancer Cells
- in-vitro, Pca, DU145
selectivity↑, ROS↑, BAX↑, cl‑Casp3↑, p‑PARP↑, TumCCA↑, cycD1/CCND1↓, p27↑, P21↑, AntiCan↑,
4388- SNP,    Differential Cytotoxic Potential of Silver Nanoparticles in Human Ovarian Cancer Cells and Ovarian Cancer Stem Cells
- in-vitro, Cerv, NA
tumCV↓, CSCs↓, selectivity↑, Apoptosis↑, ROS↑, LDH↓, Casp3↑, BAX↑, Bak↑, cMyc↑, MMP↓,
4417- SNP,    Caffeine-boosted silver nanoparticles target breast cancer cells by triggering oxidative stress, inflammation, and apoptotic pathways
- in-vitro, BC, MDA-MB-231
ROS↑, MDA↑, COX2↑, IL1β↑, TNF-α↑, GSH↓, Cyt‑c↑, Casp3↑, BAX↑, Bcl-2↓, LDH↓, cycD1/CCND1↓, CDK2↓, TumCCA↑, mt-Apoptosis↑,
4416- SNP,    Efficacy of curcumin-synthesized silver nanoparticles on MCF-7 breast cancer cells
- in-vitro, BC, MCF-7
TumCMig↓, Apoptosis↑, BAX↑, P53↑, Bcl-2↓,
4415- SNP,  SDT,  CUR,    Examining the Impact of Sonodynamic Therapy With Ultrasound Wave in the Presence of Curcumin-Coated Silver Nanoparticles on the Apoptosis of MCF7 Breast Cancer Cells
- in-vitro, BC, MCF-7
tumCV↓, BAX↑, Casp3↑, Bcl-2↓, eff↑, ROS↑, sonoS↑, eff↑, MMP↓, Cyt‑c↑,
3950- Taur,    Taurine Supplementation as a Neuroprotective Strategy upon Brain Dysfunction in Metabolic Syndrome and Diabetes
- Review, Diabetic, NA - Review, Stroke, NA - Review, AD, NA
*Ca+2↝, *neuroP↑, *other↝, *pH↝, *ROS∅, eff↑, *MMP↑, *Apoptosis↓, *other↝, *ER Stress↓, *Bcl-xL↓, *BAX↑, *Cyt‑c↑, *cal2↓, *Casp3↓, *UPR↓, *other↝, *NF-kB↓, *NRF2↑, *GLUT1↑, *GLUT3↑, *memory↑,
3555- TQ,    Thymoquinone administration ameliorates Alzheimer's disease-like phenotype by promoting cell survival in the hippocampus of amyloid beta1-42 infused rat model
- in-vivo, AD, NA
*memory↑, *BAX↓, *Aβ↓, *p‑tau↓, *AChE↓, *p‑Akt↓, *Ach↑, *Inflam↓,
3559- TQ,    Molecular signaling pathway targeted therapeutic potential of thymoquinone in Alzheimer’s disease
- Review, AD, NA - Review, Var, NA
*antiOx↑, *Inflam↓, *AChE↓, AntiCan↑, *cardioP↑, *RenoP↑, *neuroP↑, *hepatoP↑, TumCG↓, Apoptosis↑, PI3K↓, Akt↑, TumCCA↑, angioG↓, *NF-kB↓, *TLR2↓, *TLR4↓, *MyD88↓, *TRIF↓, *IRF3↓, *IL1β↓, *IL6↓, *IL12↓, *NRF2↑, *COX2↓, *VEGF↓, *MMP9↓, *cMyc↓, *cycD1/CCND1↓, *TumCP↓, *TumCI↓, *MDA↓, *TGF-β↓, *CRP↓, *Casp3↓, *GSH↑, *IL10↑, *iNOS↑, *lipid-P↓, *SOD↑, *H2O2↓, *ROS↓, *LDH↓, *Catalase↑, *GPx↑, *AChE↓, *cognitive↑, *MAPK↑, *JNK↑, *BAX↓, *memory↑, *Aβ↓, *MMP↑,
3421- TQ,    Insights into the molecular interactions of thymoquinone with histone deacetylase: evaluation of the therapeutic intervention potential against breast cancer
- Analysis, Nor, NA - in-vivo, Nor, NA - in-vitro, BC, MCF-7 - in-vitro, Nor, HaCaT
HDAC↓, P21↑, Maspin↑, BAX↑, B2M↓, TumCCA↑, selectivity↑, *toxicity↓, TumCMig↓, TumCP↓,
3397- TQ,    Thymoquinone: A Promising Therapeutic Agent for the Treatment of Colorectal Cancer
- Review, CRC, NA
ChemoSen↑, *Half-Life↝, *BioAv↝, *antiOx↑, *Inflam↓, *hepatoP↑, TumCP↓, TumCCA↑, Apoptosis↑, angioG↑, selectivity↑, JNK↑, p38↑, p‑NF-kB↑, ERK↓, PI3K↓, PTEN↑, Akt↓, mTOR↓, EMT↓, Twist↓, E-cadherin↓, ROS⇅, *Catalase↑, *SOD↑, *GSTA1↑, *GPx↑, *PGE2↓, *IL1β↓, *COX2↓, *MMP13↓, MMPs↓, TumMeta↓, VEGF↓, STAT3↓, BAX↑, Bcl-2↑, Casp9↑, Casp7↑, Casp3↑, cl‑PARP↑, survivin↓, cMyc↓, cycD1/CCND1↓, p27↑, P21↑, GSK‐3β↓, β-catenin/ZEB1↓, chemoP↑,
3423- TQ,    Epigenetic role of thymoquinone: impact on cellular mechanism and cancer therapeutics
- Review, Var, NA
AntiCan↑, Inflam↓, hepatoP↑, RenoP↑, BAX↑, Bak↑, Bcl-2↓, Bcl-xL↓, ROS↑, P53↑, PTEN↑, P21↑, p27↑, BRCA1↑, PI3K↓, Akt↓, MAPK↓, ERK↓, p‑ERK↓, MMPs↓, FAK↓, Twist↓, Zeb1↓, EMT↓, TumMeta↓, angioG↓, VEGF↓, HDAC↓, Maspin↑, SIRT1↑, DNMT1↓, DNMT3A↓, HDAC1↓, HDAC4↓,
3422- TQ,    Thymoquinone, as a Novel Therapeutic Candidate of Cancers
- Review, Var, NA
selectivity↑, P53↑, PTEN↑, NF-kB↓, PPARγ↓, cMyc↓, Casp↑, *BioAv↓, BioAv↝, eff↑, survivin↓, Bcl-xL↓, Bcl-2↓, Akt↓, BAX↑, cl‑PARP↑, CXCR4↓, MMP9↓, VEGFR2↓, Ki-67↓, COX2↓, JAK2↓, cSrc↓, Apoptosis↑, p‑STAT3↓, cycD1/CCND1↓, Casp3↑, Casp7↑, Casp9↑, N-cadherin↓, Vim↓, Twist↓, E-cadherin↑, ChemoSen↑, eff↑, EMT↓, ROS↑, DNMT1↓, eff↑, EZH2↓, hepatoP↑, Zeb1↓, RadioS↑, HDAC↓, HDAC1↓, HDAC2↓, HDAC3↓, *NAD↑, *SIRT1↑, SIRT1↓, *Inflam↓, *CRP↓, *TNF-α↓, *IL6↓, *IL1β↓, *eff↑, *MDA↓, *NO↓, *GSH↑, *SOD↑, *Catalase↑, *GPx↑, PI3K↓, mTOR↓,
3411- TQ,    Anticancer and Anti-Metastatic Role of Thymoquinone: Regulation of Oncogenic Signaling Cascades by Thymoquinone
- Review, Var, NA
p‑STAT3↓, cycD1/CCND1↓, JAK2↓, β-catenin/ZEB1↓, cMyc↓, MMP7↓, MET↓, p‑Akt↓, p‑mTOR↓, CXCR4↓, Bcl-2↓, BAX↑, ROS↑, Cyt‑c↑, Twist↓, Zeb1↓, E-cadherin↑, p‑p38↑, p‑MAPK↑, ERK↑, eff↑, ERK↓, TumCP↓, TumCMig↓, TumCI↓,
3413- TQ,    Thymoquinone induces apoptosis in human colon cancer HCT116 cells through inactivation of STAT3 by blocking JAK2- and Src‑mediated phosphorylation of EGF receptor tyrosine kinase
- in-vitro, CRC, HCT116
tumCV↓, Apoptosis↓, BAX↑, Bcl-2↓, Casp9↑, Casp7↑, Casp3↑, cl‑PARP↑, STAT3↓, survivin↓, cMyc↓, cycD1/CCND1↓, p27↑, P21↑, EGFR↓, ROS↑,
3414- TQ,    Thymoquinone induces apoptosis through inhibition of JAK2/STAT3 signaling via production of ROS in human renal cancer Caki cells
- in-vitro, RCC, Caki-1
tumCV↓, Apoptosis↑, P53↑, BAX↑, Cyt‑c↑, cl‑Casp9↑, cl‑Casp3↑, cl‑PARP↑, Bcl-2↓, Bcl-xL↓, p‑STAT3↓, p‑JAK2↓, STAT3↓, survivin↓, cycD1/CCND1↓, ROS↑, eff↓,
1936- TQ,    Thymoquinone induces apoptosis and increase ROS in ovarian cancer cell line
- in-vitro, Ovarian, CaOV3 - in-vitro, Nor, WRL68
selectivity↑, TumCP↓, MMP↓, Bcl-2↓, BAX↑, ROS↑,
1308- TQ,    Thymoquinone induces apoptosis via targeting the Bax/BAD and Bcl-2 pathway in breast cancer cells
- in-vitro, BC, MCF-7
tumCV↓, TumCP↓, BAX↑, P53⇅, Apoptosis↑,
1309- TQ,  QC,    Thymoquinone and quercetin induce enhanced apoptosis in non-small cell lung cancer in combination through the Bax/Bcl2 cascade
- in-vitro, Lung, NA
Bcl-2↓, BAX↑, Apoptosis↑,
2132- TQ,    Thymoquinone treatment modulates the Nrf2/HO-1 signaling pathway and abrogates the inflammatory response in an animal model of lung fibrosis
- in-vivo, Nor, NA
*Weight∅, *antiOx↑, *lipid-P↓, *MMP7↓, *Casp3↓, *BAX↓, *TGF-β↓, *Diff↑, *NRF2↓, *HO-1↓, *NF-kB↓, *IκB↑,
2123- TQ,    Thymoquinone suppresses growth and induces apoptosis via generation of reactive oxygen species in primary effusion lymphoma
- in-vitro, lymphoma, PEL
Akt↓, ROS↑, BAX↓, MMP↓, Cyt‑c↑, eff↑, Casp9↑, Casp3↑, cl‑PARP↑, DR5↑,
2120- TQ,    Thymoquinone induces apoptosis of human epidermoid carcinoma A431 cells through ROS-mediated suppression of STAT3
- in-vitro, Melanoma, A431
ROS↑, Apoptosis↑, P53↑, BAX↑, MDM2↓, Bcl-2↓, Bcl-xL↓, Casp9↑, Casp7↑, Casp3↑, STAT3↓, cycD1/CCND1↓, survivin↓, eff↓,
2094- TQ,    Cytotoxicity of Nigella sativa Extracts Against Cancer Cells: A Review of In Vitro and In Vivo Studies
- Review, Var, NA
ROS↑, angioG↓, TumMeta↓, VEGF↓, MMPs↓, P53↑, BAX↑, Casp↑, Bcl-2↓, survivin↓, *ROS↓, ChemoSen↑, chemoP↑, MDR1↓, BioAv↓, BioAv↑,
2109- TQ,    Thymoquinone Induces Mitochondria-Mediated Apoptosis in Acute Lymphoblastic Leukaemia in Vitro
- in-vitro, AML, CEM
Apoptosis↓, Bcl-2↓, BAX↑, ROS↑, HSP70/HSPA5↑, Casp3↑, Casp8↑,
2110- TQ,    Nigella sativa seed oil suppresses cell proliferation and induces ROS dependent mitochondrial apoptosis through p53 pathway in hepatocellular carcinoma cells
- in-vitro, HCC, HepG2 - in-vitro, BC, MCF-7 - in-vitro, Lung, A549 - in-vitro, Nor, HEK293
P53↑, lipid-P↑, GSH↓, ROS↑, MMP↓, BAX↑, Casp3↑, Casp9↑, Bcl-2↓, tumCV↓, selectivity↑,
2454- Trip,    Natural product triptolide induces GSDME-mediated pyroptosis in head and neck cancer through suppressing mitochondrial hexokinase-ΙΙ
- in-vitro, HNSCC, HaCaT - in-vivo, NA, NA
GSDME-N↑, Pyro↑, cMyc↓, HK2↓, BAD↑, BAX↑, Casp3↑, NRF2↓, xCT↓, ROS↑, eff↑, Glycolysis↓, GlucoseCon↓, lactateProd↓, ATP↓, xCT↓, eff↑,
5017- UA,    Ursolic acid disturbs ROS homeostasis and regulates survival-associated gene expression to induce apoptosis in intestinal cancer cells
- in-vitro, Cerv, INT-407 - in-vitro, CRC, HCT116
AntiCan↑, TumCG↓, ROS↑, Apoptosis↑, TumCMig↓, CTNNB1↓, Twist↓, Bcl-2↓, survivin↓, NF-kB↓, Sp1/3/4↓, BAX↑, P21↑, P53↑, eff↓, TumCMig↓,
5020- UA,    Anticancer activity of ursolic acid on human ovarian cancer cells via ROS and MMP mediated apoptosis, cell cycle arrest and downregulation of PI3K/AKT pathway
- in-vitro, Ovarian, NA
tumCV↓, selectivity↑, BAX↑, Bcl-2↓, Apoptosis↑, ROS↑, TumCCA↑, Akt↓, PI3K↓,
4857- Uro,    Evaluation and comparison of the anti-proliferative and anti-metastatic effects of urolithin A and urolithin B against esophageal cancer cells: an in vitro and in silico study
- in-vitro, ESCC, KYSE-30
tumCV↓, selectivity↑, TumCCA↑, ROS↑, Bcl-2↓, BAX↑, P21↑, MMP2↓, MMP9↓,
4856- Uro,    Study on the biological mechanism of urolithin a on nasopharyngeal carcinoma in vitro
- in-vitro, NPC, CNE1 - in-vitro, NPC, CNE2
Apoptosis↑, MMP↓, ROS↑, E-cadherin↑, BAX↑, cl‑Casp3↑, PARP↑, MMP2↓, MMP9↓, N-cadherin↓, Vim↓, Snail↓, eff↓, TumCP↓, TumCMig↓, TumCI↓, EMT↓,
4833- Uro,    Unveiling the potential of Urolithin A in Cancer Therapy: Mechanistic Insights to Future Perspectives of Nanomedicine
- Review, Var, NA - Review, AD, NA - Review, IBD, NA
BioAv↝, TumAuto↝, TumCG↓, TumMeta↓, ChemoSen↑, Imm↑, RadioS↑, BioAv↑, other↝, eff↓, *antiOx↓, *Inflam↓, AntiCan↓, AntiAge↑, chemoP↑, *neuroP↑, *ROS↓, *cognitive↑, *lipid-P↓, *cardioP↑, *TNF-α↓, *IL6↓, GutMicro↑, TumCCA↑, Apoptosis↑, angioG↓, NF-kB↓, PI3K↓, Akt↓, Casp↑, survivin↓, TumCP↓, cycD1/CCND1↓, cMyc↑, BAX↑, Bcl-2↓, COX2↓, P53↑, p38↑, *ROS↓, *SOD↑, *GPx↑, SIRT1↑, FOXO1↑, eff↑, ChemoSen↑,
4869- Uro,    Urolithin A in Central Nervous System Disorders: Therapeutic Applications and Challenges
- Review, AD, NA - Review, Park, NA - Review, Stroke, NA
*MitoP↑, *Inflam↓, *antiOx↑, *Risk↓, *Aβ↓, *p‑tau↓, *p62↓, *PARK2↑, *MMP↑, *ROS↓, *Strength↑, *CRP↓, *IL1β↓, *IL6↓, *TNF-α↓, *AMPK↑, *NF-kB↓, *MAPK↓, *p62↑, *NRF2↑, *SOD↑, *Catalase↑, *HO-1↑, *Ferroptosis↓, *lipid-P↓, *Cartilage↑, *PI3K↓, *Akt↓, *mTOR↓, *Apoptosis↓, *neuroP↑, *Bcl-2↓, *BAX↑, *Casp3↑, *ATP↑, *eff↑, *motorD↑, *NLRP3↓, *radioP↑, *BBB↑,
3142- VitC,    Vitamin C promotes apoptosis in breast cancer cells by increasing TRAIL expression
- in-vitro, BC, MDA-MB-231 - in-vitro, BC, MCF-7 - in-vitro, Nor, MCF12A
TET2↑, Apoptosis↑, TRAIL↑, BAX↑, Casp↑, Cyt‑c↑, HK2↓, PDK1↓, BNIP3↓,
1313- VitD3,  MEL,    The effects of melatonin and vitamin D3 on the gene expression of BCl-2 and BAX in MCF-7 breast cancer cell line
- in-vitro, BC, MCF-7
BAX↑, Bcl-2↓, Bax:Bcl2↑, eff↑,
2274- VitK2,    Vitamin K2 Modulates Mitochondrial Dysfunction Induced by 6-Hydroxydopamine in SH-SY5Y Cells via Mitochondrial Quality-Control Loop
- in-vitro, Nor, SH-SY5Y
*Bcl-2↓, *BAX↑, *MMP↑, *ROS↓, *p62↓, *LC3A↑, *Dose↝, *Apoptosis↓, *PINK1↑, *PARK2↑,
1817- VitK2,    Research progress on the anticancer effects of vitamin K2
- Review, Var, NA
TumCCA↑, Apoptosis↑, TumAuto↑, TumCI↓, TumCG↓, ChemoSen↓, ChemoSideEff↓, toxicity∅, eff↑, cycD1/CCND1↓, CDK4↓, eff↑, IKKα↓, NF-kB↓, other↑, p27↑, cMyc↓, i-ROS↑, Bcl-2↓, BAX↑, p38↑, MMP↓, Casp9↑, p‑ERK↓, RAS↓, MAPK↓, p‑P53↑, Casp8↑, Casp3↑, cJun↑, MMPs↓, eff↑, eff↑,
1821- VitK3,    Menadione (Vitamin K3) induces apoptosis of human oral cancer cells and reduces their metastatic potential by modulating the expression of epithelial to mesenchymal transition markers and inhibiting migration
- in-vitro, Oral, NA - in-vitro, Nor, HEK293 - in-vitro, Nor, HaCaT
selectivity↑, TumCD↓, BAX↑, P53↑, Bcl-2↓, p65↓, E-cadherin↑, EMT↓, Vim↓, Fibronectin↓, TumCG↓, TumCMig↓,
4886- ZER,    Zerumbone induced apoptosis in liver cancer cells via modulation of Bax/Bcl-2 ratio
- in-vitro, Liver, HepG2
TumCP↓, Apoptosis↑, BAX↑, Bcl-2↓, *selectivity↑,

* indicates research on normal cells as opposed to diseased cells
Total Research Paper Matches: 398

Pathway results for Effect on Cancer / Diseased Cells:


NA, unassigned

chemoPv↑, 4,  

Redox & Oxidative Stress

antiOx↓, 4,   antiOx↑, 7,   antiOx⇅, 1,   ARE↑, 1,   Catalase↓, 7,   Catalase↑, 6,   Copper↑, 1,   CYP1A1↓, 3,   CYP1A1↑, 1,   Fenton↑, 2,   Ferroptosis↑, 5,   frataxin↑, 1,   GPx↓, 3,   GPx↑, 6,   GPx4↓, 6,   GPx4↑, 1,   GSH↓, 27,   GSH↑, 4,   GSH/GSSG↓, 3,   GSR↑, 1,   GSS↑, 1,   GSSG↓, 1,   GSTA1↑, 2,   GSTs↓, 1,   GSTs↑, 2,   H2O2↑, 6,   HO-1↓, 4,   HO-1↑, 8,   ICD↑, 1,   Iron↑, 2,   Keap1↓, 1,   lipid-P↓, 8,   lipid-P↑, 8,   lipid-P↝, 1,   MAD↓, 1,   MDA↓, 3,   MDA↑, 7,   NADPH/NADP+↓, 1,   NAF1↓, 1,   NOX4↑, 1,   NQO1?, 1,   NQO1↑, 1,   Nrf1↑, 1,   NRF2↓, 9,   NRF2↑, 15,   NRF2⇅, 1,   NRF2↝, 2,   p‑NRF2↓, 1,   OXPHOS↓, 2,   PARK2↑, 1,   Prx6↑, 1,   PYCR1↓, 1,   ROS?, 3,   ROS↓, 13,   ROS↑, 198,   ROS⇅, 6,   ROS↝, 1,   ROS∅, 1,   i-ROS↑, 3,   mt-ROS↑, 3,   SAM-e↝, 1,   SIRT3↓, 1,   SOD↓, 11,   SOD↑, 9,   SOD1↓, 1,   SOD1↑, 2,   SOD2↓, 2,   SOD2↑, 3,   TAC?, 1,   TBARS↑, 1,   Trx1↑, 1,   TrxR↓, 3,   TrxR1↓, 1,   xCT↓, 3,  

Metal & Cofactor Biology

Ferritin↓, 1,   FTH1↓, 1,   IronCh↑, 1,   NCOA4↑, 1,   Tf↑, 1,  

Mitochondria & Bioenergetics

ADP:ATP↑, 1,   AIF↑, 10,   AIF↝, 1,   ATP↓, 7,   ATP∅, 1,   BOK↑, 2,   CDC2↓, 5,   CDC2↑, 1,   CDC25↓, 12,   p‑CDC25↑, 1,   compIII↑, 1,   EGF↓, 5,   ETC↓, 1,   FGFR1↓, 4,   MEK↓, 3,   p‑MEK↓, 2,   mitResp↓, 1,   mitResp↑, 2,   MMP↓, 105,   MMP↑, 1,   MMP↝, 1,   MPT↑, 2,   mtDam↑, 15,   OCR↓, 3,   p‑p42↑, 1,   PINK1↑, 1,   Raf↓, 5,   e-Raf↓, 1,   XIAP↓, 15,  

Core Metabolism/Glycolysis

12LOX?, 1,   12LOX↓, 3,   Ac-histone H3↑, 1,   ACC↑, 3,   ACLY↓, 2,   AKT1↓, 1,   ALAT↓, 1,   ALAT↝, 1,   ALAT∅, 1,   AMPK↓, 1,   AMPK↑, 11,   p‑AMPK↑, 3,   ATG7↑, 1,   CAIX↓, 1,   CAIX↑, 1,   cMyc↓, 30,   cMyc↑, 2,   p‑cMyc↑, 1,   CYP3A4↓, 1,   FASN↓, 5,   FBI-1↓, 1,   GLO-I↓, 1,   GLS↓, 1,   GlucoseCon↓, 4,   GlutMet↓, 1,   Glycolysis↓, 12,   HK2↓, 11,   lactateProd↓, 8,   lactateProd↑, 1,   LDH?, 1,   LDH↓, 12,   LDH↑, 3,   LDH↝, 1,   i-LDH↓, 1,   LDHA↓, 5,   LDL↓, 1,   NAD↝, 1,   NADPH↓, 3,   PCK1↓, 1,   PDH↓, 1,   PDH↑, 1,   PDH↝, 1,   PDK1↓, 4,   PDKs↓, 1,   PFK↓, 4,   PFKP↓, 1,   PI3K/Akt↓, 9,   PI3K/Akt↑, 1,   PI3K/Akt↝, 1,   PI3k/Akt/mTOR↝, 1,   PKM2↓, 9,   cl‑PPARα↓, 1,   PPARγ↓, 2,   PPARγ↑, 3,   Pyruv↓, 1,   p‑S6↓, 1,   p‑S6K↓, 1,   SIRT1↓, 2,   SIRT1↑, 4,   SREBP1↓, 1,   TCA?, 1,   TCA↓, 1,   Warburg↓, 2,  

Cell Death

Akt↓, 77,   Akt↑, 3,   Akt↝, 1,   p‑Akt↓, 31,   p‑Akt↝, 1,   APAF1↑, 6,   Apoptosis?, 1,   Apoptosis↓, 4,   Apoptosis↑, 164,   Apoptosis↝, 2,   mt-Apoptosis↑, 2,   ASK1↑, 2,   BAD↓, 2,   BAD↑, 12,   BAD↝, 1,   Bak↑, 19,   BAX↓, 11,   BAX↑, 353,   BAX⇅, 2,   BAX↝, 3,   BAX∅, 1,   Bax:Bcl2↑, 11,   Bcl-2↓, 259,   Bcl-2↑, 8,   Bcl-2↝, 1,   Bcl-2∅, 2,   cl‑Bcl-2↑, 1,   Bcl-xL↓, 37,   Bcl-xL↝, 1,   Bcl-xL∅, 1,   BID↑, 12,   cl‑BID↑, 1,   BIM↓, 1,   BIM↑, 11,   Casp↓, 1,   Casp↑, 19,   Casp↝, 1,   Casp10↑, 1,   Casp12↑, 4,   cl‑Casp12↑, 1,   Casp2↑, 2,   Casp3?, 2,   Casp3↓, 7,   Casp3↑, 173,   Casp3↝, 1,   Casp3∅, 1,   cl‑Casp3↑, 40,   proCasp3↓, 1,   Casp6↑, 1,   Casp7↑, 15,   cl‑Casp7↑, 1,   Casp8↓, 1,   Casp8↑, 34,   cl‑Casp8↑, 11,   pro‑Casp8↑, 1,   Casp9↑, 102,   Casp9∅, 1,   cl‑Casp9↑, 13,   proCasp9↓, 1,   proCasp9↑, 1,   cFLIP↓, 5,   Chk2↓, 1,   Chk2↑, 1,   p‑Chk2↑, 1,   CK2↓, 1,   Cupro↑, 1,   Cyt‑c↑, 109,   Cyt‑c↝, 2,   Cyt‑c?, 1,   Diablo↑, 7,   DR4↑, 6,   DR5↑, 25,   FADD↑, 5,   Fas↓, 1,   Fas↑, 22,   FasL↓, 1,   FasL↑, 10,   Ferroptosis↑, 5,   GSDME-N↑, 2,   HEY1↓, 1,   HGF/c-Met↓, 3,   hTERT/TERT↓, 8,   IAP1↓, 2,   IAP2↓, 2,   ICAD↓, 1,   iNOS↓, 10,   iNOS↑, 1,   JNK↓, 3,   JNK↑, 20,   JNK↝, 1,   p‑JNK↑, 4,   MAPK↓, 18,   MAPK↑, 18,   MAPK↝, 1,   p‑MAPK↑, 1,   Mcl-1↓, 19,   MDM2↓, 9,   MDM2↑, 1,   miR-497↑, 1,   miR-548ah-5p↑, 1,   MKP1↓, 1,   MKP2↓, 1,   MLKL↑, 1,   p‑MLKL↓, 1,   Myc↓, 3,   NAIP↓, 2,   Necroptosis↑, 2,   necrosis↑, 1,   NICD↓, 1,   NOXA↑, 4,   p27↑, 25,   p38↓, 3,   p38↑, 19,   p‑p38↓, 3,   p‑p38↑, 8,   Paraptosis↑, 1,   Proteasome↓, 1,   PUMA↑, 6,   PUMA⇅, 1,   Pyro↑, 3,   RIP1↑, 1,   survivin↓, 40,   survivin↝, 1,   Telomerase↓, 10,   TNFR 1↑, 2,   TRAIL↑, 9,   TRAILR↑, 2,   TumCD↓, 1,   TumCD↑, 7,   TUNEL↑, 2,   YAP/TEAD↓, 2,  

Kinase & Signal Transduction

AMPKα↑, 1,   CaMKII ↓, 1,   cSrc↓, 1,   HER2/EBBR2↓, 6,   p‑HER2/EBBR2↓, 1,   p70S6↓, 1,   RET↓, 1,   RTK-RAS↓, 1,   Sp1/3/4↓, 5,   TSC2↑, 2,   p‑TSC2↑, 1,  

Transcription & Epigenetics

cJun↓, 4,   cJun↑, 1,   p‑cJun↑, 1,   EZH2↓, 1,   H3↓, 2,   p‑H3↓, 1,   ac‑H3↑, 3,   ac‑H4↑, 2,   HATs↓, 3,   HATs↑, 1,   KCNQ1OT1↓, 1,   miR-21↓, 1,   miR-21↑, 1,   miR-27a-3p↓, 2,   miR-30a-5p↑, 1,   other?, 1,   other↓, 4,   other↑, 1,   other↝, 1,   pRB↓, 1,   pRB↑, 2,   p‑pRB↓, 2,   Shc↓, 1,   sonoS↑, 1,   TET3↑, 1,   tumCV?, 1,   tumCV↓, 45,   tumCV↑, 1,  

Protein Folding & ER Stress

ATF6↑, 1,   ATFs↑, 1,   CHOP↑, 25,   eIF2α↓, 1,   eIF2α↑, 6,   p‑eIF2α↑, 4,   ER Stress↓, 2,   ER Stress↑, 29,   GRP78/BiP↓, 1,   GRP78/BiP↑, 11,   GRP94↑, 1,   HSP27↓, 3,   HSP27↑, 1,   HSP27↝, 1,   HSP70/HSPA5↓, 4,   HSP70/HSPA5↑, 3,   HSP70/HSPA5↝, 1,   HSP72↓, 1,   HSP90↓, 4,   IRE1↑, 2,   PERK↑, 7,   p‑PERK↑, 2,   UPR↑, 7,   XBP-1↑, 2,  

Autophagy & Lysosomes

ATG3↑, 2,   ATG5↑, 4,   Beclin-1↓, 1,   Beclin-1↑, 11,   BNIP3?, 1,   BNIP3↓, 1,   BNIP3↑, 5,   LC3‑Ⅱ/LC3‑Ⅰ↓, 1,   LC3‑Ⅱ/LC3‑Ⅰ↑, 1,   LC3A↑, 1,   LC3B↑, 2,   LC3B-II↑, 2,   LC3I↓, 1,   LC3I↑, 1,   LC3II↓, 1,   LC3II↑, 13,   LC3s↑, 2,   p62↓, 6,   p62↑, 3,   SESN2↑, 1,   TumAuto↑, 19,   TumAuto↝, 1,  

DNA Damage & Repair

ATM↑, 3,   p‑ATM↑, 1,   BRCA1↑, 1,   CHK1↓, 1,   CHK1↑, 2,   p‑CHK1↑, 1,   DFF45↓, 2,   DFF45↑, 1,   DNA-PK↑, 1,   DNAdam↓, 1,   DNAdam↑, 30,   DNArepair↓, 1,   DNArepair↑, 1,   DNMT1↓, 9,   DNMT3A↓, 5,   DNMTs↓, 6,   GADD45A↑, 1,   MGMT↓, 1,   p16↑, 3,   P53?, 1,   P53↓, 2,   P53↑, 105,   P53⇅, 1,   P53↝, 3,   p‑P53↑, 6,   PARP↓, 3,   PARP↑, 13,   p‑PARP↑, 4,   cl‑PARP↓, 1,   cl‑PARP↑, 54,   cl‑PARP∅, 1,   PARP1↓, 1,   PARP1↑, 1,   cl‑PARP1↑, 2,   PCLAF↓, 1,   PCNA↓, 20,   RAD51↓, 1,   RAD51↑, 1,   SMG1↑, 1,   TP53↓, 3,   γH2AX↓, 1,   γH2AX↑, 7,  

Cell Cycle & Senescence

CDK1↓, 14,   CDK1↑, 1,   p‑CDK1↓, 1,   CDK1/2/5/9↓, 1,   CDK2↓, 24,   CDK2↑, 3,   p‑CDK2↓, 1,   CDK4↓, 25,   CDK4↑, 1,   CDK4↝, 1,   Cyc↓, 4,   Cyc↝, 1,   cycA1/CCNA1↓, 6,   cycA1/CCNA1↑, 1,   CycB/CCNB1↓, 18,   CycB/CCNB1↑, 1,   cycD1/CCND1↓, 62,   cycD1/CCND1↑, 2,   cycD1/CCND1↝, 1,   CycD3↓, 1,   cycE/CCNE↓, 13,   cycE/CCNE↑, 2,   cycE1↓, 2,   cycF↓, 1,   E2Fs↓, 1,   p19↑, 1,   P21?, 1,   P21↓, 6,   P21↑, 69,   P21↝, 1,   RB1↓, 1,   RB1↑, 3,   Securin↓, 1,   TAp63α↑, 1,   TumCCA?, 1,   TumCCA↓, 3,   TumCCA↑, 124,  

Proliferation, Differentiation & Cell State

p‑4E-BP1↓, 1,   ALDH↓, 1,   ALDH1A1↓, 2,   BMI1↓, 1,   BRAF↝, 1,   CD133↓, 2,   CD24↓, 2,   CD34↓, 1,   CD44↓, 4,   cDC2↓, 2,   p‑cDC2↑, 1,   CEBPA↑, 1,   cFos↓, 6,   CIP2A↓, 1,   cMET↓, 2,   p‑cMET↑, 1,   CSCs↓, 10,   CTNNB1↓, 1,   EMT?, 1,   EMT↓, 33,   EMT↑, 2,   EP4↑, 1,   EpCAM↓, 1,   ERK↓, 41,   ERK↑, 11,   p‑ERK↓, 14,   p‑ERK↑, 2,   FGF↓, 2,   FGFR2↓, 1,   FOXM1↓, 1,   FOXO↑, 1,   FOXO1↑, 2,   FOXO3↓, 1,   FOXO3↑, 1,   p‑FOXO3↓, 1,   Gli1↓, 8,   GSK‐3β↓, 5,   GSK‐3β↑, 4,   p‑GSK‐3β↓, 2,   HDAC↓, 19,   HDAC1↓, 6,   HDAC10↑, 1,   HDAC2↓, 4,   HDAC3↓, 3,   HDAC4↓, 1,   HDAC8↓, 2,   HH↓, 6,   IGF-1↓, 5,   p‑IGF-1↓, 1,   IGF-1R↓, 3,   IGF-1R↑, 1,   IGFBP3↑, 3,   IGFBP7↑, 1,   IGFR↓, 1,   Jun↓, 1,   Let-7↑, 2,   MAP2K1/MEK1↓, 1,   MCM2↓, 1,   miR-34a↑, 3,   mTOR↓, 35,   mTOR↑, 2,   mTOR↝, 1,   p‑mTOR↓, 16,   mTORC1↓, 4,   mTORC2↓, 3,   Nanog↓, 5,   Nanog↑, 1,   Nestin↓, 1,   NOTCH↓, 8,   NOTCH⇅, 1,   NOTCH1↓, 9,   NOTCH1↑, 1,   NOTCH2↓, 1,   NOTCH3↓, 2,   OCT4↓, 5,   OCT4↑, 1,   P70S6K↓, 2,   p‑P70S6K↓, 3,   p‑P90RSK↑, 1,   PI3K↓, 52,   PI3K↑, 1,   PI3K↝, 1,   p‑PI3K↓, 2,   p‑PI3K↑, 1,   circ‑PLEKHM3↑, 1,   PTCH1↓, 2,   PTEN↑, 19,   PTEN↝, 2,   RAS↓, 8,   RAS↑, 1,   SAL↑, 1,   Shh↓, 6,   SHP1↑, 1,   Smo↓, 5,   SOX2↓, 4,   Src↓, 1,   Src↑, 1,   STAT↓, 2,   STAT3↓, 39,   STAT3↑, 2,   p‑STAT3↓, 10,   STAT5↓, 1,   STAT6↓, 1,   Sufu↑, 1,   TAZ↓, 1,   TCF↑, 1,   TCF-4↓, 1,   TOP1↓, 2,   TOP2↓, 5,   TumCG↓, 46,   TumCG↑, 2,   tyrosinase↓, 1,   Wnt?, 1,   Wnt↓, 20,   Wnt↑, 1,   Wnt/(β-catenin)↓, 3,   ZFX↓, 1,  

Migration

AEG1↓, 1,   Akt2↓, 1,   AntiAg↓, 1,   AntiAg↑, 1,   AP-1↓, 8,   AP-1↝, 1,   Ca+2↓, 2,   Ca+2↑, 22,   Ca+2↝, 1,   i-Ca+2↑, 2,   CAFs/TAFs↓, 1,   cal2↑, 1,   CD31↓, 1,   Cdc42↑, 1,   CLDN2↓, 2,   COL1↓, 1,   COL3A1↓, 1,   CXCL12↓, 1,   E-cadherin↓, 6,   E-cadherin↑, 30,   ER-α36↓, 3,   FAK↓, 14,   Fibronectin↓, 3,   GLI2↓, 3,   HLA↑, 1,   ITGA5↓, 1,   ITGB1↓, 3,   ITGB3↓, 1,   Ki-67↓, 14,   KRAS↓, 1,   LAMs↓, 1,   LEF1↓, 1,   MALAT1↓, 1,   MARK4↓, 1,   MET↓, 2,   miR-139-5p↑, 1,   miR-155↓, 1,   miR-29b↑, 1,   miR-320a↓, 1,   MMP1↓, 4,   MMP13↓, 4,   MMP2↓, 43,   MMP2↝, 1,   MMP3↓, 3,   MMP7↓, 8,   MMP9↓, 51,   MMPs↓, 19,   MRGPRF↓, 1,   N-cadherin↓, 18,   NFAT↑, 1,   p‑p44↑, 1,   PAK1↓, 1,   PDGF↓, 5,   PKCδ↓, 6,   RAGE↓, 1,   Rho↓, 2,   RIP3↑, 2,   p‑RIP3↑, 1,   ROCK1↓, 2,   Slug↓, 4,   p‑SMAD2↓, 1,   p‑SMAD3↓, 1,   SMAD4↑, 1,   Snail↓, 17,   SOX4↑, 1,   TET1↑, 3,   TGF-β↓, 10,   TGF-β↑, 1,   TIMP1↓, 3,   TIMP1↑, 7,   TIMP2↓, 2,   TIMP2↑, 6,   Treg lymp↓, 1,   TSP-1↑, 4,   TumCA↓, 1,   TumCI?, 1,   TumCI↓, 31,   TumCMig↓, 40,   TumCMig↑, 1,   TumCP↓, 77,   TumCP↑, 1,   TumMeta↓, 22,   TumMeta↑, 3,   Twist↓, 15,   uPA↓, 18,   uPAR↓, 1,   VCAM-1↓, 1,   Vim↓, 28,   Zeb1↓, 6,   Zeb1↑, 1,   ZEB2↓, 1,   ZO-1↑, 1,   α-tubulin↓, 1,   β-catenin/ZEB1↓, 21,   β-catenin/ZEB1↑, 1,   β-catenin/ZEB1↝, 1,  

Angiogenesis & Vasculature

angioG↓, 37,   angioG↑, 2,   ATF4↓, 1,   ATF4↑, 10,   ECM/TCF↓, 1,   EGFR↓, 21,   EGFR↝, 1,   p‑EGFR↓, 1,   eNOS↓, 2,   eNOS↑, 1,   EPR↑, 1,   HIF-1↓, 2,   Hif1a↓, 35,   Hif1a↑, 1,   KDR/FLK-1↓, 1,   LOX1↓, 2,   NO↓, 3,   NO↑, 1,   VEGF↓, 52,   VEGF↝, 1,   VEGFR2↓, 11,  

Barriers & Transport

BBB↑, 1,   CellMemb↓, 1,   GLUT1↓, 5,   GLUT1↑, 1,   GLUT3↓, 1,   GLUT3↑, 1,   GLUT4↓, 1,   P-gp↓, 6,  

Immune & Inflammatory Signaling

B2M↓, 1,   CD4+↓, 1,   CD4+↑, 2,   COX2↓, 39,   COX2↑, 2,   COX2↝, 1,   CRP↓, 1,   CXCR4↓, 7,   FOXP3↓, 2,   IFN-γ↓, 4,   IFN-γ↑, 2,   IKKα↓, 5,   IKKα↑, 2,   p‑IKKα↓, 1,   IL1↓, 4,   IL1↑, 1,   IL10↓, 6,   IL10↑, 1,   IL1α↓, 1,   IL1β↓, 7,   IL1β↑, 2,   IL2↑, 2,   IL4↓, 1,   IL4↑, 1,   IL6↓, 21,   IL6↝, 1,   IL8↓, 6,   Imm↑, 1,   Inflam↓, 15,   IκB↑, 1,   p‑IκB↓, 1,   p‑IκB↑, 1,   JAK↓, 3,   JAK1↓, 3,   JAK2↓, 5,   p‑JAK2↓, 2,   MCP1↓, 1,   MDSCs↓, 1,   NF-kB↓, 82,   NF-kB↑, 3,   NF-kB↝, 1,   p‑NF-kB↓, 2,   p‑NF-kB↑, 2,   NK cell↑, 2,   p65↓, 7,   p‑p65↑, 1,   PD-1↓, 1,   PD-L1↓, 1,   PD-L1↑, 1,   PGE2↓, 4,   PSA↓, 4,   PSA↝, 1,   T-Cell↑, 2,   Th1 response↑, 1,   TLR4↓, 4,   TNF-α↓, 22,   TNF-α↑, 5,   TNF-α↝, 1,   TNF-β↓, 1,  

Protein Aggregation

NLRP3↓, 1,  

Hormonal & Nuclear Receptors

AR↓, 10,   AR↝, 1,   CDK6↓, 11,   CDK6↑, 2,   ER(estro)↓, 1,   ERα/ESR1↓, 1,   RANKL↓, 1,  

Drug Metabolism & Resistance

BioAv↓, 16,   BioAv↑, 9,   BioAv↝, 5,   BioAv∅, 1,   ChemoSen↓, 3,   ChemoSen↑, 60,   ChemoSen↝, 1,   CYP1A2↓, 1,   Dose?, 1,   Dose↓, 1,   Dose↑, 3,   Dose↝, 9,   Dose∅, 9,   eff↓, 44,   eff↑, 112,   eff↝, 3,   eff∅, 1,   Half-Life↓, 4,   Half-Life↝, 3,   Half-Life∅, 3,   MDR1↓, 3,   P450↓, 3,   RadioS↑, 20,   selectivity?, 1,   selectivity↓, 1,   selectivity↑, 41,   selectivity∅, 1,   TET2↓, 1,   TET2↑, 1,  

Clinical Biomarkers

ALAT↓, 1,   ALAT↝, 1,   ALAT∅, 1,   ALP↝, 1,   AR↓, 10,   AR↝, 1,   AST↓, 1,   AST↝, 1,   AST∅, 1,   B2M↓, 1,   BMPs↑, 1,   BRAF↝, 1,   BRCA1↑, 1,   CRP↓, 1,   E6↓, 3,   E7↓, 3,   EGFR↓, 21,   EGFR↝, 1,   p‑EGFR↓, 1,   ERα/ESR1↓, 1,   EZH2↓, 1,   Ferritin↓, 1,   FOXM1↓, 1,   GutMicro↑, 2,   HER2/EBBR2↓, 6,   p‑HER2/EBBR2↓, 1,   hTERT/TERT↓, 8,   IL6↓, 21,   IL6↝, 1,   Ki-67↓, 14,   KRAS↓, 1,   LDH?, 1,   LDH↓, 12,   LDH↑, 3,   LDH↝, 1,   i-LDH↓, 1,   Maspin↑, 2,   Myc↓, 3,   PD-L1↓, 1,   PD-L1↑, 1,   PSA↓, 4,   PSA↝, 1,   RAGE↓, 1,   TP53↓, 3,  

Functional Outcomes

AntiAge↑, 1,   AntiCan↓, 2,   AntiCan↑, 26,   AntiTum↑, 7,   cardioP↑, 6,   CardioT↓, 1,   chemoP↑, 14,   ChemoSideEff↓, 5,   ChemoSideEff∅, 1,   hepatoP↑, 6,   NDRG1↑, 1,   neuroP↑, 3,   NKG2D↑, 1,   OS↑, 6,   radioP↑, 3,   RenoP↑, 5,   Risk↓, 4,   toxicity?, 1,   toxicity↓, 1,   toxicity↑, 1,   toxicity↝, 1,   toxicity∅, 2,   TumVol↓, 11,   TumW↓, 4,   Weight∅, 1,  

Infection & Microbiome

CD8+↑, 1,  
Total Targets: 875

Pathway results for Effect on Normal Cells:


Redox & Oxidative Stress

antiOx?, 1,   antiOx↓, 1,   antiOx↑, 37,   Catalase↓, 1,   Catalase↑, 20,   Ferroptosis↓, 2,   GPx↓, 1,   GPx↑, 17,   GSH↓, 1,   GSH↑, 22,   GSR↑, 3,   GSTA1↑, 2,   GSTs↑, 3,   H2O2↓, 4,   HO-1↓, 1,   HO-1↑, 14,   Iron↓, 1,   Keap1↓, 1,   lipid-P↓, 16,   MDA↓, 8,   MDA↑, 2,   MPO↓, 2,   NOX4↓, 1,   NQO1↑, 2,   Nrf1↑, 1,   NRF2↓, 1,   NRF2↑, 24,   PARK2↑, 2,   RNS↓, 1,   ROS↓, 50,   ROS↑, 4,   ROS∅, 2,   SOD↓, 1,   SOD↑, 26,   SOD1↑, 1,   SOD2↑, 2,   Trx↑, 1,  

Metal & Cofactor Biology

IronCh↑, 3,  

Mitochondria & Bioenergetics

ATP↓, 1,   ATP↑, 2,   MMP↓, 1,   MMP↑, 6,   MMP∅, 1,   MPT↑, 1,   mtDam↓, 1,   PGC-1α↓, 1,   PGC-1α↑, 1,   PINK1↑, 1,  

Core Metabolism/Glycolysis

ALAT↓, 4,   AMPK↑, 4,   p‑AMPK↑, 1,   cMyc↓, 1,   CREB↑, 1,   p‑CREB↑, 1,   GAPDH↑, 1,   glucose↓, 1,   LDH↓, 3,   LDHA↑, 1,   LDL↓, 1,   lipidLev↓, 1,   NAD↑, 1,   NADPH↓, 1,   PPARα↑, 2,   PPARγ↑, 1,   SIRT1↑, 6,   SREBP1↓, 1,  

Cell Death

Akt↓, 2,   Akt↑, 3,   p‑Akt↓, 1,   p‑Akt↑, 3,   APAF1↓, 1,   Apoptosis↓, 10,   BAD↓, 2,   BAX↓, 26,   BAX↑, 6,   Bax:Bcl2↓, 1,   Bcl-2↓, 3,   Bcl-2↑, 16,   Bcl-2∅, 1,   Bcl-xL↓, 1,   Bcl-xL↑, 1,   Casp1↓, 1,   Casp12↓, 2,   Casp3↓, 14,   Casp3↑, 2,   cl‑Casp3↓, 3,   Casp9↓, 4,   cl‑Casp9↓, 1,   Cyt‑c↓, 5,   Cyt‑c↑, 2,   Fas↓, 1,   Ferroptosis↓, 2,   iNOS↓, 6,   iNOS↑, 1,   JNK↓, 1,   JNK↑, 2,   MAPK↓, 1,   MAPK↑, 1,   MLKL↓, 1,   p38↑, 1,   RIP1↓, 1,  

Kinase & Signal Transduction

CaMKII ↓, 1,  

Transcription & Epigenetics

Ach↑, 2,   cJun↓, 1,   p‑cJun↓, 1,   other↓, 2,   other↑, 1,   other↝, 3,  

Protein Folding & ER Stress

ATF6↓, 1,   CHOP↓, 4,   ER Stress↓, 4,   GRP78/BiP↓, 3,   HSP70/HSPA5↑, 2,   IRE1↓, 1,   PERK↓, 1,   UPR↓, 1,  

Autophagy & Lysosomes

Beclin-1↓, 1,   LC3A↑, 1,   LC3II↑, 1,   MitoP↑, 1,   p62↓, 2,   p62↑, 2,  

DNA Damage & Repair

DNAdam↓, 3,   p16↓, 1,   P53↓, 3,   PARP↓, 1,   PCNA↓, 1,   p‑γH2AX↓, 1,  

Cell Cycle & Senescence

CDK2↓, 1,   CDK4↓, 1,   cycD1/CCND1↓, 2,   cycE/CCNE↓, 1,   E2Fs↑, 1,   P21↓, 1,   RB1↓, 1,  

Proliferation, Differentiation & Cell State

cFos↓, 1,   Diff↑, 1,   ERK↑, 1,   p‑ERK↑, 1,   GSK‐3β↓, 2,   p‑GSK‐3β↑, 1,   HDAC↓, 1,   HDAC3↓, 1,   IGF-1↑, 1,   IGF-1R↓, 1,   Mst1↓, 1,   mTOR↓, 1,   p‑mTOR↑, 1,   PI3K↓, 2,   PI3K↑, 2,   p‑PTEN↓, 1,   STAT3↑, 1,  

Migration

AP-1↓, 1,   APP↓, 1,   Ca+2?, 1,   Ca+2↓, 5,   Ca+2↝, 1,   cal2↓, 1,   Cartilage↑, 1,   E-cadherin↓, 1,   Ki-67↓, 1,   MMP1↓, 1,   MMP13↓, 1,   MMP2↓, 2,   MMP7↓, 1,   MMP9↓, 3,   PKA↑, 1,   p‑Rac1↓, 1,   Rho↓, 1,   ROCK1↓, 1,   TGF-β↓, 2,   TumCI↓, 1,   TumCP↓, 2,   TXNIP↓, 1,   Zeb1↓, 1,   ZO-1↓, 1,   ZO-1↑, 1,  

Angiogenesis & Vasculature

angioG↓, 1,   angioG↑, 1,   ATF4↓, 1,   HIF-1↓, 1,   NO↓, 8,   PDGFR-BB↓, 1,   VEGF↓, 1,   VEGF↑, 2,  

Barriers & Transport

BBB↑, 3,   GLUT1↑, 1,   GLUT3↑, 1,   P-gp↓, 1,  

Immune & Inflammatory Signaling

COX2↓, 8,   CRP↓, 3,   IFN-γ↓, 2,   IKKα↓, 1,   IKKα↑, 1,   IL1↓, 1,   IL10↓, 4,   IL10↑, 2,   IL12↓, 1,   IL17↓, 1,   IL18↓, 1,   IL1β↓, 8,   IL1β↑, 1,   IL2↓, 2,   IL2↑, 1,   IL6↓, 12,   IL8↓, 1,   Inflam↓, 29,   Inflam↑, 1,   IκB↑, 1,   JAK↓, 1,   MCP1↓, 1,   MyD88↓, 1,   NF-kB↓, 12,   NF-kB↑, 2,   p‑NF-kB↓, 1,   PGE2↓, 4,   TLR2↓, 1,   TLR4↓, 2,   TNF-α↓, 17,   TRIF↓, 1,  

Cellular Microenvironment

pH↝, 1,  

Synaptic & Neurotransmission

5HT↑, 2,   AChE↓, 8,   BChE↓, 1,   BDNF↑, 3,   ChAT↑, 1,   GABA↑, 1,   tau↓, 1,   p‑tau↓, 5,  

Protein Aggregation

Aβ↓, 9,   BACE↓, 1,   MAOB↓, 1,   NLRP3↓, 3,   PP2A↑, 1,  

Drug Metabolism & Resistance

BioAv↓, 18,   BioAv↑, 13,   BioAv↝, 4,   Dose↝, 4,   Dose∅, 1,   eff↓, 5,   eff↑, 5,   Half-Life↑, 1,   Half-Life↝, 3,   P450↓, 1,   selectivity↑, 2,  

Clinical Biomarkers

ALAT↓, 4,   ALP↓, 2,   AST↓, 4,   BP↓, 1,   CRP↓, 3,   GutMicro↑, 3,   IL6↓, 12,   Ki-67↓, 1,   LDH↓, 3,  

Functional Outcomes

AntiCan↑, 4,   AntiDiabetic↑, 1,   cardioP↑, 17,   CardioT↓, 1,   chemoP↑, 1,   cognitive↑, 9,   hepatoP↓, 1,   hepatoP↑, 12,   memory↑, 11,   motorD↑, 2,   neuroP↑, 26,   Pain↓, 1,   radioP↑, 1,   RenoP↑, 7,   Risk↓, 2,   Strength↑, 1,   toxicity↓, 7,   toxicity↑, 2,   toxicity∅, 6,   Weight∅, 1,  

Infection & Microbiome

Bacteria↓, 2,   IRF3↓, 1,  
Total Targets: 276

Scientific Paper Hit Count for: BAX, Apoptosis regulator BAX
28 Silver-NanoParticles
26 Quercetin
23 Curcumin
19 Thymoquinone
14 Apigenin (mainly Parsley)
14 Baicalein
12 Propolis -bee glue
11 Allicin (mainly Garlic)
11 EGCG (Epigallocatechin Gallate)
10 Lycopene
9 Sulforaphane (mainly Broccoli)
9 Luteolin
9 Resveratrol
8 Ashwagandha(Withaferin A)
8 Berberine
8 Betulinic acid
8 Fisetin
8 Magnetic Fields
8 Silymarin (Milk Thistle) silibinin
8 Shikonin
7 Garcinol
7 Graviola
7 Phenethyl isothiocyanate
6 Ellagic acid
6 Emodin
5 Alpha-Lipoic-Acid
5 Artemisinin
5 Cisplatin
5 Chrysin
5 Honokiol
5 Rosmarinic acid
4 5-fluorouracil
4 Andrographis
4 Melatonin
4 Astaxanthin
4 Boron
4 Boswellia (frankincense)
4 Paclitaxel
4 Juglone
4 Magnolol
4 Urolithin
3 Gemcitabine (Gemzar)
3 Chemotherapy
3 Caffeic acid
3 chitosan
3 Ursolic acid
3 Ferulic acid
3 Oleuropein
3 Parthenolide
3 Piperlongumine
2 Metformin
2 Radiotherapy/Radiation
2 Capsaicin
2 Crocetin
2 Docetaxel
2 Gambogic Acid
2 tamoxifen
2 HydroxyTyrosol
2 Laetrile B17 Amygdalin
2 Naringin
2 Nimbolide
2 Pterostilbene
2 salinomycin
2 Selenium
2 Vitamin K2
1 Coenzyme Q10
1 Astragalus
1 Aspirin -acetylsalicylic acid
1 immunotherapy
1 Aloe vera
1 beta-glucans
1 Butyrate
1 epirubicin
1 Carvacrol
1 Chlorogenic acid
1 Prebiotic
1 Citric Acid
1 Copper and Cu NanoParticlex
1 Dichloroacetate
1 Date Fruit Extract
1 Electrical Pulses
1 Gallic acid
1 carboplatin
1 Ginkgo biloba
1 γ-linolenic acid (Borage Oil)
1 Gold NanoParticles
1 Hydrogen Gas
1 HydroxyCitric Acid
1 Hydroxycinnamic-acid
1 Licorice
1 Magnetic Field Rotating
1 Phenylbutyrate
1 sericin
1 Piperine
1 Plumbagin
1 Psoralidin
1 Sanguinarine
1 Scoulerine
1 polyethylene glycol
1 Selenite
1 Auranofin
1 doxorubicin
1 Salvia miltiorrhiza
1 Photodynamic Therapy
1 Camptothecin
1 SonoDynamic Therapy UltraSound
1 Taurine
1 triptolide
1 Vitamin C (Ascorbic Acid)
1 Vitamin D3
1 VitK3,menadione
1 Zerumbone
Query results interpretion may depend on "conditions" listed in the research papers.
Such Conditions may include : 
  -low or high Dose
  -format for product, such as nano of lipid formations
  -different cell line effects
  -synergies with other products 
  -if effect was for normal or cancerous cells
Filter Conditions: Pro/AntiFlg:%  IllCat:%  CanType:%  Cells:%  prod#:%  Target#:26  State#:%  Dir#:%
wNotes=0 sortOrder:rid,rpid

 

Home Page