Database Query Results : , , Bcl-2

Bcl-2, B-cell CLL/lymphoma 2: Click to Expand ⟱
Source: HalifaxProj (inhibit) CGL-Driver Genes
Type: Antiapoptotic Oncogene
The proteins of BCL-2 family are classified into three subgroups, i.e., the anti-apoptotic/pro-survival proteins represented by BCL-2 and BCL-XL, the pro-apoptotic proteins represented by BAX and Bak, and the pro-apoptotic BH3-only proteins represented by BAD and BID.
Since the expression of Bcl-2 protein in tumor cells is much higher than that in normal cells, inhibitors targeting it have little effect on normal cells.


Scientific Papers found: Click to Expand⟱
4774- 5-FU,  TQ,  CoQ10,    Exploring potential additive effects of 5-fluorouracil, thymoquinone, and coenzyme Q10 triple therapy on colon cancer cells in relation to glycolysis and redox status modulation
- in-vitro, CRC, NA
AntiCan↑, TumCCA↑, Apoptosis↑, eff↑, Bcl-2↓, survivin↓, P21↑, p27↑, BAX↑, Cyt‑c↑, Casp3↑, PI3K↓, Akt↓, mTOR↓, Hif1a↓, PTEN↑, AMPKα↑, PDH↑, LDHA↓, antiOx↓, ROS↑, AntiCan↑,
1- Aco,    Acoschimperoside P, 2'-acetate: a Hedgehog signaling inhibitory constituent from Vallaris glabra
- in-vitro, PC, PANC1 - in-vitro, Pca, DU145
HH↓, PTCH1↓, Bcl-2↓, Gli1↓,
233- AL,  5-FU,    Allicin sensitizes hepatocellular cancer cells to anti-tumor activity of 5-fluorouracil through ROS-mediated mitochondrial pathway
- in-vivo, Liver, NA
ROS↑, MMP↓, Casp3↑, PARP↑, Bcl-2↓,
234- AL,    Allicin Induces Anti-human Liver Cancer Cells through the p53 Gene Modulating Apoptosis and Autophagy
- in-vitro, HCC, Hep3B
ROS↑, *toxicity∅, MMP↓, BAX↑, Bcl-2↓, AIF↑, Casp3↑, Casp8↑, Casp9↑, eff↓, γH2AX↑, selectivity↑, DNA-PK↑,
235- AL,    Allicin inhibits cell growth and induces apoptosis in U87MG human glioblastoma cells through an ERK-dependent pathway
- in-vitro, GBM, U87MG
Apoptosis↑, Bcl-2↓, BAX↑, MAPK↑, p‑ERK↑, ROS↑, eff↓,
245- AL,    Allicin: a promising modulator of apoptosis and survival signaling in cancer
- Review, Var, NA
Fas↑, Bcl-2↓, BAX↑, PI3k/Akt/mTOR↝, Casp3↑, Casp8↑, Casp9↑, Apoptosis↓, *toxicity↓, Cyt‑c↑,
246- AL,    Allicin induces apoptosis of the MGC-803 human gastric carcinoma cell line through the p38 mitogen-activated protein kinase/caspase-3 signaling pathway
- in-vitro, GC, MGC803
Apoptosis↑, cl‑Casp3↑, p38↑, tumCV↓, BAX↑, Bcl-2↑,
248- AL,    Allicin inhibits cell growth and induces apoptosis in U87MG human glioblastoma cells through an ERK-dependent pathway
- in-vitro, GBM, U87MG
Bcl-2↓, BAX↑, MAPK↑, ERK↑, ROS↑, p38↑, JNK↑,
249- AL,    Allicin induces apoptosis of the MGC-803 human gastric carcinoma cell line through the p38 mitogen-activated protein kinase/caspase-3 signaling pathway
- in-vitro, GC, MGC803
Casp3↑, p38↑, BAX↑, Bcl-2↓, p38↑, MAPK↑,
250- AL,    Allicin Induces p53-Mediated Autophagy in Hep G2 Human Liver Cancer Cells
- in-vitro, Liver, HepG2
P53↓, PI3K↓, mTOR↓, Bcl-2↓, AMPK↑, TSC2↑, Beclin-1↑, TumAuto↑, tumCV↓, ATG7↑, MMP↓,
254- AL,    Allicin and Cancer Hallmarks
- Review, Var, NA
NRF2⇅, BAX↑, Bcl-2↓, Fas↑, MMP↓, Bax:Bcl2↑, Cyt‑c↑, Casp3↑, Casp12↑, GSH↓, TumCCA↑, ROS↑, antiOx↓,
1290- AL,    Bcl-2_and_Bax_protein_in_LM-8_cells">Effect of allicin on the expression of Bcl-2 and Bax protein in LM-8 cells
- in-vitro, OS, LM8
Bcl-2↓, BAX↑, Apoptosis↑, TumCG↓,
2000- AL,    Exploring the ROS-mediated anti-cancer potential in human triple-negative breast cancer by garlic bulb extract: A source of therapeutically active compounds
- in-vitro, BC, MDA-MB-231 - in-vitro, BC, MCF-7 - in-vitro, Nor, NA
selectivity↑, TumCG?, *toxicity∅, ROS↑, MMP↓, TumCCA↑, P53↑, Bcl-2↓, p‑Akt↓, p‑p38↓, *ROS∅,
2660- AL,    Allicin: A review of its important pharmacological activities
- Review, AD, NA - Review, Var, NA - Review, Park, NA - Review, Stroke, NA
*Inflam↓, AntiCan↑, *antiOx↑, *cardioP↑, *hepatoP↑, *BBB↑, *Half-Life↝, *H2S↑, *BP↓, *neuroP↑, *cognitive↑, *neuroP↑, *ROS↓, *GutMicro↑, *LDH↓, *ROS↓, *lipid-P↓, *antiOx↑, *other↑, *PI3K↓, *Akt↓, *NF-kB↓, *NO↓, *iNOS↓, *PGE2↓, *COX2↓, *IL6↓, *TNF-α↓, *MPO↓, *eff↑, *NRF2↑, *Keap1↓, *TBARS↓, *creat↓, *LDH↓, *AST↓, *ALAT↓, *MDA↓, *SOD↑, *GSH↑, *GSTs↑, *memory↑, chemoP↑, IL8↓, Cyt‑c↑, Casp3↑, Casp8↑, Casp9↑, Casp12↑, p38↑, Fas↑, P53↑, P21↑, CHK1↓, CycB/CCNB1↓, GSH↓, ROS↑, TumCCA↑, Hif1a↓, Bcl-2↓, VEGF↓, TumCMig↓, STAT3↓, VEGFR2↓, p‑FAK↓,
281- ALA,    Reactive oxygen species mediate caspase activation and apoptosis induced by lipoic acid in human lung epithelial cancer cells through Bcl-2 down-regulation
- in-vitro, Lung, H460
mt-ROS↑, Apoptosis↑, Casp9↑, Bcl-2↓, eff↓, eff↑, H2O2↑, Dose↑,
278- ALA,    The Multifaceted Role of Alpha-Lipoic Acid in Cancer Prevention, Occurrence, and Treatment
- Review, NA, NA
ROS↑, NRF2↑, Inflam↓, frataxin↑, *BioAv↓, ChemoSen↑, Hif1a↓, eff↑, FAK↓, ITGB1↓, MMP2↓, MMP9↓, EMT↓, Snail↓, Vim↓, Zeb1↓, P53↑, MGMT↓, Mcl-1↓, Bcl-xL↓, Bcl-2↓, survivin↓, Casp3↑, Casp9↑, BAX↑, p‑Akt↓, GSK‐3β↓, *antiOx↑, *ROS↓, selectivity↑, angioG↓, MMPs↓, NF-kB↓, ITGB3↓, NADPH↓,
267- ALA,    α-Lipoic Acid Targeting PDK1/NRF2 Axis Contributes to the Apoptosis Effect of Lung Cancer Cells
- vitro+vivo, Lung, A549 - vitro+vivo, Lung, PC9
Apoptosis↑, ROS↑, PDK1↓, NRF2↓, PDK1↓, Bcl-2↓, Casp9↑, Dose∅,
258- ALA,    Effects of α-lipoic acid on cell proliferation and apoptosis in MDA-MB-231 human breast cells
- in-vitro, BC, MDA-MB-231
TumCG↓, p‑Akt↓, Akt↓, HER2/EBBR2↓, Bcl-2↓, BAX↑, Casp3↑,
1253- aLinA,    The Antitumor Effects of α-Linolenic Acid
- Review, NA, NA
PPARγ↑, COX2↓, E6↓, E7↓, P53↑, p‑ERK↓, p38↓, lipid-P↑, ROS⇅, MPT↑, MMP↓, Cyt‑c↑, Casp↑, iNOS↓, NO↓, Casp3↑, Bcl-2↓, Hif1a↓, FASN↓, CRP↓, IL6↓, IL1β↓, IFN-γ↓, TNF-α↓, Twist↓, VEGF↓, MMP2↓, MMP9↓,
1158- And,  GEM,    Andrographolide causes apoptosis via inactivation of STAT3 and Akt and potentiates antitumor activity of gemcitabine in pancreatic cancer
TumCP↓, TumCCA↑, Apoptosis↑, STAT3↓, Akt↓, P21↑, BAX↑, cycD1/CCND1↓, cycE/CCNE↓, survivin↓, XIAP↓, Bcl-2↓, eff↑,
1279- And,    Andrographolide Exhibits Anticancer Activity against Breast Cancer Cells (MCF-7 and MDA-MB-231 Cells) through Suppressing Cell Proliferation and Inducing Cell Apoptosis via Inactivation of ER-α Receptor and PI3K/AKT/mTOR Signaling
- in-vitro, BC, MDA-MB-231 - in-vitro, BC, MCF-7
Apoptosis↑, Bcl-2↓, BAX↑, ERα/ESR1↓, PI3K↓, mTOR↓,
1151- Api,    Plant flavone apigenin inhibits HDAC and remodels chromatin to induce growth arrest and apoptosis in human prostate cancer cells: In vitro and in vivo study
- in-vitro, Pca, PC3 - in-vitro, Pca, 22Rv1 - in-vivo, NA, NA
TumCCA↑, Apoptosis↑, HDAC↓, P21↑, BAX↑, TumCG↓, Bcl-2↓, Bax:Bcl2↑, HDAC1↓, HDAC3↓,
577- Api,  PacT,    Inhibition of IL-6/STAT3 axis and targeting Axl and Tyro3 receptor tyrosine kinases by apigenin circumvent taxol resistance in ovarian cancer cells
- in-vitro, Ovarian, SKOV3
p‑Akt↓, Bcl-xL↓, Bcl-2↓, AXL↓, Tyro3↓,
581- Api,  Cisplatin,    The natural flavonoid apigenin sensitizes human CD44+ prostate cancer stem cells to cisplatin therapy
- in-vitro, Pca, CD44+
Bcl-2↓, survivin↓, Casp8↑, P53↑, Sharpin↓, APAF1↑, p‑Akt↓, NF-kB↓, P21↑, Cyc↓, CDK2↓, CDK4/6↓, Snail↓, ChemoSen↑,
586- Api,  5-FU,    5-Fluorouracil combined with apigenin enhances anticancer activity through mitochondrial membrane potential (ΔΨm)-mediated apoptosis in hepatocellular carcinoma
- in-vivo, HCC, NA
ROS↑, MMP↓, Bcl-2↓, Casp3↑, PARP↑,
208- Api,    Apigenin induces apoptosis by targeting inhibitor of apoptosis proteins and Ku70–Bax interaction in prostate cancer
- in-vivo, Pca, PC3 - in-vivo, Pca, DU145
XIAP↓, survivin↓, Bcl-xL↓, Bcl-2↓, BAX↑,
180- Api,    Induction of caspase-dependent apoptosis by apigenin by inhibiting STAT3 signaling in HER2-overexpressing MDA-MB-453 breast cancer cells
- in-vitro, BC, MDA-MB-231
cl‑Casp8↑, cl‑Casp3↑, cl‑PARP↑, BAX∅, Bcl-2∅, Bcl-xL∅, p‑STAT3↓, P53↑, P21↑, p‑JAK2↓, VEGF↓,
211- Api,    Suppression of NF-κB and NF-κB-Regulated Gene Expression by Apigenin through IκBα and IKK Pathway in TRAMP Mice
- in-vivo, Pca, NA
IKKα↓, NF-kB↓, cycD1/CCND1↓, COX2↓, Bcl-2↓, Bcl-xL↓, VEGF↓, PCNA↓, BAX↑,
178- Api,    Autophagy inhibition enhances apigenin-induced apoptosis in human breast cancer cells
- in-vivo, BC, MDA-MB-231 - in-vitro, BC, T47D
Casp3↑, cl‑PARP↑, Bcl-2↓, Bcl-xL↓, BAX↑,
270- Api,    Apigenin induces apoptosis in human leukemia cells and exhibits anti-leukemic activity in vivo via inactivation of Akt and activation of JNK
- in-vivo, AML, U937
Akt↓, JNK↑, Mcl-1↓, cl‑Bcl-2↓, Casp3↑, Casp7↑, Casp9↑, cl‑PARP↑, mTOR↓, GSK‐3β↓,
1301- Api,    Bcl-2 inhibitor and apigenin worked synergistically in human malignant neuroblastoma cell lines and increased apoptosis with activation of extrinsic and intrinsic pathways
- in-vitro, neuroblastoma, NA
BAX↑, Bcl-2↓, Cyt‑c↑, cal2↑, Casp3↑,
1537- Api,    Apigenin as Tumor Suppressor in Cancers: Biotherapeutic Activity, Nanodelivery, and Mechanisms With Emphasis on Pancreatic Cancer
- Review, PC, NA
TumCP↓, TumCCA↑, Apoptosis↑, MMPs↓, Akt↓, *BioAv↑, *BioAv↓, Half-Life∅, Hif1a↓, GLUT1↓, VEGF↓, ChemoSen↑, ROS↑, Bcl-2↓, Bcl-xL↓, BAX↑, BIM↑,
1564- Api,    Apigenin-induced prostate cancer cell death is initiated by reactive oxygen species and p53 activation
- in-vitro, Pca, 22Rv1 - in-vivo, NA, NA
MDM2↓, NF-kB↓, p65↓, P21↑, ROS↑, GSH↓, MMP↓, Cyt‑c↑, Apoptosis↑, P53↑, eff↓, Bcl-xL↓, Bcl-2↓, BAX↑, Casp↑, TumCG↓, TumVol↓, TumW↓,
1545- Api,    The Potential Role of Apigenin in Cancer Prevention and Treatment
- Review, NA, NA
TNF-α↓, IL6↓, IL1α↓, P53↑, Bcl-xL↓, Bcl-2↓, BAX↑, Hif1a↓, VEGF↓, TumCCA↑, DNAdam↑, Apoptosis↑, CycB/CCNB1↓, cycA1/CCNA1↓, CDK1↓, PI3K↓, Akt↓, mTOR↓, IKKα↓, ERK↓, p‑Akt↓, p‑P70S6K↓, p‑S6↓, p‑ERK↓, p‑P90RSK↑, STAT3↓, MMP2↓, MMP9↓, TumCP↓, TumCMig↓, TumCI↓, Wnt/(β-catenin)↓,
1563- Api,  MET,    Metformin-induced ROS upregulation as amplified by apigenin causes profound anticancer activity while sparing normal cells
- in-vitro, Nor, HDFa - in-vitro, PC, AsPC-1 - in-vitro, PC, MIA PaCa-2 - in-vitro, Pca, DU145 - in-vitro, Pca, LNCaP - in-vivo, NA, NA
selectivity↑, selectivity↑, selectivity↓, ROS↑, eff↑, tumCV↓, MMP↓, Dose∅, eff↓, DNAdam↑, Apoptosis↑, TumAuto↑, Necroptosis↑, p‑P53↑, BIM↑, BAX↑, p‑PARP↑, Casp3↑, Casp8↑, Casp9↑, Cyt‑c↑, Bcl-2↓, AIF↑, p62↑, LC3B↑, MLKL↑, p‑MLKL↓, RIP3↑, p‑RIP3↑, TumCG↑, TumW↓,
2632- Api,    Apigenin inhibits migration and induces apoptosis of human endometrial carcinoma Ishikawa cells via PI3K-AKT-GSK-3β pathway and endoplasmic reticulum stress
- in-vitro, EC, NA
TumCP↓, TumCCA↑, Apoptosis↑, Bcl-2↓, BAX↑, Bak↑, Casp↑, ER Stress↑, Ca+2↑, ATF4↑, CHOP↑, ROS↑, MMP↓, TumCMig↓, TumCI↓, eff↑, P53↑, P21↑, Cyt‑c↑, Casp9↑, Casp3↑, Bcl-xL↓,
2640- Api,    Apigenin: A Promising Molecule for Cancer Prevention
- Review, Var, NA
chemoPv↑, ITGB4↓, TumCI↓, TumMeta↓, Akt↓, ERK↓, p‑JNK↓, *Inflam↓, *PKCδ↓, *MAPK↓, EGFR↓, CK2↓, TumCCA↑, CDK1↓, P53↓, P21↑, Bax:Bcl2↑, Cyt‑c↑, APAF1↑, Casp↑, cl‑PARP↑, VEGF↓, Hif1a↓, IGF-1↓, IGFBP3↑, E-cadherin↑, β-catenin/ZEB1↓, HSPs↓, Telomerase↓, FASN↓, MMPs↓, HER2/EBBR2↓, CK2↓, eff↑, AntiAg↑, eff↑, FAK↓, ROS↑, Bcl-2↓, Cyt‑c↑, cl‑Casp3↑, cl‑Casp7↑, cl‑Casp8↑, cl‑Casp9↑, cl‑IAP2↑, AR↓, PSA↓, p‑pRB↓, p‑GSK‐3β↓, CDK4↓, ChemoSen↑, Ca+2↑, cal2↑,
3383- ART/DHA,    Dihydroartemisinin: A Potential Natural Anticancer Drug
- Review, Var, NA
TumCP↓, Apoptosis↑, TumMeta↓, angioG↓, TumAuto↑, ER Stress↑, ROS↑, Ca+2↑, p38↑, HSP70/HSPA5↓, PPARγ↑, GLUT1↓, Glycolysis↓, PI3K↓, Akt↓, Hif1a↓, PKM2↓, lactateProd↓, GlucoseCon↓, EMT↓, Slug↓, Zeb1↓, ZEB2↓, Twist↓, Snail?, CAFs/TAFs↓, TGF-β↓, p‑STAT3↓, M2 MC↓, uPA↓, HH↓, AXL↓, VEGFR2↓, JNK↑, Beclin-1↑, GRP78/BiP↑, eff↑, eff↑, eff↑, eff↑, eff↑, eff↑, IL4↓, DR5↑, Cyt‑c↑, Fas↑, FADD↑, cl‑PARP↑, cycE/CCNE↓, CDK2↓, CDK4↓, Mcl-1↓, Ki-67↓, Bcl-2↓, CDK6↓, VEGF↓, COX2↓, MMP9↓,
2323- ART/DHA,    Dihydroartemisinin represses esophageal cancer glycolysis by down-regulating pyruvate kinase M2
- in-vitro, ESCC, Eca109 - in-vitro, ESCC, EC9706
PKM2↓, lactateProd↓, GlucoseCon↓, cycD1/CCND1↓, Bcl-2↓, MMP2↓, VEGF↓, Casp3↑, cl‑PARP↑, BAX↑, DNAdam↑, ROS↑,
1079- ART/DHA,    Artesunate inhibits the growth and induces apoptosis of human gastric cancer cells by downregulating COX-2
- in-vitro, GC, BGC-823 - in-vitro, GC, HGC27 - in-vitro, GC, MGC803
TumCP↓, Apoptosis↑, COX2↓, BAX↑, Bcl-2↓, Casp3↑, Casp9↑, MMP↓,
1295- AS,  Cisplatin,    Chemosensitizing Effect of Astragalus Polysaccharides on Nasopharyngeal Carcinoma Cells by Inducing Apoptosis and Modulating Expression of Bax/Bcl-2 Ratio and Caspases
- in-vivo, Laryn, NA
AntiTum↑, Apoptosis↑, Bcl-2↓, BAX↑, Casp3↑, Casp9↑, Bax:Bcl2↑,
1338- AS,    The Modulatory Properties of Astragalus membranaceus Treatment on Triple-Negative Breast Cancer: An Integrated Pharmacological Method
- in-vitro, BC, NA
TumCI↓, Apoptosis↑, Symptoms↓, PIK3CA↓, Akt↓, Bcl-2↓,
1304- ASA,    Aspirin Inhibits Colorectal Cancer via the TIGIT-BCL2-BAX pathway in T Cells
- in-vitro, CRC, NA - in-vivo, NA, NA
TumCP↓, Apoptosis↑, Bcl-2↓, BAX↑, IL10↓, TNF-β↓,
1360- Ash,  immuno,    Withaferin A Increases the Effectiveness of Immune Checkpoint Blocker for the Treatment of Non-Small Cell Lung Cancer
- in-vitro, Lung, H1650 - in-vitro, Lung, A549 - in-vitro, CRC, HCT116 - in-vitro, BC, MDA-MB-231 - in-vivo, NA, NA
PD-L1↑, eff↓, ROS↑, ER Stress↑, Apoptosis↑, BAX↑, Bak↑, BAD↑, Bcl-2↓, XIAP↓, survivin↓, cl‑PARP↑, CHOP↑, p‑eIF2α↑, ICD↑, eff↑,
1369- Ash,    Withaferin A inhibits cell proliferation of U266B1 and IM-9 human myeloma cells by inducing intrinsic apoptosis
- in-vitro, Melanoma, U266
tumCV↓, Apoptosis↑, BAX↑, Cyt‑c↑, Bcl-2↓, cl‑PARP↑, cl‑Casp3↑, cl‑Casp9↑, ROS↑, eff↓,
1433- Ash,  SFN,    A Novel Combination of Withaferin A and Sulforaphane Inhibits Epigenetic Machinery, Cellular Viability and Induces Apoptosis of Breast Cancer Cells
- in-vitro, BC, MCF-7 - in-vitro, BC, MDA-MB-231
eff↑, Bcl-2↓, BAX↑, tumCV↓, DNMT1↓, DNMT3A↓, HDAC↓,
1142- Ash,    Ashwagandha-Induced Programmed Cell Death in the Treatment of Breast Cancer
- Review, BC, MCF-7 - NA, BC, MDA-MB-231 - NA, Nor, HMEC
Apoptosis↑, ROS↑, DNAdam↑, OXPHOS↓, *ROS∅, Bcl-2↓, XIAP↓, survivin↓, DR5↑, IKKα↓, NF-kB↓, selectivity↑, *ROS∅, eff↓, Paraptosis↑,
3160- Ash,    Withaferin A: A Pleiotropic Anticancer Agent from the Indian Medicinal Plant Withania somnifera (L.) Dunal
- Review, Var, NA
TumCCA↑, H3↑, P21↑, cycA1/CCNA1↓, CycB/CCNB1↓, cycE/CCNE↓, CDC2↓, CHK1↓, Chk2↓, p38↑, MAPK↑, E6↓, E7↓, P53↑, Akt↓, FOXO3↑, ROS↑, γH2AX↑, MMP↓, mitResp↓, eff↑, TumCD↑, Mcl-1↓, ER Stress↑, ATF4↑, ATF3↑, CHOP↑, NOTCH↓, NF-kB↓, Bcl-2↓, STAT3↓, CDK1↓, β-catenin/ZEB1↓, N-cadherin↓, EMT↓, Cyt‑c↑, eff↑, CDK4↓, p‑RB1↓, PARP↑, cl‑Casp3↑, cl‑Casp9↑, NRF2↑, ER-α36↓, LDHA↓, lipid-P↑, AP-1↓, COX2↓, RenoP↑, PDGFR-BB↓, SIRT3↑, MMP2↓, MMP9↓, NADPH↑, NQO1↑, GSR↑, HO-1↑, *SOD2↑, *Prx↑, *Casp3?, eff↑, Snail↓, Slug↓, Vim↓, CSCs↓, HEY1↓, MMPs↓, VEGF↓, uPA↓, *toxicity↓, CDK2↓, CDK4↓, HSP90↓,
3162- Ash,    Molecular insights into cancer therapeutic effects of the dietary medicinal phytochemical withaferin A
- Review, Var, NA
lipid-P↓, SOD↑, GPx↑, P53↑, Bcl-2↑, E6↓, E7↓, pRB↑, CycB/CCNB1↑, CDC2↑, P21↑, PCNA↓, ALDH1A1↓, Vim↓, Glycolysis↓, cMyc↓, BAX↑, NF-kB↓, Casp3↑, CHOP↑, DR5↑, ERK↓, Wnt↓, β-catenin/ZEB1↓, Akt↓, HSP90↓,
3166- Ash,    Exploring the Multifaceted Therapeutic Potential of Withaferin A and Its Derivatives
- Review, Var, NA
*p‑PPARγ↓, *cardioP↑, *AMPK↑, *BioAv↝, *Half-Life↝, *Half-Life↝, *Dose↑, *chemoPv↑, IL6↓, STAT3↓, ROS↓, OXPHOS↓, PCNA↓, LDH↓, AMPK↑, TumCCA↑, NOTCH3↓, Akt↓, Bcl-2↓, Casp3↑, Apoptosis↑, eff↑, NF-kB↓, CSCs↓, HSP90↓, PI3K↓, FOXO3↑, β-catenin/ZEB1↓, N-cadherin↓, EMT↓, FASN↓, ACLY↓, ROS↑, NRF2↑, HO-1↑, NQO1↑, JNK↑, mTOR↓, neuroP↑, *TNF-α↓, *IL1β↓, *IL6↓, *IL8↓, *IL18↓, RadioS↑, eff↑,
4806- ASTX,    Astaxanthin's Impact on Colorectal Cancer: Examining Apoptosis, Antioxidant Enzymes, and Gene Expression
- in-vitro, CRC, HCT116
BAX↑, Casp3↑, Apoptosis↑, Bcl-2↓, MDA↓, ROS↓, SOD↑, Catalase↑, GPx↑, antiOx↑, TumCG↓, TumCP↓,
4810- ASTX,    Effects of Astaxanthin on the Proliferation and Migration of Breast Cancer Cells In Vitro
- in-vitro, BC, MDA-MB-231 - in-vitro, Nor, MCF10
TumCP↓, TumCMig↓, selectivity↑, *BDNF↑, *ROS↓, *TNF-α↓, *IL6↓, *IFN-γ↓, *NF-kB↓, BAX⇅, Bcl-2↓, *antiOx↑, radioP↑, ChemoSen↑,
4820- ASTX,    Astaxanthin suppresses the malignant behaviors of nasopharyngeal carcinoma cells by blocking PI3K/AKT and NF-κB pathways via miR-29a-3p
- in-vitro, NPC, NA
TumCP↓, TumCI↓, Apoptosis↑, TumCCA↑, cycD1/CCND1↓, Bcl-2↓, P21↑, BAX↑, PI3K↓, Akt↓, NF-kB↓, miR-29b↑,
4818- ASTX,  MEL,    Effect of astaxanthin and melatonin on cell viability and DNA damage in human breast cancer cell lines
- in-vitro, BC, MDA-MB-231 - in-vitro, BC, T47D - in-vitro, Nor, MCF10
TumCD↑, DNAdam↑, *antiOx↑, *AntiTum↑, Inflam↓, tumCV↓, Bcl-2↓, Apoptosis↓, selectivity↑, eff↑, Dose↓,
4823- ASTX,    Astaxanthin increases radiosensitivity in esophageal squamous cell carcinoma through inducing apoptosis and G2/M arrest
- in-vitro, ESCC, NA
RadioS↑, Apoptosis↑, TumCCA↑, Bcl-2↓, CycB/CCNB1↓, CDC2↓, BAX↑,
1302- AV,    Quantitative measurement of Bax and Bcl2 genes and protein expression in MCF7 cell-line when treated by Aloe Vera extract
- in-vitro, BC, MCF-7
BAX↑, Bcl-2↓,
874- B-Gluc,    Potential promising anticancer applications of β-glucans: a review
- Review, NA, NA
AntiCan↑, TumCG↓, BAX↑, Bcl-2↓, IFN-γ↑, PI3K/Akt↑, MAPK↑, NFAT↑, NF-kB↑, ROS↑, NK cell↑, TumCCA↑, ERK↓, Telomerase↓,
1288- Ba,    The Traditional Chinese Medicine Baicalein Potently Inhibits Gastric Cancer Cells
- in-vitro, GC, SGC-7901
TumCG↓, TumCCA↑, Apoptosis↑, MMP↓, Bcl-2↓, BAX↑,
1533- Ba,    Baicalein, as a Prooxidant, Triggers Mitochondrial Apoptosis in MCF-7 Human Breast Cancer Cells Through Mobilization of Intracellular Copper and Reactive Oxygen Species Generation
- in-vitro, BrCC, MCF-7 - in-vitro, Nor, MCF10
tumCV↓, i-ROS↑, MMP↓, Bcl-2↓, BAX↑, Cyt‑c↑, Casp9↑, Casp3↑, eff↓, selectivity↑, *toxicity∅, Apoptosis↑, Fenton↑,
1521- Ba,    Baicalein induces apoptosis via ROS-dependent activation of caspases in human bladder cancer 5637 cells
- in-vitro, Bladder, 5637
TumCG↓, Apoptosis↑, IAP1↓, IAP2↓, Casp3↑, Casp9↑, BAX↑, Bcl-2↓, MMP↓, Casp8↑, BID↑, ROS?, eff↓, DR4↑, DR5↑, FasL↑, TRAIL↑,
1523- Ba,    Baicalein induces human osteosarcoma cell line MG-63 apoptosis via ROS-induced BNIP3 expression
- in-vitro, OS, MG63 - in-vitro, Nor, hFOB1.19
TumCD↑, Apoptosis↑, ROS↑, eff↓, Casp3↑, Bcl-2↓, selectivity↑, Cyt‑c↑, LDH?, BNIP3?, BAX↑,
1532- Ba,    Baicalein as Promising Anticancer Agent: A Comprehensive Analysis on Molecular Mechanisms and Therapeutic Perspectives
- Review, NA, NA
ROS↑, ER Stress↑, Ca+2↑, MMPs↓, Cyt‑c↑, Casp3↑, ROS↑, DR5↑, ROS↑, BAX↑, Bcl-2↓, MMP↓, Casp3↑, Casp9↑, P53↑, p16↑, P21↑, p27↑, HDAC10↑, MDM2↓, Apoptosis↑, PI3K↓, Akt↓, p‑Akt↓, p‑mTOR↓, NF-kB↓, p‑IκB↓, IκB↑, BAX↑, Bcl-2↓, ROS⇅, BNIP3↑, p38↑, 12LOX↓, Mcl-1↓, Wnt?, GLI2↓, AR↓, eff↑,
2047- BA,    Sodium butyrate inhibits migration and induces AMPK-mTOR pathway-dependent autophagy and ROS-mediated apoptosis via the miR-139-5p/Bmi-1 axis in human bladder cancer cells
- in-vitro, CRC, T24 - in-vitro, Nor, SV-HUC-1 - in-vitro, Bladder, 5637 - in-vivo, NA, NA
HDAC↓, AntiTum↑, TumCMig↓, AMPK↑, mTOR↑, TumAuto↑, ROS↑, miR-139-5p↑, BMI1↓, TumCI?, E-cadherin↑, N-cadherin↓, Vim↓, Snail↓, cl‑PARP↑, cl‑Casp3↑, BAX↑, Bcl-2↓, Bcl-xL↓, MMP↓, PINK1↑, PARK2↑, TumMeta↓, TumCG↓, LC3II↑, p62↓, eff↓,
2597- Ba,    Baicalein – An Intriguing Therapeutic Phytochemical in Pancreatic Cancer
- Review, PC, NA
chemoP↑, ChemoSen↑, 12LOX?, Bcl-2↓, BAX↑, Mcl-1↓, ERK↓, Prx6↑, Dose↝, BioAv↓, eff↑,
2600- Ba,    Baicalein Induces Apoptosis and Autophagy via Endoplasmic Reticulum Stress in Hepatocellular Carcinoma Cells
- in-vitro, HCC, SMMC-7721 cell - in-vitro, HCC, Bel-7402
ER Stress↑, Bcl-2↓, Ca+2↑, JNK↑, CHOP↑, Casp9↑, Casp3↑, PARP↑, Apoptosis↑, UPR↑,
2626- Ba,    Molecular targets and therapeutic potential of baicalein: a review
- Review, Var, NA - Review, AD, NA - Review, Stroke, NA
AntiCan↓, *neuroP↑, *cardioP↑, *hepatoP↑, *RenoP↑, TumCCA↑, CDK4↓, cycD1/CCND1↓, cycE/CCNE↑, BAX↑, Bcl-2↓, VEGF↓, Hif1a↓, cMyc↓, NF-kB↓, ROS↑, BNIP3↑, *neuroP↑, *cognitive↑, *NO↓, *iNOS↓, *COX2↓, *PGE2↓, *NRF2↑, *p‑AMPK↑, *Ferroptosis↓, *lipid-P↓, *ALAT↓, *AST↓, *Fas↓, *BAX↓, *Apoptosis↓,
2617- Ba,    Potential of baicalein in the prevention and treatment of cancer: A scientometric analyses based review
- Review, Var, NA
Ca+2↑, MMP2↓, MMP9↓, Vim↓, Snail↓, E-cadherin↑, Wnt↓, β-catenin/ZEB1↓, p‑Akt↓, p‑mTOR↓, NF-kB↓, i-ROS↑, Bcl-2↓, BAX↑, Cyt‑c↑, Casp3↑, Casp9↑, STAT3↓, IL6↓, MMP2↓, MMP9↓, NOTCH↓, PPARγ↓, p‑NRF2↓, HK2↓, LDHA↓, PDK1↓, Glycolysis↓, PTEN↑, Akt↓, Hif1a↓, MMP↓, VEGF↓, VEGFR2↓, TOP2↓, uPA↓, TIMP1↓, TIMP2↓, cMyc↓, TrxR↓, ASK1↑, Vim↓, ZO-1↑, E-cadherin↑, SOX2↓, OCT4↓, Shh↓, Smo↓, Gli1↓, N-cadherin↓, XIAP↓,
2629- Ba,    Baicalein, a Component of Scutellaria baicalensis, Attenuates Kidney Injury Induced by Myocardial Ischemia and Reperfusion
- in-vivo, Nor, NA
*RenoP↑, *Apoptosis↓, *TNF-α↓, *IL1↓, *Bcl-2↑, *BAX↓, *Akt↑,
2296- Ba,    The most recent progress of baicalein in its anti-neoplastic effects and mechanisms
- Review, Var, NA
CDK1↓, Cyc↓, p27↑, P21↑, P53↑, TumCCA↑, TumCI↓, MMP2↓, MMP9↓, E-cadherin↑, N-cadherin↓, Vim↓, LC3A↑, p62↓, p‑mTOR↓, PD-L1↓, CAFs/TAFs↓, VEGF↓, ROCK1↓, Bcl-2↓, Bcl-xL↓, BAX↑, ROS↑, cl‑PARP↑, Casp3↑, Casp9↑, PTEN↑, MMP↓, Cyt‑c↑, Ca+2↑, PERK↑, IRE1↑, CHOP↑, Copper↑, Snail↓, Vim↓, Twist↓, GSH↓, NRF2↓, HO-1↓, GPx4↓, XIAP↓, survivin↓, DR5↑,
2477- Ba,    Baicalein induces apoptosis via a mitochondrial-dependent caspase activation pathway in T24 bladder cancer cells
- in-vitro, CRC, T24
TumCG↓, TumCCA↑, MMP↓, Cyt‑c↑, Casp9↑, Casp3↑, p‑Akt↓, Bcl-2↓, BAX↑, Bax:Bcl2↑, 12LOX↓,
2478- Ba,    The role of Ca2+ in baicalein-induced apoptosis in human breast MDA-MB-231 cancer cells through mitochondria- and caspase-3-dependent pathway
- in-vitro, BC, MDA-MB-231
Bcl-2↓, BAX↓, Cyt‑c↑, Casp3↑, Ca+2↓,
1390- BBR,  Rad,    Berberine Inhibited Radioresistant Effects and Enhanced Anti-Tumor Effects in the Irradiated-Human Prostate Cancer Cells
- in-vitro, Pca, PC3
RadioS↑, Apoptosis↑, ROS↑, eff↑, BAX↑, Casp3↑, P53↑, p38↑, JNK↑, Bcl-2↓, ERK↓, HO-1↓,
1398- BBR,    Berberine inhibits the progression of renal cell carcinoma cells by regulating reactive oxygen species generation and inducing DNA damage
- in-vitro, Kidney, NA
TumCP↓, TumCMig↓, ROS↑, Apoptosis↑, BAX↑, BAD↑, Bak↑, Cyt‑c↑, cl‑Casp3↑, cl‑Casp9↑, E-cadherin↑, TIMP1↑, γH2AX↑, Bcl-2↓, N-cadherin↓, Vim↓, Snail↓, RAD51↓, PCNA↓,
1393- BBR,  EPI,    Berberine promotes antiproliferative effects of epirubicin in T24 bladder cancer cells by enhancing apoptosis and cell cycle arrest
- in-vitro, Bladder, T24
ChemoSen↑, TumCCA↑, Apoptosis↑, cl‑Casp3↑, cl‑Casp9↑, BAX↑, P53↑, P21↑, Bcl-2↓, ROS↑,
1394- BBR,  DL,    Synergistic Inhibitory Effect of Berberine and d-Limonene on Human Gastric Carcinoma Cell Line MGC803
- in-vitro, GC, MGC803
eff↑, ROS↑, MMP↓, Casp3↑, Bcl-2↓, TumCCA↑,
1400- BBR,    Set9, NF-κB, and microRNA-21 mediate berberine-induced apoptosis of human multiple myeloma cells
- in-vitro, Melanoma, U266
ROS↑, TumCCA↑, Apoptosis↑, miR-21↓, Bcl-2↓, NF-kB↓, Set9↑,
1386- BBR,    Berberine-induced apoptosis in human breast cancer cells is mediated by reactive oxygen species generation and mitochondrial-related apoptotic pathway
- in-vitro, BC, MCF-7 - in-vitro, BC, MDA-MB-231
tumCV↓, ROS↑, JNK↑, MMP↓, Bcl-2↓, BAX↑, Cyt‑c↑, AIF↝,
2674- BBR,    Berberine: A novel therapeutic strategy for cancer
- Review, Var, NA - Review, IBD, NA
Inflam↓, AntiCan↑, Apoptosis↑, TumAuto↑, TumCCA↑, TumMeta↓, TumCI↓, eff↑, eff↑, CD4+↓, TNF-α↓, IL1↓, BioAv↓, BioAv↓, other↓, AMPK↑, MAPK↓, NF-kB↓, IL6↓, MCP1↓, PGE2↓, COX2↓, *ROS↓, *antiOx↑, *GPx↑, *Catalase↑, AntiTum↑, TumCP↓, angioG↓, Fas↑, FasL↑, ROS↑, ATM↑, P53↑, RB1↑, Casp9↑, Casp8↑, Casp3↓, BAX↑, Bcl-2↓, Bcl-xL↓, IAP1↓, XIAP↓, survivin↓, MMP2↓, MMP9↓, CycB/CCNB1↓, CDC25↓, CDC25↓, Cyt‑c↑, MMP↓, RenoP↑, mTOR↓, MDM2↓, LC3II↑, ERK↓, COX2↓, MMP3↓, TGF-β↓, EMT↑, ROCK1↓, FAK↓, RAS↓, Rho↓, NF-kB↓, uPA↓, MMP1↓, MMP13↓, ChemoSen↑,
2686- BBR,    Effects of resveratrol, curcumin, berberine and other nutraceuticals on aging, cancer development, cancer stem cells and microRNAs
- Review, Nor, NA
Inflam↓, IL6↓, MCP1↓, COX2↓, PGE2↓, MMP2↓, MMP9↓, DNAdam↑, eff↝, Telomerase↓, Bcl-2↓, AMPK↑, ROS↑, MMP↓, ATP↓, p‑mTORC1↓, p‑S6K↓, ERK↓, PI3K↓, PTEN↑, Akt↓, Raf↓, MEK↓, Dose↓, Dose↑, selectivity↑, TumCCA↑, eff↑, EGFR↓, Glycolysis↓, Dose?, p27↑, CDK2↓, CDK4↓, cycD1/CCND1↓, cycE/CCNE↓, Bax:Bcl2↑, Casp3↑, Casp9↑, VEGFR2↓, ChemoSen↑, eff↑, eff↑, PGE2↓, JAK2↓, STAT3↓, CXCR4↓, CCR7↓, uPA↓, CSCs↓, EMT↓, Diff↓, CD133↓, Nestin↓, n-MYC↓, NOTCH↓, SOX2↓, Hif1a↓, VEGF↓, RadioS↑,
2670- BBR,    Berberine: A Review of its Pharmacokinetics Properties and Therapeutic Potentials in Diverse Vascular Diseases
- Review, Var, NA
*Inflam↓, *antiOx↑, *Ca+2↓, *BioAv↓, *BioAv↑, *BioAv↑, *angioG↑, *MAPK↓, *AMPK↓, *NF-kB↓, VEGF↓, PI3K↓, Akt↓, MMP2↓, Bcl-2↓, ERK↓,
2335- BBR,    Chemoproteomics reveals berberine directly binds to PKM2 to inhibit the progression of colorectal cancer
- in-vitro, CRC, HT29 - in-vitro, CRC, HCT116 - in-vivo, NA, NA
PKM2↓, Glycolysis↓, p‑STAT3↓, Bcl-2↓, cycD1/CCND1↓, TumCG↓, Ki-67↓, lactateProd↓, glucose↓,
1285- BetA,    Betulinic acid decreases expression of bcl-2 and cyclin D1, inhibits proliferation, migration and induces apoptosis in cancer cells
- in-vitro, Var, NA
Apoptosis↑, Bcl-2↓, cycD1/CCND1↓, BAX↑,
1305- BetA,    Betulinic acid decreases expression of bcl-2 and cyclin D1, inhibits proliferation, migration and induces apoptosis in cancer cells
- in-vitro, UEC, NA
Apoptosis↑, Bcl-2↓, BAX↑,
2748- BetA,    Betulinic Acid: Recent Advances in Chemical Modifications, Effective Delivery, and Molecular Mechanisms of a Promising Anticancer Therapy
- Review, Var, NA
Bcl-2↓, MMP↓, Cyt‑c↑, Casp↑, Diablo↑, AIF↑, angioG↓, BioAv↓, NF-kB↓,
2746- BetA,    Betulinic acid induces apoptosis and inhibits metastasis of human colorectal cancer cells in vitro and in vivo
- in-vitro, CRC, HCT116 - in-vivo, CRC, NA
TumCG↓, BAX↑, Bcl-2↓, ROS↑, MMP↓, TIMP2↑, TumVol↓,
2743- BetA,    Betulinic acid and the pharmacological effects of tumor suppression
- Review, Var, NA
ROS↓, MMP↓, Cyt‑c↑, Apoptosis↑, TumCCA↑, Sp1/3/4↓, STAT3↓, NF-kB↓, EMT↓, TOP1↓, MAPK↑, p38↑, JNK↑, Casp↑, Bcl-2↓, BAX↑, VEGF↓, LAMs↓,
2716- BetA,    Cellular and molecular mechanisms underlying the potential of betulinic acid in cancer prevention and treatment
- Review, Var, NA
AntiCan↑, TumCD↑, TumCCA↑, ROS↑, NF-kB↓, Bcl-2↓, Half-Life↝, GLUT1↓, VEGF↓, PDK1↓,
2721- BetA,    Proteomic Investigation into Betulinic Acid-Induced Apoptosis of Human Cervical Cancer HeLa Cells
- in-vitro, Cerv, HeLa
ROS↑, Dose↝, Bcl-2↓, BAX↑, ER Stress↑,
2737- BetA,    Multiple molecular targets in breast cancer therapy by betulinic acid
- Review, Var, NA
TumCP↓, Cyc↓, TOP1↓, TumCCA↑, angioG↓, NF-kB↓, Sp1/3/4↓, VEGF↓, MMPs↓, ChemoSen↑, eff↑, MMP↓, ROS↑, Bcl-2↓, Bcl-xL↓, Mcl-1↓, lipid-P↑, RadioS↑, eff↑,
2733- BetA,    Betulinic Acid Inhibits Cell Proliferation in Human Oral Squamous Cell Carcinoma via Modulating ROS-Regulated p53 Signaling
- in-vitro, Oral, KB - in-vivo, NA, NA
TumCP↓, TumVol↓, mt-Apoptosis↑, Casp3↑, Casp9↑, BAX↑, Bcl-2↑, OCR↓, TumCCA↑, ROS↑, eff↓, P53↑, STAT3↓, cycD1/CCND1↑,
2732- BetA,  Chemo,    Betulinic acid chemosensitizes breast cancer by triggering ER stress-mediated apoptosis by directly targeting GRP78
- in-vitro, BC, MCF-7 - in-vitro, BC, MDA-MB-231 - in-vitro, Nor, MCF10
ChemoSen↑, selectivity↑, GRP78/BiP↑, ER Stress↑, PERK↑, Ca+2↑, Cyt‑c↑, BAX↑, Bcl-2↓,
726- Bor,    Redox Mechanisms Underlying the Cytostatic Effects of Boric Acid on Cancer Cells—An Issue Still Open
- Review, NA, NA
NAD↝, SAM-e↝, PSA↓, IGF-1↓, Cyc↓, P21↓, p‑MEK↓, p‑ERK↓, ROS↑, SOD↓, Catalase↓, MDA↑, GSH↓, IL1↓, IL6↓, TNF-α↓, BRAF↝, MAPK↝, PTEN↝, PI3K/Akt↝, eIF2α↑, ATF4↑, ATF6↑, NRF2↑, BAX↑, BID↑, Casp3↑, Casp9↑, Bcl-2↓, Bcl-xL↓,
702- Bor,  GEN,  SeMet,  Rad,    Evaluation of ecological and in vitro effects of boron on prostate cancer risk (United States)
- Analysis, NA, NA
Risk↓, TumCMig↓, Bcl-2↓,
742- Bor,    In Vitro Effects of Boric Acid on Cell Cycle, Apoptosis, and miRNAs in Medullary Thyroid Cancer Cells
- in-vitro, Thyroid, NA
NOXA↑, APAF1↑, BAX↑, Casp3↑, Casp9↑, Bcl-2↓, Bcl-xL↓, miR-21↓,
743- Bor,    Boric Acid (Boron) Attenuates AOM-Induced Colorectal Cancer in Rats by Augmentation of Apoptotic and Antioxidant Mechanisms
- in-vitro, CRC, NA
BAX↑, Bcl-2↓, GPx↑, SOD↑, Catalase↑, MDA↓, TNF-α↓, IL6↓, IL10↑,
749- Bor,    Comparative effects of boric acid and calcium fructoborate on breast cancer cells
P53↓, Bcl-2↓, Casp3↑, Apoptosis↑,
750- Bor,    Calcium fructoborate regulate colon cancer (Caco-2) cytotoxicity through modulation of apoptosis
- in-vitro, CRC, Caco-2
Bcl-2↓, BAX↑, Akt↓, p70S6↓, PTEN↑, TSC2↑,
1169- Bos,    Boswellic Acid Inhibits Growth and Metastasis of Human Colorectal Cancer in Orthotopic Mouse Model By Downregulating Inflammatory, Proliferative, Invasive, and Angiogenic Biomarkers
- in-vivo, CRC, NA
TumCG↓, TumVol↓, Weight∅, ascitic↓, TumMeta↓, Ki-67↓, CD31↓, NF-kB↓, COX2↓, Bcl-2↓, Bcl-xL↓, IAP1↓, survivin↓, cycD1/CCND1↓, ICAM-1↓, MMP9↓, CXCR4↓, VEGF↓,
1420- Bos,    Acetyl-11-keto-β-boswellic acid inhibits proliferation and induces apoptosis of gastric cancer cells through the phosphatase and tensin homolog /Akt/ cyclooxygenase-2 signaling pathway
- vitro+vivo, GC, BGC-823
TumCP↓, TumCG↓, PTEN↑, BAX↑, Bcl-2↓, p‑Akt↓, COX2↓,
1426- Bos,  CUR,  Chemo,    Novel evidence for curcumin and boswellic acid induced chemoprevention through regulation of miR-34a and miR-27a in colorectal cancer
- in-vivo, CRC, NA - in-vitro, CRC, HCT116 - in-vitro, CRC, RKO - in-vitro, CRC, SW480 - in-vitro, RCC, SW-620 - in-vitro, RCC, HT-29 - in-vitro, CRC, Caco-2
miR-34a↑, miR-27a-3p↓, TumCG↓, BAX↑, Bcl-2↓, PARP1↓, TumCCA↑, Apoptosis↑, cMyc↓, CDK4↓, CDK6↓, cycD1/CCND1↓, ChemoSen↑, miR-34a↑, miR-27a-3p↓,
1448- Bos,    A triterpenediol from Boswellia serrata induces apoptosis through both the intrinsic and extrinsic apoptotic pathways in human leukemia HL-60 cells
- in-vitro, AML, HL-60
TumCP↓, Apoptosis↑, ROS↑, NO↑, cl‑Bcl-2↑, BAX↑, MMP↓, Cyt‑c↑, AIF↑, Diablo↑, survivin↓, ICAD↓, Casp↑, cl‑PARP↑, DR4↑, TNFR 1↑,
2773- Bos,    Targeted inhibition of tumor proliferation, survival, and metastasis by pentacyclic triterpenoids: Potential role in prevention and therapy of cancer
- Review, Var, NA
Inflam↓, TumCCA↑, Casp3↑, Casp8↑, Casp9↑, STAT3↑, SHP1↓, NF-kB↓, cycD1/CCND1↓, COX2↓, Ki-67↓, CD31↓, IAP1↓, MMPs↓, Bcl-2↓, Bcl-xL↓,
1640- CA,  MET,    Caffeic Acid Targets AMPK Signaling and Regulates Tricarboxylic Acid Cycle Anaplerosis while Metformin Downregulates HIF-1α-Induced Glycolytic Enzymes in Human Cervical Squamous Cell Carcinoma Lines
- in-vitro, Cerv, SiHa
GLS↓, NADPH↓, ROS↑, TumCD↑, AMPK↑, Hif1a↓, GLUT1↓, GLUT3↓, HK2↓, PFK↓, PKM2↓, LDH↓, cMyc↓, BAX↓, cycD1/CCND1↓, PDH↓, ROS↑, Apoptosis↑, eff↑, ACLY↓, FASN↓, Bcl-2↓, Glycolysis↓,
1262- CAP,    Capsaicin Inhibits Proliferation and Induces Apoptosis in Breast Cancer by Down-Regulating FBI-1-Mediated NF-κB Pathway
- vitro+vivo, BC, NA
FBI-1↓, Ki-67↓, Bcl-2↓, survivin↓, BAX↑, Casp3↑, TumCP↓, Apoptosis↑,
2012- CAP,    Capsaicin induces cytotoxicity in human osteosarcoma MG63 cells through TRPV1-dependent and -independent pathways
- NA, OS, MG63
AntiTum↑, Apoptosis↑, TRPV1↑, ROS↑, SOD↓, AMPK↑, P53↑, JNK↑, Bcl-2↓, Cyt‑c↑, cl‑Casp3↑, cl‑PARP↑, Ca+2↑, MMP↓,
1517- CAP,    Capsaicin Inhibits Multiple Bladder Cancer Cell Phenotypes by Inhibiting Tumor-Associated NADH Oxidase (tNOX) and Sirtuin1 (SIRT1)
- in-vitro, Bladder, TSGH8301 - in-vitro, CRC, T24
ENOX2↓, TumCCA↑, ERK↓, p‑FAK↓, p‑pax↓, TumCMig↓, EMT↓, SIRT1↓, Dose∅, ROS↑, MMP↓, Bcl-2↓, Bak↑, cl‑PARP↑, Casp3↑, SIRT1↓, ac‑P53↑, BIM↑, p‑RB1↓, cycD1/CCND1↓, Dose∅, β-catenin/ZEB1↓, N-cadherin↓, E-cadherin↑,
1287- CAR,    Bcl-2CytC_signaling_pathway">Carvacrol induces apoptosis in human breast cancer cells via Bcl-2/CytC signaling pathway
- in-vitro, BC, HCC1937
TumCP↓, TumCCA↑, Apoptosis↑, BAX↑, Cyt‑c↑, Casp3↑, Bcl-2↓,
1298- CGA,    Chlorogenic acid regulates apoptosis and stem cell marker-related gene expression in A549 human lung cancer cells
- in-vitro, Lung, A549
Bcl-2↓, BAX↑, Casp3↑, p38↑, JNK↑, Nanog↓, SOX2↓, OCT4↓,
4487- Chit,  PreB,    Unravelling the Role of Chitin and Chitosan in Prebiotic Activity and Correlation With Cancer: A Narrative Review
- Review, NA, NA
*GutMicro↑, Apoptosis↑, BAX↑, Bcl-2↓, *Inflam↓, AntiTum↑,
1145- CHr,    Chrysin inhibits propagation of HeLa cells by attenuating cell survival and inducing apoptotic pathways
- in-vitro, Cerv, HeLa
tumCV↓, BAX↑, BID↑, BOK↑, APAF1↑, TNF-α↑, FasL↑, Fas↑, FADD↑, Casp3↑, Casp7↑, Casp8↑, Casp9↑, Mcl-1↓, NAIP↓, Bcl-2↓, CDK4↓, CycB/CCNB1↓, cycD1/CCND1↓, cycE1↓, TRAIL↑, p‑Akt↓, Akt↓, mTOR↓, PDK1↓, BAD↓, GSK‐3β↑, AMPK↑, p27↑, P53↑,
2795- CHr,    Combination of chrysin and cisplatin promotes the apoptosis of Hep G2 cells by up-regulating p53
- in-vitro, Liver, HepG2
ChemoSen↑, P53↑, ERK↑, BAX↑, DR5↑, Bcl-2↓, Casp8↑, Cyt‑c↑, Casp9↑,
2807- CHr,    Evidence-based mechanistic role of chrysin towards protection of cardiac hypertrophy and fibrosis in rats
- in-vivo, Nor, NA
*antiOx↑, Inflam↓, *cardioP↑, *GSH↑, *SOD↑, *Catalase↑, *GAPDH↑, *BAX↓, *Bcl-2↑, *PARP↓, *Cyt‑c↓, *Casp3↓, *NOX4↓, *NRF2↑, *HO-1↑, *HSP70/HSPA5↑,
1055- Cin,    Cinnamon extract induces tumor cell death through inhibition of NFκB and AP1
- vitro+vivo, Melanoma, NA - vitro+vivo, CRC, NA - vitro+vivo, lymphoma, NA
TumCP↓, NF-kB↓, AP-1↓, Bcl-2↓, Bcl-xL↓, survivin↓,
2315- Citrate,    Why and how citrate may sensitize malignant tumors to immunotherapy
- Review, Var, NA
Bcl-2↓, Mcl-1↓, survivin↓, Casp3↑, Casp9↑, Ferroptosis↑, lipid-P↑, Ca+2↓, Akt↓, mTOR↓, Hif1a↓, MCU↓, ATP↓, ROS↑, eff↑,
1585- Citrate,    Sodium citrate targeting Ca2+/CAMKK2 pathway exhibits anti-tumor activity through inducing apoptosis and ferroptosis in ovarian cancer
- in-vitro, Ovarian, SKOV3 - in-vitro, Ovarian, A2780S - in-vitro, Nor, HEK293
Apoptosis↑, Ferroptosis↑, Ca+2↓, CaMKII ↓, Akt↓, mTOR↓, Hif1a↓, ROS↑, ChemoSen↑, Casp3↑, Casp9↑, BAX↑, Bcl-2↓, Cyt‑c↑, GlucoseCon↓, lactateProd↓, Pyruv↓, GLUT1↓, HK2↓, PFKP↓, Glycolysis↓, Hif1a↓, p‑Akt↓, p‑mTOR↓, Iron↑, lipid-P↑, MDA↑, ROS↑, H2O2↑, mtDam↑, GSH↓, GPx↓, GPx4↓, NADPH/NADP+↓, eff↓, FTH1↓, LC3‑Ⅱ/LC3‑Ⅰ↑, NCOA4↑, eff↓, TumCG↓,
3630- Croc,    Crocin Improves Cognitive Behavior in Rats with Alzheimer's Disease by Regulating Endoplasmic Reticulum Stress and Apoptosis
- in-vivo, AD, NA
*memory↑, *Bcl-2↑, *BAX↓, *Casp3↓, *GRP78/BiP↓, *CHOP↓, *Dose↝,
1572- Cu,    Recent Advances in Cancer Therapeutic Copper-Based Nanomaterials for Antitumor Therapy
- Review, NA, NA
eff↑, Fenton↑, ROS↑, eff↑, mtDam↑, BAX↑, Bcl-2↓, MMP↓, Cyt‑c↑, Casp3↑, ER Stress↑, CHOP↑, Apoptosis↑, selectivity↑, eff↑, Pyro↑, Paraptosis↑, Cupro↑, ChemoSen↑, eff↑,
3576- CUR,    Protective Effects of Indian Spice Curcumin Against Amyloid-β in Alzheimer's Disease
- Review, AD, NA
*Inflam↓, *antiOx↑, *memory↑, *Aβ↓, *BBB↑, *cognitive↑, *tau↓, *LDL↓, *AChE↓, *IL1β↓, *IronCh↑, *neuroP↑, *BioAv↝, *PI3K↑, *Akt↑, *NRF2↑, *HO-1↑, *Ferritin↑, *HO-2↓, *ROS↓, *Ach↑, *GSH↑, *Bcl-2↑, *ChAT↑,
2688- CUR,    Effects of resveratrol, curcumin, berberine and other nutraceuticals on aging, cancer development, cancer stem cells and microRNAs
- Review, Var, NA - Review, AD, NA
*ROS↓, *SOD↑, p16↑, JAK2↓, STAT3↓, CXCL12↓, IL6↓, MMP2↓, MMP9↓, TGF-β↓, α-SMA↓, LAMs↓, DNAdam↑, *memory↑, *cognitive↑, *Inflam↓, *antiOx↑, *NO↑, *MDA↓, *ROS↓, DNMT1↓, ROS↑, Casp3↑, Apoptosis↑, miR-21↓, LC3II↓, ChemoSen↑, NF-kB↓, CSCs↓, Nanog↓, OCT4↓, SOX2↓, eff↑, Sp1/3/4↓, miR-27a-3p↓, ZBTB10↑, SOX9?, ChemoSen↑, VEGF↓, XIAP↓, Bcl-2↓, cycD1/CCND1↓, BioAv↑, Hif1a↓, EMT↓, BioAv↓, PTEN↑, VEGF↓, Akt↑, EZH2↓, NOTCH1↓, TP53↑, NQO1↑, HO-1↑,
4826- CUR,    The Bright Side of Curcumin: A Narrative Review of Its Therapeutic Potential in Cancer Management
- Review, Var, NA
*antiOx↑, *Inflam↑, *ROS↓, Apoptosis↑, TumCP↓, BioAv↓, Half-Life↓, eff↑, TumCCA↑, BAX↑, Bak↑, PUMA↑, BIM↑, NOXA↑, TRAIL↑, Bcl-2↓, Bcl-xL↓, survivin↓, XIAP↓, cMyc↓, Casp↑, NF-kB↓, STAT3↓, AP-1↓, angioG↓, TumMeta↑, VEGF↓, MMPs↓, DNMTs↓, HDAC↓, ROS↑,
141- CUR,    Effect of curcumin on Bcl-2 and Bax expression in nude mice prostate cancer
- in-vivo, Pca, PC3
BAX↑, Bcl-2↓,
137- CUR,    Curcumin induces G0/G1 arrest and apoptosis in hormone independent prostate cancer DU-145 cells by down regulating Notch signaling
- in-vitro, Pca, DU145
NOTCH1↓, cycD1/CCND1↓, CDK2↓, P21↑, p27↑, P53↑, Bcl-2↓, Casp3↑, Casp9↑,
136- CUR,  docx,    Combinatorial effect of curcumin with docetaxel modulates apoptotic and cell survival molecules in prostate cancer
- in-vitro, Pca, DU145 - in-vitro, Pca, PC3
Bcl-2↓, Bcl-xL↓, Mcl-1↓, BAX↑, BID↑, PARP↑, NF-kB↓, CDK1↓, COX2↓, RTK-RAS↓, PI3K/Akt↓, EGFR↓, HER2/EBBR2↓, P53↑,
170- CUR,    Curcumin sensitizes TRAIL-resistant xenografts: molecular mechanisms of apoptosis, metastasis and angiogenesis
- vitro+vivo, Pca, PC3
TRAILR↑, BAX↑, P21↑, p27↑, NF-kB↓, cycD1/CCND1↓, VEGF↓, uPA↓, MMP2↓, MMP9↓, Bcl-2↓, Bcl-xL↓,
9- CUR,    Curcumin Suppresses Malignant Glioma Cells Growth and Induces Apoptosis by Inhibition of SHH/GLI1 Signaling Pathway in Vitro and Vivo
- vitro+vivo, MG, U87MG - vitro+vivo, MG, T98G
HH↓, Shh↓, Gli1↓, cycD1/CCND1↓, Bcl-2↓, FOXM1↓, Bax:Bcl2↑,
12- CUR,    Curcumin inhibits the Sonic Hedgehog signaling pathway and triggers apoptosis in medulloblastoma cells
- in-vitro, MB, DAOY
HH↓, Shh↓, Gli1↓, PTCH1↓, cMyc↓, n-MYC↓, cycD1/CCND1↓, Bcl-2↓, NF-kB↓, Akt↓, β-catenin/ZEB1↓, survivin↓,
15- CUR,  UA,    Effects of curcumin and ursolic acid in prostate cancer: A systematic review
NF-kB↝, Akt↝, AR↝, Apoptosis↝, Bcl-2↝, Casp3↝, BAX↝, P21↝, ROS↝, Apoptosis↝, Bcl-xL↝, JNK↝, MMP2↝, P53↝, PSA↝, VEGF↝, COX2↝, cycD1/CCND1↝, EGFR↝, IL6↝, β-catenin/ZEB1↝, mTOR↝, NRF2↝, p‑Akt↝, AP-1↝, Cyt‑c↝, PI3K↝, PTEN↝, Cyc↝, TNF-α↝,
118- CUR,    Curcumin analog WZ35 induced cell death via ROS-dependent ER stress and G2/M cell cycle arrest in human prostate cancer cells
- in-vitro, Pca, PC3 - in-vitro, Pca, DU145
ROS↑, Bcl-2↓, PARP↑, cDC2↓, CycB/CCNB1↓, MDM2↓,
424- CUR,    Curcumin inhibits autocrine growth hormone-mediated invasion and metastasis by targeting NF-κB signaling and polyamine metabolism in breast cancer cells
- in-vitro, BC, MCF-7 - in-vitro, BC, MDA-MB-231
Src↓, p‑STAT1↓, p‑Akt↓, p‑p44↓, p‑p42↓, RAS↓, Raf↓, Vim↓, β-catenin/ZEB1↓, P53↓, Bcl-2↓, Mcl-1↓, PIAS-3↑, SOCS-3↑, SOCS1↑, ROS↑, NF-kB↓, PAO↑, SSAT↑, P21↑, Bak↑,
425- CUR,    Curcumin inhibits proliferation and promotes apoptosis of breast cancer cells
- in-vitro, BC, T47D - in-vitro, BC, MCF-7 - in-vitro, BC, MDA-MB-231 - in-vitro, BC, MDA-MB-468
CDC25↓, cDC2↓, P21↑, p‑Akt↓, p‑mTOR↓, Bcl-2↓, BAX↑, Casp3↑,
426- CUR,    Use of cancer chemopreventive phytochemicals as antineoplastic agents
- in-vitro, BC, MDA-MB-231 - in-vitro, BC, CAL51
Bcl-2↓, ROS↑, BAX↑, RAD51↑, γH2AX↑,
432- CUR,    Curcumin-Induced Global Profiling of Transcriptomes in Small Cell Lung Cancer Cells
- in-vitro, Lung, H446
Bcl-2↓, cycF↓, LOX1↓, VEGF↓, MRGPRF↓, BAX↑, Cyt‑c↑, miR-548ah-5p↑,
417- CUR,    Curcumin inhibits the growth of triple‐negative breast cancer cells by silencing EZH2 and restoring DLC1 expression
- vitro+vivo, BC, MCF-7 - vitro+vivo, BC, MDA-MB-231 - vitro+vivo, BC, MDA-MB-468
EZH2↓, DLC1↑, cycA1/CCNA1↓, CDK1↓, Bcl-2↓, Casp9↑, DLC1↑,
406- CUR,    Effect of curcumin on normal and tumor cells: Role of glutathione and bcl-2
- in-vitro, BC, MCF-7 - in-vitro, Hepat, HepG2
GSH↓, Apoptosis↑, Bcl-2↓, cMyc↓,
461- CUR,    Curcumin inhibits prostate cancer progression by regulating the miR-30a-5p/PCLAF axis
- in-vitro, Pca, PC3 - in-vitro, Pca, DU145
TumCP↓, TumCMig↓, TumCI↓, Apoptosis↑, miR-30a-5p↑, PCLAF↓, Bcl-2↓, Casp3↓, BAX↑, cl‑Casp3↑,
462- CUR,    Curcumin promotes cancer-associated fibroblasts apoptosis via ROS-mediated endoplasmic reticulum stress
- in-vitro, Pca, PC3
Bcl-2↓, MMP↓, cl‑Casp3↑, BAX↑, BIM↑, p‑PARP↑, PUMA↑, p‑P53↑, ROS↑, p‑ERK↑, p‑eIF2α↑, CHOP↑, ATF4↑,
441- CUR,    Curcumin Regulates ERCC1 Expression and Enhances Oxaliplatin Sensitivity in Resistant Colorectal Cancer Cells through Its Effects on miR-409-3p
- in-vitro, CRC, HCT116
ERCC1↓, Bcl-2↓, GSTP1/GSTπ↓, MRP↓, P-gp↓, miR-409-3p↑, survivin↓,
444- CUR,  Cisplatin,    LncRNA KCNQ1OT1 is a key factor in the reversal effect of curcumin on cisplatin resistance in the colorectal cancer cells
- vitro+vivo, CRC, HCT8
TumVol↓, Apoptosis↑, Bcl-2↓, Cyt‑c↑, BAX↑, cl‑Casp3↑, cl‑PARP1↑, miR-497↑, KCNQ1OT1↓,
447- CUR,  OXA,    Curcumin reverses oxaliplatin resistance in human colorectal cancer via regulation of TGF-β/Smad2/3 signaling pathway
- vitro+vivo, CRC, HCT116
p‑p65↓, Bcl-2↓, Casp3↑, EMT↓, p‑SMAD2↓, p‑SMAD3↓, N-cadherin↓, TGF-β↓, E-cadherin↑, TumVol↓, TumCMig↓,
448- CUR,    Heat shock protein 27 influences the anti-cancer effect of curcumin in colon cancer cells through ROS production and autophagy activation
- in-vitro, CRC, HT-29
Apoptosis↑, TumCCA↑, p‑Akt↓, Akt↓, Bcl-2↓, p‑BAD↓, BAD↑, cl‑PARP↑, ROS↑, HSP27↑, Beclin-1↑, p62↑, GPx1↓, GPx4↓,
453- CUR,    Cellular uptake and apoptotic properties of gemini curcumin in gastric cancer cells
- in-vitro, GC, AGS
Bcl-2↓, survivin↓, BAX↑, TumCCA↑,
456- CUR,    Curcumin Promoted miR-34a Expression and Suppressed Proliferation of Gastric Cancer Cells
- vitro+vivo, GC, SGC-7901
miR-34a↑, TumCP↓, TumCMig↓, TumCI↓, TumCCA↑, Bcl-2↓, CDK4/6↓, cycD1/CCND1↓,
457- CUR,    Curcumin regulates proliferation, autophagy, and apoptosis in gastric cancer cells by affecting PI3K and P53 signaling
- in-vitro, GC, SGC-7901 - in-vitro, GC, BGC-823
TumCP↓, Apoptosis↑, TumAuto↑, P53↑, PI3K↓, P21↑, p‑Akt↓, p‑mTOR↓, Bcl-2↓, Bcl-xL↓, LC3I↓, BAX↑, Beclin-1↑, cl‑Casp3↑, cl‑PARP↑, LC3II↑, ATG3↑, ATG5↑,
479- CUR,    Curcumin Has Anti-Proliferative and Pro-Apoptotic Effects on Tongue Cancer in vitro: A Study with Bioinformatics Analysis and in vitro Experiments
- in-vitro, Tong, CAL27
TumCP↓, TumCMig↓, Apoptosis↑, TumCCA↑, Bcl-2↓, BAX↑, cl‑Casp3↑,
1871- DAP,    Targeting PDK1 with dichloroacetophenone to inhibit acute myeloid leukemia (AML) cell growth
- in-vitro, AML, U937 - in-vivo, AML, NA
TumCP↓, Apoptosis↑, TumCG↓, PDK1↓, cl‑PARP↑, Bcl-xL↓, Bcl-2↓, Beclin-1↓, ATG3↓, PI3K↓, Akt↓, eff↑,
1878- DCA,  5-FU,    Synergistic Antitumor Effect of Dichloroacetate in Combination with 5-Fluorouracil in Colorectal Cancer
- in-vitro, CRC, LS174T - in-vitro, CRC, LoVo - in-vitro, CRC, SW-620 - in-vitro, CRC, HT-29
tumCV↓, eff↑, PDKs↓, lactateProd↓, Glycolysis↓, mitResp↑, TumCCA↑, Bcl-2↓, BAX↑, Casp3↑,
4455- DFE,    Ajwa Date (Phoenix dactylifera L.) Extract Inhibits Human Breast Adenocarcinoma (MCF7) Cells In Vitro by Inducing Apoptosis and Cell Cycle Arrest
- in-vitro, BC, MCF-7 - in-vitro, Nor, 3T3
TumCCA↑, P53↑, BAX↑, Casp3↑, MMP↓, Fas↑, FasL↑, Bcl-2↓, Apoptosis↑, TumCP↓, TUNEL↑, eff↑, selectivity↑,
1621- EA,    The multifaceted mechanisms of ellagic acid in the treatment of tumors: State-of-the-art
- Review, Var, NA
AntiCan↑, Apoptosis↑, TumCP↓, TumMeta↓, TumCI↓, TumAuto↑, VEGFR2↓, MAPK↓, PI3K↓, Akt↓, PD-1↓, NOTCH↓, PCNA↓, Ki-67↓, cycD1/CCND1↓, CDK2↑, CDK6↓, Bcl-2↓, cl‑PARP↑, BAX↑, Casp3↑, DR4↑, DR5↑, Snail↓, MMP2↓, MMP9↓, TGF-β↑, PKCδ↓, β-catenin/ZEB1↓, SIRT1↓, HO-1↓, ROS↑, CHOP↑, Cyt‑c↑, MMP↓, OCR↓, AMPK↑, Hif1a↓, NF-kB↓, E-cadherin↑, Vim↓, EMT↓, LC3II↑, CIP2A↓, GLUT1↓, PDH↝, MAD↓, LDH↓, GSTs↑, NOTCH↓, survivin↓, XIAP↓, ER Stress↑, ChemoSideEff↓, ChemoSen↑,
1613- EA,    Ellagitannins in Cancer Chemoprevention and Therapy
- Review, Var, NA
ROS↑, angioG↓, ChemoSen↑, BAX↑, Bak↑, Bcl-2↓, Bcl-xL↓, CDK2↓, CDK4↓, CDK6↓, cycD1/CCND1↓, cycE1↓, TumCG↓, VEGF↓, Hif1a↓, eff↑, COX2↓, TumCCA↑, selectivity↑, Wnt/(β-catenin)↓, *toxicity∅,
1606- EA,    Ellagic acid inhibits proliferation and induced apoptosis via the Akt signaling pathway in HCT-15 colon adenocarcinoma cells
- in-vitro, Colon, HCT15
TumCP↓, cycD1/CCND1↓, Apoptosis↑, PI3K↓, Akt↓, ROS↑, Casp3↑, Cyt‑c↑, Bcl-2↓, TumCCA↑, Dose∅, ALP↓, LDH↓, PCNA↓, P53↑, Bax:Bcl2↑,
1057- EDM,    Evodiamine abolishes constitutive and inducible NF-kappaB activation by inhibiting IkappaBalpha kinase activation, thereby suppressing NF-kappaB-regulated antiapoptotic and metastatic gene expression, up-regulating apoptosis, and inhibiting invasion
NF-kB↓, TNF-α↓, COX2↓, cycD1/CCND1↓, cMyc↓, MMP9↓, ICAM-1↓, MDR1↓, XIAP↓, Bcl-2↓, Bcl-xL↓, IAP1↓, IAP2↓, cFLIP↓, Bfl-1↓,
23- EGCG,    (-)-Epigallocatechin-3-gallate induces apoptosis and suppresses proliferation by inhibiting the human Indian Hedgehog pathway in human chondrosarcoma cells
- in-vitro, Chon, SW1353 - in-vitro, Chon, CRL-7891
HH↓, Gli1↓, PTCH1↓, Bcl-2↓, BAX↑,
22- EGCG,    Inhibition of sonic hedgehog pathway and pluripotency maintaining factors regulate human pancreatic cancer stem cell characteristics
- in-vitro, PC, CD133+ - in-vitro, PC, CD44+ - in-vitro, PC, CD24+ - in-vitro, PC, ESA+
HH↓, Smo↓, PTCH1↓, PTCH2↓, Gli1↓, GLI2↓, Gli↓, Bcl-2↓, XIAP↓, Shh↓, EMT↓, survivin↓, Nanog↓, Casp3↑, Casp7↑,
20- EGCG,    Potential Therapeutic Targets of Epigallocatechin Gallate (EGCG), the Most Abundant Catechin in Green Tea, and Its Role in the Therapy of Various Types of Cancer
- in-vivo, Liver, NA - in-vivo, Tong, NA
HH↓, Gli1↓, Smo↓, TNF-α↓, COX2↓, *antiOx↑, Hif1a↓, NF-kB↓, VEGF↓, STAT3↓, Bcl-2↓, P53↑, Akt↓, p‑Akt↓, p‑mTOR↓, EGFR↓, AP-1↓, BAX↑, ROS↑, Casp3↑, Apoptosis↑, NRF2↑, *H2O2↓, *NO↓, *SOD↑, *Catalase↑, *GPx↑, *ROS↓,
651- EGCG,    Epigallocatechin-3-Gallate Therapeutic Potential in Cancer: Mechanism of Action and Clinical Implications
ROS↑, p‑AMPK↑, mTOR↓, FAK↓, Smo↓, Gli1↓, HH↓, TumCMig↓, TumCI↓, NOTCH↓, JAK↓, STAT↓, Bcl-2↓, Bcl-xL↓, BAX↑, Casp9↑,
685- EGCG,  CUR,  SFN,  RES,  GEN  The “Big Five” Phytochemicals Targeting Cancer Stem Cells: Curcumin, EGCG, Sulforaphane, Resveratrol and Genistein
- Analysis, NA, NA
Bcl-2↓, survivin↓, XIAP↓, EMT↓, Apoptosis↑, Nanog↓, cMyc↓, OCT4↓, Snail↓, Slug↓, Zeb1↓, TCF↓,
680- EGCG,    Cancer preventive and therapeutic effects of EGCG, the major polyphenol in green tea
- Review, NA, NA
NF-kB↓, STAT3↓, PI3K↓, HGF/c-Met↓, Akt↓, ERK↓, MAPK↓, AR↓, Casp↑, Ki-67↓, PARP↑, Bcl-2↓, BAX↑, PCNA↓, p27↑, P21↑,
668- EGCG,    The Potential Role of Epigallocatechin-3-Gallate (EGCG) in Breast Cancer Treatment
- Review, BC, MCF-7 - Review, BC, MDA-MB-231
HER2/EBBR2↓, EGFR↓, mtDam↑, ROS↑, PI3K/Akt↓, P53↑, P21↑, Casp3↑, Casp9↑, BAX↑, PTEN↑, Bcl-2↓, hTERT/TERT↓, STAT3↓, TumCCA↑, Hif1a↓,
3201- EGCG,    Epigallocatechin Gallate (EGCG): Pharmacological Properties, Biological Activities and Therapeutic Potential
- Review, NA, NA
*AntiCan↑, *cardioP↑, *neuroP↑, *BioAv↝, *BioAv↓, *BioAv↓, *Dose↝, *Half-Life↝, *BioAv↑, *BBB↑, *hepatoP↓, *other↓, *Inflam↓, *NF-kB↓, *AP-1↓, *iNOS↓, *COX2↓, *ROS↓, *RNS↓, *IL8↓, *JAK↓, *PDGFR-BB↓, *IGF-1R↓, *MMP2↓, *P53↓, *NRF2↑, *TNF-α↓, *IL6↓, *E2Fs↑, *SOD1↑, *SOD2↑, Casp3↑, Cyt‑c↑, PARP↑, DNMTs↓, Telomerase↓, Hif1a↓, MMPs↓, BAX↑, Bak↑, Bcl-2↓, Bcl-xL↓, P53↑, PTEN↑, TumCP↓, MAPK↓, HGF/c-Met↓, TIMP1↑, HDAC↓, MMP9↓, uPA↓, GlutMet↓, ChemoSen↑, chemoP↑,
4682- EGCG,    Human cancer stem cells are a target for cancer prevention using (−)-epigallocatechin gallate
- Review, Var, NA
CSCs↓, EMT↓, ChemoSen↑, CD133↓, CD44↓, ALDH1A1↓, Nanog↓, OCT4↓, TumCP↓, Apoptosis↑, p‑GSK‐3β↓, GSK‐3β↑, β-catenin/ZEB1↓, cMyc↓, XIAP↓, Bcl-2↓, survivin↓, Vim↓, Slug↓, Snail↓,
1516- EGCG,    Epigallocatechin Gallate (EGCG): Pharmacological Properties, Biological Activities and Therapeutic Potential
- Review, NA, NA
*Dose∅, Half-Life∅, BioAv∅, BBB↑, toxicity∅, eff↓, Apoptosis↑, Casp3↑, Cyt‑c↑, cl‑PARP↑, DNMTs↓, Telomerase↓, angioG↓, Hif1a↓, NF-kB↓, MMPs↓, BAX↑, Bak↑, Bcl-2↓, Bcl-xL↓, P53↑, PTEN↑, IGF-1↓, H3↓, HDAC1↓, *LDH↓, *ROS↓,
1303- EGCG,    (-)-Epigallocatechin-3-gallate induces apoptosis in human endometrial adenocarcinoma cells via ROS generation and p38 MAP kinase activation
- in-vitro, EC, NA
TumCP↓, ER-α36↓, cycD1/CCND1↓, ERK↑, Jun↓, BAX↑, Bcl-2↓, cl‑Casp3↑, ROS↑, p38↑,
1324- EMD,    Is Emodin with Anticancer Effects Completely Innocent? Two Sides of the Coin
- Review, Var, NA
*toxicity↑, *BioAv↓, Akt↓, ERK↓, ROS↑, MMP↓, Bcl-2↓, BAX↑, TumCCA↑,
1325- EMD,  PacT,    Emodin enhances antitumor effect of paclitaxel on human non-small-cell lung cancer cells in vitro and in vivo
- vitro+vivo, Lung, A549
TumCP↓, Apoptosis↑, BAX↑, Casp3↑, Bcl-2↓, p‑Akt↓, p‑ERK↓, ChemoSideEff∅, ChemoSen↑,
1327- EMD,    Emodin induces apoptosis in human lung adenocarcinoma cells through a reactive oxygen species-dependent mitochondrial signaling pathway
- in-vitro, Lung, A549
Cyt‑c↑, Casp2↑, Casp3↑, Casp9↑, ERK↓, Akt↓, ROS↑, MMP↓, Bcl-2↓, BAX↑,
1296- EMD,    Emodin inhibits LOVO colorectal cancer cell proliferation via the regulation of the Bcl-2/Bax ratio and cytochrome c
- in-vitro, CRC, LoVo
BAX↑, Bcl-2↓, MMP↓, Cyt‑c↑,
3460- EP,    Picosecond pulsed electric fields induce apoptosis in HeLa cells via the endoplasmic reticulum stress and caspase-dependent signaling pathways
- in-vitro, Cerv, HeLa
tumCV↓, Apoptosis↑, TumCCA↑, GRP78/BiP↑, GRP94↑, CEBPA↑, CHOP↑, Ca+2↑, Casp12↑, Casp9↑, Casp3↑, Cyt‑c↑, BAX↑, Bcl-2↓, ER Stress↑, MMP↓,
1289- FA,    Cytotoxic and Apoptotic Effects of Ferulic Acid on Renal Carcinoma Cell Line (ACHN)
- in-vitro, RCC, NA
Bcl-2↓, BAX↑, Apoptosis↑,
1656- FA,    Ferulic Acid: A Natural Phenol That Inhibits Neoplastic Events through Modulation of Oncogenic Signaling
- Review, Var, NA
tyrosinase↓, CK2↓, TumCP↓, TumCMig↓, FGF↓, FGFR1↓, PI3K↓, Akt↓, VEGF↓, FGFR1↓, FGFR2↓, PDGF↓, ALAT↓, AST↓, TumCCA↑, CDK2↓, CDK4↓, CDK6↓, BAX↓, Bcl-2↓, MMP2↓, MMP9↓, P53↑, PARP↑, PUMA↑, NOXA↑, Casp3↑, Casp9↑, TIMP1↑, lipid-P↑, mtDam↑, EMT↓, Vim↓, E-cadherin↓, p‑STAT3↓, COX2↓, CDC25↓, RadioS↑, ROS↑, DNAdam↑, γH2AX↑, PTEN↑, LC3II↓, Beclin-1↓, SOD↓, Catalase↓, GPx↓, Fas↑, *BioAv↓, cMyc↓, Beclin-1↑, LC3‑Ⅱ/LC3‑Ⅰ↓,
1654- FA,    Molecular mechanism of ferulic acid and its derivatives in tumor progression
- Review, Var, NA
AntiCan↑, Inflam↓, RadioS↑, ROS↑, Apoptosis↑, TumCCA↑, TumCMig↑, TumCI↓, angioG↓, ChemoSen↑, ChemoSideEff↓, P53↑, cycD1/CCND1↓, CDK4↓, CDK6↓, TumW↓, miR-34a↑, Bcl-2↓, Casp3↑, BAX↑, β-catenin/ZEB1↓, cMyc↓, Bax:Bcl2↑, SOD↓, GSH↓, LDH↓, ERK↑, eff↑, JAK2↓, STAT6↓, NF-kB↓, PYCR1↓, PI3K↓, Akt↓, mTOR↓, Ki-67↓, VEGF↓, FGFR1↓, EMT↓, CAIX↓, LC3II↑, p62↑, PKM2↓, Glycolysis↓, *BioAv↓,
2844- FIS,    Fisetin, a dietary flavonoid induces apoptosis via modulating the MAPK and PI3K/Akt signalling pathways in human osteosarcoma (U-2 OS) cells
- in-vitro, OS, U2OS
tumCV↓, Apoptosis↑, Casp3↑, Casp8↑, Casp9↑, BAX↑, BAD↑, Bcl-2↓, Bcl-xL↓, PI3K↓, Akt↓, ERK↓, p‑JNK↑, p‑cJun↑, p‑p38↑, ROS↑, MMP↓, mTORC1↓, PTEN↑, p‑GSK‐3β↓, GSK‐3β↑, NF-kB↓, IKKα↑, Cyt‑c↑,
2845- FIS,    Fisetin: A bioactive phytochemical with potential for cancer prevention and pharmacotherapy
- Review, Var, NA
PI3K↓, Akt↓, mTOR↓, p38↓, *antiOx↑, *neuroP↑, Casp3↑, Bcl-2↓, Mcl-1↓, BAX↑, BIM↑, BAD↑, AMPK↑, ACC↑, DNAdam↑, MMP↓, eff↑, ROS↑, cl‑PARP↑, Cyt‑c↑, Diablo↑, P53↑, p65↓, Myc↓, HSP70/HSPA5↓, HSP27↓, COX2↓, Wnt↓, EGFR↓, NF-kB↓, TumCCA↑, CDK2↓, CDK4↓, cycD1/CCND1↓, cycA1/CCNA1↓, P21↑, MMP2↓, MMP9↓, TumMeta↓, MMP1↓, MMP3↓, MMP7↓, MET↓, N-cadherin↓, Vim↓, Snail↓, Fibronectin↓, E-cadherin↑, uPA↓, ChemoSen↑, EMT↓, Twist↓, Zeb1↓, cFos↓, cJun↓, EGF↓, angioG↓, VEGF↓, eNOS↓, *NRF2↑, HO-1↑, NRF2↓, GSTs↓, ATF4↓,
2849- FIS,    Activation of reactive oxygen species/AMP activated protein kinase signaling mediates fisetin-induced apoptosis in multiple myeloma U266 cells
- in-vitro, Melanoma, U266
TumCD↑, TumCCA↑, Casp3↑, Bcl-2↓, Mcl-1↓, BAX↑, BIM↑, BAD↑, AMPK↑, ACC↑, p‑Akt↓, p‑mTOR↓, ROS↑, eff↓,
2856- FIS,    N -acetyl- L -cysteine enhances fisetin-induced cytotoxicity via induction of ROS-independent apoptosis in human colonic cancer cells
- in-vitro, Colon, COLO205
eff↑, ROS↑, tumCV↓, Casp3↑, Bcl-2↓, MMP↓, eff↑,
2857- FIS,    A review on the chemotherapeutic potential of fisetin: In vitro evidences
- Review, Var, NA
COX2↓, PGE2↓, EGFR↓, Wnt↓, β-catenin/ZEB1↓, TCF↑, Apoptosis↑, Casp3↑, cl‑PARP↑, Bcl-2↓, Mcl-1↓, BAX↑, BIM↑, BAD↑, Akt↓, mTOR↓, ACC↑, Cyt‑c↑, Diablo↑, cl‑Casp8↑, Fas↑, DR5↑, TRAIL↑, Securin↓, CDC2↓, CDC25↓, HSP70/HSPA5↓, CDK2↓, CDK4↓, cycD1/CCND1↓, MMP2↓, uPA↓, NF-kB↓, cFos↓, cJun↓, MEK↓, p‑ERK↓, N-cadherin↓, Vim↓, Snail↓, Fibronectin↓, E-cadherin↓, NF-kB↑, ROS↑, DNAdam↑, MMP↓, CHOP↑, eff↑, ChemoSen↑,
2827- FIS,    The Potential Role of Fisetin, a Flavonoid in Cancer Prevention and Treatment
- Review, Var, NA
*antiOx↑, *Inflam↓, neuroP↑, hepatoP↑, RenoP↑, cycD1/CCND1↓, TumCCA↑, MMPs↓, VEGF↓, MAPK↓, NF-kB↓, angioG↓, Beclin-1↑, LC3s↑, ATG5↑, Bcl-2↓, BAX↑, Casp↑, TNF-α↓, Half-Life↓, MMP↓, mt-ROS↑, cl‑PARP↑, CDK2↓, CDK4↓, Cyt‑c↑, Diablo↑, DR5↑, Fas↑, PCNA↓, Ki-67↓, p‑H3↓, chemoP↑, Ca+2↑, Dose↝, CDC25↓, CDC2↓, CHK1↑, Chk2↑, ATM↑, PCK1↓, RAS↓, p‑p38↓, Rho↓, uPA↓, MMP7↓, MMP13↓, GSK‐3β↑, E-cadherin↑, survivin↓, VEGFR2↓, IAP2↓, STAT3↓, JAK1↓, mTORC1↓, mTORC2↓, NRF2↑,
2828- FIS,    Fisetin, a Potent Anticancer Flavonol Exhibiting Cytotoxic Activity against Neoplastic Malignant Cells and Cancerous Conditions: A Scoping, Comprehensive Review
- Review, Var, NA
*neuroP↑, *antiOx↑, *Inflam↓, RenoP↑, COX2↓, Wnt↓, EGFR↓, NF-kB↓, Casp3↑, Ca+2↑, Casp8↑, TumCCA↑, CDK1↓, PI3K↓, Akt↓, mTOR↓, MAPK↓, *P53↓, *P21↓, *p16↓, mTORC1↓, mTORC2↓, P53↑, P21↑, cycD1/CCND1↓, cycA1/CCNA1↓, CDK2↓, CDK4↓, BAX↑, Bcl-2↓, PCNA↓, HER2/EBBR2↓, Cyt‑c↑, MMP↓, cl‑Casp9↑, MMP2↓, MMP9↓, cl‑PARP↑, uPA↓, DR4↑, DR5↑, ROS↓, AIF↑, CDC25↓, Dose↑, CHOP↑, ROS↑, cMyc↓, cardioP↑,
2832- FIS,    Fisetin's Promising Antitumor Effects: Uncovering Mechanisms and Targeting for Future Therapies
- Review, Var, NA
MMP↓, mtDam↑, Cyt‑c↑, Diablo↑, Casp↑, cl‑PARP↑, Bak↑, BIM↑, Bcl-xL↓, Bcl-2↓, P53↑, ROS↑, AMPK↑, Casp9↑, Casp3↑, BID↑, AIF↑, Akt↓, mTOR↓, MAPK↓, Wnt↓, β-catenin/ZEB1↓, TumCCA↑, P21↑, p27↑, cycD1/CCND1↓, cycE/CCNE↓, CDK2↓, CDK4↓, CDK6↓, TumMeta↓, uPA↓, E-cadherin↑, Vim↓, EMT↓, Twist↓, DNAdam↑, ROS↓, COX2↓, PGE2↓, HSF1↓, cFos↓, cJun↓, AP-1↓, Mcl-1↓, NF-kB↓, IRE1↑, ER Stress↑, ATF4↑, GRP78/BiP↑, MMP2↓, MMP9↓, TCF-4↓, MMP7↓, RadioS↑, TOP1↓, TOP2↓,
2839- FIS,    Dietary flavonoid fisetin for cancer prevention and treatment
- Review, Var, NA
DNAdam↑, ROS↑, Apoptosis↑, Bcl-2↓, BAX↑, cl‑Casp9↑, cl‑Casp3↑, Cyt‑c↑, lipid-P↓, TumCG↓, TumCA↓, TumCMig↓, TumCI↓, uPA↓, ERK↓, MMP9↓, NF-kB↓, cFos↓, cJun↓, AP-1↓, TumCCA↑, AR↓, mTORC1↓, mTORC2↓, TSC2↑, EGF↓, TGF-β↓, EMT↓, P-gp↓, PI3K↓, Akt↓, mTOR↓, eff↑, ROS↓, ER Stress↑, IRE1↑, ATF4↑, GRP78/BiP↑, ChemoSen↑, CDK2↓, CDK4↓, cycE/CCNE↓, cycD1/CCND1↓, P21↑, COX2↓, Wnt↓, EGFR↓, β-catenin/ZEB1↓, TCF-4↓, MMP7↓, RadioS↑, eff↑,
1300- GA,  PacT,  carbop,    Gallic acid potentiates the apoptotic effect of paclitaxel and carboplatin via overexpression of Bax and P53 on the MCF-7 human breast cancer cell line
- in-vitro, BC, MCF-7
TumCCA↑, Apoptosis↑, P53↑, BAX↑, Casp3↑, Bcl-2↓,
1967- GamB,    Gambogic acid induces apoptotic cell death in T98G glioma cells
- in-vitro, GBM, T98G
BAX↑, AIF↑, Cyt‑c↑, cl‑Casp3↑, cl‑Casp8↑, cl‑Casp9↑, cl‑PARP↓, Bcl-2↓, ROS↑,
1959- GamB,    Gambogic acid induces GSDME dependent pyroptotic signaling pathway via ROS/P53/Mitochondria/Caspase-3 in ovarian cancer cells
- in-vitro, Ovarian, NA - in-vivo, NA, NA
AntiCan↑, Pyro↑, tumCV?, CellMemb↓, cl‑Casp3↑, GSDME-N↑, ROS?, p‑P53↑, eff↓, MMP↓, Bcl-2↓, BAX↑, mtDam↑, Cyt‑c↑, TumCG↓, CD4+↑, CD8+↑,
831- GAR,  CUR,    Induction of apoptosis by garcinol and curcumin through cytochrome c release and activation of caspases in human leukemia HL-60 cells
- in-vitro, AML, HL-60
Apoptosis↑, Casp3↑, MMP↓, Cyt‑c↑, proCasp9↑, Bcl-2↓, BAX↑, PARP↓, DNAdam↑, DFF45↓,
826- GAR,    Inhibition of STAT3 dimerization and acetylation by garcinol suppresses the growth of human hepatocellular carcinoma in vitro and in vivo
- vitro+vivo, HCC, HepG2 - vitro+vivo, Liver, HUH7
STAT3↓, TumCP↓, cycD1/CCND1↓, Bcl-2↓, Bcl-xL↓, Mcl-1↓, survivin↓, VEGF↓, TumCCA↑, TumVol↓,
823- GAR,    Garcinol Potentiates TRAIL-Induced Apoptosis through Modulation of Death Receptors and Antiapoptotic Proteins
- in-vitro, BC, MCF-7 - in-vitro, Nor, MCF10 - in-vitro, CRC, HCT116
Casp3↑, Casp9↑, Casp8↑, DR5↑, survivin↓, Bcl-2↓, XIAP↓, cFLIP↓, BAX↑, Cyt‑c↑, ROS↑, GSH↓, *eff↓,
820- GAR,    Garcinol in gastrointestinal cancer prevention: recent advances and future prospects
- Review, NA, NA
Fas↑, TRAIL↑, PARP↑, BAX↑, Bcl-2↓, ROS↑, STAT3↓, Apoptosis↑, MMP2↓, MMP9↓,
795- GAR,    Garcinol—A Natural Histone Acetyltransferase Inhibitor and New Anti-Cancer Epigenetic Drug
- Review, NA, NA
HATs↓, BAX↑, PARP↑, Bcl-2↓, Casp3↑, Casp9↑, DR5↑, cFLIP↓, MMP2↓, MMP9↓, STAT3↓, p‑Akt↓,
798- GAR,    Garcinol, an acetyltransferase inhibitor, suppresses proliferation of breast cancer cell line MCF-7 promoted by 17β-estradiol
- in-vitro, BC, MCF-7
TumCP↓, TumCCA↑, Apoptosis↑, ac‑H3↑, ac‑H4∅, NF-kB↓, ac‑p65↑, cycD1/CCND1↓, Bcl-2↓, Bcl-xL↓,
801- GAR,  Cisplatin,    Garcinol sensitizes human head and neck carcinoma to cisplatin in a xenograft mouse model despite downregulation of proliferative biomarkers
- in-vivo, HNSCC, NA
Apoptosis↑, cycD1/CCND1↓, Bcl-2↓, survivin↓, VEGF↓, TumCG↓, Ki-67↓, CD31↓,
802- GAR,    Garcinol acts as an antineoplastic agent in human gastric cancer by inhibiting the PI3K/AKT signaling pathway
- in-vitro, GC, HGC27
TumCP↓, TumCI↓, Apoptosis↑, PI3K/Akt↓, Akt↓, p‑mTOR↓, cycD1/CCND1↓, MMP2↓, MMP9↓, BAX↑, Bcl-2↓,
805- GAR,  Cisplatin,  PacT,    Garcinol Exhibits Anti-Neoplastic Effects by Targeting Diverse Oncogenic Factors in Tumor Cells
- Review, NA, NA
ERK↓, PI3K/Akt↓, Wnt/(β-catenin)↓, STAT3↓, NF-kB↓, ChemoSen↑, COX2↓, Casp3↑, Casp9↑, BAX↑, Bcl-2↓, VEGF↓, TGF-β↓, HATs↓, E-cadherin↑, Vim↓, Zeb1↓, ZEB2↓, Let-7↑, MMP9↓, TumCCA↑, ROS↑, MMP↓, IL6↓, NOTCH1↓,
3723- Gb,    Can We Use Ginkgo biloba Extract to Treat Alzheimer’s Disease? Lessons from Preclinical and Clinical Studies
- Review, AD, NA
*memory↑, *antiOx↑, *Casp3↓, *APP↓, *AChE↓, *Aβ↓, *5HT↑, *SOD↓, *MDA↓, *NO↓, *GSH↑, *Bcl-2↑, *BAX↑, *TNF-α↓, *IL1β↑, *iNOS↓, *IL10↓, *p‑tau↓, *ROS↓, *MAOB↓, *cognitive↑, *neuroP↑, *Apoptosis↓,
4505- GLA,    Gamma linolenic acid suppresses hypoxia-induced proliferation and invasion of non-small cell lung cancer cells by inhibition of HIF1α
- in-vitro, NSCLC, Calu-1
TumCP↓, PCNA↓, Ki-67↓, MCM2↓, Bcl-2↓, BAX↑, cl‑Casp3↑, TumCMig↓, TumCI↓, Hif1a↓, VEGF↓,
401- GoldNP,  MF,    In vitro evaluation of electroporated gold nanoparticles and extremely-low frequency electromagnetic field anticancer activity against Hep-2 laryngeal cancer cells
- in-vitro, Laryn, HEp2
Casp3↑, P53↑, BAX↑, Bcl-2↓,
851- Gra,    Antiproliferation Activity and Apoptotic Mechanism of Soursop (Annona muricata L.) Leaves Extract and Fractions on MCF7 Breast Cancer Cells
- in-vitro, BC, MCF-7 - in-vitro, Nor, CV1
Bcl-2↓, Casp9↑, Casp3↑, other↑, *toxicity↓,
843- Gra,    Graviola (Annona muricata) Exerts Anti-Proliferative, Anti-Clonogenic and Pro-Apoptotic Effects in Human Non-Melanoma Skin Cancer UW-BCC1 and A431 Cells In Vitro: Involvement of Hedgehog Signaling
- in-vitro, NMSC, A431 - in-vitro, NMSC, UW-BCC1 - in-vitro, Nor, NHEKn
TumCG↓, TumCCA↑, Cyc↓, Apoptosis↑, cl‑Casp3↑, cl‑Casp8↑, cl‑PARP↑, HH↓, Smo↓, Gli1↓, GLI2↓, Shh↓, Sufu↑, BAX↑, Bcl-2↓, *toxicity↓,
841- Gra,    The Chemopotential Effect of Annona muricata Leaves against Azoxymethane-Induced Colonic Aberrant Crypt Foci in Rats and the Apoptotic Effect of Acetogenin Annomuricin E in HT-29 Cells: A Bioassay-Guided Approach
- in-vitro, CRC, HT-29 - in-vitro, Nor, CCD841
PCNA↓, Bcl-2↓, BAX↑, *MDA↓, lipid-P↓, TumCG↓, MMP↓, Cyt‑c↑, Casp3↑, Casp7↑, Casp9↑, *ROS↓, LDH↓, *toxicity↓, selectivity↑,
838- Gra,    Antiproliferative activity of aqueous leaf extract of Annona muricata L. on the prostate, BPH-1 cells, and some target genes
- in-vitro, Pca, BPH1
BAX↑, Bcl-2↓, TumVol↓,
835- Gra,    Annona muricata leaves induced apoptosis in A549 cells through mitochondrial-mediated pathway and involvement of NF-κB
- in-vitro, Lung, A549
ROS↑, MMP↓, BAX↑, Bcl-2↓, Cyt‑c↑, Casp9↑, Casp3↑, Apoptosis↑, TumCCA↑,
858- Gra,    Annona muricata leaves induce G₁ cell cycle arrest and apoptosis through mitochondria-mediated pathway in human HCT-116 and HT-29 colon cancer cells
- in-vitro, CRC, HT-29 - in-vitro, CRC, HCT116
TumCCA↑, Apoptosis↑, ROS↑, MMP↓, Cyt‑c↑, Casp↑, BAX↑, Bcl-2↓, TumCMig↓, TumCI↓,
1232- Gra,    Graviola: A Systematic Review on Its Anticancer Properties
- Review, NA, NA
EGFR↓, cycD1/CCND1↓, Bcl-2↓, TumCCA↑, Apoptosis↑, ROS↑, MMP↓, BAX↑, Cyt‑c↑, Hif1a↓, NF-kB↓, GLUT1↓, GLUT4↓, HK2↓, LDHA↓, ATP↓,
3764- H2,    Therapeutic Effects of Hydrogen Gas Inhalation on Trimethyltin-Induced Neurotoxicity and Cognitive Impairment in the C57BL/6 Mice Model
- in-vivo, AD, NA
*memory↑, *Aβ↓, *p‑tau↓, *BAX↓, *ROS↓, *NO↓, *Ca+2↓, *MDA↓, *Catalase↓, *GPx↓, *TNF-α↓, *Bcl-2↑, *VEGF↑, *Inflam↓, *cognitive↑,
1629- HCA,  Tam,    Hydroxycitric acid reverses tamoxifen resistance through inhibition of ATP citrate lyase
- in-vitro, BC, MCF-7
ACLY↓, eff↓, tumCV↓, eff↑, Casp3↑, BAX↑, Bcl-2↓,
8- HCO3,    Hedgehog/GLI-mediated transcriptional inhibitors from Zizyphus cambodiana
- in-vitro, PC, HaCaT - in-vitro, Pca, PANC1
HH↓, Gli1↓, PTCH1↓, Bcl-2↓,
1153- HNK,    Honokiol Eliminates Glioma/Glioblastoma Stem Cell-Like Cells via JAK-STAT3 Signaling and Inhibits Tumor Progression by Targeting Epidermal Growth Factor Receptor
- in-vitro, GBM, U251 - in-vitro, GBM, U87MG - in-vivo, NA, NA
tumCV↓, Apoptosis↑, TumCMig↓, TumCI↓, Bcl-2↓, EGFR↓, CD133↓, Nestin↓, Akt↓, ERK↓, Casp3↑, p‑STAT3↓, TumCG↓,
1154- HNK,  MET,    Honokiol inhibits the growth of hormone-resistant breast cancer cells: its promising effect in combination with metformin
- in-vitro, BC, MCF-7 - in-vitro, BC, SkBr3 - in-vitro, BC, MDA-MB-231
cl‑PARP↑, Bcl-2↓, ERα/ESR1↓,
2867- HNK,    Honokiol ameliorates oxidative stress-induced DNA damage and apoptosis of c2c12 myoblasts by ROS generation and mitochondrial pathway
- in-vitro, Nor, C2C12
*antiOx↑, *ROS↓, *Bcl-2↑, *BAX↓, Casp9∅, Casp3∅, cl‑PARP∅, Cyt‑c?,
2868- HNK,    Honokiol: A review of its pharmacological potential and therapeutic insights
- Review, Var, NA - Review, Sepsis, NA
*P-gp↓, *ROS↓, *TNF-α↓, *IL10↓, *IL6↓, eIF2α↑, CHOP↑, GRP78/BiP↑, BAX↑, cl‑Casp9↑, p‑PERK↑, ER Stress↑, Apoptosis↑, MMPs↓, cFLIP↓, CXCR4↓, Twist↓, HDAC↓, BMPs↑, p‑STAT3↓, mTOR↓, EGFR↓, NF-kB↓, Shh↓, VEGF↓, tumCV↓, TumCMig↓, TumCI↓, ERK↓, Akt↓, Bcl-2↓, Nestin↓, CD133↓, p‑cMET↑, RAS↑, chemoP↑, *NRF2↑, *NADPH↓, *p‑Rac1↓, *ROS↓, *IKKα↑, *NF-kB↓, *COX2↓, *PGE2↓, *Casp3↓, *hepatoP↑, *antiOx↑, *GSH↑, *Catalase↑, *RenoP↑, *ALP↓, *AST↓, *ALAT↓, *neuroP↑, *cardioP↑, *HO-1↑, *Inflam↓,
4523- HNK,  MAG,  BA,    Honokiol-Magnolol-Baicalin Possesses Synergistic Anticancer Potential and Enhances the Efficacy of Anti-PD-1 Immunotherapy in Colorectal Cancer by Triggering GSDME-Dependent Pyroptosis
- in-vitro, CRC, HCT116 - in-vitro, CRC, LoVo - in-vivo, CRC, HCT116
AntiCan↑, eff↑, TumCP↓, TumCCA↓, cycD1/CCND1↓, Pyro↑, Apoptosis↑, cl‑GSDME↑, Bcl-2↓, Cyt‑c↑, Casp9↑, TumCG↓,
4659- HNK,    Honokiol Eliminates Human Oral Cancer Stem-Like Cells Accompanied with Suppression of Wnt/β-Catenin Signaling and Apoptosis Induction
- in-vitro, Oral, NA
cl‑Casp3↑, survivin↓, Bcl-2↓, CD44↓, Wnt↓, β-catenin/ZEB1↑, EMT↓, Slug↓, Snail↓, CSCs↓, Apoptosis↑,
2082- HNK,    Revealing the role of honokiol in human glioma cells by RNA-seq analysis
- in-vitro, GBM, U87MG - in-vitro, GBM, U251
AntiCan↑, TumCP↑, TumAuto↑, Apoptosis↑, *BioAv↑, *neuroP↑, *NF-kB↑, MAPK↑, GPx4↑, Tf↑, BAX↑, Bcl-2↓, antiOx↑, Hif1a↓, Ferroptosis↑,
1286- HNK,    The natural product honokiol induces caspase-dependent apoptosis in B-cell chronic lymphocytic leukemia (B-CLL) cells
- in-vitro, CLL, NA
Apoptosis↑, Casp3↑, Casp8↑, Casp9↑, cl‑PARP↑, Bcl-2↓, BAX↑,
2073- HNK,    Honokiol induces apoptosis and autophagy via the ROS/ERK1/2 signaling pathway in human osteosarcoma cells in vitro and in vivo
- in-vitro, OS, U2OS - in-vivo, NA, NA
TumCD↑, TumAuto↑, Apoptosis↑, TumCCA↑, GRP78/BiP↑, ROS↑, eff↓, p‑ERK↑, selectivity↑, Ca+2↑, MMP↓, Casp3↑, Casp9↑, cl‑PARP↑, Bcl-2↓, Bcl-xL↓, survivin↓, LC3B-II↑, ATG5↑, TumVol↓, TumW↓, ER Stress↑,
4640- HT,    The anti-cancer potential of hydroxytyrosol
- Review, Var, NA
selectivity↑, MMP↓, Cyt‑c↑, Casp9↑, Casp3↑, Bcl-2↓, BAX↑, MPT↑, Fas↑, PI3K↓, Akt↓, mTOR↓, Mcl-1↓, survivin↓, STAT3↓, EMT↓, TumCI↓, angioG↓, E-cadherin↑, N-cadherin↓, Snail↓, Twist↓, MMPs↓, MMP2↓, MMP9↓, VEGF↓, VEGFR2↓, Hif1a↓, CSCs↓, CD44↓, Wnt↓, β-catenin/ZEB1↓,
4212- Hup,    Huperzine A Alleviates Oxidative Glutamate Toxicity in Hippocampal HT22 Cells via Activating BDNF/TrkB-Dependent PI3K/Akt/mTOR Signaling Pathway
- in-vitro, Nor, HT22
*ROS↓, *p‑Akt↓, *p‑mTOR↓, *p‑p70S6↓, *BDNF↑, *Apoptosis↓, *Casp3↓, *Bcl-2↑,
1927- JG,    Juglone-induced apoptosis in human gastric cancer SGC-7901 cells via the mitochondrial pathway
- in-vitro, GC, SGC-7901
Apoptosis↑, ROS↑, Bcl-2↓, BAX↑, MMP↓, Cyt‑c↑, Casp3?, Bax:Bcl2↑,
1926- JG,    Mechanism of juglone-induced apoptosis of MCF-7 cells by the mitochondrial pathway
- in-vitro, BC, MCF-7
TumCG↓, ROS↑, MMP↓, i-Ca+2↑, BAX↑, Bcl-2↓, Cyt‑c↑, Casp3?,
1923- JG,    Mechanism of Juglone-Induced Cell Cycle Arrest and Apoptosis in Ishikawa Human Endometrial Cancer Cells
- in-vitro, Endo, NA
TumCP↓, TumCCA↑, cycA1/CCNA1↓, ROS↑, P21↑, CDK2↓, CDK1↓, CDC25↓, Bcl-2↓, Bcl-xL↓, BAX↑, BAD↑, Cyt‑c↑,
866- Lae,    Amygdalin from Apricot Kernels Induces Apoptosis and Causes Cell Cycle Arrest in Cancer Cells: An Updated Review
- Review, NA, NA
BAX↑, Casp3↑, Bcl-2↓, TumCCA↑,
862- Lae,    Molecular mechanism of amygdalin action in vitro: review of the latest research
- Review, NA, NA
BAX↑, Casp3↑, Bcl-2↓, Akt↓, mTOR↓, p19↑, TumCCA↑, other↓,
860- Lae,    Amygdalin as a Promising Anticancer Agent: Molecular Mechanisms and Future Perspectives for the Development of New Nanoformulations for Its Delivery
- Review, NA, NA
eff↑, Casp3↑, Bcl-2↓,
1306- LE,    Modulations of the Bcl-2/Bax family were involved in the chemopreventive effects of licorice root (Glycyrrhiza uralensis Fisch) in MCF-7 human breast cancer cell
- in-vitro, BC, MCF-7
Bcl-2↓, BAX↑, Apoptosis↑, TumCCA↑,
1317- LT,    Luteolin Suppresses Teratoma Cell Growth and Induces Cell Apoptosis via Inhibiting Bcl-2
- vitro+vivo, Ovarian, PA1
Bcl-2↓, BAX↑, Apoptosis↑, TumCG↓,
2915- LT,    Luteolin promotes apoptotic cell death via upregulation of Nrf2 expression by DNA demethylase and the interaction of Nrf2 with p53 in human colon cancer cells
- in-vitro, Colon, HT29 - in-vitro, CRC, SNU-407 - in-vitro, Nor, FHC
DNMTs↓, TET1↑, NRF2↑, HDAC↓, tumCV↓, BAX↑, Casp9↑, Casp3↑, Bcl-2↓, ROS↓, GSS↑, Catalase↑, HO-1↑, DNMT1↓, DNMT3A↓, TET1↑, TET3↑, TET2↓, P53↑, P21↑,
2916- LT,    Antioxidative and Anticancer Potential of Luteolin: A Comprehensive Approach Against Wide Range of Human Malignancies
- Review, Var, NA - Review, AD, NA - Review, Park, NA
proCasp9↓, CDC2↓, CycB/CCNB1↓, Casp9↑, Casp3↑, Cyt‑c↑, cycA1/CCNA1↑, CDK2↓, APAF1↑, TumCCA↑, P53↑, BAX↑, VEGF↓, Bcl-2↓, Apoptosis↑, p‑Akt↓, p‑EGFR↓, p‑ERK↓, p‑STAT3↓, cardioP↑, Catalase↓, SOD↓, *BioAv↓, *antiOx↑, *ROS↓, *NO↓, *GSTs↑, *GSR↑, *SOD↑, *Catalase↑, *lipid-P↓, PI3K↓, Akt↓, CDK2↓, BNIP3↑, hTERT/TERT↓, DR5↑, Beclin-1↑, TNF-α↓, NF-kB↓, IL1↓, IL6↓, EMT↓, FAK↓, E-cadherin↑, MDM2↓, NOTCH↓, MAPK↑, Vim↓, N-cadherin↓, Snail↓, MMP2↓, Twist↓, MMP9↓, ROS↑, MMP↓, *AChE↓, *MMP↑, *Aβ↓, *neuroP↑, Trx1↑, ROS↓, *NRF2↑, NRF2↓, *BBB↑, ChemoSen↑, GutMicro↑,
2917- LT,  Rad,    Luteolin acts as a radiosensitizer in non‑small cell lung cancer cells by enhancing apoptotic cell death through activation of a p38/ROS/caspase cascade
- in-vitro, Lung, NA
Bcl-2↓, Casp3↑, Casp8↑, Casp9↑, p‑p38↑, ROS↑, RadioS↑,
2919- LT,    Luteolin as a potential therapeutic candidate for lung cancer: Emerging preclinical evidence
- Review, Var, NA
RadioS↑, ChemoSen↑, chemoP↑, *lipid-P↓, *Catalase↑, *SOD↑, *GPx↑, *GSTs↑, *GSH↑, *TNF-α↓, *IL1β↓, *Casp3↓, *IL10↑, NRF2↓, HO-1↓, NQO1↓, GSH↓, MET↓, p‑MET↓, p‑Akt↓, HGF/c-Met↓, NF-kB↓, Bcl-2↓, SOD2↓, Casp8↑, Casp3↑, PARP↑, MAPK↓, NLRP3↓, ASC↓, Casp1↓, IL6↓, IKKα↓, p‑p65↓, p‑p38↑, MMP2↓, ICAM-1↓, EGFR↑, p‑PI3K↓, E-cadherin↓, ZO-1↑, N-cadherin↓, CLDN1↓, β-catenin/ZEB1↓, Snail↓, Vim↑, ITGB1↓, FAK↓, p‑Src↓, Rac1↓, Cdc42↓, Rho↓, PCNA↓, Tyro3↓, AXL↓, CEA↓, NSE↓, SOD↓, Catalase↓, GPx↓, GSR↓, GSTs↓, GSH↓, VitE↓, VitC↓, CYP1A1↓, cFos↑, AR↓, AIF↑, p‑STAT6↓, p‑MDM2↓, NOTCH1↓, VEGF↓, H3↓, H4↓, HDAC↓, SIRT1↓, ROS↑, DR5↑, Cyt‑c↑, p‑JNK↑, PTEN↓, mTOR↓, CD34↓, FasL↑, Fas↑, XIAP↓, p‑eIF2α↑, CHOP↑, LC3II↑, PD-1↓, STAT3↓, IL2↑, EMT↓, cachexia↓, BioAv↑, *Half-Life↝, *eff↑,
2921- LT,    Luteolin as a potential hepatoprotective drug: Molecular mechanisms and treatment strategies
- Review, Nor, NA
*hepatoP↑, *AMPK↑, *SIRT1↑, *ROS↓, STAT3↓, TNF-α↓, NF-kB↓, *IL2↓, *IFN-γ↓, *GSH↑, *SREBP1↓, *ZO-1↑, *TLR4↓, BAX↑, Bcl-2↓, XIAP↓, Fas↑, Casp8↑, Beclin-1↑, *TXNIP↓, *Casp1↓, *IL1β↓, *IL18↓, *NLRP3↓, *MDA↓, *SOD↑, *NRF2↑, *ER Stress↓, *ALAT↓, *AST↓, *iNOS↓, *IL6↓, *HO-1↑, *NQO1↑, *PPARα↑, *ATF4↓, *CHOP↓, *Inflam↓, *antiOx↑, *GutMicro↑,
2903- LT,    Luteolin induces apoptosis by ROS/ER stress and mitochondrial dysfunction in gliomablastoma
- in-vitro, GBM, U251 - in-vitro, GBM, U87MG - in-vivo, NA, NA
ER Stress↑, ROS↑, PERK↑, eIF2α↑, ATF4↑, CHOP↑, Casp12↑, eff↓, UPR↑, MMP↓, Cyt‑c↑, Bcl-2↓, BAX↑, TumCG↓, Weight∅, ALAT∅, AST∅,
2907- LT,    Protective effect of luteolin against oxidative stress‑mediated cell injury via enhancing antioxidant systems
- in-vitro, Nor, NA
*ROS↓, *Casp9↓, *Casp3↓, *Bcl-2↑, *BAX↓, *GSH↑, *SOD↑, *Catalase↑, *GPx↑, *HO-1↑, *antiOx↑, *lipid-P↓, *p‑γH2AX↓, eff↑,
2912- LT,    Luteolin: a flavonoid with a multifaceted anticancer potential
- Review, Var, NA
ROS↑, TumCCA↑, TumCP↓, angioG↓, ER Stress↑, mtDam↑, PERK↑, ATF4↑, eIF2α↑, cl‑Casp12↑, EMT↓, E-cadherin↑, N-cadherin↓, Vim↓, *neuroP↑, NF-kB↓, PI3K↓, Akt↑, XIAP↓, MMP↓, Ca+2↑, BAX↑, Casp3↑, Casp9↑, Bcl-2↓, Cyt‑c↑, IronCh↑, SOD↓, *ROS↓, *LDHA↑, *SOD↑, *GSH↑, *BioAv↓, Telomerase↓, cMyc↓, hTERT/TERT↓, DR5↑, Fas↑, FADD↑, BAD↑, BOK↑, BID↑, NAIP↓, Mcl-1↓, CDK2↓, CDK4↓, MAPK↓, AKT1↓, Akt2↓, *Beclin-1↓, Hif1a↓, LC3II↑, Beclin-1↑,
3277- Lyco,    Recent trends and advances in the epidemiology, synergism, and delivery system of lycopene as an anti-cancer agent
- Review, Var, NA
antiOx↑, TumCP↓, Apoptosis↑, TumMeta↑, ChemoSen↑, BioAv↓, Dose↝, BioAv↓, BioAv↑, SOD↑, Catalase↑, GPx↑, IL2↑, IL4↑, IL1↑, TNF-α↑, GSH↑, GPx↑, GSTA1↑, GSR↑, PPARγ↑, Casp3↑, NF-kB↓, COX2↓, Bcl-2↑, BAX↓, P53↓, CHK1↓, Chk2↓, γH2AX↓, DNAdam↓, ROS↓, P21↑, PCNA↓, β-catenin/ZEB1↓, PGE2↓, ERK↓, cMyc↓, cycE/CCNE↓, JAK1↓, STAT3↓, SIRT1↑, cl‑PARP↑, cycD1/CCND1↓, TNF-α↓, IL6↓, p65↓, MMP2↓, MMP9↓, Wnt↓,
3263- Lyco,    Lycopene protects against myocardial ischemia-reperfusion injury by inhibiting mitochondrial permeability transition pore opening
- in-vitro, Nor, H9c2 - in-vitro, Stroke, NA
*Apoptosis↓, *MMP↑, *Cyt‑c↓, *APAF1↓, *cl‑Casp9↓, *cl‑Casp3↓, *Bcl-2↑, *BAX↓, cardioP↑,
3531- Lyco,    Lycopene attenuates the inflammation and apoptosis in aristolochic acid nephropathy by targeting the Nrf2 antioxidant system
- in-vivo, Nor, NA
*NRF2↑, *HO-1↑, *NQO1↑, *ROS↓, *mtDam↓, *Bcl-2↑, *BAX↓, *Casp9↓, *Casp3↓, *Apoptosis↓, *RenoP↑, *lipid-P↓, *SOD↑, *GPx↑, *Inflam↓, *TNF-α↓, *IL6↓, *IL10↓,
4797- Lyco,    A mechanistic updated overview on lycopene as potential anticancer agent
- Review, Var, NA
AntiCan↑, antiOx↓, Apoptosis↓, TumCP↓, TumCCA↑, Risk↓, ROS↓, SOD↑, Catalase↑, GSTs↑, ARE↑, NRF2↑, cycD1/CCND1↓, cycE/CCNE↑, CDK2↑, p27↑, BAX↑, Bcl-2↓, P53↑, ChemoSen↑,
4794- Lyco,    Anticancer Effect of Lycopene in Gastric Carcinogenesis
- Review, GC, NA
*AntiCan↑, *ROS↓, *GSH↑, *GPx↑, *GSTs↑, TumCG↓, Apoptosis↑, ERK↓, Bcl-2↓, BAX↑, Cyt‑c↑, TumCCA↑, *DNAdam↓,
4791- Lyco,    Investigating into anti-cancer potential of lycopene: Molecular targets
- Review, Var, NA
*antiOx↑, TumCP↓, TumCCA↓, Apoptosis↑, TumCI↓, angioG↓, TumMeta↓, *Risk↓, cycD1/CCND1↓, CycD3↓, cycE/CCNE↓, CDK2↓, CDK4↓, Bcl-2↓, P21↑, p27↑, P53↑, BAX↑, selectivity↑, MMP↓, Cyt‑c↑, Wnt↓, eff↑, PPARγ↑, LDL↓, Akt↓, PI3K↓, mTOR↓, PDGF↓, NF-kB↓, eff↑,
4784- Lyco,    Protective effects of lycopene in cancer, cardiovascular, and neurodegenerative diseases: An update on epidemiological and mechanistic perspectives
- Review, Diabetic, NA - Review, CardioV, NA
*antiOx↑, *IL8↓, *IL6↓, *IL1↓, *NF-kB↓, Inflam↓, cycD1/CCND1↓, MMP2↓, MMP9↓, Bcl-2↓, NF-kB↓, *Nrf1↑, *antiOx↑, *BDNF↑, *neuroP↑, *cardioP↑, ROS↑, Dose↝,
1126- Lyco,    Lycopene Inhibits Epithelial–Mesenchymal Transition and Promotes Apoptosis in Oral Cancer via PI3K/AKT/m-TOR Signal Pathway
- vitro+vivo, Oral, NA
TumCP↓, TumCMig↓, TumCI↓, Apoptosis↑, EMT↓, PI3K↓, Akt↓, mTOR↓, E-cadherin↓, BAX↑, N-cadherin↓, p‑PI3K↓, p‑Akt↓, p‑mTOR↓, Bcl-2↓,
2533- M-Blu,  PDT,    Methylene blue-mediated photodynamic therapy enhances apoptosis in lung cancer cells
- in-vitro, Lung, A549
MMP↓, p‑MAPK↑, ROS↑, cl‑PARP↑, Bcl-2↓, Mcl-1↓, eff↓,
4534- MAG,    Molecular mechanisms of apoptosis induced by magnolol in colon and liver cancer cells
- in-vitro, Liver, HepG2 - in-vitro, CRC, COLO205
AntiCan↑, Apoptosis↑, selectivity↑, Ca+2↑, Cyt‑c↑, Casp3↑, Casp8↑, Casp9↑, Bcl-2↓,
4531- MAG,    Magnolol-induced apoptosis in HCT-116 colon cancer cells is associated with the AMP-activated protein kinase signaling pathway
- in-vitro, CRC, HCT116
Apoptosis↑, DNAdam↑, Casp3↑, cl‑PARP↑, p‑AMPK↑, Bcl-2↓, P53↑, BAX↑, Cyt‑c↑, TumCMig↓, TumCI↓,
4527- MAG,    Magnolol inhibits growth and induces apoptosis in esophagus cancer KYSE-150 cell lines via the MAP kinase pathway
- in-vitro, ESCC, TE1 - in-vitro, ESCC, Eca109 - vitro+vivo, SCC, KYSE150
TumCP↓, TumCMig↓, MMP2↓, Apoptosis↑, cl‑Casp3↑, cl‑Casp9↑, BAX↑, Bcl-2↓, p‑p38↓, TumCG↓,
4518- MAG,  Cisplatin,    Evaluating the Magnolol Anticancer Potential in MKN-45 Gastric Cancer Cells
- in-vitro, GC, MKN45
ChemoSen↑, tumCV↓, BAX↑, Bcl-2↓, P21↑, P53↑, MMP9↓,
1314- MAG,    Magnolol induces apoptosis via activation of both mitochondrial and death receptor pathways in A375-S2 cells
- in-vitro, Melanoma, A375
TumCP↓, Casp3↑, Casp8↑, Casp9↑, Bcl-2↓, BAX↑,
1782- MEL,    Melatonin in Cancer Treatment: Current Knowledge and Future Opportunities
- Review, Var, NA
AntiCan↑, Apoptosis↑, TumCP↓, TumCG↑, TumMeta↑, ChemoSideEff↓, radioP↑, ChemoSen↑, *ROS↓, *SOD↑, *GSH↑, *GPx↑, *Catalase↑, Dose∅, VEGF↓, eff↑, Hif1a↓, GLUT1↑, GLUT3↑, CAIX↑, P21↑, p27↑, PTEN↑, Warburg↓, PI3K↓, Akt↓, NF-kB↓, cycD1/CCND1↓, CDK4↓, CycB/CCNB1↓, CDK4↓, MAPK↑, IGF-1R↓, STAT3↓, MMP9↓, MMP2↓, MMP13↓, E-cadherin↑, Vim↓, RANKL↓, JNK↑, Bcl-2↓, P53↑, Casp3↑, Casp9↑, BAX↑, DNArepair↑, COX2↓, IL6↓, IL8↓, NO↓, T-Cell↑, NK cell↑, Treg lymp↓, FOXP3↓, CD4+↑, TNF-α↑, Th1 response↑, BioAv↝, RadioS↑, OS↑,
1063- MEL,    HDAC1 inhibition by melatonin leads to suppression of lung adenocarcinoma cells via induction of oxidative stress and activation of apoptotic pathways
- in-vitro, Lung, A549 - in-vitro, Lung, PC9
AntiCan↑, TumCMig↓, GSH↓, Casp3↑, Apoptosis↑, ROS↑, HDAC1↓, Ac-histone H3↑, PUMA↑, BAX↑, PCNA↓, Bcl-2↓,
4112- MF,    Novel protective effects of pulsed electromagnetic field ischemia/reperfusion injury rats
- in-vivo, Stroke, NA
*cardioP↑, *Bcl-2↑, *BAX↓, *ROS↓,
496- MF,    Low-Frequency Magnetic Fields (LF-MFs) Inhibit Proliferation by Triggering Apoptosis and Altering Cell Cycle Distribution in Breast Cancer Cells
- in-vitro, BC, MCF-7 - in-vitro, BC, ZR-75-1 - in-vitro, BC, T47D - in-vitro, BC, MDA-MB-231
ROS↑, PI3K↓, Akt↓, GSK‐3β↑, Apoptosis↑, cl‑PARP↑, cl‑Casp3↑, BAX↑, Bcl-2↓, CycB/CCNB1↓, TumCCA↑, p‑Akt↓, p‑Akt↓,
520- MF,    Exposure to a 50-Hz magnetic field induced mitochondrial permeability transition through the ROS/GSK-3β signaling pathway
- in-vitro, Nor, NA
*MPT↑, *Cyt‑c↑, *ROS↑, *p‑GSK‐3β↑, *eff↓, *MMP∅, *BAX↓, *Bcl-2∅,
2259- MFrot,  MF,    Method and apparatus for oncomagnetic treatment
- in-vitro, GBM, NA
MMP↓, Bcl-2↓, BAX↑, Bak↑, Cyt‑c↑, Casp3↑, Casp9↑, DNAdam↑, ROS↑, lactateProd↑, Apoptosis↑, MPT↑, *selectivity↑, eff↑, MMP↓, selectivity↑, TCA?, H2O2↑, eff↑, *antiOx↑, H2O2↑, eff↓, GSH/GSSG↓, *toxicity∅, OS↑,
1890- MGO,    The Dual-Role of Methylglyoxal in Tumor Progression – Novel Therapeutic Approaches
- Review, Var, NA
AntiCan?, TumCG↓, GAPDH↓, Apoptosis↑, TumCCA↑, MAPK↑, Bcl-2↓, MMP9↓, eff↑,
930- MushShi,    Active Hexose Correlated Compound (AHCC) Inhibits the Proliferation of Ovarian Cancer Cells by Suppressing Signal Transducer and Activator of Transcription 3 (STAT3) Activation
- in-vitro, Ovarian, NA
p‑STAT3↓, PTPN6↑, cycD1/CCND1↓, Bcl-2↓, Mcl-1↓, survivin↓, VEGF↓,
1807- NarG,    A Systematic Review of the Preventive and Therapeutic Effects of Naringin Against Human Malignancies
- Review, NA, NA
AntiTum↑, TumCP↓, tumCV↓, TumCCA↑, Mcl-1↓, RAS↓, e-Raf↓, VEGF↓, AntiAg↑, MMP2↓, MMP9↓, TIMP2↑, TIMP1↑, p38↓, Wnt↓, β-catenin/ZEB1↑, Casp↑, P53↑, BAX↑, COX2↓, GLO-I↓, CYP1A1↑, lipid-P↓, p‑Akt↓, p‑mTOR↓, VCAM-1↓, P-gp↓, survivin↓, Bcl-2↓, ROS↑, ROS↑, MAPK↑, STAT3↓, chemoP↑,
946- Nimb,    Nimbolide retards T cell lymphoma progression by altering apoptosis, glucose metabolism, pH regulation, and ROS homeostasis
- in-vivo, NA, NA
Apoptosis↑, Bcl-2↓, P53↑, cl‑Casp3↑, Cyt‑c↑, ROS↑, SOD↓, Catalase↓, Glycolysis↓, GLUT3↓, LDHA↓, MCT1↓, NHE1↓, ATPase↓, CAIX↓,
4977- Nimb,    Nimbolide Inhibits SOD2 to Control Pancreatic Ductal Adenocarcinoma Growth and Metastasis
- vitro+vivo, PC, AsPC-1 - in-vitro, PC, PANC1
SOD2↑, TumCG↓, TumMeta↓, ROS↑, Apoptosis↑, PI3K↓, Akt↓, EMT↓, BAX↑, cl‑Casp3↑, cl‑Casp8↑, cl‑PARP↑, Bcl-2↓,
4976- Nimb,    Nimbolide inhibits pancreatic cancer growth and metastasis through ROS-mediated apoptosis and inhibition of epithelial-to-mesenchymal transition
- vitro+vivo, PC, NA
ROS↑, Apoptosis↑, TumAuto↑, TumCP↓, TumCMig↓, TumCI↓, EMT↓, Dose↓, selectivity↑, Akt↓, eff↓, BAX↑, cl‑Casp3↑, cl‑PARP↑, Bcl-2↓,
4643- OLE,  HT,    Use of Oleuropein and Hydroxytyrosol for Cancer Prevention and Treatment: Considerations about How Bioavailability and Metabolism Impact Their Adoption in Clinical Routine
- Review, Var, NA
TumCCA↑, Apoptosis↑, ER Stress↑, UPR↑, CHOP↑, ROS↑, Bcl-2↓, NOX4↑, Hif1a↓, MMP2↓, MMP↓, VEGF↓, Akt↓, NF-kB↓, p65↓, SIRT3↓, mTOR↓, Catalase↓, SOD2↓, FASN↓, STAT3↓, HDAC2↓, HDAC3↓, BAD↑, BAX↑, Bak↑, Casp3↑, Casp9↑, PARP↑, P53↑, P21↑, p27↑, Half-Life↝, BioAv↓, BioAv↓, selectivity↑, RadioS↑, *ROS↓, *GSH↑, *MDA↓, *SOD↑, *Catalase↑, *NRF2↑, *chemoP↑, *Inflam↓, PPARγ↑,
4626- OLE,    A Comprehensive Review on the Anti-Cancer Effects of Oleuropein
- Review, Var, NA
Risk↓, Dose↑, TumCP↓, NF-kB↓, COX2↓, Akt↓, P53↑, BAX↑, Bcl-2↓, HIF-1↓, ROS↑, HO-1↑, chemoP↑, TumCCA↑, FASN↓,
4630- OLE,    Targeting resistant breast cancer stem cells in a three-dimensional culture model with oleuropein encapsulated in methacrylated alginate microparticles
- in-vitro, BC, NA
Bcl-2↓, BAX↑, Casp3↑, Casp9↑, Vim↓, Slug↓, E-cadherin↑, CSCs↓, P21↑, survivin↝, OCT4↑, Nanog↑, SOX4↑,
4647- OLEC,    Oleocanthal, an Antioxidant Phenolic Compound in Extra Virgin Olive Oil (EVOO): A Comprehensive Systematic Review of Its Potential in Inflammation and Cancer
- Review, Var, NA
*Inflam↓, AntiCan↑, *COX2↓, *ROS↓, *TNF-α↓, *IL1β↓, *iNOS↓, TumCP↓, *AntiAg↑, mTOR↓, STAT3↓, ERK↓, p‑Akt↓, Bcl-2↓, ROS↑, PSA↓,
1227- OLST,    Anti-Obesity Drug Orlistat Alleviates Western-Diet-Driven Colitis-Associated Colon Cancer via Inhibition of STAT3 and NF-κB-Mediated Signaling
- in-vivo, CRC, NA
OS↑, Inflam↓, TumCG↓, STAT3↓, NF-kB↓, β-catenin/ZEB1↓, Slug↓, XIAP↓, CDK4↓, cycD1/CCND1↓, Bcl-2↓,
1993- Part,    Parthenolide induces apoptosis and autophagy through the suppression of PI3K/Akt signaling pathway in cervical cancer
- in-vitro, Cerv, HeLa
tumCV↓, TumAuto↑, Casp3↑, BAX↑, Beclin-1↑, ATG3↑, ATG5↑, Bcl-2↓, mTOR↓, PI3K↓, Akt↓, PTEN↑, ROS↑, MMP↓,
2048- PB,    Sodium Phenylbutyrate Inhibits Tumor Growth and the Epithelial-Mesenchymal Transition of Oral Squamous Cell Carcinoma In Vitro and In Vivo
- in-vitro, OS, CAL27 - in-vitro, Oral, HSC3 - in-vitro, OS, SCC4 - in-vivo, NA, NA
*NH3↓, *HDAC↓, *ER Stress↓, Apoptosis?, Bcl-2↓, cl‑Casp3↑, TGF-β↑, N-cadherin↓, E-cadherin↑, TumVol↓, eff↑,
2045- PB,    Phenylbutyrate—a pan-HDAC inhibitor—suppresses proliferation of glioblastoma LN-229 cell line
- in-vitro, GBM, LN229 - in-vitro, GBM, LN-18
HDAC↓, TumCG↓, TumCCA↑, P21↑, Bcl-2↓, Bcl-xL↓, BioAv↑,
2028- PB,    Potential of Phenylbutyrate as Adjuvant Chemotherapy: An Overview of Cellular and Molecular Anticancer Mechanisms
- Review, Var, NA
HDAC↓, TumCCA↑, P21↑, Dose↝, Telomerase↓, IGFBP3↑, p‑p38↑, JNK↑, ERK↑, BAX↑, Casp3↑, Bcl-2↓, Cyt‑c↝, FAK↓, survivin↓, VEGF↓, angioG↓, DNArepair↓, TumMeta↓, HSP27↑, ASK1↑, ROS↑, eff↑, ER Stress↓, GRP78/BiP↓, CHOP↑, AR↓, other?,
1668- PBG,    Propolis: A Detailed Insight of Its Anticancer Molecular Mechanisms
- Review, Var, NA
antiOx↑, Inflam↓, AntiCan↑, TumCP↓, Apoptosis↑, eff↝, MMPs↓, TNF-α↓, iNOS↓, COX2↓, IL1β↑, *BioAv↓, BAX↑, Casp3↑, Cyt‑c↑, Bcl-2↓, eff↑, selectivity↑, P53↑, ROS↑, Casp↑, eff↑, ERK↓, Dose∅, TRAIL↑, NF-kB↑, ROS↑, Dose↑, MMP↓, DNAdam↑, TumAuto↑, LC3II↑, p62↓, EGF↓, Hif1a↓, VEGF↓, TLR4↓, GSK‐3β↓, NF-kB↓, Telomerase↓, ChemoSen↑, ChemoSideEff↓,
1682- PBG,    Honey, Propolis, and Royal Jelly: A Comprehensive Review of Their Biological Actions and Health Benefits
- Review, Var, NA
i-LDH↓, Akt↓, MAPK↓, NF-kB↓, IL1β↓, IL6↓, TNF-α↓, iNOS↓, COX2↓, ROS↓, Bcl-2↓, PARP↓, P53↑, BAX↑, Casp3↑, TumCCA↑, Cyt‑c↑, MMP↓, eff↑,
1678- PBG,  5-FU,  sericin,    In vitro and in vivo anti-colorectal cancer effect of the newly synthesized sericin/propolis/fluorouracil nanoplatform through modulation of PI3K/AKT/mTOR pathway
- in-vitro, CRC, Caco-2 - in-vivo, NA, NA
PI3K↓, Akt↓, mTOR↓, TumCP↓, Bcl-2↓, BAX↑, Casp3↑, Casp9↑, ROS↓, FOXO1↑, *toxicity∅, eff↑,
1676- PBG,    Use of Stingless Bee Propolis and Geopropolis against Cancer—A Literature Review of Preclinical Studies
- Review, Var, NA
ROS↑, MMP↓, Bcl-2↓, eff↑, tumCV↓, TumCCA↑, angioG↓, PAK1↓, HDAC1↓, HDAC2↓, P53↑, PCNA↓, cycD1/CCND1↓, cycE/CCNE↓, P21?, BAX↑, cl‑Casp3↑, cl‑PARP↑, ChemoSen↑,
4929- PEITC,  PacT,    Phenethyl isothiocyanate and paclitaxel synergistically enhanced apoptosis and alpha-tubulin hyperacetylation in breast cancer cells
- in-vitro, BC, MCF-7 - in-vitro, BC, MDA-MB-231
ChemoSen↑, Apoptosis↑, TumCCA↑, eff↑, CDK1↓, Bcl-2↓, BAX↑, cl‑PARP↑, SAL↑,
4940- PEITC,    Phenethyl Isothiocyanate (PEITC) Inhibits the Growth of Human Oral Squamous Carcinoma HSC-3 Cells through G 0/G 1 Phase Arrest and Mitochondria-Mediated Apoptotic Cell Death
- in-vitro, Oral, HSC3
TumCCA↑, Apoptosis↑, BAX↑, BID↑, Bcl-2↓, MMP↓, Cyt‑c↑, AIF↑, tumCV↓, ROS↑, Ca+2↑, CDC25↓, CDK6↓, cycD1/CCND1↓, CDK2↓, cycE/CCNE↓, P53↑, p27↑, P21↑, Casp9↑, Casp3↑, GRP78/BiP↑,
4947- PEITC,    Phenethyl Isothiocyanate (PEITC) Inhibits the Growth of Human Oral Squamous Carcinoma HSC-3 Cells through G0/G1   Phase Arrest and Mitochondria-Mediated Apoptotic Cell Death
- in-vitro, Oral, HSC3
AntiCan↑, chemoPv↑, TumCG↓, Apoptosis↑, TumCCA↑, P53↑, P21↑, BAX↑, BID↑, Bcl-2↓, MMP↓, Cyt‑c↑, AIF↑, ROS↑, Ca+2↑,
4943- PEITC,    Phenethyl isothiocyanate (PEITC) inhibits growth of ovarian cancer cells by inducing apoptosis: role of caspase and MAPK activation
- in-vitro, Ovarian, OVCAR-3
TumCD↑, TumCP↓, Apoptosis↑, Casp3↑, Casp9↑, Bcl-2↓, BAX↑, Akt↓, ERK↓, cMyc↓, p38↑, JNK↑, eff↓,
4942- PEITC,    Phenethyl Isothiocyanate (PEITC) Inhibits the Growth of Human Oral Squamous Carcinoma HSC-3 Cells through G(0)/G(1) Phase Arrest and Mitochondria-Mediated Apoptotic Cell Death
- in-vitro, Oral, HSC3
chemoPv↑, TumCG↓, TumCCA↑, Apoptosis↑, BAX↑, BID↑, Bcl-2↓, MMP↓, Cyt‑c↑, AIF↑, ROS↑, Ca+2↑,
34- PFB,    Naturally occurring small-molecule inhibitors of hedgehog/GLI-mediated transcription
- in-vitro, PC, PANC1
HH↓, Gli1↓, GLI2↓, PTCH1↓, Bcl-2↓,
1768- PG,    Propyl gallate reduces the growth of lung cancer cells through caspase‑dependent apoptosis and G1 phase arrest of the cell cycle
- in-vitro, Lung, Calu-6 - in-vitro, Lung, A549
TumCG↓, TumCCA↓, Dose∅, Bcl-2↓, cl‑PARP↑, MMP↓, Casp3↑, Casp8↑,
1938- PL,    Piperlongumine regulates epigenetic modulation and alleviates psoriasis-like skin inflammation via inhibition of hyperproliferation and inflammation
- Study, PSA, NA - in-vivo, NA, NA
ROS↑, Apoptosis↑, MMP↓, TumCCA↑, DNAdam↑, STAT3↓, Akt↓, PCNA↓, Ki-67↓, cycD1/CCND1↓, Bcl-2↓, K17↓, HDAC↓, ROS↑, *IL1β↓, *IL6↓, *TNF-α↓, *IL17↓, *IL22↓,
1944- PL,    Piperlongumine, a Novel TrxR1 Inhibitor, Induces Apoptosis in Hepatocellular Carcinoma Cells by ROS-Mediated ER Stress
- in-vitro, HCC, HUH7 - in-vitro, HCC, HepG2
ER Stress↑, TrxR1↓, ROS↑, eff↓, Bcl-2↓, proCasp3↓, BAX↓, cl‑Casp3↑, TumCCA↑, p‑PERK↑, ATF4↑, TumCG↓, lipid-P↑, selectivity↑,
1947- PL,    Piperlongumine as a direct TrxR1 inhibitor with suppressive activity against gastric cancer
- in-vitro, GC, SGC-7901 - in-vitro, GC, NA
TrxR1↓, ROS↑, ER Stress↑, mtDam↑, selectivity↑, NO↑, TumCCA↑, mt-ROS↑, Casp9↑, Bcl-2↓, Bcl-xL↓, cl‑PARP↑, eff↓, lipid-P↑,
2950- PL,    Overview of piperlongumine analogues and their therapeutic potential
- Review, Var, NA
AntiAg↑, neuroP↑, Inflam↓, NO↓, PGE2↓, MMP3↓, MMP13↓, TumCMig↓, TumCI↓, p38↑, JNK↑, NF-kB↑, ROS↑, FOXM1↓, TrxR1↓, GSH↓, Trx↓, cMyc↓, Casp3↑, Bcl-2↓, Mcl-1↓, STAT3↓, AR↓, DNAdam↑,
2948- PL,    The promising potential of piperlongumine as an emerging therapeutics for cancer
- Review, Var, NA
tumCV↓, TumCP↓, TumCI↓, angioG↓, EMT↓, TumMeta↓, *hepatoP↑, *lipid-P↓, *GSH↑, cardioP↑, CycB/CCNB1↓, cycD1/CCND1↓, CDK2↓, CDK1↓, CDK4↓, CDK6↓, PCNA↓, Akt↓, mTOR↓, Glycolysis↓, NF-kB↓, IKKα↓, JAK1↓, JAK2↓, STAT3↓, ERK↓, cFos↓, Slug↓, E-cadherin↑, TOP2↓, P53↑, P21↑, Bcl-2↓, BAX↑, Casp3↑, Casp7↑, Casp8↑, p‑HER2/EBBR2↓, HO-1↑, NRF2↑, BIM↑, p‑FOXO3↓, Sp1/3/4↓, cMyc↓, EGFR↓, survivin↓, cMET↓, NQO1↑, SOD2↑, TrxR↓, MDM2↓, p‑eIF2α↑, ATF4↑, CHOP↑, MDA↑, Ki-67↓, MMP9↓, Twist↓, SOX2↓, Nanog↓, OCT4↓, N-cadherin↓, Vim↓, Snail↓, TumW↓, TumCG↓, HK2↓, RB1↓, IL6↓, IL8↓, SOD1↑, RadioS↑, ChemoSen↑, toxicity↓, Sp1/3/4↓, GSH↓, SOD↑,
2945- PL,    Piperlongumine induces ROS mediated cell death and synergizes paclitaxel in human intestinal cancer cells
- in-vitro, CRC, HCT116
ROS↑, SMAD4↑, ChemoSen↑, P53↑, P21↑, BAX↑, Bcl-2↓, survivin↓, TumCMig↓,
2944- PL,    Piperlongumine, a Potent Anticancer Phytotherapeutic, Induces Cell Cycle Arrest and Apoptosis In Vitro and In Vivo through the ROS/Akt Pathway in Human Thyroid Cancer Cells
- in-vitro, Thyroid, IHH4 - in-vitro, Thyroid, 8505C - in-vivo, NA, NA
ROS↑, selectivity↑, tumCV↓, TumCCA↑, Apoptosis↑, ERK↑, Akt↓, mTOR↓, neuroP↑, Bcl-2↓, Casp3↑, PARP↑, JNK↑, *toxicity↓, eff↓, TumW↓,
4967- PSO,    Psoralidin's Anti-Cancer Mechanisms: A Technical Guide
- Review, Var, NA
NF-kB↓, PI3K↓, Akt↓, ITGB1↓, FAK↓, BAX↑, Casp3↑, Apoptosis↑, Bcl-2↓, DR5↑, TumCCA↑, TumAuto↑, TumMeta↓,
1237- PTS,    Pterostilbene induces cell apoptosis and inhibits lipogenesis in SKOV3 ovarian cancer cells by activation of AMPK-induced inhibition of Akt/mTOR signaling cascade
- in-vitro, Ovarian, SKOV3
TumCMig↓, TumCI↓, MDA↑, ROS↑, BAX↑, Casp3↑, Bcl-2↓, SREBP1↓, FASN↓, AMPK↓, p‑AMPK↑, p‑P53↑, p‑TSC2↑, p‑Akt↓, p‑mTOR↓, p‑S6K↓, p‑4E-BP1↓,
3353- QC,    Quercetin triggers cell apoptosis-associated ROS-mediated cell death and induces S and G2/M-phase cell cycle arrest in KON oral cancer cells
- in-vitro, Oral, KON - in-vitro, Nor, MRC-5
tumCV↓, selectivity↑, TumCCA↑, TumCMig↓, TumCI↓, Apoptosis↑, TumMeta↓, Bcl-2↓, BAX↑, TIMP1↑, MMP2↓, MMP9↓, *Inflam↓, *neuroP↑, *cardioP↑, p38↓, MAPK↓, Twist↓, P21↓, cycD1/CCND1↓, Casp3↑, Casp9↑, p‑Akt↓, p‑ERK↓, CD44↓, CD24↓, ChemoSen↑, MMP↓, Cyt‑c↑, AIF↑, ROS↑, Ca+2↑, Hif1a↓, VEGF↓,
3373- QC,    The Effect of Quercetin in the Yishen Tongluo Jiedu Recipe on the Development of Prostate Cancer through the Akt1-related CXCL12/ CXCR4 Pathway
- in-vitro, Pca, DU145
TumCP↓, Casp3↑, Bcl-2↓, Apoptosis↑, TumCI↓, TumCMig↓, CXCL12↓, CXCR4↓,
3369- QC,    Pharmacological basis and new insights of quercetin action in respect to its anti-cancer effects
- Review, Pca, NA
FAK↓, TumCCA↑, p‑pRB↓, CDK2↑, CycB/CCNB1↓, CDK1↓, EMT↓, PI3K↓, MAPK↓, Wnt↓, ROS↑, miR-21↑, Akt↓, NF-kB↓, FasL↑, Bak↑, BAX↑, Bcl-2↓, Casp3↓, Casp9↑, P53↑, p38↑, MAPK↑, Cyt‑c↑, PARP↓, CHOP↑, ROS↓, LDH↑, GRP78/BiP↑, ERK↑, MDA↓, SOD↑, GSH↑, NRF2↑, VEGF↓, PDGF↓, EGF↓, FGF↓, TNF-α↓, TGF-β↓, VEGFR2↓, EGFR↓, FGFR1↓, mTOR↓, cMyc↓, MMPs↓, LC3B-II↑, Beclin-1↑, IL1β↓, CRP↓, IL10↓, COX2↓, IL6↓, TLR4↓, Shh↓, HER2/EBBR2↓, NOTCH↓, DR5↑, HSP70/HSPA5↓, CSCs↓, angioG↓, MMP2↓, MMP9↓, IGFBP3↑, uPA↓, uPAR↓, RAS↓, Raf↓, TSP-1↑,
3603- QC,    Mechanism of quercetin therapeutic targets for Alzheimer disease and type 2 diabetes mellitus
- Review, AD, NA - Review, Diabetic, NA
*MAPK↓, *neuroP↑, *ROS↓, *Akt↓, *PI3K↓, *IL6↓, *TNF-α↓, *VEGF↓, *EGFR↓, *Casp3↓, *Bcl-2↓, *IL1β↓,
77- QC,  EGCG,    The dietary bioflavonoid quercetin synergizes with epigallocathechin gallate (EGCG) to inhibit prostate cancer stem cell characteristics, invasion, migration and epithelial-mesenchymal transition
- in-vitro, Pca, CD44+ - in-vitro, NA, CD133+ - in-vitro, NA, PC3 - in-vitro, NA, LNCaP
Casp3↑, Casp7↑, Bcl-2↓, survivin↓, XIAP↓, EMT↓, Vim↓, Slug↓, Snail↓, β-catenin/ZEB1↓, LEF1↓, TCF↓, Nanog↓,
78- QC,    Effects of quercetin on insulin-like growth factors (IGFs) and their binding protein-3 (IGFBP-3) secretion and induction of apoptosis in human prostate cancer cells
- in-vitro, Pca, PC3
IGF-1↓, IGF-2↓, IGFBP3↑, Bcl-2↓, Bcl-xL↓, Casp3↑,
50- QC,    Anticancer effect and mechanism of polymer micelle-encapsulated quercetin on ovarian cancer
- vitro+vivo, Ovarian, A2780S
Casp3↑, Casp9↑, Mcl-1↓, Bcl-2↓, BAX↑, angioG↓,
52- QC,    Effect of Quercetin on Cell Cycle and Cyclin Expression in Ovarian Carcinoma and Osteosarcoma Cell Lines
- in-vitro, BC, MCF-7
Bcl-2↓, BAX↑, PI3K/Akt↓,
55- QC,    Quercetin inhibits the growth of human gastric cancer stem cells by inducing mitochondrial-dependent apoptosis through the inhibition of PI3K/Akt signaling
- in-vitro, GC, GCSCs
Bcl-2↓, BAX↑, Cyt‑c↑, MMP↓, PI3K/Akt↓, Casp3↑, Casp9↑,
58- QC,  doxoR,    Quercetin induces cell cycle arrest and apoptosis in CD133+ cancer stem cells of human colorectal HT29 cancer cell line and enhances anticancer effects of doxorubicin
- in-vitro, CRC, HT-29 - in-vitro, NA, CD133+
Bcl-2↓,
60- QC,  EGCG,  isoFl,  isoFl,  isoFl  The dietary bioflavonoid quercetin synergizes with epigallocathechin gallate (EGCG) to inhibit prostate cancer stem cell characteristics, invasion, migration and epithelial-mesenchymal transition
- in-vitro, Pca, pCSCs
Casp3↑, Casp7↑, Bcl-2↓, survivin↓, XIAP↓, EMT↓, Slug↓, Snail↓, β-catenin/ZEB1↓, LEF1↓,
83- QC,    Quercetin induces p53-independent apoptosis in human prostate cancer cells by modulating Bcl-2-related proteins: a possible mediation by IGFBP-3
- in-vitro, Pca, PC3
Bcl-2↓, Bcl-xL↓, BAX↑, IGFBP3↑,
42- QC,    Quercetin induces apoptosis by activating caspase-3 and regulating Bcl-2 and cyclooxygenase-2 pathways in human HL-60 cells
- in-vitro, AML, HL-60
Bcl-2↓, BAX↑, Casp3↑, COX2↓,
39- QC,    A Comprehensive Analysis and Anti-Cancer Activities of Quercetin in ROS-Mediated Cancer and Cancer Stem Cells
- Analysis, NA, NA
ROS↑, GSH↓, IL6↓, COX2↓, IL8↓, iNOS↓, TNF-α↓, MAPK↑, ERK↑, SOD↑, ATP↓, Casp↑, PI3K/Akt↓, mTOR↓, NOTCH1↓, Bcl-2↓, BAX↑, IFN-γ↓, TumCP↓, TumCCA↑, Akt↓, P70S6K↓, *Keap1↓, *GPx↑, *Catalase↑, *HO-1↑, *NRF2↑, NRF2↑, eff↑, HIF-1↓,
98- QC,    Quercetin postconditioning attenuates myocardial ischemia/reperfusion injury in rats through the PI3K/Akt pathway
- in-vivo, Stroke, NA
*Bcl-2↑, *BAX↓, *Bax:Bcl2↓, *cardioP↑, *Akt↑, *PI3K↑, *LDH↓,
84- QC,    Quercetin-induced growth inhibition and cell death in prostatic carcinoma cells (PC-3) are associated with increase in p21 and hypophosphorylated retinoblastoma proteins expression
- in-vitro, Pca, PC3
P21↑, cDC2↓, CDK1↓, CycB/CCNB1↓, Casp3↑, Bcl-2↓, Bcl-xL↓, BAX↑, pRB↓,
91- QC,    The roles of endoplasmic reticulum stress and mitochondrial apoptotic signaling pathway in quercetin-mediated cell death of human prostate cancer PC-3 cells
- in-vitro, Pca, PC3
CDK2↓, cycE/CCNE↓, cycD1/CCND1↓, ATFs↑, GRP78/BiP↑, Bcl-2↓, BAX↑, Casp3↑, Casp8↑, Casp9↑, ER Stress↑, CHOP↑,
96- QC,  docx,    Quercetin reverses docetaxel resistance in prostate cancer via androgen receptor and PI3K/Akt signaling pathways
- vitro+vivo, Pca, LNCaP - in-vitro, Pca, PC3
PI3K/Akt↓, Ki-67↓, BAX↑, Bcl-2↓, EpCAM↓, Twist↓, E-cadherin↑, P-gp↓,
923- QC,    Quercetin as an innovative therapeutic tool for cancer chemoprevention: Molecular mechanisms and implications in human health
- Review, Var, NA
ROS↑, GSH↓, Ca+2↝, MMP↓, Casp3↑, Casp8↑, Casp9↑, other↓, *ROS↓, *NRF2↑, HO-1↑, TumCCA↑, Inflam↓, STAT3↓, DR5↑, P450↓, MMPs↓, IFN-γ↓, IL6↓, COX2↓, IL8↓, iNOS↓, TNF-α↓, cl‑PARP↑, Apoptosis↑, P53↑, Sp1/3/4↓, survivin↓, TRAILR↑, Casp10↑, DFF45↑, TNFR 1↑, Fas↑, NF-kB↓, IKKα↓, cycD1/CCND1↓, Bcl-2↓, BAX↑, PI3K↓, Akt↓, E-cadherin↓, Vim↓, β-catenin/ZEB1↓, cMyc↓, EMT↓, MMP2↓, NOTCH1↓, MMP7↓, angioG↓, TSP-1↑, CSCs↓, XIAP↓, Snail↓, Slug↓, LEF1↓, P-gp↓, EGFR↓, GSK‐3β↓, mTOR↓, RAGE↓, HSP27↓, VEGF↓, TGF-β↓, COL1↓, COL3A1↓,
4787- QC,    Quercetin: A Phytochemical with Pro-Apoptotic Effects in Colon Cancer Cells
- Review, CRC, NA
Inflam↓, AntiCan↑, Apoptosis↑, MMP↓, P53↑, BAX↑, Casp3↑, Casp9↑, Bcl-2↓, NF-kB↓, IL6↓, IL1β↓, *antiOx↑, *lipid-P↓, *ROS↓, MAPK↓, JAK↓, STAT↓, PI3K↓, Akt↓, chemoP↑, ROS⇅, DNAdam↑, ChemoSen↝,
103- RES,  CUR,  QC,    The effect of resveratrol, curcumin and quercetin combination on immuno-suppression of tumor microenvironment for breast tumor-bearing mice
- vitro+vivo, BC, 4T1
ROS↑, MMP↓, Bcl-2↓, BAX↑, Casp9↑, T-Cell↑, TGF-β↓,
882- RES,    Resveratrol: A Double-Edged Sword in Health Benefits
- Review, NA, NA
AntiTum↑, Casp3↑, Casp9↑, BAX↑, Bcl-2↓, Bcl-xL↓, P53↑, NAF1↓, NRF2↑, ROS↑, Apoptosis↑, HDAC↓, TumCCA↑, TumAuto↑, angioG↓, iNOS↓,
1489- RES,    Molecular mechanisms of resveratrol as chemo and radiosensitizer in cancer
- Review, Var, NA
RadioS↑, ChemoSen↑, *BioAv↓, *BioAv↑, Ferroptosis↑, lipid-P↑, xCT↓, GPx4↓, *BioAv↑, COX2↓, cycD1/CCND1↓, FasL↓, FOXP3↓, HLA↑, p‑NF-kB↓, BAX↑, Bcl-2↓, MALAT1↓,
2329- RES,    Resveratrol induces apoptosis in human melanoma cell through negatively regulating Erk/PKM2/Bcl-2 axis
- in-vitro, Melanoma, A375
P53↑, Bcl-2↓, BAX↑, Cyt‑c↑, ERK↓, PKM2↓, Apoptosis↑, γH2AX↑, Casp3↑, cl‑PARP1↑,
3061- RES,    The Anticancer Effects of Resveratrol: Modulation of Transcription Factors
- Review, Var, NA
AhR↓, NRF2↑, *NQO1↑, *HO-1↑, *GSH↑, P53↑, Cyt‑c↑, Diablo↑, Bcl-2↓, Bcl-xL↓, survivin↓, XIAP↓, FOXO↑, p‑PI3K↓, p‑Akt↓, BIM↑, DR4↑, DR5↑, p27↑, cycD1/CCND1↓, SIRT1↑, NF-kB↓, ATF3↑,
3054- RES,    Resveratrol induced reactive oxygen species and endoplasmic reticulum stress-mediated apoptosis, and cell cycle arrest in the A375SM malignant melanoma cell line
- in-vitro, Melanoma, A375
TumCG↓, P21↑, p27↑, CycB/CCNB1↓, ROS↑, ER Stress↑, p‑p38↑, P53↑, p‑eIF2α↑, EP4↑, CHOP↑, Bcl-2↓, BAX↓, TumCCA↑, NRF2↓, ChemoSen↑, GSH↓,
3098- RES,    Regulation of Cell Signaling Pathways and miRNAs by Resveratrol in Different Cancers
- Review, Var, NA
NOTCH2↓, Wnt↓, β-catenin/ZEB1↓, p‑SMAD2↓, p‑SMAD3↓, PTCH1↓, Smo↓, Gli1↓, E-cadherin↑, NOTCH⇅, TAC?, NKG2D↑, DR4↑, survivin↓, DR5↑, BAX↑, p27↑, cycD1/CCND1↓, Bcl-2↓, STAT3↓, STAT5↓, JAK↓, DNAdam↑, γH2AX↑,
3092- RES,    Resveratrol in breast cancer treatment: from cellular effects to molecular mechanisms of action
- Review, BC, MDA-MB-231 - Review, BC, MCF-7
TumCP↓, tumCV↓, TumCI↓, TumMeta↓, *antiOx↑, *cardioP↑, *Inflam↓, *neuroP↑, *Keap1↓, *NRF2↑, *ROS↓, p62↓, IL1β↓, CRP↓, VEGF↓, Bcl-2↓, MMP2↓, MMP9↓, FOXO4↓, POLD1↓, CK2↓, MMP↓, ROS↑, Apoptosis↑, TumCCA↑, Beclin-1↓, Ki-67↓, ATP↓, GlutMet↓, PFK↓, TGF-β↓, SMAD2↓, SMAD3↓, Vim?, Snail↓, Slug↓, E-cadherin↑, EMT↓, Zeb1↓, Fibronectin↓, IGF-1↓, PI3K↓, Akt↓, HO-1↑, eff↑, PD-1↓, CD8+↑, Th1 response↑, CSCs↓, RadioS↑, SIRT1↑, Hif1a↓, mTOR↓,
4286- RES,    Neuroprotective Properties of Resveratrol and Its Derivatives—Influence on Potential Mechanisms Leading to the Development of Alzheimer’s Disease
- Review, AD, NA
*neuroP↑, *Inflam↓, *antiOx↑, *GSH↑, *HO-1↑, *iNOS↓, *BDNF↑, *p‑CREB↑, *PKA↑, *Bcl-2↑, *BAX↓, *IL1β↓, *IL6↓, *MMP9↓, *memory↑, *AMPK↑, *PGC-1α↓, *NF-kB↓, *Aβ↓, *SIRT1↑, *p‑tau↓, *PP2A↑, *lipid-P↓, *NLRP3↓, *BACE↓,
1747- RosA,    Molecular Pathways of Rosmarinic Acid Anticancer Activity in Triple-Negative Breast Cancer Cells: A Literature Review
- Review, BC, MDA-MB-231 - Review, BC, MDA-MB-468
TumCCA↑, TNF-α↑, GADD45A↑, BNIP3↑, survivin↓, Bcl-2↓, BAX↑, HH↓, eff↑, ChemoSen↑, RadioS↑, TumCP↓, TumCMig↓, Apoptosis↑, RenoP↑, CardioT↓,
1748- RosA,    The Role of Rosmarinic Acid in Cancer Prevention and Therapy: Mechanisms of Antioxidant and Anticancer Activity
- Review, Var, NA
AntiCan↑, *BioAv↝, *CardioT↓, *Iron↓, *ROS↓, *SOD↑, *Catalase↑, *GPx↑, *NRF2↑, MARK4↓, MMP9↓, TumCCA↑, Bcl-2↓, BAX↑, Apoptosis↑, E-cadherin↑, N-cadherin↓, Vim↓, Gli1↓, HDAC2↓, Warburg↓, Hif1a↓, miR-155↓, p‑PI3K↑, ROS↑, *IronCh↑,
3025- RosA,    Rosmarinic acid alleviates intestinal inflammatory damage and inhibits endoplasmic reticulum stress and smooth muscle contraction abnormalities in intestinal tissues by regulating gut microbiota
- in-vivo, IBD, NA
*GutMicro↑, *ROCK1↓, *Rho↓, *CaMKII ↓, *Zeb1↓, *ZO-1↓, *E-cadherin↓, *IL1β↓, *IL6↓, *TNF-α↓, *GRP78/BiP↓, *PERK↓, *IRE1↓, *ATF6↓, *CHOP↓, *Casp12↓, *Casp9↓, *BAX↓, *Casp3↓, *Cyt‑c↓, *RIP1↓, *MLKL↓, *IL10↑, *Bcl-2↑, *ER Stress↓,
3003- RosA,    Comprehensive Insights into Biological Roles of Rosmarinic Acid: Implications in Diabetes, Cancer and Neurodegenerative Diseases
- Review, Var, NA - Review, AD, NA - Review, Park, NA
*Inflam↓, *antiOx↑, *neuroP↑, *IL6↓, *IL1β↓, *NF-kB↓, *PGE2↓, *COX2↓, *MMP↑, *memory↑, *ROS↓, *Aβ↓, *HMGB1↓, TumCG↓, MARK4↓, Zeb1↓, MDM2↓, BNIP3↑, ASC↑, NLRP3↓, PI3K↓, Akt↓, Casp1↓, E-cadherin↑, STAT3↓, TLR4↓, MMP↓, ICAM-1↓, AMPK↓, IL6↑, MMP2↓, Warburg↓, Bcl-xL↓, Bcl-2↓, TumCCA↑, EMT↓, TumMeta↓, mTOR↓, HSP27↓, Casp3↑, GlucoseCon↓, lactateProd↓, VEGF↓, p‑p65↓, GIT1↓, FOXM1↓, cycD1/CCND1↓, CDK4↓, MMP9↓, HDAC2↓,
3005- RosA,    Nanoformulated rosemary extract impact on oral cancer: in vitro study
- in-vitro, Laryn, HEp2
TumCCA↑, ROS↑, Bcl-2↓, BAX↑, Casp3↑, P53↑, necrosis↑, eff↑, BioAv↑,
4900- Sal,    Anticancer Mechanisms of Salinomycin in Breast Cancer and Its Clinical Applications
- Review, BC, NA
CSCs↓, Apoptosis↑, TumAuto↑, necrosis↑, TumCP↓, TumCI↓, TumCMig↓, TumCG↓, TumMeta↓, eff↑, Bcl-2↓, cMyc↓, Snail↓, ALDH↓, Myc↓, AR↓, ROS↑, NF-kB↓, PTCH1↓, Smo↓, Gli1↓, GLI2↓, Wnt↓, mTOR↓, GSK‐3β↓, cycD1/CCND1↓, survivin↓, P21↑, p27↑, CHOP↑, Ca+2↑, DNAdam↑, Hif1a↓, VEGF↓, angioG↓, MMP↓, ATP↓, p‑P53↑, γH2AX↑, ChemoSen↑,
323- Sal,  SNP,    Combination of salinomycin and silver nanoparticles enhances apoptosis and autophagy in human ovarian cancer cells: an effective anticancer therapy
- in-vitro, BC, MDA-MB-231 - in-vitro, Ovarian, A2780S
TumCD↑, LDH↓, MDA↑, SOD↓, ROS↑, GSH↓, Catalase↓, MMP↓, P53↑, P21↑, BAX↑, Bcl-2↓, Casp3↑, Casp9↑, Apoptosis↑, TumAuto↑,
1307- SANG,    Sanguinarine induces apoptosis of HT-29 human colon cancer cells via the regulation of Bax/Bcl-2 ratio and caspase-9-dependent pathway
- in-vitro, CRC, HT-29
Apoptosis↑, BAX↑, Bcl-2↓, Casp3↑, Casp9↑,
1388- Sco,    Scoulerine promotes cell viability reduction and apoptosis by activating ROS-dependent endoplasmic reticulum stress in colorectal cancer cells
- in-vitro, CRC, NA
tumCV↓, Apoptosis↑, Casp3↑, Casp7↑, BAX↑, Bcl-2↓, ROS↑, GSH↓, SOD↓, ER Stress↑, GRP78/BiP↑, CHOP↑, eff↓,
4731- Se,    Dietary selenium mitigates cadmium-induced apoptosis and inflammation in chicken testicles by inhibiting oxidative stress through the activation of the Nrf2/HO-1 signaling pathway
- in-vivo, Nor, NA
*ROS↓, *MDA↓, *H2O2↓, *Catalase↑, *GSH↑, *NRF2↑, *HO-1↑, *Bcl-2↑, *other↝,
4471- Se,    Green synthesis of selenium nanoparticles with extract of hawthorn fruit induced HepG2 cells apoptosis
- in-vitro, Liver, HepG2
eff↑, ROS↑, MMP↓, Casp9↑, Bcl-2↓, selectivity↑, Apoptosis↑,
4486- Se,  Chit,    Selenium-Modified Chitosan Induces HepG2 Cell Apoptosis and Differential Protein Analysis
- in-vitro, Liver, HepG2
Apoptosis↑, TumCCA↑, MMP↓, Bcl-2↓, BAX↑, cl‑Casp9↑, cl‑Casp3↑, Risk↓, *BioAv↑, *toxicity↑, TumCG↓, AntiTum↑, ROS↑, Cyt‑c↑, Fas↑, FasL↑, FADD↑,
4484- Se,  Chit,  PEG,    Anti-cancer potential of selenium-chitosan-polyethylene glycol-carvacrol nanocomposites in multiple myeloma U266 cells
- in-vitro, Melanoma, U266
tumCV↓, selectivity↑, ROS↑, MMP↓, Apoptosis↑, BAX↑, Casp3↑, Casp9↑, Bcl-2↓,
3656- SFN,    Chronic diseases, inflammation, and spices: how are they linked?
- Review, AD, NA
*AntiCan↑, *cardioP↑, *NRF2↑, *Inflam↓, *NF-kB↓, *STAT3↓, *ERK↓, *MAPK↓, AP-1↑, Bcl-2↓, Casp3↑, Casp9↑,
110- SFN,    Sulforaphane regulates self-renewal of pancreatic cancer stem cells through the modulation of Sonic hedgehog-GLI pathway
- in-vivo, PC, NA
HH↓, Smo↓, Gli1↓, GLI2↓, Shh↓, VEGF↓, PDGFRA↓, EMT↓, Zeb1↓, Bcl-2↓, XIAP↓, E-cadherin↑, OCT4↓,
1733- SFN,    Sonic Hedgehog Signaling Inhibition Provides Opportunities for Targeted Therapy by Sulforaphane in Regulating Pancreatic Cancer Stem Cell Self-Renewal
- in-vitro, PC, PanCSC - in-vitro, Nor, HPNE - in-vitro, Nor, HNPSC
CSCs↓, Shh↓, Gli↓, Nanog↓, OCT4↓, PDGFRA↓, cycD1/CCND1↑, Apoptosis↑, Casp↑, Smo↓, Gli1↓, GLI2↓, Bcl-2↓, Casp3↑, Casp7↑,
1459- SFN,  Aur,    Auranofin Enhances Sulforaphane-Mediated Apoptosis in Hepatocellular Carcinoma Hep3B Cells through Inactivation of the PI3K/Akt Signaling Pathway
- in-vitro, Liver, Hep3B - in-vitro, Liver, HepG2
eff↑, TumCCA↑, Apoptosis↑, MMP↓, BAX↑, cl‑PARP↑, Casp3↑, Casp8↑, Casp9↑, ROS↑, eff↓, PI3K↓, Akt↓, TrxR↓, BAX↑, Bcl-2∅,
1464- SFN,    d,l-Sulforaphane Induces ROS-Dependent Apoptosis in Human Gliomablastoma Cells by Inactivating STAT3 Signaling Pathway
- in-vitro, GBM, NA
Apoptosis↑, Casp3↑, BAX↑, Bcl-2↓, ROS↑, p‑STAT3↓, JAK2↓, eff↓,
1467- SFN,    Sulforaphane generates reactive oxygen species leading to mitochondrial perturbation for apoptosis in human leukemia U937 cells
- in-vitro, AML, U937
Apoptosis↑, ROS↑, MMP↓, Casp3↑, Bcl-2↓, eff↓,
1469- SFN,    Sulforaphane enhances the therapeutic potential of TRAIL in prostate cancer orthotopic model through regulation of apoptosis, metastasis, and angiogenesis
- in-vitro, Pca, PC3 - in-vitro, Pca, LNCaP - in-vivo, Pca, NA
eff↑, ROS↑, MMP↓, Casp3↑, Casp9↑, DR4↑, DR5↑, BAX↑, Bak↑, BIM↑, NOXA↑, Bcl-2↓, Bcl-xL↓, Mcl-1↓, eff↓, TumCG↓, TumCP↓, eff↑, NF-kB↓, PI3K↓, Akt↓, MEK↓, ERK↓, angioG↓, FOXO3↑,
1315- SFN,    Bcl-2_and_Caspase-3">Sulforaphane Induces Apoptosis of Acute Human Leukemia Cells Through Modulation of Bax, Bcl-2 and Caspase-3
- in-vitro, AML, K562
TumCP↓, BAX↑, Casp3↑, Bcl-2↓,
1508- SFN,    Nrf2 targeting by sulforaphane: A potential therapy for cancer treatment
- Review, Var, NA
*BioAv↑, HDAC↓, TumCCA↓, eff↓, Wnt↓, β-catenin/ZEB1↓, Casp12?, Bcl-2↓, cl‑PARP↑, Bax:Bcl2↑, IAP1↓, Casp3↑, Casp9↑, Telomerase↓, hTERT/TERT↓, ROS?, DNMTs↓, angioG↓, VEGF↓, Hif1a↓, cMYB↓, MMP1↓, MMP2↓, MMP9↓, ERK↑, E-cadherin↑, CD44↓, MMP2↓, eff↑, IL2↑, IFN-γ↑, IL1β↓, IL6↓, TNF-α↓, NF-kB↓, ERK↓, NRF2↑, RadioS↑, ChemoSideEff↓,
3301- SIL,    Critical review of therapeutic potential of silymarin in cancer: A bioactive polyphenolic flavonoid
- Review, Var, NA
Inflam↓, TumCCA↑, Apoptosis↓, TumMeta↓, TumCG↓, angioG↓, chemoP↑, radioP↑, p‑ERK↓, p‑p38↓, p‑JNK↓, P53↑, Bcl-2↓, Bcl-xL↓, TGF-β↓, MMP2↓, MMP9↓, E-cadherin↑, Wnt↓, Vim↓, VEGF↓, IL6↓, STAT3↓, *ROS↓, IL1β↓, PGE2↓, CDK1↓, CycB/CCNB1↓, survivin↓, Mcl-1↓, Casp3↑, Casp9↑, cMyc↓, COX2↓, Hif1a↓, CXCR4↓, CSCs↓, EMT↓, N-cadherin↓, PCNA↓, cycD1/CCND1↓, ROS↑, eff↑, eff↑, eff↑, HER2/EBBR2↓,
3304- SIL,    Silymarin induces inhibition of growth and apoptosis through modulation of the MAPK signaling pathway in AGS human gastric cancer cells
- in-vitro, GC, AGS - in-vivo, NA, NA
BAX↑, p‑JNK↑, p‑p38↑, cl‑PARP↑, Bcl-2↓, p‑ERK↓, TumVol↓, Apoptosis↑, tumCV↓,
3305- SIL,    Silymarin inhibits proliferation of human breast cancer cells via regulation of the MAPK signaling pathway and induction of apoptosis
- in-vitro, BC, MDA-MB-231 - in-vitro, BC, MCF-7 - in-vivo, NA, NA
TumCP↓, tumCV↓, BAX↑, cl‑PARP↑, Casp9↑, p‑JNK↑, Bcl-2↓, p‑p38↓, p‑ERK↓, *toxicity∅, Dose↝, *hepatoP↑, Inflam↓, AntiCan↑,
3288- SIL,    Silymarin in cancer therapy: Mechanisms of action, protective roles in chemotherapy-induced toxicity, and nanoformulations
- Review, Var, NA
Inflam↓, lipid-P↓, TumMeta↓, angioG↓, chemoP↑, EMT↓, HDAC↓, HATs↑, MMPs↓, uPA↓, PI3K↓, Akt↓, VEGF↓, CD31↓, Hif1a↓, VEGFR2↓, Raf↓, MEK↓, ERK↓, BIM↓, BAX↑, Bcl-2↓, Bcl-xL↓, Casp↑, MAPK↓, P53↑, LC3II↑, mTOR↓, YAP/TEAD↓, *BioAv↓, MMP↓, Cyt‑c↑, PCNA↓, cMyc↓, cycD1/CCND1↓, β-catenin/ZEB1↓, survivin↓, APAF1↑, Casp3↑, MDSCs↓, IL10↓, IL2↑, IFN-γ↑, hepatoP↑, cardioP↑, GSH↑, neuroP↑,
3315- SIL,    Silymarin alleviates docetaxel-induced central and peripheral neurotoxicity by reducing oxidative stress, inflammation and apoptosis in rats
- in-vivo, Nor, NA
neuroP↑, *NRF2↑, *HO-1↑, *lipid-P↓, *GSH↑, *SOD↑, *Catalase↑, *GPx↑, *NF-kB↓, *TNF-α↓, *JNK↓, *Bcl-2↑, *BAX↑,
3298- SIL,    Silibinin, a natural flavonoid, induces autophagy via ROS-dependent mitochondrial dysfunction and loss of ATP involving BNIP3 in human MCF7 breast cancer cells
- in-vitro, BC, MCF-7
LC3II↑, Beclin-1↑, Bcl-2↓, ROS↑, MMP↓, ATP↓, eff↓, BNIP3?, TumAuto↑, eff↑,
3296- SIL,    Silibinin induces oral cancer cell apoptosis and reactive oxygen species generation by activating the JNK/c-Jun pathway
- in-vitro, Oral, Ca9-22 - in-vivo, Oral, YD10B
TumCP↓, TumCCA↑, ROS↑, SOD1↓, SOD2↓, *JNK↑, toxicity?, TumCMig↓, TumCI↓, N-cadherin↓, Vim↓, E-cadherin↑, EMT↓, P53↑, cl‑Casp3↑, cl‑PARP↑, BAX↑, Bcl-2↓, SOD↓,
3293- SIL,    Silymarin (milk thistle extract) as a therapeutic agent in gastrointestinal cancer
- Review, Var, NA
hepatoP↑, TumMeta↓, Inflam↓, chemoP↑, radioP↑, Half-Life↝, *GSTs↑, p‑JNK↑, BAX↑, p‑p38↑, cl‑PARP↑, Bcl-2↓, p‑ERK↓, TumVol↓, eff↑, TumCCA↑, STAT3↓, Mcl-1↓, survivin↓, Bcl-xL↓, Casp3↑, Casp9↑, eff↑, CXCR4↓, Dose↝,
3290- SIL,    A review of therapeutic potentials of milk thistle (Silybum marianum L.) and its main constituent, silymarin, on cancer, and their related patents
- Analysis, Var, NA
hepatoP↑, chemoP↑, *lipid-P↓, *antiOx↑, tumCV↓, TumCMig↓, Apoptosis↑, ROS↑, GSH↓, Bcl-2↓, survivin↓, cycD1/CCND1↓, NOTCH1↓, BAX↑, NF-kB↓, COX2↓, LOX1↓, iNOS↓, TNF-α↓, IL1↓, Inflam↓, *toxicity↓, CXCR4↓, EGFR↓, ERK↓, MMP↓, Cyt‑c↑, TumCCA↑, RB1↑, P53↑, P21↑, p27↑, cycE/CCNE↓, CDK4↓, p‑pRB↓, Hif1a↓, cMyc↓, IL1β↓, IFN-γ↓, PCNA↓, PSA↓, CYP1A1↓,
3289- SIL,    Silymarin: a promising modulator of apoptosis and survival signaling in cancer
- Review, Var, NA
*BioAv↝, *BioAv↓, Fas↑, FasL↑, FADD↑, pro‑Casp8↑, Apoptosis↑, DR5↑, Bcl-2↑, BAX↑, Casp3↑, PI3K↓, FOXM1↓, p‑mTOR↓, p‑P70S6K↓, Hif1a↓, Akt↑, angioG↓, STAT3↓, NF-kB↓, lipid-P↓, eff↑, CDK1↓, survivin↓, CycB/CCNB1↓, Mcl-1↓, Casp9↑, AP-1↓, BioAv↑,
109- SIL,    Silibinin induces apoptosis through inhibition of the mTOR-GLI1-BCL2 pathway in renal cell carcinoma
- vitro+vivo, RCC, 769-P - in-vitro, RCC, 786-O - in-vitro, RCC, ACHN - in-vitro, RCC, OS-RC-2
HH↓, Gli1↓, GLI2↓, mTOR↓, Bcl-2↓,
2232- SK,    Shikonin Induces Autophagy and Apoptosis in Esophageal Cancer EC9706 Cells by Regulating the AMPK/mTOR/ULK Axis
- in-vitro, ESCC, EC9706
tumCV↓, TumCMig↓, TumCI↓, TumAuto↑, Apoptosis↑, Bcl-2↓, BAX↑, cl‑Casp3↑, cl‑Casp8↑, cl‑PARP↑, AMPK↑, mTOR↑, TumVol↓, OS↑, LC3I↑,
2231- SK,    Shikonin Exerts Cytotoxic Effects in Human Colon Cancers by Inducing Apoptotic Cell Death via the Endoplasmic Reticulum and Mitochondria-Mediated Pathways
- in-vitro, CRC, SNU-407
Apoptosis↑, ER Stress↑, PERK↑, eIF2α↑, CHOP↑, mt-Ca+2↑, MMP↓, Bcl-2↓, Casp3↑, Casp9↑, ERK↑, JNK↑, p38↓,
2230- SK,    Shikonin induces ROS-based mitochondria-mediated apoptosis in colon cancer
- in-vitro, CRC, HCT116 - in-vivo, NA, NA
TumCG↓, Bcl-2↓, ROS↑, Bcl-xL↓, MMP↓, Casp↑, selectivity↑, cycD1/CCND1↓, TumCCA↑, eff↓,
2228- SK,    Shikonin induced Apoptosis Mediated by Endoplasmic Reticulum Stress in Colorectal Cancer Cells
- in-vitro, CRC, HCT116 - in-vitro, CRC, HCT15 - in-vivo, NA, NA
Apoptosis↑, Bcl-2↓, Casp3↑, Casp9↑, cl‑PARP↑, GRP78/BiP↑, PERK↑, eIF2α↑, ATF4↑, CHOP↑, JNK↑, eff↓, ER Stress↑, ROS↑, TumCG↓,
2218- SK,    Shikonin Alleviates Endothelial Cell Injury Induced by ox-LDL via AMPK/Nrf2/HO-1 Signaling Pathway
- in-vitro, Nor, HUVECs
*Dose↝, *Apoptosis↓, *Casp3↓, *Bcl-2↑, *Inflam↓, *VCAM-1↓, *ICAM-1↓, *E-sel↓, *ROS↓, *SOD↑, *AMPK↑, *NRF2↑, *HO-1↑, *TNF-α↓, *IL1β↓, *IL6↓,
2416- SK,    Shikonin induces cell death by inhibiting glycolysis in human testicular cancer I-10 and seminoma TCAM-2 cells
- in-vitro, Testi, TCAM-2
MMP↓, ROS↑, lactateProd↓, Bcl-2↓, cl‑Casp3↓, PKM2↓, GLUT1↓, HK2↓, LC3B↑,
3040- SK,    Pharmacological Properties of Shikonin – A Review of Literature since 2002
- Review, Var, NA - Review, IBD, NA - Review, Stroke, NA
*Half-Life↝, *BioAv↓, *BioAv↑, *BioAv↑, *Inflam↓, *TNF-α↓, *other↑, *MPO↓, *COX2↓, *NF-kB↑, *STAT3↑, *antiOx↑, *ROS↓, *neuroP↑, *SOD↑, *Catalase↑, *GPx↑, *Bcl-2↑, *BAX↓, cardioP↑, AntiCan↑, NF-kB↓, ROS↑, PKM2↓, TumCCA↑, Necroptosis↑, Apoptosis↑, DNAdam↑, MMP↓, Cyt‑c↑, LDH↝,
3049- SK,    Shikonin Attenuates Chronic Cerebral Hypoperfusion-Induced Cognitive Impairment by Inhibiting Apoptosis via PTEN/Akt/CREB/BDNF Signaling
- in-vivo, Nor, NA - NA, Stroke, NA
*neuroP↑, *p‑PTEN↓, *p‑Akt↑, *Bcl-2↑, *BAX↓, *cognitive↑, *BDNF↑,
1312- SK,    Shikonin induces apoptosis through reactive oxygen species/extracellular signal-regulated kinase pathway in osteosarcoma cells
- in-vitro, OS, 143B
ROS↑, p‑ERK↑, Bcl-2↓, cl‑PARP↑, Apoptosis↑, TumCCA↑, Bcl-2↑, proCasp3↓,
1344- SK,    Novel multiple apoptotic mechanism of shikonin in human glioma cells
- in-vitro, GBM, U87MG - in-vitro, GBM, Hs683 - in-vitro, GBM, M059K
ROS↑, GSH↓, MMP↓, P53↑, cl‑PARP↑, Catalase↓, SOD1↑, Bcl-2↓, BAX↑, eff↓,
2215- SK,  doxoR,    Shikonin alleviates doxorubicin-induced cardiotoxicity via Mst1/Nrf2 pathway in mice
- in-vivo, Nor, NA
*cardioP↑, *ROS↓, *Inflam↓, *Mst1↓, *NRF2↑, *eff↓, *antiOx↑, *SOD↑, *GSH↑, *TNF-α↓, BAX↓, Bcl-2↑,
2197- SK,    Shikonin derivatives for cancer prevention and therapy
- Review, Var, NA
ROS↑, Ca+2↑, BAX↑, Bcl-2↓, MMP9↓, NF-kB↓, PKM2↓, Hif1a↓, NRF2↓, P53↑, DNMT1↓, MDR1↓, COX2↓, VEGF↓, EMT↓, MMP7↓, MMP13↓, uPA↓, RIP1↑, RIP3↑, Casp3↑, Casp7↑, Casp9↑, P21↓, DFF45↓, TRAIL↑, PTEN↑, mTOR↓, AR↓, FAK↓, Src↓, Myc↓, RadioS↑,
1291- SM,    Tanshinone IIA inhibits human breast cancer cells through increased Bax to Bcl-xL ratios
- in-vitro, BC, MDA-MB-231
TumCP↓, TumCCA↑, BAX↑, Bcl-2↓,
335- SNP,  PDT,    Biogenic Silver Nanoparticles for Targeted Cancer Therapy and Enhancing Photodynamic Therapy
- Review, NA, NA
ROS↑, GSH↓, GPx↑, Catalase↓, SOD↓, p38↑, BAX↑, Bcl-2↓,
343- SNP,    Silver nanoparticles of different sizes induce a mixed type of programmed cell death in human pancreatic ductal adenocarcinoma
- in-vitro, PC, PANC1
BAX↑, Bcl-2↓, P53↑, TumAuto↑,
350- SNP,    Cytotoxic and Apoptotic Effects of Green Synthesized Silver Nanoparticles via Reactive Oxygen Species-Mediated Mitochondrial Pathway in Human Breast Cancer Cells
- in-vitro, BC, MCF-7
ROS↑, MMP↓, P53↑, BAX↑, Casp3↑, Casp9↑, Bcl-2↓,
351- SNP,    Study of antitumor activity in breast cell lines using silver nanoparticles produced by yeast
- in-vitro, BC, MCF-7 - in-vitro, BC, T47D
Casp9↑, Casp3↑, Casp7↑, Bcl-2↓,
356- SNP,  MF,    Anticancer and antibacterial potentials induced post short-term exposure to electromagnetic field and silver nanoparticles and related pathological and genetic alterations: in vitro study
- in-vitro, BC, MCF-7 - in-vitro, Bladder, HTB-22
Apoptosis↑, P53↑, iNOS↑, NF-kB↑, Bcl-2↓, ROS↑, SOD↑, TumCCA↑, eff↑, Catalase↑, other↑,
324- SNP,  CPT,    Silver Nanoparticles Potentiates Cytotoxicity and Apoptotic Potential of Camptothecin in Human Cervical Cancer Cells
- in-vitro, Cerv, HeLa
ROS↑, Casp3↑, Casp9↑, Casp6↑, GSH↓, SOD↓, GPx↓, MMP↓, P53↑, P21↑, Cyt‑c↑, BID↑, BAX↑, Bcl-2↓, Bcl-xL↓, Akt↓, Raf↓, ERK↓, MAP2K1/MEK1↓, JNK↑, p38↑,
386- SNP,  Tam,    Synergistic anticancer effects and reduced genotoxicity of silver nanoparticles and tamoxifen in breast cancer cells
- in-vitro, BC, MCF-7 - in-vitro, BC, MDA-MB-231
P53↑, BAX↑, Bcl-2↓, Casp3↑, DNAdam↑, TumCCA↑,
396- SNP,    Systemic Evaluation of Mechanism of Cytotoxicity in Human Colon Cancer HCT-116 Cells of Silver Nanoparticles Synthesized Using Marine Algae Ulva lactuca Extract
- in-vitro, Colon, HCT116
P53↑, BAX↑, P21↑, Bcl-2↓,
381- SNP,    Silver Nanoparticles Exert Apoptotic Activity in Bladder Cancer 5637 Cells Through Alteration of Bax/Bcl-2 Genes Expression
- in-vitro, Bladder, 5637
ROS↑, BAX↑, Bcl-2↓, Casp3↑, Casp7↑, Apoptosis↑,
382- SNP,    Investigation the apoptotic effect of silver nanoparticles (Ag-NPs) on MDA-MB 231 breast cancer epithelial cells via signaling pathways
- in-vitro, BC, MDA-MB-231
Apoptosis↑, BAX↑, Bcl-2↓, P53↑, PTEN↑, hTERT/TERT↓, p‑ERK↓, cycD1/CCND1↓,
384- SNP,    Dual functions of silver nanoparticles in F9 teratocarcinoma stem cells, a suitable model for evaluating cytotoxicity- and differentiation-mediated cancer therapy
- in-vitro, Testi, F9
LDH↓, ROS↑, mtDam↑, DNAdam↑, P53↑, P21↑, BAX↑, Casp3↑, Bcl-2↓, Casp9↑, Nanog↓, OCT4↓,
402- SNP,  MF,    Anticancer and antibacterial potentials induced post short-term exposure to electromagnetic field and silver nanoparticles and related pathological and genetic alterations: in vitro study
- in-vitro, BC, MCF-7
P53↑, iNOS↑, NF-kB↑, Bcl-2↓, miR-125b↓, ROS↑, SOD↑,
398- SNP,    Bcl-2_pathway_fibrosis_via_TGF-ba-SMA_upregulation_in_rats">Silver nanoparticles induced testicular damage targeting NQO1 and APE1 dysregulation, apoptosis via Bax/Bcl-2 pathway, fibrosis via TGF-β/α-SMA upregulation in rats
- in-vivo, Testi, NA
Bcl-2↓, Casp3↑, GSH↓, MDA↑, NO↑, H2O2↑, SOD↓,
397- SNP,  GEM,    Silver nanoparticles enhance the apoptotic potential of gemcitabine in human ovarian cancer cells: combination therapy for effective cancer treatment
- in-vitro, Ovarian, A2780S
P53↑, P21↑, BAX↑, Bak↑, Cyt‑c↑, Casp3↑, Casp9↑, Bcl-2↓, ROS↑, MMP↓,
393- SNP,    Green synthesized plant-based silver nanoparticles: therapeutic prospective for anticancer and antiviral activity
- in-vitro, NA, HCT116
mtDam↑, ROS↑, TumCCA↑, Casp3↑, BAX↑, Bcl-2↓, P53↑,
385- SNP,    Probiotic-derived silver nanoparticles target mTOR/MMP-9/BCL-2/dependent AMPK activation for hepatic cancer treatment
- in-vitro, Hepat, HepG2 - in-vitro, Hepat, WI38
TNF-α↑, IL33↑, mTOR↓, MMP9↓, Bcl-2↓, ROS↑, Apoptosis↑,
363- SNP,    Silver nanoparticles induce oxidative cell damage in human liver cells through inhibition of reduced glutathione and induction of mitochondria-involved apoptosis
ROS↑, lipid-P↑, Apoptosis↑, BAX↑, Bcl-2↓, MMP↓, Cyt‑c↑, Casp3↑, Casp9↑, JNK↑,
369- SNP,    Silver nanoparticles induce oxidative cell damage in human liver cells through inhibition of reduced glutathione and induction of mitochondria-involved apoptosis
- in-vitro, Liver, NA
ROS↑, GSH↓, DNAdam↑, lipid-P↝, Apoptosis↑, BAX↑, Bcl-2↓, MMP↓, Casp9↑, Casp3↑, JNK↑,
379- SNP,    Effects of green-synthesized silver nanoparticles on lung cancer cells in vitro and grown as xenograft tumors in vivo
- in-vivo, Lung, H1299
NF-kB↓, Bcl-2↓, Casp3↑, survivin↑, TumCG↓,
2287- SNP,    Silver nanoparticles induce endothelial cytotoxicity through ROS-mediated mitochondria-lysosome damage and autophagy perturbation: The protective role of N-acetylcysteine
- in-vitro, Nor, HUVECs
*TumCP↓, *ROS↑, *eff↓, *MDA↑, *GSH↓, *MMP↓, *ATP↓, *LC3II↑, *p62↑, *Bcl-2↓, *BAX↑, *Casp3↑,
4427- SNP,    Silver nanoparticles induce apoptosis and G2/M arrest via PKCζ-dependent signaling in A549 lung cells
- in-vitro, Lung, A549
tumCV↓, LDH↑, TumCCA↑, BAX↑, BID↑, Bcl-2↓, PKCδ↓,
4430- SNP,    Evaluation of the Genotoxic and Oxidative Damage Potential of Silver Nanoparticles in Human NCM460 and HCT116 Cells
- in-vitro, Colon, HCT116 - in-vitro, Nor, NCM460
*Bacteria↓, ROS↑, p‑p38↑, BAX↑, Bcl-2↓, BAX↑, P21↑, TumCD↑, toxicity↝,
4438- SNP,  ART/DHA,    Biogenic synthesis of AgNPs using Artemisia oliveriana extract and their biological activities for an effective treatment of lung cancer
- in-vitro, Lung, A549
EPR↑, BAX↑, Bcl-2↑, Casp3↑, Casp9↑, DNAdam↑, TumCCA↑, Apoptosis↑,
4417- SNP,    Caffeine-boosted silver nanoparticles target breast cancer cells by triggering oxidative stress, inflammation, and apoptotic pathways
- in-vitro, BC, MDA-MB-231
ROS↑, MDA↑, COX2↑, IL1β↑, TNF-α↑, GSH↓, Cyt‑c↑, Casp3↑, BAX↑, Bcl-2↓, LDH↓, cycD1/CCND1↓, CDK2↓, TumCCA↑, mt-Apoptosis↑,
4416- SNP,    Efficacy of curcumin-synthesized silver nanoparticles on MCF-7 breast cancer cells
- in-vitro, BC, MCF-7
TumCMig↓, Apoptosis↑, BAX↑, P53↑, Bcl-2↓,
4415- SNP,  SDT,  CUR,    Examining the Impact of Sonodynamic Therapy With Ultrasound Wave in the Presence of Curcumin-Coated Silver Nanoparticles on the Apoptosis of MCF7 Breast Cancer Cells
- in-vitro, BC, MCF-7
tumCV↓, BAX↑, Casp3↑, Bcl-2↓, eff↑, ROS↑, sonoS↑, eff↑, MMP↓, Cyt‑c↑,
4897- Sper,    Spermidine as a promising anticancer agent: Recent advances and newer insights on its molecular mechanisms
- Review, Var, NA
Inflam↓, TumAuto↑, Apoptosis↑, ROS↑, MMP↓, Cyt‑c↑, Bcl-2↓,
3955- Taur,    Mechanism of neuroprotective function of taurine
- in-vitro, NA, NA
*Ca+2↓, *MMP↑, *Apoptosis↓, *Bcl-2↑, *cal2↓, *LDH↓,
3956- Taur,    Mechanisms underlying taurine protection against glutamate-induced neurotoxicity
- Review, AD, NA
*MMP↑, *Ca+2↓, *cal2↓, *Bcl-2↑,
139- Tomatine,  CUR,    Combination of α-Tomatine and Curcumin Inhibits Growth and Induces Apoptosis in Human Prostate Cancer Cells
- in-vitro, Pca, PC3
NF-kB↓, Bcl-2↓, p‑Akt↓, p‑ERK↓,
3573- TQ,    Chronic diseases, inflammation, and spices: how are they linked?
- Review, Var, NA
NF-kB↓, XIAP↓, PI3K↓, Akt↓, STAT3↓, JAK2↓, cSrc↓, PCNA↓, MMP2↓, ERK↓, Ki-67↓, Bcl-2↓, VEGF↓, p65↓, COX2↓, MMP9↓,
3560- TQ,    Protective effects of thymoquinone on D-galactose and aluminum chloride induced neurotoxicity in rats: biochemical, histological and behavioral changes
- in-vivo, AD, NA
*cognitive↑, *SOD↑, *TAC↑, *AChE↓, *MDA↓, *NO↓, *TNF-α↓, *Bcl-2↑, *Ach↑, *neuroP↑,
3427- TQ,    Chemopreventive and Anticancer Effects of Thymoquinone: Cellular and Molecular Targets
ROS⇅, Fas↑, DR5↑, TRAIL↑, Casp3↑, Casp8↑, Casp9↑, P53↑, mTOR↓, Bcl-2↓, BID↓, CXCR4↓, JNK↑, p38↑, MAPK↑, LC3II↑, ATG7↑, Beclin-1↑, AMPK↑, PPARγ↑, eIF2α↓, P70S6K↓, VEGF↓, ERK↓, NF-kB↓, XIAP↓, survivin↓, p65↓, DLC1↑, FOXO↑, TET2↑, CYP1B1↑, UHRF1↓, DNMT1↓, HDAC1↓, IL2↑, IL1↓, IL6↓, IL10↓, IL12↓, TNF-α↓, iNOS↓, COX2↓, 5LO↓, AP-1↓, PI3K↓, Akt↓, cMET↓, VEGFR2↓, CXCL1↓, ITGA5↓, Wnt↓, β-catenin/ZEB1↓, GSK‐3β↓, Myc↓, cycD1/CCND1↓, N-cadherin↓, Snail↓, Slug↓, Vim↓, Twist↓, Zeb1↓, MMP2↓, MMP7↓, MMP9↓, JAK2↓, STAT3↓, NOTCH↓, cycA1/CCNA1↓, CDK2↓, CDK4↓, CDK6↓, CDC2↓, CDC25↓, Mcl-1↓, E2Fs↓, p16↑, p27↑, P21↑, ChemoSen↑,
3397- TQ,    Thymoquinone: A Promising Therapeutic Agent for the Treatment of Colorectal Cancer
- Review, CRC, NA
ChemoSen↑, *Half-Life↝, *BioAv↝, *antiOx↑, *Inflam↓, *hepatoP↑, TumCP↓, TumCCA↑, Apoptosis↑, angioG↑, selectivity↑, JNK↑, p38↑, p‑NF-kB↑, ERK↓, PI3K↓, PTEN↑, Akt↓, mTOR↓, EMT↓, Twist↓, E-cadherin↓, ROS⇅, *Catalase↑, *SOD↑, *GSTA1↑, *GPx↑, *PGE2↓, *IL1β↓, *COX2↓, *MMP13↓, MMPs↓, TumMeta↓, VEGF↓, STAT3↓, BAX↑, Bcl-2↑, Casp9↑, Casp7↑, Casp3↑, cl‑PARP↑, survivin↓, cMyc↓, cycD1/CCND1↓, p27↑, P21↑, GSK‐3β↓, β-catenin/ZEB1↓, chemoP↑,
3423- TQ,    Epigenetic role of thymoquinone: impact on cellular mechanism and cancer therapeutics
- Review, Var, NA
AntiCan↑, Inflam↓, hepatoP↑, RenoP↑, BAX↑, Bak↑, Bcl-2↓, Bcl-xL↓, ROS↑, P53↑, PTEN↑, P21↑, p27↑, BRCA1↑, PI3K↓, Akt↓, MAPK↓, ERK↓, p‑ERK↓, MMPs↓, FAK↓, Twist↓, Zeb1↓, EMT↓, TumMeta↓, angioG↓, VEGF↓, HDAC↓, Maspin↑, SIRT1↑, DNMT1↓, DNMT3A↓, HDAC1↓, HDAC4↓,
3422- TQ,    Thymoquinone, as a Novel Therapeutic Candidate of Cancers
- Review, Var, NA
selectivity↑, P53↑, PTEN↑, NF-kB↓, PPARγ↓, cMyc↓, Casp↑, *BioAv↓, BioAv↝, eff↑, survivin↓, Bcl-xL↓, Bcl-2↓, Akt↓, BAX↑, cl‑PARP↑, CXCR4↓, MMP9↓, VEGFR2↓, Ki-67↓, COX2↓, JAK2↓, cSrc↓, Apoptosis↑, p‑STAT3↓, cycD1/CCND1↓, Casp3↑, Casp7↑, Casp9↑, N-cadherin↓, Vim↓, Twist↓, E-cadherin↑, ChemoSen↑, eff↑, EMT↓, ROS↑, DNMT1↓, eff↑, EZH2↓, hepatoP↑, Zeb1↓, RadioS↑, HDAC↓, HDAC1↓, HDAC2↓, HDAC3↓, *NAD↑, *SIRT1↑, SIRT1↓, *Inflam↓, *CRP↓, *TNF-α↓, *IL6↓, *IL1β↓, *eff↑, *MDA↓, *NO↓, *GSH↑, *SOD↑, *Catalase↑, *GPx↑, PI3K↓, mTOR↓,
3411- TQ,    Anticancer and Anti-Metastatic Role of Thymoquinone: Regulation of Oncogenic Signaling Cascades by Thymoquinone
- Review, Var, NA
p‑STAT3↓, cycD1/CCND1↓, JAK2↓, β-catenin/ZEB1↓, cMyc↓, MMP7↓, MET↓, p‑Akt↓, p‑mTOR↓, CXCR4↓, Bcl-2↓, BAX↑, ROS↑, Cyt‑c↑, Twist↓, Zeb1↓, E-cadherin↑, p‑p38↑, p‑MAPK↑, ERK↑, eff↑, ERK↓, TumCP↓, TumCMig↓, TumCI↓,
3413- TQ,    Thymoquinone induces apoptosis in human colon cancer HCT116 cells through inactivation of STAT3 by blocking JAK2- and Src‑mediated phosphorylation of EGF receptor tyrosine kinase
- in-vitro, CRC, HCT116
tumCV↓, Apoptosis↓, BAX↑, Bcl-2↓, Casp9↑, Casp7↑, Casp3↑, cl‑PARP↑, STAT3↓, survivin↓, cMyc↓, cycD1/CCND1↓, p27↑, P21↑, EGFR↓, ROS↑,
3414- TQ,    Thymoquinone induces apoptosis through inhibition of JAK2/STAT3 signaling via production of ROS in human renal cancer Caki cells
- in-vitro, RCC, Caki-1
tumCV↓, Apoptosis↑, P53↑, BAX↑, Cyt‑c↑, cl‑Casp9↑, cl‑Casp3↑, cl‑PARP↑, Bcl-2↓, Bcl-xL↓, p‑STAT3↓, p‑JAK2↓, STAT3↓, survivin↓, cycD1/CCND1↓, ROS↑, eff↓,
1936- TQ,    Thymoquinone induces apoptosis and increase ROS in ovarian cancer cell line
- in-vitro, Ovarian, CaOV3 - in-vitro, Nor, WRL68
selectivity↑, TumCP↓, MMP↓, Bcl-2↓, BAX↑, ROS↑,
1935- TQ,    Potential anticancer properties and mechanisms of thymoquinone in osteosarcoma and bone metastasis
- Review, OS, NA
Apoptosis↑, TumCCA↑, angioG↓, TumMeta↓, ROS↑, P53↑, Twist↓, E-cadherin↑, N-cadherin↓, NF-kB↓, IL8↓, XIAP↓, Bcl-2↓, STAT3↓, MAPK↓, PI3K↓, Akt↓, ERK↓, MMP2↓, MMP9↓, *ROS↓, HO-1↑, selectivity↑, TumCG↓,
1309- TQ,  QC,    Thymoquinone and quercetin induce enhanced apoptosis in non-small cell lung cancer in combination through the Bax/Bcl2 cascade
- in-vitro, Lung, NA
Bcl-2↓, BAX↑, Apoptosis↑,
2127- TQ,    Therapeutic Potential of Thymoquinone in Glioblastoma Treatment: Targeting Major Gliomagenesis Signaling Pathways
- Review, GBM, NA
chemoP↑, ChemoSen↑, BioAv↑, PTEN↑, PI3K↓, Akt↓, TumCCA↓, NF-kB↓, p‑Akt↓, p65↓, XIAP↓, Bcl-2↓, COX2↓, VEGF↓, mTOR↓, RAS↓, Raf↓, MEK↓, ERK↓, MMP2↓, MMP9↓, TumCMig↓, TumCI↓, Casp↑, cl‑PARP↑, ROS⇅, ROS↑, MMP↓, eff↑, Telomerase↓, DNAdam↑, Apoptosis↑, STAT3↓, RadioS↑,
2121- TQ,    Thymoquinone Inhibits Tumor Growth and Induces Apoptosis in a Breast Cancer Xenograft Mouse Model: The Role of p38 MAPK and ROS
- in-vitro, BC, MCF-7 - in-vitro, BC, MDA-MB-231
p‑p38↑, ROS↑, TumCP↓, eff↑, XIAP↓, survivin↓, Bcl-xL↓, Bcl-2↓, Ki-67↓, *Catalase↑, *SOD↑, *GSH↑, hepatoP↑, p‑MAPK↑, JNK↓, eff↓,
2120- TQ,    Thymoquinone induces apoptosis of human epidermoid carcinoma A431 cells through ROS-mediated suppression of STAT3
- in-vitro, Melanoma, A431
ROS↑, Apoptosis↑, P53↑, BAX↑, MDM2↓, Bcl-2↓, Bcl-xL↓, Casp9↑, Casp7↑, Casp3↑, STAT3↓, cycD1/CCND1↓, survivin↓, eff↓,
2102- TQ,    A review on therapeutic potential of Nigella sativa: A miracle herb
- Review, Var, NA
angioG↓, NF-kB↓, PPARγ↓, Bcl-2↓, Bcl-xL↓, MUC4↓, cJun↑, p38↑, P21↑, HDAC↓, *radioP↑, hepatoP↑,
2105- TQ,    Thymoquinone Promotes Pancreatic Cancer Cell Death and Reduction of Tumor Size through Combined Inhibition of Histone Deacetylation and Induction of Histone Acetylation
- in-vitro, PC, AsPC-1 - in-vitro, PC, MIA PaCa-2 - in-vitro, PC, Hs766t - in-vivo, NA, NA
tumCV↓, TumCP↓, TumCCA↑, Apoptosis↑, P53↑, Bcl-2↓, P21↑, ac‑H4↑, HDAC↓, HDAC1↓, HDAC2↓, HDAC3↓, TumVol↓,
2094- TQ,    Cytotoxicity of Nigella sativa Extracts Against Cancer Cells: A Review of In Vitro and In Vivo Studies
- Review, Var, NA
ROS↑, angioG↓, TumMeta↓, VEGF↓, MMPs↓, P53↑, BAX↑, Casp↑, Bcl-2↓, survivin↓, *ROS↓, ChemoSen↑, chemoP↑, MDR1↓, BioAv↓, BioAv↑,
2091- TQ,    Determination of anti-cancer effects of Nigella sativa seed oil on MCF7 breast and AGS gastric cancer cells
- in-vitro, BC, MCF-7 - in-vitro, GC, AGS
Dose↝, Casp3↑, Bcl-2↓, MMP2↓, MMP9↓, HSP70/HSPA5↓,
2084- TQ,    Thymoquinone, as an anticancer molecule: from basic research to clinical investigation
- Review, Var, NA
*ROS↓, *chemoPv↑, ROS↑, ROS⇅, MUC4↓, selectivity↑, AR↓, cycD1/CCND1↓, Bcl-2↓, Bcl-xL↓, survivin↓, Mcl-1↓, VEGF↓, cl‑PARP↑, ROS↑, HSP70/HSPA5↑, P53↑, miR-34a↑, Rac1↓, TumCCA↑, NOTCH↓, NF-kB↓, IκB↓, p‑p65↓, IAP1↓, IAP2↑, XIAP↓, TNF-α↓, COX2↓, Inflam↓, α-tubulin↓, Twist↓, EMT↓, mTOR↓, PI3K↓, Akt↓, BioAv↓, ChemoSen↑, BioAv↑, PTEN↑, chemoPv↑, RadioS↑, *Half-Life↝, *BioAv↝,
2083- TQ,    Thymoquinone inhibits proliferation in gastric cancer via the STAT3 pathway in vivo and in vitro
- in-vitro, GC, HGC27 - in-vitro, GC, BGC-823 - in-vitro, GC, SGC-7901 - in-vivo, NA, NA
p‑STAT3↓, JAK2↓, c-Src↓, Bcl-2↓, cycD1/CCND1↓, survivin↓, VEGF↓, Casp3?, Casp7?, Casp9?, *toxicity∅, TumVol↓,
2109- TQ,    Thymoquinone Induces Mitochondria-Mediated Apoptosis in Acute Lymphoblastic Leukaemia in Vitro
- in-vitro, AML, CEM
Apoptosis↓, Bcl-2↓, BAX↑, ROS↑, HSP70/HSPA5↑, Casp3↑, Casp8↑,
2110- TQ,    Nigella sativa seed oil suppresses cell proliferation and induces ROS dependent mitochondrial apoptosis through p53 pathway in hepatocellular carcinoma cells
- in-vitro, HCC, HepG2 - in-vitro, BC, MCF-7 - in-vitro, Lung, A549 - in-vitro, Nor, HEK293
P53↑, lipid-P↑, GSH↓, ROS↑, MMP↓, BAX↑, Casp3↑, Casp9↑, Bcl-2↓, tumCV↓, selectivity↑,
1928- TQ,    Thymoquinone Crosstalks with DR5 to Sensitize TRAIL Resistance and Stimulate ROS-Mediated Cancer Apoptosis
- in-vitro, BC, MCF-7 - in-vitro, BC, MDA-MB-231
TumCP↓, DR4↑, DR5↑, Casp8↑, FADD↑, Bcl-2↓, ROS↑, NO↑, MDA↑,
4565- TQ,    Thymoquinone in the clinical treatment of cancer: Fact or fiction?
- Review, BC, NA
Dose↝, TumCCA↑, P21↑, cycD1/CCND1↓, TumCI↑, TumMeta↓, Bcl-2↓, Bcl-xL↓, survivin↓, PTEN↑, Akt↓, P53↑, NF-kB↓, cardioP↑, Dose↝,
2353- TQ,    The effects of thymoquinone on pancreatic cancer: Evidence from preclinical studies
- Review, PC, NA
BioAv↝, BioAv↑, MUC4↓, PKM2↓, eff↑, TumVol↓, HDAC↓, NF-kB↓, Bcl-2↓, Bcl-xL↓, survivin↓, XIAP↓, COX2↓, PGE1↓,
3790- UA,    Therapeutic applications of ursolic acid: a comprehensive review and utilization of predictive tools
*Inflam↓, *antiOx↑, AntiCan↑, *neuroP↑, *hepatoP↑, *cardioP↑, *MMP↑, *ROS↓, *PGC-1α↑, *BDNF↑, *cognitive↑, Bcl-2↓, Cyt‑c↑, DR5↑, Casp9↑, Casp8↑, Casp3↑, TumCCA↑, *BioAv↓, *Dose↝, *Half-Life↓, *Half-Life↓,
2411- UA,    Ursolic acid in health and disease
- Review, Var, NA
Inflam↓, antiOx↑, NF-kB↓, Bcl-xL↓, Bcl-2↓, cycD1/CCND1↓, Ki-67↓, CD31↓, STAT3↓, EGFR↓, P53↑, P21↓, HK2↓, PKM2↓, ATP↓, lactateProd↓, p‑ERK↓, MMP↓, NO↑, ATM↑, Casp3↑, AMPK↑, JNK↑, FAO↑, FASN↓, *GSH↑, *SOD↑, *Catalase↑, *GPx↑, *GSTs↑, neuroP↑,
1310- UA,    Ursolic acid triggers apoptosis and Bcl-2 downregulation in MCF-7 breast cancer cells
- in-vitro, BC, MCF-7
GR↝, AP-1↝, cl‑PARP↑, Bcl-2↓,
5017- UA,    Ursolic acid disturbs ROS homeostasis and regulates survival-associated gene expression to induce apoptosis in intestinal cancer cells
- in-vitro, Cerv, INT-407 - in-vitro, CRC, HCT116
AntiCan↑, TumCG↓, ROS↑, Apoptosis↑, TumCMig↓, CTNNB1↓, Twist↓, Bcl-2↓, survivin↓, NF-kB↓, Sp1/3/4↓, BAX↑, P21↑, P53↑, eff↓, TumCMig↓,
5020- UA,    Anticancer activity of ursolic acid on human ovarian cancer cells via ROS and MMP mediated apoptosis, cell cycle arrest and downregulation of PI3K/AKT pathway
- in-vitro, Ovarian, NA
tumCV↓, selectivity↑, BAX↑, Bcl-2↓, Apoptosis↑, ROS↑, TumCCA↑, Akt↓, PI3K↓,
4857- Uro,    Evaluation and comparison of the anti-proliferative and anti-metastatic effects of urolithin A and urolithin B against esophageal cancer cells: an in vitro and in silico study
- in-vitro, ESCC, KYSE-30
tumCV↓, selectivity↑, TumCCA↑, ROS↑, Bcl-2↓, BAX↑, P21↑, MMP2↓, MMP9↓,
4841- Uro,    Urolithin A induces cell cycle arrest and apoptosis by inhibiting Bcl-2, increasing p53-p21 proteins and reactive oxygen species production in colorectal cancer cells
- in-vitro, CRC, HT29 - in-vitro, CRC, SW480 - in-vitro, CRC, SW-620
TumCP↓, TumCCA↑, Apoptosis↑, P53↑, P21↑, Bcl-2↓, Cyt‑c↑, Casp↑, ROS↑, *ROS↓,
4833- Uro,    Unveiling the potential of Urolithin A in Cancer Therapy: Mechanistic Insights to Future Perspectives of Nanomedicine
- Review, Var, NA - Review, AD, NA - Review, IBD, NA
BioAv↝, TumAuto↝, TumCG↓, TumMeta↓, ChemoSen↑, Imm↑, RadioS↑, BioAv↑, other↝, eff↓, *antiOx↓, *Inflam↓, AntiCan↓, AntiAge↑, chemoP↑, *neuroP↑, *ROS↓, *cognitive↑, *lipid-P↓, *cardioP↑, *TNF-α↓, *IL6↓, GutMicro↑, TumCCA↑, Apoptosis↑, angioG↓, NF-kB↓, PI3K↓, Akt↓, Casp↑, survivin↓, TumCP↓, cycD1/CCND1↓, cMyc↑, BAX↑, Bcl-2↓, COX2↓, P53↑, p38↑, *ROS↓, *SOD↑, *GPx↑, SIRT1↑, FOXO1↑, eff↑, ChemoSen↑,
4874- Uro,  EGCG,    A Combination Therapy of Urolithin A+EGCG Has Stronger Protective Effects than Single Drug Urolithin A in a Humanized Amyloid Beta Knockin Mice for Late-Onset Alzheimer's Disease
- in-vivo, AD, NA
*motorD↑, *memory↑, *MitoP↑, *Aβ↓, *mitResp↑, *Nrf1↑, *PINK1↑, *PARK2↑, *ATG5↑, *Bcl-2↑, *H2O2↓, *ROS↓, *lipid-P↓, *mt-ATP↑,
4869- Uro,    Urolithin A in Central Nervous System Disorders: Therapeutic Applications and Challenges
- Review, AD, NA - Review, Park, NA - Review, Stroke, NA
*MitoP↑, *Inflam↓, *antiOx↑, *Risk↓, *Aβ↓, *p‑tau↓, *p62↓, *PARK2↑, *MMP↑, *ROS↓, *Strength↑, *CRP↓, *IL1β↓, *IL6↓, *TNF-α↓, *AMPK↑, *NF-kB↓, *MAPK↓, *p62↑, *NRF2↑, *SOD↑, *Catalase↑, *HO-1↑, *Ferroptosis↓, *lipid-P↓, *Cartilage↑, *PI3K↓, *Akt↓, *mTOR↓, *Apoptosis↓, *neuroP↑, *Bcl-2↓, *BAX↑, *Casp3↑, *ATP↑, *eff↑, *motorD↑, *NLRP3↓, *radioP↑, *BBB↑,
1313- VitD3,  MEL,    The effects of melatonin and vitamin D3 on the gene expression of BCl-2 and BAX in MCF-7 breast cancer cell line
- in-vitro, BC, MCF-7
BAX↑, Bcl-2↓, Bax:Bcl2↑, eff↑,
2274- VitK2,    Vitamin K2 Modulates Mitochondrial Dysfunction Induced by 6-Hydroxydopamine in SH-SY5Y Cells via Mitochondrial Quality-Control Loop
- in-vitro, Nor, SH-SY5Y
*Bcl-2↓, *BAX↑, *MMP↑, *ROS↓, *p62↓, *LC3A↑, *Dose↝, *Apoptosis↓, *PINK1↑, *PARK2↑,
1817- VitK2,    Research progress on the anticancer effects of vitamin K2
- Review, Var, NA
TumCCA↑, Apoptosis↑, TumAuto↑, TumCI↓, TumCG↓, ChemoSen↓, ChemoSideEff↓, toxicity∅, eff↑, cycD1/CCND1↓, CDK4↓, eff↑, IKKα↓, NF-kB↓, other↑, p27↑, cMyc↓, i-ROS↑, Bcl-2↓, BAX↑, p38↑, MMP↓, Casp9↑, p‑ERK↓, RAS↓, MAPK↓, p‑P53↑, Casp8↑, Casp3↑, cJun↑, MMPs↓, eff↑, eff↑,
1839- VitK3,    Vitamin K3 derivative inhibits androgen receptor signaling in targeting aggressive prostate cancer cells
- in-vitro, Pca, NA
TumCP↓, Apoptosis↑, TumCCA↑, ROS↑, eff↓, AR↓, Trx↓, Bcl-2↓,
1838- VitK3,  PDT,    Photodynamic Effects of Vitamin K3 on Cervical Carcinoma Cells Activating Mitochondrial Apoptosis Pathways
- in-vitro, Cerv, NA
eff↑, ROS↑, tumCV↓, TumCG↓, Apoptosis↑, cl‑Casp3↑, cl‑Casp9↑, Bcl-xL↑, Cyt‑c↑, Bcl-2↓,
1821- VitK3,    Menadione (Vitamin K3) induces apoptosis of human oral cancer cells and reduces their metastatic potential by modulating the expression of epithelial to mesenchymal transition markers and inhibiting migration
- in-vitro, Oral, NA - in-vitro, Nor, HEK293 - in-vitro, Nor, HaCaT
selectivity↑, TumCD↓, BAX↑, P53↑, Bcl-2↓, p65↓, E-cadherin↑, EMT↓, Vim↓, Fibronectin↓, TumCG↓, TumCMig↓,
4886- ZER,    Zerumbone induced apoptosis in liver cancer cells via modulation of Bax/Bcl-2 ratio
- in-vitro, Liver, HepG2
TumCP↓, Apoptosis↑, BAX↑, Bcl-2↓, *selectivity↑,

* indicates research on normal cells as opposed to diseased cells
Total Research Paper Matches: 434

Pathway results for Effect on Cancer / Diseased Cells:


NA, unassigned

chemoPv↑, 4,  

Redox & Oxidative Stress

antiOx↓, 3,   antiOx↑, 5,   ARE↑, 1,   ATF3↑, 2,   Catalase↓, 9,   Catalase↑, 6,   Copper↑, 1,   CYP1A1↓, 2,   CYP1A1↑, 1,   ENOX2↓, 1,   Fenton↑, 2,   Ferroptosis↑, 4,   frataxin↑, 1,   GPx↓, 4,   GPx↑, 6,   GPx1↓, 1,   GPx4↓, 4,   GPx4↑, 1,   GSH↓, 27,   GSH↑, 3,   GSH/GSSG↓, 1,   GSR↓, 1,   GSR↑, 2,   GSS↑, 1,   GSTA1↑, 1,   GSTP1/GSTπ↓, 1,   GSTs↓, 2,   GSTs↑, 2,   H2O2↑, 5,   HO-1↓, 4,   HO-1↑, 10,   ICD↑, 1,   Iron↑, 1,   lipid-P↓, 6,   lipid-P↑, 11,   lipid-P↝, 1,   MAD↓, 1,   MDA↓, 3,   MDA↑, 8,   NADPH/NADP+↓, 1,   NAF1↓, 1,   NOX4↑, 1,   NQO1↓, 1,   NQO1↑, 4,   NRF2↓, 7,   NRF2↑, 14,   NRF2⇅, 1,   NRF2↝, 1,   p‑NRF2↓, 1,   OXPHOS↓, 2,   PAO↑, 1,   PARK2↑, 1,   Prx6↑, 1,   PYCR1↓, 1,   ROS?, 3,   ROS↓, 13,   ROS↑, 194,   ROS⇅, 7,   ROS↝, 1,   i-ROS↑, 3,   mt-ROS↑, 3,   SAM-e↝, 1,   SIRT3↓, 1,   SIRT3↑, 1,   SOD↓, 14,   SOD↑, 10,   SOD1↓, 1,   SOD1↑, 2,   SOD2↓, 3,   SOD2↑, 2,   TAC?, 1,   Trx↓, 2,   Trx1↑, 1,   TrxR↓, 3,   TrxR1↓, 3,   VitC↓, 1,   VitE↓, 1,   xCT↓, 1,  

Metal & Cofactor Biology

FTH1↓, 1,   IronCh↑, 1,   NCOA4↑, 1,   Tf↑, 1,  

Mitochondria & Bioenergetics

AIF↑, 12,   AIF↝, 1,   ATP↓, 8,   Bfl-1↓, 1,   BOK↑, 2,   CDC2↓, 6,   CDC2↑, 1,   CDC25↓, 10,   EGF↓, 4,   FGFR1↓, 4,   MEK↓, 5,   p‑MEK↓, 1,   mitResp↓, 1,   mitResp↑, 1,   MMP↓, 109,   MPT↑, 3,   mtDam↑, 10,   OCR↓, 2,   p‑p42↓, 1,   PINK1↑, 1,   Raf↓, 6,   e-Raf↓, 1,   XIAP↓, 31,  

Core Metabolism/Glycolysis

12LOX?, 1,   12LOX↓, 2,   Ac-histone H3↑, 1,   ACC↑, 3,   ACLY↓, 3,   AKT1↓, 1,   ALAT↓, 1,   ALAT∅, 1,   AMPK↓, 2,   AMPK↑, 15,   p‑AMPK↑, 3,   ATG7↑, 2,   CAIX↓, 2,   CAIX↑, 1,   cMyc↓, 30,   cMyc↑, 1,   ERCC1↓, 1,   FAO↑, 1,   FASN↓, 8,   FBI-1↓, 1,   GAPDH↓, 1,   GLO-I↓, 1,   GLS↓, 1,   glucose↓, 1,   GlucoseCon↓, 4,   GlutMet↓, 2,   Glycolysis↓, 11,   HK2↓, 7,   lactateProd↓, 8,   lactateProd↑, 1,   LDH?, 1,   LDH↓, 9,   LDH↑, 2,   LDH↝, 1,   i-LDH↓, 1,   LDHA↓, 5,   LDL↓, 1,   MCU↓, 1,   NAD↝, 1,   NADPH↓, 2,   NADPH↑, 1,   PCK1↓, 1,   PDH↓, 1,   PDH↑, 1,   PDH↝, 1,   PDK1↓, 6,   PDKs↓, 1,   PFK↓, 2,   PFKP↓, 1,   PI3K/Akt↓, 8,   PI3K/Akt↑, 1,   PI3K/Akt↝, 1,   PI3k/Akt/mTOR↝, 1,   PIK3CA↓, 1,   PKM2↓, 11,   POLD1↓, 1,   PPARγ↓, 3,   PPARγ↑, 6,   Pyruv↓, 1,   p‑S6↓, 1,   p‑S6K↓, 2,   SIRT1↓, 5,   SIRT1↑, 5,   SREBP1↓, 1,   SSAT↑, 1,   TCA?, 1,   Warburg↓, 3,  

Cell Death

AhR↓, 1,   Akt↓, 81,   Akt↑, 3,   Akt↝, 1,   p‑Akt↓, 33,   p‑Akt↝, 1,   APAF1↑, 6,   Apoptosis?, 1,   Apoptosis↓, 6,   Apoptosis↑, 172,   Apoptosis↝, 2,   mt-Apoptosis↑, 2,   ASK1↑, 2,   BAD↓, 1,   BAD↑, 10,   p‑BAD↓, 1,   Bak↑, 16,   BAX↓, 7,   BAX↑, 263,   BAX⇅, 1,   BAX↝, 1,   BAX∅, 1,   Bax:Bcl2↑, 12,   Bcl-2↓, 393,   Bcl-2↑, 9,   Bcl-2↝, 1,   Bcl-2∅, 2,   cl‑Bcl-2↓, 1,   cl‑Bcl-2↑, 1,   Bcl-xL↓, 58,   Bcl-xL↑, 1,   Bcl-xL↝, 1,   Bcl-xL∅, 1,   BID↓, 1,   BID↑, 11,   BIM↓, 1,   BIM↑, 12,   Casp↑, 23,   Casp1↓, 2,   Casp10↑, 1,   Casp12?, 1,   Casp12↑, 4,   cl‑Casp12↑, 1,   Casp2↑, 1,   Casp3?, 3,   Casp3↓, 3,   Casp3↑, 178,   Casp3↝, 1,   Casp3∅, 1,   cl‑Casp3↓, 1,   cl‑Casp3↑, 34,   proCasp3↓, 2,   Casp6↑, 1,   Casp7?, 1,   Casp7↑, 16,   cl‑Casp7↑, 1,   Casp8↑, 29,   cl‑Casp8↑, 7,   pro‑Casp8↑, 1,   Casp9?, 1,   Casp9↑, 101,   Casp9∅, 1,   cl‑Casp9↑, 13,   proCasp9↓, 1,   proCasp9↑, 1,   cFLIP↓, 4,   Chk2↓, 2,   Chk2↑, 1,   CK2↓, 4,   Cupro↑, 1,   Cyt‑c↑, 97,   Cyt‑c↝, 2,   Cyt‑c?, 1,   Diablo↑, 7,   DR4↑, 8,   DR5↑, 26,   FADD↑, 6,   Fas↑, 19,   FasL↓, 1,   FasL↑, 8,   Ferroptosis↑, 4,   cl‑GSDME↑, 1,   GSDME-N↑, 1,   HEY1↓, 1,   HGF/c-Met↓, 3,   hTERT/TERT↓, 5,   IAP1↓, 7,   IAP2↓, 3,   IAP2↑, 1,   cl‑IAP2↑, 1,   ICAD↓, 1,   iNOS↓, 8,   iNOS↑, 2,   JNK↓, 1,   JNK↑, 23,   JNK↝, 1,   p‑JNK↓, 2,   p‑JNK↑, 5,   MAPK↓, 17,   MAPK↑, 14,   MAPK↝, 1,   p‑MAPK↑, 3,   Mcl-1↓, 29,   MCT1↓, 1,   MDM2↓, 8,   p‑MDM2↓, 1,   miR-497↑, 1,   miR-548ah-5p↑, 1,   MLKL↑, 1,   p‑MLKL↓, 1,   Myc↓, 4,   NAIP↓, 2,   Necroptosis↑, 2,   necrosis↑, 2,   NOXA↑, 4,   p27↑, 24,   p38↓, 5,   p38↑, 22,   p‑p38↓, 5,   p‑p38↑, 10,   Paraptosis↑, 2,   PUMA↑, 4,   Pyro↑, 3,   RIP1↑, 1,   Set9↑, 1,   survivin↓, 60,   survivin↑, 1,   survivin↝, 1,   Telomerase↓, 10,   TNFR 1↑, 2,   TRAIL↑, 8,   TRAILR↑, 2,   TRPV1↑, 1,   TumCD↓, 1,   TumCD↑, 10,   TUNEL↑, 1,   YAP/TEAD↓, 1,  

Kinase & Signal Transduction

AMPKα↑, 1,   CaMKII ↓, 1,   cSrc↓, 2,   HER2/EBBR2↓, 7,   p‑HER2/EBBR2↓, 1,   p70S6↓, 1,   RTK-RAS↓, 1,   SOX9?, 1,   Sp1/3/4↓, 7,   TSC2↑, 3,   p‑TSC2↑, 1,  

Transcription & Epigenetics

cJun↓, 4,   cJun↑, 2,   p‑cJun↑, 1,   EZH2↓, 3,   H3↓, 2,   H3↑, 1,   p‑H3↓, 1,   ac‑H3↑, 1,   H4↓, 1,   ac‑H4↑, 1,   ac‑H4∅, 1,   HATs↓, 2,   HATs↑, 1,   KCNQ1OT1↓, 1,   miR-21↓, 3,   miR-21↑, 1,   miR-27a-3p↓, 3,   miR-30a-5p↑, 1,   miR-409-3p↑, 1,   other?, 1,   other↓, 3,   other↑, 3,   other↝, 1,   pRB↓, 1,   pRB↑, 1,   p‑pRB↓, 3,   sonoS↑, 1,   TET3↑, 1,   tumCV?, 1,   tumCV↓, 41,  

Protein Folding & ER Stress

ATF6↑, 1,   ATFs↑, 1,   CHOP↑, 25,   eIF2α↓, 1,   eIF2α↑, 6,   p‑eIF2α↑, 5,   ER Stress↓, 1,   ER Stress↑, 25,   GRP78/BiP↓, 1,   GRP78/BiP↑, 12,   GRP94↑, 1,   HSF1↓, 1,   HSP27↓, 3,   HSP27↑, 2,   HSP70/HSPA5↓, 5,   HSP70/HSPA5↑, 2,   HSP90↓, 3,   HSPs↓, 1,   IRE1↑, 3,   PERK↑, 6,   p‑PERK↑, 2,   UPR↑, 3,  

Autophagy & Lysosomes

ATG3↓, 1,   ATG3↑, 2,   ATG5↑, 4,   Beclin-1↓, 3,   Beclin-1↑, 13,   BNIP3?, 2,   BNIP3↑, 5,   LC3‑Ⅱ/LC3‑Ⅰ↓, 1,   LC3‑Ⅱ/LC3‑Ⅰ↑, 1,   LC3A↑, 1,   LC3B↑, 2,   LC3B-II↑, 2,   LC3I↓, 1,   LC3I↑, 1,   LC3II↓, 2,   LC3II↑, 11,   LC3s↑, 1,   p62↓, 4,   p62↑, 3,   TumAuto↑, 21,   TumAuto↝, 1,  

DNA Damage & Repair

ATM↑, 3,   BRCA1↑, 1,   CHK1↓, 3,   CHK1↑, 1,   CYP1B1↑, 1,   DFF45↓, 2,   DFF45↑, 1,   DNA-PK↑, 1,   DNAdam↓, 1,   DNAdam↑, 27,   DNArepair↓, 1,   DNArepair↑, 1,   DNMT1↓, 7,   DNMT3A↓, 3,   DNMTs↓, 5,   GADD45A↑, 1,   MGMT↓, 1,   p16↑, 3,   P53↓, 5,   P53↑, 97,   P53↝, 1,   p‑P53↑, 6,   ac‑P53↑, 1,   PARP↓, 3,   PARP↑, 14,   p‑PARP↑, 2,   cl‑PARP↓, 1,   cl‑PARP↑, 55,   cl‑PARP∅, 1,   PARP1↓, 1,   cl‑PARP1↑, 2,   PCLAF↓, 1,   PCNA↓, 21,   RAD51↓, 1,   RAD51↑, 1,   TP53↑, 1,   UHRF1↓, 1,   γH2AX↓, 1,   γH2AX↑, 8,  

Cell Cycle & Senescence

CDK1↓, 14,   CDK2↓, 23,   CDK2↑, 3,   CDK4↓, 27,   Cyc↓, 5,   Cyc↝, 1,   cycA1/CCNA1↓, 7,   cycA1/CCNA1↑, 1,   CycB/CCNB1↓, 16,   CycB/CCNB1↑, 1,   cycD1/CCND1↓, 76,   cycD1/CCND1↑, 2,   cycD1/CCND1↝, 1,   CycD3↓, 1,   cycE/CCNE↓, 12,   cycE/CCNE↑, 2,   cycE1↓, 2,   cycF↓, 1,   E2Fs↓, 1,   p19↑, 1,   P21?, 1,   P21↓, 4,   P21↑, 60,   P21↝, 1,   RB1↓, 1,   RB1↑, 2,   p‑RB1↓, 2,   Securin↓, 1,   TumCCA↓, 5,   TumCCA↑, 126,  

Proliferation, Differentiation & Cell State

p‑4E-BP1↓, 1,   ALDH↓, 1,   ALDH1A1↓, 2,   BMI1↓, 1,   BRAF↝, 1,   CD133↓, 4,   CD24↓, 1,   CD34↓, 1,   CD44↓, 5,   cDC2↓, 3,   CEBPA↑, 1,   cFos↓, 5,   cFos↑, 1,   CIP2A↓, 1,   cMET↓, 2,   p‑cMET↑, 1,   cMYB↓, 1,   CSCs↓, 14,   CTNNB1↓, 1,   Diff↓, 1,   EMT↓, 43,   EMT↑, 1,   EP4↑, 1,   EpCAM↓, 1,   ERK↓, 37,   ERK↑, 11,   p‑ERK↓, 16,   p‑ERK↑, 4,   FGF↓, 2,   FGFR2↓, 1,   FOXM1↓, 4,   FOXO↑, 2,   FOXO1↑, 2,   FOXO3↑, 3,   p‑FOXO3↓, 1,   FOXO4↓, 1,   Gli↓, 2,   Gli1↓, 17,   GSK‐3β↓, 7,   GSK‐3β↑, 5,   p‑GSK‐3β↓, 3,   HDAC↓, 19,   HDAC1↓, 8,   HDAC10↑, 1,   HDAC2↓, 6,   HDAC3↓, 4,   HDAC4↓, 1,   HH↓, 14,   IGF-1↓, 5,   IGF-1R↓, 1,   IGF-2↓, 1,   IGFBP3↑, 5,   Jun↓, 1,   Let-7↑, 1,   MAP2K1/MEK1↓, 1,   MCM2↓, 1,   miR-125b↓, 1,   miR-34a↑, 5,   mTOR↓, 44,   mTOR↑, 2,   mTOR↝, 1,   p‑mTOR↓, 14,   mTORC1↓, 4,   p‑mTORC1↓, 1,   mTORC2↓, 3,   n-MYC↓, 2,   Nanog↓, 9,   Nanog↑, 1,   Nestin↓, 3,   NOTCH↓, 10,   NOTCH⇅, 1,   NOTCH1↓, 7,   NOTCH2↓, 1,   NOTCH3↓, 1,   OCT4↓, 9,   OCT4↑, 1,   P70S6K↓, 2,   p‑P70S6K↓, 2,   p‑P90RSK↑, 1,   PDGFRA↓, 2,   PI3K↓, 51,   PI3K↝, 1,   p‑PI3K↓, 3,   p‑PI3K↑, 1,   PIAS-3↑, 1,   PTCH1↓, 8,   PTCH2↓, 1,   PTEN↓, 1,   PTEN↑, 22,   PTEN↝, 2,   PTPN6↑, 1,   RAS↓, 7,   RAS↑, 1,   SAL↑, 1,   Shh↓, 9,   SHP1↓, 1,   Smo↓, 9,   SOX2↓, 5,   Src↓, 2,   p‑Src↓, 1,   c-Src↓, 1,   STAT↓, 2,   p‑STAT1↓, 1,   STAT3↓, 46,   STAT3↑, 1,   p‑STAT3↓, 13,   STAT5↓, 1,   STAT6↓, 1,   p‑STAT6↓, 1,   Sufu↑, 1,   TCF↓, 2,   TCF↑, 1,   TCF-4↓, 2,   TOP1↓, 3,   TOP2↓, 3,   TumCG?, 1,   TumCG↓, 54,   TumCG↑, 2,   tyrosinase↓, 1,   Wnt?, 1,   Wnt↓, 18,   Wnt/(β-catenin)↓, 3,  

Migration

5LO↓, 1,   Akt2↓, 1,   AntiAg↑, 3,   AP-1↓, 8,   AP-1↑, 1,   AP-1↝, 2,   ATPase↓, 1,   AXL↓, 3,   Ca+2↓, 3,   Ca+2↑, 21,   Ca+2↝, 1,   i-Ca+2↑, 1,   mt-Ca+2↑, 1,   CAFs/TAFs↓, 2,   cal2↑, 2,   CD31↓, 5,   Cdc42↓, 1,   CDK4/6↓, 2,   CEA↓, 1,   CLDN1↓, 1,   COL1↓, 1,   COL3A1↓, 1,   CXCL12↓, 2,   DLC1↑, 3,   E-cadherin↓, 6,   E-cadherin↑, 33,   ER-α36↓, 2,   FAK↓, 11,   p‑FAK↓, 2,   Fibronectin↓, 4,   GIT1↓, 1,   GLI2↓, 8,   HLA↑, 1,   ITGA5↓, 1,   ITGB1↓, 3,   ITGB3↓, 1,   ITGB4↓, 1,   Ki-67↓, 19,   LAMs↓, 2,   LEF1↓, 3,   MALAT1↓, 1,   MARK4↓, 2,   MET↓, 3,   p‑MET↓, 1,   miR-139-5p↑, 1,   miR-155↓, 1,   miR-29b↑, 1,   MMP1↓, 3,   MMP13↓, 5,   MMP2↓, 45,   MMP2↝, 1,   MMP3↓, 3,   MMP7↓, 8,   MMP9↓, 50,   MMPs↓, 21,   MRGPRF↓, 1,   MUC4↓, 3,   N-cadherin↓, 23,   NFAT↑, 1,   p‑p44↓, 1,   PAK1↓, 1,   p‑pax↓, 1,   PDGF↓, 3,   PKCδ↓, 2,   Rac1↓, 2,   RAGE↓, 1,   Rho↓, 3,   RIP3↑, 2,   p‑RIP3↑, 1,   ROCK1↓, 2,   Sharpin↓, 1,   Slug↓, 13,   SMAD2↓, 1,   p‑SMAD2↓, 2,   SMAD3↓, 1,   p‑SMAD3↓, 2,   SMAD4↑, 1,   Snail?, 1,   Snail↓, 23,   SOX4↑, 1,   TET1↑, 2,   TGF-β↓, 11,   TGF-β↑, 2,   TIMP1↓, 1,   TIMP1↑, 5,   TIMP2↓, 1,   TIMP2↑, 2,   Treg lymp↓, 1,   TSP-1↑, 2,   TumCA↓, 1,   TumCI?, 1,   TumCI↓, 35,   TumCI↑, 1,   TumCMig↓, 40,   TumCMig↑, 1,   TumCP↓, 75,   TumCP↑, 1,   TumMeta↓, 26,   TumMeta↑, 3,   Twist↓, 19,   Tyro3↓, 2,   uPA↓, 16,   uPAR↓, 1,   VCAM-1↓, 1,   Vim?, 1,   Vim↓, 30,   Vim↑, 1,   Zeb1↓, 12,   ZEB2↓, 2,   ZO-1↑, 2,   α-SMA↓, 1,   α-tubulin↓, 1,   β-catenin/ZEB1↓, 27,   β-catenin/ZEB1↑, 2,   β-catenin/ZEB1↝, 1,  

Angiogenesis & Vasculature

angioG↓, 32,   angioG↑, 1,   ATF4↓, 1,   ATF4↑, 11,   EGFR↓, 18,   EGFR↑, 1,   EGFR↝, 1,   p‑EGFR↓, 1,   eNOS↓, 1,   EPR↑, 1,   HIF-1↓, 2,   Hif1a↓, 40,   LOX1↓, 2,   NO↓, 3,   NO↑, 5,   PDGFR-BB↓, 1,   VEGF↓, 63,   VEGF↝, 1,   VEGFR2↓, 11,   ZBTB10↑, 1,  

Barriers & Transport

BBB↑, 1,   CellMemb↓, 1,   GLUT1↓, 8,   GLUT1↑, 1,   GLUT3↓, 2,   GLUT3↑, 1,   GLUT4↓, 1,   MRP↓, 1,   NHE1↓, 1,   P-gp↓, 5,  

Immune & Inflammatory Signaling

ASC↓, 1,   ASC↑, 1,   CCR7↓, 1,   CD4+↓, 1,   CD4+↑, 2,   COX2↓, 43,   COX2↑, 1,   COX2↝, 1,   CRP↓, 3,   CXCL1↓, 1,   CXCR4↓, 10,   FOXP3↓, 2,   ICAM-1↓, 4,   IFN-γ↓, 4,   IFN-γ↑, 3,   IKKα↓, 7,   IKKα↑, 1,   IL1↓, 5,   IL1↑, 1,   IL10↓, 4,   IL10↑, 1,   IL12↓, 1,   IL1α↓, 1,   IL1β↓, 8,   IL1β↑, 2,   IL2↑, 5,   IL33↑, 1,   IL4↓, 1,   IL4↑, 1,   IL6↓, 23,   IL6↑, 1,   IL6↝, 1,   IL8↓, 6,   Imm↑, 1,   Inflam↓, 22,   IκB↓, 1,   IκB↑, 1,   p‑IκB↓, 1,   JAK↓, 3,   JAK1↓, 3,   JAK2↓, 10,   p‑JAK2↓, 2,   M2 MC↓, 1,   MCP1↓, 2,   MDSCs↓, 1,   NF-kB↓, 86,   NF-kB↑, 6,   NF-kB↝, 1,   p‑NF-kB↓, 1,   p‑NF-kB↑, 1,   NK cell↑, 2,   p65↓, 8,   p‑p65↓, 4,   ac‑p65↑, 1,   PD-1↓, 3,   PD-L1↓, 1,   PD-L1↑, 1,   PGE1↓, 1,   PGE2↓, 8,   PSA↓, 4,   PSA↝, 1,   SOCS-3↑, 1,   SOCS1↑, 1,   T-Cell↑, 2,   Th1 response↑, 2,   TLR4↓, 3,   TNF-α↓, 20,   TNF-α↑, 6,   TNF-α↝, 1,   TNF-β↓, 1,  

Protein Aggregation

NLRP3↓, 2,  

Hormonal & Nuclear Receptors

AR↓, 11,   AR↝, 1,   CDK6↓, 10,   ERα/ESR1↓, 2,   GR↝, 1,   RANKL↓, 1,  

Drug Metabolism & Resistance

BioAv↓, 12,   BioAv↑, 11,   BioAv↝, 4,   BioAv∅, 1,   ChemoSen↓, 1,   ChemoSen↑, 51,   ChemoSen↝, 1,   Dose?, 1,   Dose↓, 3,   Dose↑, 5,   Dose↝, 11,   Dose∅, 8,   eff↓, 44,   eff↑, 104,   eff↝, 2,   Half-Life↓, 2,   Half-Life↝, 3,   Half-Life∅, 2,   MDR1↓, 3,   P450↓, 1,   RadioS↑, 23,   selectivity↓, 1,   selectivity↑, 40,   TET2↓, 1,   TET2↑, 1,  

Clinical Biomarkers

ALAT↓, 1,   ALAT∅, 1,   ALP↓, 1,   AR↓, 11,   AR↝, 1,   ascitic↓, 1,   AST↓, 1,   AST∅, 1,   BMPs↑, 1,   BRAF↝, 1,   BRCA1↑, 1,   CEA↓, 1,   CRP↓, 3,   E6↓, 3,   E7↓, 3,   EGFR↓, 18,   EGFR↑, 1,   EGFR↝, 1,   p‑EGFR↓, 1,   ERα/ESR1↓, 2,   EZH2↓, 3,   FOXM1↓, 4,   GutMicro↑, 2,   HER2/EBBR2↓, 7,   p‑HER2/EBBR2↓, 1,   hTERT/TERT↓, 5,   IL6↓, 23,   IL6↑, 1,   IL6↝, 1,   Ki-67↓, 19,   LDH?, 1,   LDH↓, 9,   LDH↑, 2,   LDH↝, 1,   i-LDH↓, 1,   Maspin↑, 1,   Myc↓, 4,   NSE↓, 1,   PD-L1↓, 1,   PD-L1↑, 1,   PSA↓, 4,   PSA↝, 1,   RAGE↓, 1,   TP53↑, 1,  

Functional Outcomes

AntiAge↑, 1,   AntiCan↓, 2,   AntiCan↑, 25,   AntiCan?, 1,   AntiTum↑, 8,   cachexia↓, 1,   cardioP↑, 7,   CardioT↓, 1,   chemoP↑, 17,   ChemoSideEff↓, 6,   ChemoSideEff∅, 1,   hepatoP↑, 8,   K17↓, 1,   neuroP↑, 7,   NKG2D↑, 1,   OS↑, 4,   radioP↑, 4,   RenoP↑, 6,   Risk↓, 4,   Symptoms↓, 1,   toxicity?, 1,   toxicity↓, 1,   toxicity↝, 1,   toxicity∅, 2,   TumVol↓, 16,   TumW↓, 6,   Weight∅, 2,  

Infection & Microbiome

CD8+↑, 2,  
Total Targets: 904

Pathway results for Effect on Normal Cells:


NA, unassigned

chemoPv↑, 2,  

Redox & Oxidative Stress

antiOx↓, 1,   antiOx↑, 35,   Catalase↓, 1,   Catalase↑, 19,   Ferroptosis↓, 2,   GPx↓, 1,   GPx↑, 15,   GSH↓, 1,   GSH↑, 21,   GSR↑, 1,   GSTA1↑, 1,   GSTs↑, 6,   H2O2↓, 3,   HO-1↑, 13,   HO-2↓, 1,   Iron↓, 1,   Keap1↓, 3,   lipid-P↓, 14,   MDA↓, 10,   MDA↑, 1,   MPO↓, 2,   NOX4↓, 1,   NQO1↑, 3,   Nrf1↑, 2,   NRF2↑, 21,   PARK2↑, 3,   Prx↑, 1,   RNS↓, 1,   ROS↓, 50,   ROS↑, 2,   ROS∅, 3,   SOD↓, 1,   SOD↑, 24,   SOD1↑, 1,   SOD2↑, 2,   TAC↑, 1,   TBARS↓, 1,  

Metal & Cofactor Biology

Ferritin↑, 1,   IronCh↑, 2,  

Mitochondria & Bioenergetics

ATP↓, 1,   ATP↑, 1,   mt-ATP↑, 1,   mitResp↑, 1,   MMP↓, 1,   MMP↑, 8,   MMP∅, 1,   MPT↑, 1,   mtDam↓, 1,   PGC-1α↓, 1,   PGC-1α↑, 1,   PINK1↑, 2,  

Core Metabolism/Glycolysis

ALAT↓, 4,   AMPK↓, 1,   AMPK↑, 5,   p‑AMPK↑, 1,   p‑CREB↑, 1,   GAPDH↑, 1,   H2S↑, 1,   LDH↓, 5,   LDHA↑, 1,   LDL↓, 1,   NAD↑, 1,   NADPH↓, 1,   NH3↓, 1,   PPARα↑, 1,   p‑PPARγ↓, 1,   SIRT1↑, 3,   SREBP1↓, 1,  

Cell Death

Akt↓, 3,   Akt↑, 3,   p‑Akt↓, 1,   p‑Akt↑, 1,   APAF1↓, 1,   Apoptosis↓, 10,   BAX↓, 16,   BAX↑, 5,   Bax:Bcl2↓, 1,   Bcl-2↓, 4,   Bcl-2↑, 24,   Bcl-2∅, 1,   Casp1↓, 1,   Casp12↓, 1,   Casp3?, 1,   Casp3↓, 11,   Casp3↑, 2,   cl‑Casp3↓, 1,   Casp9↓, 3,   cl‑Casp9↓, 1,   Cyt‑c↓, 3,   Cyt‑c↑, 1,   Fas↓, 1,   Ferroptosis↓, 2,   iNOS↓, 7,   JNK↓, 1,   JNK↑, 1,   MAPK↓, 5,   MLKL↓, 1,   RIP1↓, 1,  

Kinase & Signal Transduction

CaMKII ↓, 1,   p‑p70S6↓, 1,  

Transcription & Epigenetics

Ach↑, 2,   other↓, 1,   other↑, 2,   other↝, 1,  

Protein Folding & ER Stress

ATF6↓, 1,   CHOP↓, 3,   ER Stress↓, 3,   GRP78/BiP↓, 2,   HSP70/HSPA5↑, 1,   IRE1↓, 1,   PERK↓, 1,  

Autophagy & Lysosomes

ATG5↑, 1,   Beclin-1↓, 1,   LC3A↑, 1,   LC3II↑, 1,   MitoP↑, 2,   p62↓, 2,   p62↑, 2,  

DNA Damage & Repair

DNAdam↓, 1,   p16↓, 1,   P53↓, 2,   PARP↓, 1,   p‑γH2AX↓, 1,  

Cell Cycle & Senescence

E2Fs↑, 1,   P21↓, 1,  

Proliferation, Differentiation & Cell State

ERK↓, 1,   p‑GSK‐3β↑, 1,   HDAC↓, 1,   IGF-1R↓, 1,   Mst1↓, 1,   mTOR↓, 1,   p‑mTOR↓, 1,   PI3K↓, 3,   PI3K↑, 2,   p‑PTEN↓, 1,   STAT3↓, 1,   STAT3↑, 1,  

Migration

AntiAg↑, 1,   AP-1↓, 1,   APP↓, 1,   Ca+2↓, 4,   cal2↓, 2,   Cartilage↑, 1,   E-cadherin↓, 1,   E-sel↓, 1,   MMP13↓, 1,   MMP2↓, 1,   MMP9↓, 1,   PKA↑, 1,   PKCδ↓, 1,   p‑Rac1↓, 1,   Rho↓, 1,   ROCK1↓, 1,   TumCP↓, 1,   TXNIP↓, 1,   VCAM-1↓, 1,   Zeb1↓, 1,   ZO-1↓, 1,   ZO-1↑, 1,  

Angiogenesis & Vasculature

angioG↑, 1,   ATF4↓, 1,   EGFR↓, 1,   NO↓, 8,   NO↑, 1,   PDGFR-BB↓, 1,   VEGF↓, 1,   VEGF↑, 1,  

Barriers & Transport

BBB↑, 5,   P-gp↓, 1,  

Immune & Inflammatory Signaling

COX2↓, 8,   CRP↓, 2,   HMGB1↓, 1,   ICAM-1↓, 1,   IFN-γ↓, 2,   IKKα↑, 1,   IL1↓, 2,   IL10↓, 3,   IL10↑, 2,   IL17↓, 1,   IL18↓, 2,   IL1β↓, 14,   IL1β↑, 1,   IL2↓, 1,   IL22↓, 1,   IL6↓, 17,   IL8↓, 3,   Inflam↓, 28,   Inflam↑, 1,   JAK↓, 1,   NF-kB↓, 11,   NF-kB↑, 2,   PGE2↓, 5,   TLR4↓, 1,   TNF-α↓, 22,  

Synaptic & Neurotransmission

5HT↑, 1,   AChE↓, 4,   BDNF↑, 6,   ChAT↑, 1,   tau↓, 1,   p‑tau↓, 4,  

Protein Aggregation

Aβ↓, 8,   BACE↓, 1,   MAOB↓, 1,   NLRP3↓, 3,   PP2A↑, 1,  

Drug Metabolism & Resistance

BioAv↓, 17,   BioAv↑, 11,   BioAv↝, 7,   Dose↑, 1,   Dose↝, 5,   Dose∅, 1,   eff↓, 4,   eff↑, 4,   Half-Life↓, 2,   Half-Life↝, 8,   selectivity↑, 2,  

Clinical Biomarkers

ALAT↓, 4,   ALP↓, 1,   AST↓, 4,   BP↓, 1,   creat↓, 1,   CRP↓, 2,   EGFR↓, 1,   Ferritin↑, 1,   GutMicro↑, 4,   IL6↓, 17,   LDH↓, 5,  

Functional Outcomes

AntiCan↑, 3,   AntiTum↑, 1,   cardioP↑, 15,   CardioT↓, 1,   chemoP↑, 1,   cognitive↑, 10,   hepatoP↓, 1,   hepatoP↑, 8,   memory↑, 9,   motorD↑, 2,   neuroP↑, 25,   radioP↑, 2,   RenoP↑, 4,   Risk↓, 2,   Strength↑, 1,   toxicity↓, 7,   toxicity↑, 2,   toxicity∅, 8,  

Infection & Microbiome

Bacteria↓, 1,  
Total Targets: 247

Scientific Paper Hit Count for: Bcl-2, B-cell CLL/lymphoma 2
33 Curcumin
27 Thymoquinone
27 Silver-NanoParticles
22 Quercetin
16 Apigenin (mainly Parsley)
14 EGCG (Epigallocatechin Gallate)
13 Baicalein
12 Allicin (mainly Garlic)
12 Shikonin
11 Sulforaphane (mainly Broccoli)
11 Silymarin (Milk Thistle) silibinin
10 Berberine
10 Betulinic acid
10 Resveratrol
9 Fisetin
9 Garcinol
9 Honokiol
9 Luteolin
8 Lycopene
7 Ashwagandha(Withaferin A)
7 Magnetic Fields
7 Graviola
7 Piperlongumine
6 Cisplatin
6 Boron
6 Ursolic acid
6 Magnolol
5 5-fluorouracil
5 Paclitaxel
5 Astaxanthin
5 Boswellia (frankincense)
5 Phenethyl isothiocyanate
5 Rosmarinic acid
5 Urolithin
4 Alpha-Lipoic-Acid
4 Artemisinin
4 Melatonin
4 Emodin
4 Propolis -bee glue
4 Selenium
3 Metformin
3 Radiotherapy/Radiation
3 Capsaicin
3 chitosan
3 Chrysin
3 Ellagic acid
3 Ferulic acid
3 Juglone
3 Laetrile B17 Amygdalin
3 Photodynamic Therapy
3 Nimbolide
3 Oleuropein
3 Phenylbutyrate
3 isoflavones
3 VitK3,menadione
2 Andrographis
2 Gemcitabine (Gemzar)
2 Astragalus
2 Chemotherapy
2 Genistein (soy isoflavone)
2 Citric Acid
2 Docetaxel
2 Gambogic Acid
2 tamoxifen
2 HydroxyTyrosol
2 doxorubicin
2 salinomycin
2 Taurine
2 Vitamin K2
1 Coenzyme Q10
1 Acoschimperoside P, 2’-acetate
1 alpha Linolenic acid
1 Aspirin -acetylsalicylic acid
1 immunotherapy
1 Aloe vera
1 beta-glucans
1 Butyrate
1 epirubicin
1 D-limonene
1 selenomethionine
1 Caffeic acid
1 Carvacrol
1 Chlorogenic acid
1 Prebiotic
1 Cinnamon
1 Crocetin
1 Copper and Cu NanoParticlex
1 Oxaliplatin
1 Dichloroacetophenone(2,2-)
1 Dichloroacetate
1 Date Fruit Extract
1 Evodiamine
1 Electrical Pulses
1 Gallic acid
1 carboplatin
1 Ginkgo biloba
1 γ-linolenic acid (Borage Oil)
1 Gold NanoParticles
1 Hydrogen Gas
1 HydroxyCitric Acid
1 Bicarbonate
1 Baicalin
1 Huperzine A/Huperzia serrata
1 Licorice
1 Methylene blue
1 Magnetic Field Rotating
1 Methylglyoxal
1 Mushroom Shiitake, AHCC
1 Naringin
1 Oleocanthal
1 Orlistat
1 Parthenolide
1 sericin
1 Physalin F & B
1 Propyl gallate
1 Psoralidin
1 Pterostilbene
1 Sanguinarine
1 Scoulerine
1 polyethylene glycol
1 Auranofin
1 Salvia miltiorrhiza
1 Camptothecin
1 SonoDynamic Therapy UltraSound
1 Spermidine
1 Tomatine
1 Vitamin D3
1 Zerumbone
Query results interpretion may depend on "conditions" listed in the research papers.
Such Conditions may include : 
  -low or high Dose
  -format for product, such as nano of lipid formations
  -different cell line effects
  -synergies with other products 
  -if effect was for normal or cancerous cells
Filter Conditions: Pro/AntiFlg:%  IllCat:%  CanType:%  Cells:%  prod#:%  Target#:27  State#:%  Dir#:%
wNotes=0 sortOrder:rid,rpid

 

Home Page