| Source: |
| Type: pro-survival proteins |
| The proteins of BCL-2 family are classified into three subgroups, i.e., the anti-apoptotic/pro-survival proteins represented by BCL-2 and BCL-XL. BCL-XL overexpressing cells exhibited higher tumors sphere formation capacity and expressed higher levels of some stem cell markers, supporting the concept that BCL-XL plays essential roles in the maintenance of cancer stem cell phenotype. |
| 304- | ALA, | alpha-Lipoic acid induces apoptosis in human colon cancer cells by increasing mitochondrial respiration with a concomitant O2-*-generation |
| - | in-vitro, | Colon, | HT-29 |
| 278- | ALA, | The Multifaceted Role of Alpha-Lipoic Acid in Cancer Prevention, Occurrence, and Treatment |
| - | Review, | NA, | NA |
| 277- | ALA, | α-lipoic acid modulates prostate cancer cell growth and bone cell differentiation |
| - | in-vitro, | Pca, | 22Rv1 | - | in-vitro, | Pca, | C4-2B |
| 266- | ALA, | Lipoic acid decreases Mcl-1, Bcl-xL and up regulates Bim on ovarian carcinoma cells leading to cell death |
| - | in-vitro, | Ovarian, | IGROV1 |
| 577- | Api, | PacT, | Inhibition of IL-6/STAT3 axis and targeting Axl and Tyro3 receptor tyrosine kinases by apigenin circumvent taxol resistance in ovarian cancer cells |
| - | in-vitro, | Ovarian, | SKOV3 |
| 208- | Api, | Apigenin induces apoptosis by targeting inhibitor of apoptosis proteins and Ku70–Bax interaction in prostate cancer |
| - | in-vivo, | Pca, | PC3 | - | in-vivo, | Pca, | DU145 |
| 180- | Api, | Induction of caspase-dependent apoptosis by apigenin by inhibiting STAT3 signaling in HER2-overexpressing MDA-MB-453 breast cancer cells |
| - | in-vitro, | BC, | MDA-MB-231 |
| 211- | Api, | Suppression of NF-κB and NF-κB-Regulated Gene Expression by Apigenin through IκBα and IKK Pathway in TRAMP Mice |
| - | in-vivo, | Pca, | NA |
| 178- | Api, | Autophagy inhibition enhances apigenin-induced apoptosis in human breast cancer cells |
| - | in-vivo, | BC, | MDA-MB-231 | - | in-vitro, | BC, | T47D |
| 1537- | Api, | Apigenin as Tumor Suppressor in Cancers: Biotherapeutic Activity, Nanodelivery, and Mechanisms With Emphasis on Pancreatic Cancer |
| - | Review, | PC, | NA |
| 1564- | Api, | Apigenin-induced prostate cancer cell death is initiated by reactive oxygen species and p53 activation |
| - | in-vitro, | Pca, | 22Rv1 | - | in-vivo, | NA, | NA |
| 1545- | Api, | The Potential Role of Apigenin in Cancer Prevention and Treatment |
| - | Review, | NA, | NA |
| 2632- | Api, | Apigenin inhibits migration and induces apoptosis of human endometrial carcinoma Ishikawa cells via PI3K-AKT-GSK-3β pathway and endoplasmic reticulum stress |
| - | in-vitro, | EC, | NA |
| 565- | ART/DHA, | Artesunate as an Anti-Cancer Agent Targets Stat-3 and Favorably Suppresses Hepatocellular Carcinoma |
| 564- | ART/DHA, | Cisplatin, | Dihydroartemisinin as a Putative STAT3 Inhibitor, Suppresses the Growth of Head and Neck Squamous Cell Carcinoma by Targeting Jak2/STAT3 Signaling |
| - | in-vitro, | NA, | HN30 |
| 1334- | AS, | Astragalus membranaceus: A Review of Its Antitumor Effects on Non-Small Cell Lung Cancer |
| - | Review, | NA, | NA |
| 2047- | BA, | Sodium butyrate inhibits migration and induces AMPK-mTOR pathway-dependent autophagy and ROS-mediated apoptosis via the miR-139-5p/Bmi-1 axis in human bladder cancer cells |
| - | in-vitro, | CRC, | T24 | - | in-vitro, | Nor, | SV-HUC-1 | - | in-vitro, | Bladder, | 5637 | - | in-vivo, | NA, | NA |
| 2606- | Ba, | Baicalein: A review of its anti-cancer effects and mechanisms in Hepatocellular Carcinoma |
| - | Review, | HCC, | NA |
| 2608- | Ba, | Baicalein sensitizes hepatocellular carcinoma cells to 5-FU and Epirubicin by activating apoptosis and ameliorating P-glycoprotein activity |
| - | in-vitro, | HCC, | Bel-7402 |
| 2290- | Ba, | Research Progress of Scutellaria baicalensis in the Treatment of Gastrointestinal Cancer |
| - | Review, | GI, | NA |
| 2296- | Ba, | The most recent progress of baicalein in its anti-neoplastic effects and mechanisms |
| - | Review, | Var, | NA |
| 2674- | BBR, | Berberine: A novel therapeutic strategy for cancer |
| - | Review, | Var, | NA | - | Review, | IBD, | NA |
| 2737- | BetA, | Multiple molecular targets in breast cancer therapy by betulinic acid |
| - | Review, | Var, | NA |
| 726- | Bor, | Redox Mechanisms Underlying the Cytostatic Effects of Boric Acid on Cancer Cells—An Issue Still Open |
| - | Review, | NA, | NA |
| 742- | Bor, | In Vitro Effects of Boric Acid on Cell Cycle, Apoptosis, and miRNAs in Medullary Thyroid Cancer Cells |
| - | in-vitro, | Thyroid, | NA |
| 1169- | Bos, | Boswellic Acid Inhibits Growth and Metastasis of Human Colorectal Cancer in Orthotopic Mouse Model By Downregulating Inflammatory, Proliferative, Invasive, and Angiogenic Biomarkers |
| - | in-vivo, | CRC, | NA |
| 1422- | Bos, | Boswellic acid exerts antitumor effects in colorectal cancer cells by modulating expression of the let-7 and miR-200 microRNA family |
| - | in-vitro, | CRC, | NA | - | in-vivo, | NA, | NA |
| 2773- | Bos, | Targeted inhibition of tumor proliferation, survival, and metastasis by pentacyclic triterpenoids: Potential role in prevention and therapy of cancer |
| - | Review, | Var, | NA |
| 2785- | CHr, | Emerging cellular and molecular mechanisms underlying anticancer indications of chrysin |
| - | Review, | Var, | NA |
| 1055- | Cin, | Cinnamon extract induces tumor cell death through inhibition of NFκB and AP1 |
| - | vitro+vivo, | Melanoma, | NA | - | vitro+vivo, | CRC, | NA | - | vitro+vivo, | lymphoma, | NA |
| 1578- | Citrate, | Understanding the Central Role of Citrate in the Metabolism of Cancer Cells and Tumors: An Update |
| - | Review, | Var, | NA |
| 4826- | CUR, | The Bright Side of Curcumin: A Narrative Review of Its Therapeutic Potential in Cancer Management |
| - | Review, | Var, | NA |
| 152- | CUR, | Anti-cancer activity of curcumin loaded nanoparticles in prostate cancer |
| - | in-vivo, | Pca, | NA |
| 136- | CUR, | docx, | Combinatorial effect of curcumin with docetaxel modulates apoptotic and cell survival molecules in prostate cancer |
| - | in-vitro, | Pca, | DU145 | - | in-vitro, | Pca, | PC3 |
| 170- | CUR, | Curcumin sensitizes TRAIL-resistant xenografts: molecular mechanisms of apoptosis, metastasis and angiogenesis |
| - | vitro+vivo, | Pca, | PC3 |
| 15- | CUR, | UA, | Effects of curcumin and ursolic acid in prostate cancer: A systematic review |
| 457- | CUR, | Curcumin regulates proliferation, autophagy, and apoptosis in gastric cancer cells by affecting PI3K and P53 signaling |
| - | in-vitro, | GC, | SGC-7901 | - | in-vitro, | GC, | BGC-823 |
| 1871- | DAP, | Targeting PDK1 with dichloroacetophenone to inhibit acute myeloid leukemia (AML) cell growth |
| - | in-vitro, | AML, | U937 | - | in-vivo, | AML, | NA |
| 1613- | EA, | Ellagitannins in Cancer Chemoprevention and Therapy |
| - | Review, | Var, | NA |
| 1605- | EA, | Ellagic Acid and Cancer Hallmarks: Insights from Experimental Evidence |
| - | Review, | Var, | NA |
| 651- | EGCG, | Epigallocatechin-3-Gallate Therapeutic Potential in Cancer: Mechanism of Action and Clinical Implications |
| 692- | EGCG, | EGCG: The antioxidant powerhouse in lung cancer management and chemotherapy enhancement |
| - | Review, | NA, | NA |
| 3201- | EGCG, | Epigallocatechin Gallate (EGCG): Pharmacological Properties, Biological Activities and Therapeutic Potential |
| - | Review, | NA, | NA |
| 1516- | EGCG, | Epigallocatechin Gallate (EGCG): Pharmacological Properties, Biological Activities and Therapeutic Potential |
| - | Review, | NA, | NA |
| 2844- | FIS, | Fisetin, a dietary flavonoid induces apoptosis via modulating the MAPK and PI3K/Akt signalling pathways in human osteosarcoma (U-2 OS) cells |
| - | in-vitro, | OS, | U2OS |
| 2832- | FIS, | Fisetin's Promising Antitumor Effects: Uncovering Mechanisms and Targeting for Future Therapies |
| - | Review, | Var, | NA |
| 826- | GAR, | Inhibition of STAT3 dimerization and acetylation by garcinol suppresses the growth of human hepatocellular carcinoma in vitro and in vivo |
| - | vitro+vivo, | HCC, | HepG2 | - | vitro+vivo, | Liver, | HUH7 |
| 798- | GAR, | Garcinol, an acetyltransferase inhibitor, suppresses proliferation of breast cancer cell line MCF-7 promoted by 17β-estradiol |
| - | in-vitro, | BC, | MCF-7 |
| 2073- | HNK, | Honokiol induces apoptosis and autophagy via the ROS/ERK1/2 signaling pathway in human osteosarcoma cells in vitro and in vivo |
| - | in-vitro, | OS, | U2OS | - | in-vivo, | NA, | NA |
| 1923- | JG, | Mechanism of Juglone-Induced Cell Cycle Arrest and Apoptosis in Ishikawa Human Endometrial Cancer Cells |
| - | in-vitro, | Endo, | NA |
| 2924- | LT, | Luteolin selectively kills STAT3 highly activated gastric cancer cells through enhancing the binding of STAT3 to SHP-1 |
| - | in-vitro, | GC, | NA | - | in-vivo, | NA, | NA |
| 2906- | LT, | Luteolin, a flavonoid with potentials for cancer prevention and therapy |
| - | Review, | Var, | NA |
| 4519- | MAG, | Magnolol: A Neolignan from the Magnolia Family for the Prevention and Treatment of Cancer |
| - | Review, | Var, | NA |
| 194- | MF, | Electromagnetic Field as a Treatment for Cerebral Ischemic Stroke |
| - | Review, | Stroke, | NA |
| 1269- | NCL, | Identification of Niclosamide as a New Small-Molecule Inhibitor of the STAT3 Signaling Pathway |
| - | in-vitro, | Pca, | DU145 |
| 2045- | PB, | Phenylbutyrate—a pan-HDAC inhibitor—suppresses proliferation of glioblastoma LN-229 cell line |
| - | in-vitro, | GBM, | LN229 | - | in-vitro, | GBM, | LN-18 |
| 2064- | PB, | Rad, | Phenylbutyrate Attenuates the Expression of Bcl-XL, DNA-PK, Caveolin-1, and VEGF in Prostate Cancer Cells |
| - | in-vitro, | Pca, | PC3 | - | in-vitro, | Pca, | DU145 | - | in-vitro, | Pca, | LNCaP |
| 4923- | PEITC, | Quantitative chemical proteomics reveals that phenethyl isothiocyanate covalently targets BID to promote apoptosis |
| - | Study, | Var, | NA |
| 1947- | PL, | Piperlongumine as a direct TrxR1 inhibitor with suppressive activity against gastric cancer |
| - | in-vitro, | GC, | SGC-7901 | - | in-vitro, | GC, | NA |
| 78- | QC, | Effects of quercetin on insulin-like growth factors (IGFs) and their binding protein-3 (IGFBP-3) secretion and induction of apoptosis in human prostate cancer cells |
| - | in-vitro, | Pca, | PC3 |
| 83- | QC, | Quercetin induces p53-independent apoptosis in human prostate cancer cells by modulating Bcl-2-related proteins: a possible mediation by IGFBP-3 |
| - | in-vitro, | Pca, | PC3 |
| 84- | QC, | Quercetin-induced growth inhibition and cell death in prostatic carcinoma cells (PC-3) are associated with increase in p21 and hypophosphorylated retinoblastoma proteins expression |
| - | in-vitro, | Pca, | PC3 |
| 881- | RES, | Resveratrol inhibits Src and Stat3 signaling and induces the apoptosis of malignant cells containing activated Stat3 protein |
| - | in-vitro, | BC, | MDA-MB-231 | - | in-vitro, | PC, | PANC1 | - | in-vitro, | Pca, | DU145 |
| 882- | RES, | Resveratrol: A Double-Edged Sword in Health Benefits |
| - | Review, | NA, | NA |
| 3061- | RES, | The Anticancer Effects of Resveratrol: Modulation of Transcription Factors |
| - | Review, | Var, | NA |
| 3003- | RosA, | Comprehensive Insights into Biological Roles of Rosmarinic Acid: Implications in Diabetes, Cancer and Neurodegenerative Diseases |
| - | Review, | Var, | NA | - | Review, | AD, | NA | - | Review, | Park, | NA |
| 2446- | SFN, | CAP, | The Molecular Effects of Sulforaphane and Capsaicin on Metabolism upon Androgen and Tip60 Activation of Androgen Receptor |
| - | in-vitro, | Pca, | LNCaP |
| 1469- | SFN, | Sulforaphane enhances the therapeutic potential of TRAIL in prostate cancer orthotopic model through regulation of apoptosis, metastasis, and angiogenesis |
| - | in-vitro, | Pca, | PC3 | - | in-vitro, | Pca, | LNCaP | - | in-vivo, | Pca, | NA |
| 3301- | SIL, | Critical review of therapeutic potential of silymarin in cancer: A bioactive polyphenolic flavonoid |
| - | Review, | Var, | NA |
| 3288- | SIL, | Silymarin in cancer therapy: Mechanisms of action, protective roles in chemotherapy-induced toxicity, and nanoformulations |
| - | Review, | Var, | NA |
| 3293- | SIL, | Silymarin (milk thistle extract) as a therapeutic agent in gastrointestinal cancer |
| - | Review, | Var, | NA |
| 2230- | SK, | Shikonin induces ROS-based mitochondria-mediated apoptosis in colon cancer |
| - | in-vitro, | CRC, | HCT116 | - | in-vivo, | NA, | NA |
| 324- | SNP, | CPT, | Silver Nanoparticles Potentiates Cytotoxicity and Apoptotic Potential of Camptothecin in Human Cervical Cancer Cells |
| - | in-vitro, | Cerv, | HeLa |
| 3950- | Taur, | Taurine Supplementation as a Neuroprotective Strategy upon Brain Dysfunction in Metabolic Syndrome and Diabetes |
| - | Review, | Diabetic, | NA | - | Review, | Stroke, | NA | - | Review, | AD, | NA |
| 3429- | TQ, | Thymoquinone exerts potent growth-suppressive activity on leukemia through DNA hypermethylation reversal in leukemia cells |
| - | in-vitro, | AML, | NA | - | in-vivo, | NA, | NA |
| 3423- | TQ, | Epigenetic role of thymoquinone: impact on cellular mechanism and cancer therapeutics |
| - | Review, | Var, | NA |
| 3422- | TQ, | Thymoquinone, as a Novel Therapeutic Candidate of Cancers |
| - | Review, | Var, | NA |
| 3414- | TQ, | Thymoquinone induces apoptosis through inhibition of JAK2/STAT3 signaling via production of ROS in human renal cancer Caki cells |
| - | in-vitro, | RCC, | Caki-1 |
| 2121- | TQ, | Thymoquinone Inhibits Tumor Growth and Induces Apoptosis in a Breast Cancer Xenograft Mouse Model: The Role of p38 MAPK and ROS |
| - | in-vitro, | BC, | MCF-7 | - | in-vitro, | BC, | MDA-MB-231 |
| 2120- | TQ, | Thymoquinone induces apoptosis of human epidermoid carcinoma A431 cells through ROS-mediated suppression of STAT3 |
| - | in-vitro, | Melanoma, | A431 |
| 2102- | TQ, | A review on therapeutic potential of Nigella sativa: A miracle herb |
| - | Review, | Var, | NA |
| 2100- | TQ, | Dual properties of Nigella Sative: Anti-oxidant and Pro-oxidant |
| - | Review, | NA, | NA |
| 2095- | TQ, | Review on the Potential Therapeutic Roles of Nigella sativa in the Treatment of Patients with Cancer: Involvement of Apoptosis |
| - | Review, | Var, | NA |
| 2108- | TQ, | Anti-cancer properties and mechanisms of action of thymoquinone, the major active ingredient of Nigella sativa |
| - | Review, | Var, | NA |
| 2085- | TQ, | Anticancer Activities of Nigella Sativa (Black Cumin) |
| - | Review, | Var, | NA |
| 2084- | TQ, | Thymoquinone, as an anticancer molecule: from basic research to clinical investigation |
| - | Review, | Var, | NA |
| 4565- | TQ, | Thymoquinone in the clinical treatment of cancer: Fact or fiction? |
| - | Review, | BC, | NA |
| 2353- | TQ, | The effects of thymoquinone on pancreatic cancer: Evidence from preclinical studies |
| - | Review, | PC, | NA |
| 2411- | UA, | Ursolic acid in health and disease |
| - | Review, | Var, | NA |
| 1838- | VitK3, | PDT, | Photodynamic Effects of Vitamin K3 on Cervical Carcinoma Cells Activating Mitochondrial Apoptosis Pathways |
| - | in-vitro, | Cerv, | NA |
Query results interpretion may depend on "conditions" listed in the research papers. Such Conditions may include : -low or high Dose -format for product, such as nano of lipid formations -different cell line effects -synergies with other products -if effect was for normal or cancerous cells
Filter Conditions: Pro/AntiFlg:% IllCat:% CanType:% Cells:% prod#:% Target#:28 State#:% Dir#:%
wNotes=0 sortOrder:rid,rpid