| Source: CGL-Driver Genes |
| Type: TSG |
| SMAD2 (SMAD family member 2) is a protein that plays a crucial role in the transforming growth factor-beta (TGF-β) signaling pathway, which is involved in various cellular processes, including cell growth, differentiation, and apoptosis. In some cancers, SMAD2 functions as a tumor suppressor. TGF-β signaling can inhibit cell proliferation and promote apoptosis in normal and early-stage cancer cells. In this context, SMAD2 helps to mediate these effects, and its loss or mutation can contribute to tumor progression. Conversely, in advanced cancers, TGF-β signaling can promote tumor progression and metastasis. In these cases, SMAD2 may contribute to the epithelial-to-mesenchymal transition (EMT), a process that allows cancer cells to acquire migratory and invasive properties. This dual role can make targeting the TGF-β/SMAD2 pathway challenging in cancer therapy. |
| 1124- | ALA, | Alpha lipoic acid inhibits proliferation and epithelial mesenchymal transition of thyroid cancer cells |
| - | in-vitro, | Thyroid, | BCPAP | - | in-vitro, | Thyroid, | HTH-83 | - | in-vitro, | Thyroid, | CAL-62 | - | in-vitro, | Thyroid, | FTC-133 | - | in-vivo, | NA, | NA |
| 1093- | And, | Andrographolide attenuates epithelial‐mesenchymal transition induced by TGF‐β1 in alveolar epithelial cells |
| - | in-vitro, | Lung, | A549 |
| 238- | Api, | Apigenin inhibits TGF-β-induced VEGF expression in human prostate carcinoma cells via a Smad2/3- and Src-dependent mechanism |
| - | in-vitro, | Pca, | PC3 | - | in-vitro, | Pca, | LNCaP | - | in-vitro, | Pca, | C4-2B |
| 1181- | Ash, | Withaferin A inhibits Epithelial to Mesenchymal Transition in Non-Small Cell Lung Cancer Cells |
| - | in-vitro, | Lung, | A549 | - | in-vitro, | Lung, | H1299 |
| 1173- | Ash, | Withaferin A inhibits proliferation of human endometrial cancer cells via transforming growth factor-β (TGF-β) signalling |
| - | in-vitro, | EC, | K1 | - | in-vitro, | Nor, | THESCs |
| 2763- | BetA, | Betulinic Acid Inhibits the Stemness of Gastric Cancer Cells by Regulating the GRP78-TGF-β1 Signaling Pathway and Macrophage Polarization |
| - | in-vitro, | GC, | NA |
| 447- | CUR, | OXA, | Curcumin reverses oxaliplatin resistance in human colorectal cancer via regulation of TGF-β/Smad2/3 signaling pathway |
| - | vitro+vivo, | CRC, | HCT116 |
| 1110- | EA, | GEM, | Ellagic Acid Resensitizes Gemcitabine-Resistant Bladder Cancer Cells by Inhibiting Epithelial-Mesenchymal Transition and Gemcitabine Transporters |
| - | vitro+vivo, | Bladder, | NA |
| 1072- | EGCG, | Epigallocatechin gallate (EGCG) suppresses epithelial-Mesenchymal transition (EMT) and invasion in anaplastic thyroid carcinoma cells through blocking of TGF-β1/Smad signaling pathways |
| - | in-vitro, | Thyroid, | 8505C |
| 817- | GAR, | Garcinol inhibits esophageal cancer metastasis by suppressing the p300 and TGF-β1 signaling pathways |
| - | vitro+vivo, | SCC, | KYSE150 | - | vitro+vivo, | SCC, | KYSE450 |
| - | vitro+vivo, | Kidney, | HK-2 |
| 1118- | Ge, | Grape Seed Proanthocyanidins Inhibit Migration and Invasion of Bladder Cancer Cells by Reversing EMT through Suppression of TGF- β Signaling Pathway |
| - | in-vitro, | Bladder, | T24 | - | in-vitro, | Bladder, | 5637 |
| 2882- | HNK, | Honokiol Suppresses Perineural Invasion of Pancreatic Cancer by Inhibiting SMAD2/3 Signaling |
| - | in-vitro, | PC, | PANC1 |
| 2884- | HNK, | Honokiol inhibits EMT-mediated motility and migration of human non-small cell lung cancer cells in vitro by targeting c-FLIP |
| - | in-vitro, | Lung, | A549 | - | in-vitro, | Lung, | H460 |
| - | in-vitro, | BC, | MDA-MB-231 | - | in-vitro, | BC, | BT549 | - | in-vitro, | BC, | SUM159 |
| 1266- | LE, | Glycyrrhizin suppresses epithelial-mesenchymal transition by inhibiting high-mobility group box1 via the TGF-β1/Smad2/3 pathway in lung epithelial cells |
| - | in-vitro, | Lung, | A549 | - | in-vitro, | Nor, | BEAS-2B |
| 4520- | MAG, | Magnolol Suppresses Pancreatic Cancer Development In Vivo and In Vitro via Negatively Regulating TGF-β/Smad Signaling |
| - | vitro+vivo, | PC, | PANC1 |
| 3478- | MF, | One Month of Brief Weekly Magnetic Field Therapy Enhances the Anticancer Potential of Female Human Sera: Randomized Double-Blind Pilot Study |
| - | Trial, | BC, | NA | - | in-vitro, | BC, | MCF-7 | - | in-vitro, | Nor, | C2C12 |
| 1059- | PI, | Piperine Inhibits TGF-β Signaling Pathways and Disrupts EMT-Related Events in Human Lung Adenocarcinoma Cells |
| - | in-vitro, | Lung, | A549 | - | in-vitro, | BC, | MDA-MB-231 | - | in-vitro, | Liver, | HepG2 |
| 3604- | QC, | Quercetin enrich diet during the early-middle not middle-late stage of alzheimer’s disease ameliorates cognitive dysfunction |
| - | in-vivo, | AD, | NA |
| 878- | RES, | Resveratrol suppresses epithelial-to-mesenchymal transition in colorectal cancer through TGF-β1/Smads signaling pathway mediated Snail/E-cadherin expression |
| - | vitro+vivo, | CRC, | LoVo |
| 3098- | RES, | Regulation of Cell Signaling Pathways and miRNAs by Resveratrol in Different Cancers |
| - | Review, | Var, | NA |
| 3092- | RES, | Resveratrol in breast cancer treatment: from cellular effects to molecular mechanisms of action |
| - | Review, | BC, | MDA-MB-231 | - | Review, | BC, | MCF-7 |
| 1134- | SANG, | Sanguinarine inhibits epithelial–mesenchymal transition via targeting HIF-1α/TGF-β feed-forward loop in hepatocellular carcinoma |
| - | in-vitro, | HCC, | HepG2 | - | in-vitro, | HCC, | Hep3B | - | in-vitro, | HCC, | HUH7 |
| 1133- | SM, | Salvianolic Acid A, a Component of Salvia miltiorrhiza, Attenuates Endothelial-Mesenchymal Transition of HPAECs Induced by Hypoxia |
| - | in-vitro, | Nor, | HPAECs |
| 1138- | TQ, | Thymoquinone inhibits epithelial-mesenchymal transition in prostate cancer cells by negatively regulating the TGF-β/Smad2/3 signaling pathway |
| - | in-vitro, | Pca, | DU145 | - | in-vitro, | Pca, | PC3 |
Query results interpretion may depend on "conditions" listed in the research papers. Such Conditions may include : -low or high Dose -format for product, such as nano of lipid formations -different cell line effects -synergies with other products -if effect was for normal or cancerous cells
Filter Conditions: Pro/AntiFlg:% IllCat:% CanType:% Cells:% prod#:% Target#:283 State#:% Dir#:%
wNotes=0 sortOrder:rid,rpid