| Source: CGL-Driver Genes |
| Type: HH Oncogene |
| Smoothened homolog (Drosophila) SMO, or Smoothened, is a protein that plays a crucial role in the Hedgehog signaling pathway, which is important for cell growth, differentiation, and tissue patterning during embryonic development. Inhibitors of SMO, such as vismodegib and sonidegib, have been developed as targeted therapies for cancers associated with aberrant Hedgehog signaling. SMO (Smoothened): - A G protein-coupled receptor (GPCR)-like protein that is a critical component of the Hedgehog (Hh) signaling pathway. - Functions in transmitting the Hedgehog signal from the cell surface to intracellular effectors, culminating in changes in gene expression. Aberrant Activation of the Hedgehog Pathway: - In many cancers, mutations or dysregulations in pathway components lead to ligand-independent or ligand-dependent activation of SMO. - This inappropriate activation can result in enhanced cell proliferation, survival, and stem cell-like Several cancers exhibit overexpression of SMO or activating mutations leading to Hedgehog pathway activation. Smoothened (SMO) is a critical mediator of the Hedgehog signaling pathway, with aberrant activation contributing to tumor growth, progression, and resistance to therapy. High expression or activating mutations in SMO are linked with a poor prognosis in certain cancer types, particularly in cancers that are dependent on Hedgehog pathway signaling such as basal cell carcinoma and medulloblastoma. By targeting SMO with specific inhibitors, researchers and clinicians are addressing one of the key drivers of tumorigenesis in these settings. |
| 1353- | And, | Andrographolide Induces Apoptosis and Cell Cycle Arrest through Inhibition of Aberrant Hedgehog Signaling Pathway in Colon Cancer Cells |
| - | in-vitro, | Colon, | HCT116 |
| 2617- | Ba, | Potential of baicalein in the prevention and treatment of cancer: A scientometric analyses based review |
| - | Review, | Var, | NA |
| 7- | BBR, | Berberine, a natural compound, suppresses Hedgehog signaling pathway activity and cancer growth |
| - | vitro+vivo, | MB, | NA |
| 10- | CUR, | Curcumin Suppresses Lung Cancer Stem Cells via Inhibiting Wnt/β-catenin and Sonic Hedgehog Pathways |
| - | in-vitro, | Lung, | A549 | - | in-vitro, | Lung, | H1299 |
| 11- | CUR, | Curcumin inhibits hypoxia-induced epithelial‑mesenchymal transition in pancreatic cancer cells via suppression of the hedgehog signaling pathway |
| - | in-vitro, | PC, | PANC1 |
| 22- | EGCG, | Inhibition of sonic hedgehog pathway and pluripotency maintaining factors regulate human pancreatic cancer stem cell characteristics |
| - | in-vitro, | PC, | CD133+ | - | in-vitro, | PC, | CD44+ | - | in-vitro, | PC, | CD24+ | - | in-vitro, | PC, | ESA+ |
| 21- | EGCG, | Tea polyphenols EGCG and TF restrict tongue and liver carcinogenesis simultaneously induced by N-nitrosodiethylamine in mice |
| - | in-vivo, | Liver, | NA |
| 20- | EGCG, | Potential Therapeutic Targets of Epigallocatechin Gallate (EGCG), the Most Abundant Catechin in Green Tea, and Its Role in the Therapy of Various Types of Cancer |
| - | in-vivo, | Liver, | NA | - | in-vivo, | Tong, | NA |
| 651- | EGCG, | Epigallocatechin-3-Gallate Therapeutic Potential in Cancer: Mechanism of Action and Clinical Implications |
| 28- | GEN, | Genistein decreases the breast cancer stem-like cell population through Hedgehog pathway |
| - | in-vivo, | BC, | MCF-7 |
| - | in-vitro, | NMSC, | A431 | - | in-vitro, | NMSC, | UW-BCC1 | - | in-vitro, | Nor, | NHEKn |
| 33- | InA, | Inoscavin A, a pyrone compound isolated from a Sanghuangporus vaninii extract, inhibits colon cancer cell growth and induces cell apoptosis via the hedgehog signaling pathway |
| - | vitro+vivo, | Colon, | NA |
| 2179- | itraC, | Repurposing itraconazole for the treatment of cancer |
| - | Review, | Var, | NA |
| 102- | RES, | Effect of resveratrol on proliferation and apoptosis of human pancreatic cancer MIA PaCa-2 cells may involve inhibition of the Hedgehog signaling pathway |
| - | in-vitro, | PC, | MIA PaCa-2 |
| 3098- | RES, | Regulation of Cell Signaling Pathways and miRNAs by Resveratrol in Different Cancers |
| - | Review, | Var, | NA |
| 4663- | RES, | Exploring resveratrol’s inhibitory potential on lung cancer stem cells: a scoping review of mechanistic pathways across cancer models |
| - | Review, | Var, | NA |
| 4900- | Sal, | Anticancer Mechanisms of Salinomycin in Breast Cancer and Its Clinical Applications |
| - | Review, | BC, | NA |
| 110- | SFN, | Sulforaphane regulates self-renewal of pancreatic cancer stem cells through the modulation of Sonic hedgehog-GLI pathway |
| - | in-vivo, | PC, | NA |
| 3197- | SFN, | Sulforaphane Inhibits Self-renewal of Lung Cancer Stem Cells Through the Modulation of Polyhomeotic Homolog 3 and Sonic Hedgehog Signaling Pathways |
| - | in-vitro, | Lung, | A549 | - | in-vitro, | Lung, | H460 |
| 2448- | SFN, | Sulforaphane and bladder cancer: a potential novel antitumor compound |
| - | Review, | Bladder, | NA |
| 1733- | SFN, | Sonic Hedgehog Signaling Inhibition Provides Opportunities for Targeted Therapy by Sulforaphane in Regulating Pancreatic Cancer Stem Cell Self-Renewal |
| - | in-vitro, | PC, | PanCSC | - | in-vitro, | Nor, | HPNE | - | in-vitro, | Nor, | HNPSC |
| 1731- | SFN, | Targeting cancer stem cells with sulforaphane, a dietary component from broccoli and broccoli sprouts |
| - | Review, | Var, | NA |
| 107- | SS, | Saikosaponin B1 and Saikosaponin D inhibit tumor growth in medulloblastoma allograft mice via inhibiting the Hedgehog signaling pathway |
| - | vitro+vivo, | MB, | NA |
Query results interpretion may depend on "conditions" listed in the research papers. Such Conditions may include : -low or high Dose -format for product, such as nano of lipid formations -different cell line effects -synergies with other products -if effect was for normal or cancerous cells
Filter Conditions: Pro/AntiFlg:% IllCat:% CanType:% Cells:% prod#:% Target#:287 State#:% Dir#:%
wNotes=0 sortOrder:rid,rpid