| Source: |
| Type: Protein Coding gene |
| Beclin 1, an autophagy and haploinsufficient tumor-suppressor protein, is frequently monoallelically deleted in breast and ovarian cancers. However, the precise mechanisms by which Beclin 1 inhibits tumor growth remain largely unknown. A key biomarker of autophagy is Beclin-1. Beclin-1 stimulates LC3-I’s lipidation to produce LC3-II, which localizes to the autophagosome membrane to activate the development of autophagosomes. -BECN1 = the official gene symbol (human gene name) -Beclin-1 = the protein name encoded by the BECN1 gene |
| 250- | AL, | Allicin Induces p53-Mediated Autophagy in Hep G2 Human Liver Cancer Cells |
| - | in-vitro, | Liver, | HepG2 |
| 265- | ALA, | Alpha-Lipoic Acid Reduces Cell Growth, Inhibits Autophagy, and Counteracts Prostate Cancer Cell Migration and Invasion: Evidence from In Vitro Studies |
| - | in-vitro, | Pca, | LNCaP | - | in-vitro, | Pca, | DU145 |
| 584- | Api, | Cisplatin, | Apigenin potentiates the antitumor activity of 5-FU on solid Ehrlich carcinoma: Crosstalk between apoptotic and JNK-mediated autophagic cell death platforms |
| - | in-vivo, | Var, | NA |
| 313- | Api, | Apigenin induces autophagic cell death in human papillary thyroid carcinoma BCPAP cells |
| - | in-vitro, | Thyroid, | BCPAP |
| 3383- | ART/DHA, | Dihydroartemisinin: A Potential Natural Anticancer Drug |
| - | Review, | Var, | NA |
| 1528- | Ba, | Inhibiting reactive oxygen species-dependent autophagy enhanced baicalein-induced apoptosis in oral squamous cell carcinoma |
| - | in-vitro, | OS, | CAL27 |
| 2677- | BBR, | Liposome-Encapsulated Berberine Alleviates Liver Injury in Type 2 Diabetes via Promoting AMPK/mTOR-Mediated Autophagy and Reducing ER Stress: Morphometric and Immunohistochemical Scoring |
| - | in-vivo, | Diabetic, | NA |
| 3679- | BBR, | Berberine alleviates Alzheimer's disease by activating autophagy and inhibiting ferroptosis through the JNK-p38MAPK signaling pathway |
| - | in-vivo, | AD, | NA |
| 4298- | BBR, | Berberine mitigates cognitive decline in an Alzheimer’s Disease Mouse Model by targeting both tau hyperphosphorylation and autophagic clearance |
| - | in-vivo, | AD, | NA |
| 2720- | BetA, | Betulinic acid induces apoptosis of HeLa cells via ROS-dependent ER stress and autophagy in vitro and in vivo |
| - | in-vitro, | Cerv, | HeLa |
| 739- | Bor, | Borax regulates iron chaperone- and autophagy-mediated ferroptosis pathway in glioblastoma cells |
| - | in-vitro, | GBM, | U87MG | - | in-vitro, | Nor, | HMC3 |
| 1580- | Citrate, | Citrate activates autophagic death of prostate cancer cells via downregulation CaMKII/AKT/mTOR pathway |
| - | in-vitro, | Pca, | PC3 | - | in-vivo, | PC, | NA | - | in-vitro, | Pca, | LNCaP | - | in-vitro, | Pca, | WPMY-1 |
| 4776- | CoQ10, | Antitumor properties of Coenzyme Q0 against human ovarian carcinoma cells via induction of ROS-mediated apoptosis and cytoprotective autophagy |
| - | vitro+vivo, | Ovarian, | SKOV3 |
| 4772- | CoQ10, | The anti-tumor activities of coenzyme Q0 through ROS-mediated autophagic cell death in human triple-negative breast cells |
| - | in-vitro, | BC, | MDA-MB-468 | - | in-vitro, | BC, | MDA-MB-231 |
| 1571- | Cu, | Copper in cancer: From pathogenesis to therapy |
| - | Review, | NA, | NA |
| 404- | CUR, | Curcumin induces ferroptosis in non-small-cell lung cancer via activating autophagy |
| - | vitro+vivo, | Lung, | A549 | - | vitro+vivo, | Lung, | H1299 |
| 435- | CUR, | Antitumor activity of curcumin by modulation of apoptosis and autophagy in human lung cancer A549 cells through inhibiting PI3K/Akt/mTOR pathway |
| - | in-vitro, | Lung, | A549 |
| 463- | CUR, | Curcumin induces autophagic cell death in human thyroid cancer cells |
| - | in-vitro, | Thyroid, | K1 | - | in-vitro, | Thyroid, | FTC-133 | - | in-vitro, | Thyroid, | BCPAP | - | in-vitro, | Thyroid, | 8505C |
| 471- | CUR, | Curcumin induces apoptotic cell death and protective autophagy by inhibiting AKT/mTOR/p70S6K pathway in human ovarian cancer cells |
| - | in-vitro, | Ovarian, | SKOV3 | - | in-vitro, | Ovarian, | A2780S |
| 448- | CUR, | Heat shock protein 27 influences the anti-cancer effect of curcumin in colon cancer cells through ROS production and autophagy activation |
| - | in-vitro, | CRC, | HT-29 |
| 457- | CUR, | Curcumin regulates proliferation, autophagy, and apoptosis in gastric cancer cells by affecting PI3K and P53 signaling |
| - | in-vitro, | GC, | SGC-7901 | - | in-vitro, | GC, | BGC-823 |
| 1871- | DAP, | Targeting PDK1 with dichloroacetophenone to inhibit acute myeloid leukemia (AML) cell growth |
| - | in-vitro, | AML, | U937 | - | in-vivo, | AML, | NA |
| 1863- | dietFMD, | Chemo, | Effect of fasting on cancer: A narrative review of scientific evidence |
| - | Review, | Var, | NA |
| 681- | EGCG, | Suppressing glucose metabolism with epigallocatechin-3-gallate (EGCG) reduces breast cancer cell growth in preclinical models |
| - | vitro+vivo, | BC, | NA |
| 3205- | EGCG, | The Role of Epigallocatechin-3-Gallate in Autophagy and Endoplasmic Reticulum Stress (ERS)-Induced Apoptosis of Human Diseas |
| - | Review, | Var, | NA | - | Review, | AD, | NA |
| 1656- | FA, | Ferulic Acid: A Natural Phenol That Inhibits Neoplastic Events through Modulation of Oncogenic Signaling |
| - | Review, | Var, | NA |
| 2827- | FIS, | The Potential Role of Fisetin, a Flavonoid in Cancer Prevention and Treatment |
| - | Review, | Var, | NA |
| 1970- | GamB, | Gambogic acid-induced autophagy in nonsmall cell lung cancer NCI-H441 cells through a reactive oxygen species pathway |
| - | NA, | Lung, | NCI-H441 |
| 1962- | GamB, | HCQ, | Gambogic acid induces autophagy and combines synergistically with chloroquine to suppress pancreatic cancer by increasing the accumulation of reactive oxygen species |
| - | in-vitro, | PC, | NA |
| 2507- | H2, | Hydrogen protects against chronic intermittent hypoxia induced renal dysfunction by promoting autophagy and alleviating apoptosis |
| - | in-vivo, | NA, | NA |
| 2865- | HNK, | Liposomal Honokiol induces ROS-mediated apoptosis via regulation of ERK/p38-MAPK signaling and autophagic inhibition in human medulloblastoma |
| - | in-vitro, | MB, | DAOY | - | vitro+vivo, | NA, | NA |
| 1917- | JG, | Inhibition of human leukemia cells growth by juglone is mediated via autophagy induction, endogenous ROS production, and inhibition of cell migration and invasion |
| - | in-vitro, | AML, | HL-60 |
| 2916- | LT, | Antioxidative and Anticancer Potential of Luteolin: A Comprehensive Approach Against Wide Range of Human Malignancies |
| - | Review, | Var, | NA | - | Review, | AD, | NA | - | Review, | Park, | NA |
| 2921- | LT, | Luteolin as a potential hepatoprotective drug: Molecular mechanisms and treatment strategies |
| - | Review, | Nor, | NA |
| 2912- | LT, | Luteolin: a flavonoid with a multifaceted anticancer potential |
| - | Review, | Var, | NA |
| 227- | MFrot, | MF, | Low Frequency Magnetic Fields Induce Autophagy-associated Cell Death in Lung Cancer through miR-486-mediated Inhibition of Akt/mTOR Signaling Pathway |
| - | in-vivo, | Lung, | A549 | - | in-vitro, | Lung, | A549 |
| 1993- | Part, | Parthenolide induces apoptosis and autophagy through the suppression of PI3K/Akt signaling pathway in cervical cancer |
| - | in-vitro, | Cerv, | HeLa |
| 2076- | PB, | Sodium Butyrate Induces Endoplasmic Reticulum Stress and Autophagy in Colorectal Cells: Implications for Apoptosis |
| - | in-vitro, | CRC, | HCT116 | - | in-vitro, | CRC, | HT29 |
| 3369- | QC, | Pharmacological basis and new insights of quercetin action in respect to its anti-cancer effects |
| - | Review, | Pca, | NA |
| 2983- | RES, | Resveratrol Improves Diabetic Retinopathy via Regulating MicroRNA-29b/Specificity Protein 1/Apoptosis Pathway by Enhancing Autophagy |
| - | in-vitro, | Nor, | NA |
| 3092- | RES, | Resveratrol in breast cancer treatment: from cellular effects to molecular mechanisms of action |
| - | Review, | BC, | MDA-MB-231 | - | Review, | BC, | MCF-7 |
| 4729- | Se, | Selenium regulates Nrf2 signaling to prevent hepatotoxicity induced by hexavalent chromium in broilers |
| 1018- | Sel, | Selenite-induced autophagy antagonizes apoptosis in colorectal cancer cells in vitro and in vivo |
| - | vitro+vivo, | CRC, | HCT116 | - | vitro+vivo, | CRC, | SW480 |
| 3298- | SIL, | Silibinin, a natural flavonoid, induces autophagy via ROS-dependent mitochondrial dysfunction and loss of ATP involving BNIP3 in human MCF7 breast cancer cells |
| - | in-vitro, | BC, | MCF-7 |
| 2229- | SK, | Shikonin induces apoptosis and prosurvival autophagy in human melanoma A375 cells via ROS-mediated ER stress and p38 pathways |
| - | in-vitro, | Melanoma, | A375 |
| 400- | SNP, | MF, | Polyvinyl Alcohol Capped Silver Nanostructures for Fortified Apoptotic Potential Against Human Laryngeal Carcinoma Cells Hep-2 Using Extremely-Low Frequency Electromagnetic Field |
| - | in-vitro, | Laryn, | HEp2 |
| 387- | SNP, | Silver nanoparticles induce mitochondria-dependent apoptosis and late non-canonical autophagy in HT-29 colon cancer cells |
| - | in-vitro, | Colon, | HT-29 |
| 4891- | Sper, | Spermidine as a promising anticancer agent: Recent advances and newer insights on its molecular mechanisms |
| - | Review, | Var, | NA | - | Review, | AD, | NA |
| 3427- | TQ, | Chemopreventive and Anticancer Effects of Thymoquinone: Cellular and Molecular Targets |
| 5024- | TQ, | Thymoquinone: A Tie-Breaker in SARS-CoV2-Infected Cancer Patients? |
| - | Review, | Covid, | NA |
| 4864- | Uro, | Therapeutic Potential of Mitophagy-Inducing Microflora Metabolite, Urolithin A for Alzheimer's Disease |
| - | Review, | AD, | NA |
Query results interpretion may depend on "conditions" listed in the research papers. Such Conditions may include : -low or high Dose -format for product, such as nano of lipid formations -different cell line effects -synergies with other products -if effect was for normal or cancerous cells
Filter Conditions: Pro/AntiFlg:% IllCat:% CanType:% Cells:% prod#:% Target#:30 State#:% Dir#:%
wNotes=0 sortOrder:rid,rpid