| Source: |
| Type: |
| Vimentin, a major constituent of the intermediate filament family of proteins, is ubiquitously expressed in normal mesenchymal cells and is known to maintain cellular integrity and provide resistance against stress. Vimentin is overexpressed in various epithelial cancers, including prostate cancer, gastrointestinal tumors, tumors of the central nervous system, breast cancer, malignant melanoma, and lung cancer. Vimentin’s overexpression in cancer correlates well with accelerated tumor growth, invasion, and poor prognosis; however, the role of vimentin in cancer progression remains obscure. In many epithelial-derived tumors (carcinomas), elevated Vimentin expression is often observed in cancer cells that have undergone EMT. This upregulation is characteristic of a shift toward a mesenchymal state, which is associated with reduced cell–cell adhesion and increased motility. Vimentin expression is also noted in the tumor stroma, reflecting the presence and activation of mesenchymal cells such as cancer-associated fibroblasts (CAFs). This dual expression can contribute to the remodeling of the tumor microenvironment. The degree of Vimentin expression may vary depending on the tumor type, grade, and stage. More aggressive and advanced tumors tend to show higher levels of Vimentin expression. High Vimentin expression has been correlated with poor clinical outcomes in several cancers, including breast, colorectal, prostate, and lung cancers. Elevated Vimentin levels are typically associated with higher tumor grade, increased invasiveness, enhanced metastatic potential, and a greater risk of recurrence. As a component of the EMT signature, high Vimentin expression can serve as an indicator of a more aggressive tumor phenotype and is often associated with reduced overall survival. - vimentin up-regulation is often used as a marker of EMT in cancer |
| 2433- | 2DG, | Hexokinase inhibitor 2-deoxyglucose coordinates citrullination of vimentin and apoptosis of fibroblast-like synoviocytes by inhibiting HK2 /mTORC1-induced autophagy |
| - | in-vitro, | Arthritis, | NA | - | in-vivo, | NA, | NA |
| 2662- | AL, | Allicin inhibits tubular epithelial-myofibroblast transdifferentiation under high glucose conditions in vitro |
| - | in-vitro, | Nor, | HK-2 |
| 278- | ALA, | The Multifaceted Role of Alpha-Lipoic Acid in Cancer Prevention, Occurrence, and Treatment |
| - | Review, | NA, | NA |
| 1124- | ALA, | Alpha lipoic acid inhibits proliferation and epithelial mesenchymal transition of thyroid cancer cells |
| - | in-vitro, | Thyroid, | BCPAP | - | in-vitro, | Thyroid, | HTH-83 | - | in-vitro, | Thyroid, | CAL-62 | - | in-vitro, | Thyroid, | FTC-133 | - | in-vivo, | NA, | NA |
| 210- | Api, | Apigenin inhibits migration and invasion via modulation of epithelial mesenchymal transition in prostate cancer |
| - | in-vitro, | Pca, | DU145 |
| 2317- | Api, | Apigenin intervenes in liver fibrosis by regulating PKM2-HIF-1α mediated oxidative stress |
| - | in-vivo, | Nor, | NA |
| 570- | ART/DHA, | Artemisinin and its derivatives can significantly inhibit lung tumorigenesis and tumor metastasis through Wnt/β-catenin signaling |
| - | vitro+vivo, | NSCLC, | A549 | - | vitro+vivo, | NSCLC, | H1299 |
| 1333- | AS, | Astragalus polysaccharide inhibits breast cancer cell migration and invasion by regulating epithelial-mesenchymal transition via the Wnt/β-catenin signaling pathway |
| - | in-vitro, | BC, | NA |
| 1097- | AS, | Astragalus Inhibits Epithelial-to-Mesenchymal Transition of Peritoneal Mesothelial Cells by Down-Regulating β-Catenin |
| - | in-vitro, | Nor, | HMrSV5 | - | in-vivo, | NA, | NA |
| 1358- | Ash, | Withaferin A: A Dietary Supplement with Promising Potential as an Anti-Tumor Therapeutic for Cancer Treatment - Pharmacology and Mechanisms |
| - | Review, | Var, | NA |
| 3159- | Ash, | Neuroprotective effects of Withania somnifera in the SH-SY5Y Parkinson cell model |
| - | in-vitro, | Park, | SH-SY5Y |
| 3160- | Ash, | Withaferin A: A Pleiotropic Anticancer Agent from the Indian Medicinal Plant Withania somnifera (L.) Dunal |
| - | Review, | Var, | NA |
| 3162- | Ash, | Molecular insights into cancer therapeutic effects of the dietary medicinal phytochemical withaferin A |
| - | Review, | Var, | NA |
| 3167- | Ash, | Withaferin A Inhibits the Proteasome Activity in Mesothelioma In Vitro and In Vivo |
| - | in-vitro, | MM, | H226 |
| 1098- | BA, | Baicalein inhibits fibronectin-induced epithelial–mesenchymal transition by decreasing activation and upregulation of calpain-2 |
| - | in-vitro, | Nor, | MCF10 | - | in-vivo, | NA, | NA |
| 999- | Ba, | Baicalin Inhibits EMT through PDK1/AKT Signaling in Human Nonsmall Cell Lung Cancer |
| - | in-vitro, | Lung, | H460 |
| 2047- | BA, | Sodium butyrate inhibits migration and induces AMPK-mTOR pathway-dependent autophagy and ROS-mediated apoptosis via the miR-139-5p/Bmi-1 axis in human bladder cancer cells |
| - | in-vitro, | CRC, | T24 | - | in-vitro, | Nor, | SV-HUC-1 | - | in-vitro, | Bladder, | 5637 | - | in-vivo, | NA, | NA |
| 2617- | Ba, | Potential of baicalein in the prevention and treatment of cancer: A scientometric analyses based review |
| - | Review, | Var, | NA |
| 2296- | Ba, | The most recent progress of baicalein in its anti-neoplastic effects and mechanisms |
| - | Review, | Var, | NA |
| 2473- | BA, | Baicalin Inhibits EMT through PDK1/AKT Signaling in Human Nonsmall Cell Lung Cancer |
| - | in-vitro, | Lung, | A549 | - | in-vitro, | Nor, | BEAS-2B | - | in-vitro, | Lung, | H460 |
| 1398- | BBR, | Berberine inhibits the progression of renal cell carcinoma cells by regulating reactive oxygen species generation and inducing DNA damage |
| - | in-vitro, | Kidney, | NA |
| 1392- | BBR, | Based on network pharmacology and experimental validation, berberine can inhibit the progression of gastric cancer by modulating oxidative stress |
| - | in-vitro, | GC, | AGS | - | in-vitro, | GC, | MKN45 |
| 2738- | BetA, | Betulinic Acid Suppresses Breast Cancer Metastasis by Targeting GRP78-Mediated Glycolysis and ER Stress Apoptotic Pathway |
| - | in-vitro, | BC, | MDA-MB-231 | - | in-vitro, | BC, | BT549 | - | in-vivo, | NA, | NA |
| 733- | Bor, | The analysis of boric acid effect on epithelial-mesenchymal transition of CD133 + CD117 + lung cancer stem cells |
| - | in-vitro, | Lung, | NA |
| 756- | Bor, | Evaluation of Boric Acid Treatment on microRNA‐127‐5p and Metastasis Genes Orchestration of Breast Cancer Stem Cells |
| - | in-vitro, | BC, | MCF-7 |
| 736- | Bor, | Evaluation of Boric Acid Treatment on microRNA-127-5p and Metastasis Genes Orchestration of Breast Cancer Stem Cells |
| - | in-vitro, | BC, | MCF-7 |
| 1422- | Bos, | Boswellic acid exerts antitumor effects in colorectal cancer cells by modulating expression of the let-7 and miR-200 microRNA family |
| - | in-vitro, | CRC, | NA | - | in-vivo, | NA, | NA |
| 1651- | CA, | PBG, | Caffeic acid and its derivatives as potential modulators of oncogenic molecular pathways: New hope in the fight against cancer |
| - | Review, | Var, | NA |
| 1652- | CA, | Caffeic Acid and Diseases—Mechanisms of Action |
| - | Review, | Var, | NA |
| - | in-vitro, | Kidney, | HK-2 |
| 3870- | Carno, | Could carnosine or related structures suppress Alzheimer's disease? |
| - | Review, | AD, | NA |
| 1103- | CBD, | Cannabidiol inhibits invasion and metastasis in colorectal cancer cells by reversing epithelial-mesenchymal transition through the Wnt/β-catenin signaling pathway |
| - | vitro+vivo, | NA, | NA |
| 1106- | CGA, | Chlorogenic Acid Inhibits Epithelial-Mesenchymal Transition and Invasion of Breast Cancer by Down-Regulating LRP6 |
| - | vitro+vivo, | BC, | MCF-7 |
| - | in-vitro, | BC, | NA |
| 2785- | CHr, | Emerging cellular and molecular mechanisms underlying anticancer indications of chrysin |
| - | Review, | Var, | NA |
| 11- | CUR, | Curcumin inhibits hypoxia-induced epithelial‑mesenchymal transition in pancreatic cancer cells via suppression of the hedgehog signaling pathway |
| - | in-vitro, | PC, | PANC1 |
| 424- | CUR, | Curcumin inhibits autocrine growth hormone-mediated invasion and metastasis by targeting NF-κB signaling and polyamine metabolism in breast cancer cells |
| - | in-vitro, | BC, | MCF-7 | - | in-vitro, | BC, | MDA-MB-231 |
| 429- | CUR, | TAp63α Is Involved in Tobacco Smoke-Induced Lung Cancer EMT and the Anti-cancer Activity of Curcumin via miR-19 Transcriptional Suppression |
| - | in-vitro, | Lung, | H1299 | - | in-vitro, | Lung, | A549 |
| 433- | CUR, | Curcumin Inhibits the Migration and Invasion of Non-Small-Cell Lung Cancer Cells Through Radiation-Induced Suppression of Epithelial-Mesenchymal Transition and Soluble E-Cadherin Expression |
| - | in-vitro, | Lung, | A549 |
| 420- | CUR, | Anti-metastasis activity of curcumin against breast cancer via the inhibition of stem cell-like properties and EMT |
| - | in-vitro, | BC, | MCF-7 | - | in-vitro, | BC, | MDA-MB-231 |
| 464- | CUR, | Curcumin inhibits the viability, migration and invasion of papillary thyroid cancer cells by regulating the miR-301a-3p/STAT3 axis |
| - | in-vitro, | Thyroid, | BCPAP | - | in-vitro, | Thyroid, | TPC-1 |
| 470- | CUR, | Regulation of carcinogenesis and modulation through Wnt/β-catenin signaling by curcumin in an ovarian cancer cell line |
| - | in-vitro, | Ovarian, | SKOV3 |
| 473- | CUR, | Curcumin inhibits epithelial-mesenchymal transition in oral cancer cells via c-Met blockade |
| - | in-vitro, | Oral, | HSC4 | - | in-vitro, | Oral, | Ca9-22 |
| 442- | CUR, | 5-FU, | Curcumin may reverse 5-fluorouracil resistance on colonic cancer cells by regulating TET1-NKD-Wnt signal pathway to inhibit the EMT progress |
| - | in-vitro, | CRC, | HCT116 |
| 443- | CUR, | Reduced Caudal Type Homeobox 2 (CDX2) Promoter Methylation Is Associated with Curcumin’s Suppressive Effects on Epithelial-Mesenchymal Transition in Colorectal Cancer Cells |
| - | in-vitro, | CRC, | SW480 |
| 455- | CUR, | Curcumin Affects Gastric Cancer Cell Migration, Invasion and Cytoskeletal Remodeling Through Gli1-β-Catenin |
| - | in-vitro, | GC, | SGC-7901 |
| 478- | CUR, | Curcumin decreases epithelial‑mesenchymal transition by a Pirin‑dependent mechanism in cervical cancer cells |
| - | in-vitro, | Cerv, | SiHa |
| 5012- | DSF, | Cu, | Advancing Cancer Therapy with Copper/Disulfiram Nanomedicines and Drug Delivery Systems |
| 1621- | EA, | The multifaceted mechanisms of ellagic acid in the treatment of tumors: State-of-the-art |
| - | Review, | Var, | NA |
| 692- | EGCG, | EGCG: The antioxidant powerhouse in lung cancer management and chemotherapy enhancement |
| - | Review, | NA, | NA |
| - | in-vitro, | PC, | NA |
| 4682- | EGCG, | Human cancer stem cells are a target for cancer prevention using (−)-epigallocatechin gallate |
| - | Review, | Var, | NA |
| 4685- | EGCG, | Epigallocathechin gallate, polyphenol present in green tea, inhibits stem-like characteristics and epithelial-mesenchymal transition in nasopharyngeal cancer cell lines |
| - | in-vitro, | NPC, | TW01 | - | in-vitro, | NPC, | TW06 |
| 1247- | EMD, | Emodin exerts antitumor effects in ovarian cancer cell lines by preventing the development of cancer stem cells via epithelial mesenchymal transition |
| - | vitro+vivo, | Ovarian, | SKOV3 | - | in-vitro, | Ovarian, | A2780S |
| 1656- | FA, | Ferulic Acid: A Natural Phenol That Inhibits Neoplastic Events through Modulation of Oncogenic Signaling |
| - | Review, | Var, | NA |
| 1113- | FIS, | Fisetin suppresses migration, invasion and stem-cell-like phenotype of human non-small cell lung carcinoma cells via attenuation of epithelial to mesenchymal transition |
| - | in-vitro, | Lung, | A549 | - | in-vitro, | Lung, | H1299 |
| 2845- | FIS, | Fisetin: A bioactive phytochemical with potential for cancer prevention and pharmacotherapy |
| - | Review, | Var, | NA |
| 2857- | FIS, | A review on the chemotherapeutic potential of fisetin: In vitro evidences |
| - | Review, | Var, | NA |
| 2825- | FIS, | Exploring the molecular targets of dietary flavonoid fisetin in cancer |
| - | Review, | Var, | NA |
| 2832- | FIS, | Fisetin's Promising Antitumor Effects: Uncovering Mechanisms and Targeting for Future Therapies |
| - | Review, | Var, | NA |
| 800- | GAR, | Garcinol Regulates EMT and Wnt Signaling Pathways In Vitro and In Vivo, Leading to Anticancer Activity against Breast Cancer Cells |
| - | in-vitro, | BC, | MDA-MB-231 | - | in-vitro, | BC, | BT549 | - | in-vivo, | NA, | NA |
| 805- | GAR, | Cisplatin, | PacT, | Garcinol Exhibits Anti-Neoplastic Effects by Targeting Diverse Oncogenic Factors in Tumor Cells |
| - | Review, | NA, | NA |
| - | vitro+vivo, | Kidney, | HK-2 |
| 1118- | Ge, | Grape Seed Proanthocyanidins Inhibit Migration and Invasion of Bladder Cancer Cells by Reversing EMT through Suppression of TGF- β Signaling Pathway |
| - | in-vitro, | Bladder, | T24 | - | in-vitro, | Bladder, | 5637 |
| 1240- | Ge, | PACs, | Grape Seed Proanthocyanidins Inhibit Melanoma Cell Invasiveness by Reduction of PGE2 Synthesis and Reversal of Epithelial-to-Mesenchymal Transition |
| - | in-vitro, | Melanoma, | A375 | - | in-vitro, | Melanoma, | Hs294T |
| 1643- | HCAs, | Mechanisms involved in the anticancer effects of sinapic acid |
| - | Review, | Var, | NA |
| 2882- | HNK, | Honokiol Suppresses Perineural Invasion of Pancreatic Cancer by Inhibiting SMAD2/3 Signaling |
| - | in-vitro, | PC, | PANC1 |
| 2891- | HNK, | Honokiol, an Active Compound of Magnolia Plant, Inhibits Growth, and Progression of Cancers of Different Organs |
| - | Review, | Var, | NA |
| 2880- | HNK, | Honokiol inhibits breast cancer cell metastasis by blocking EMT through modulation of Snail/Slug protein translation |
| - | in-vitro, | BC, | MCF-7 | - | in-vitro, | BC, | MDA-MB-231 | - | in-vitro, | BC, | 4T1 | - | in-vivo, | NA, | NA |
| - | in-vitro, | BC, | MDA-MB-231 | - | in-vitro, | BC, | BT549 | - | in-vitro, | BC, | SUM159 |
| - | in-vitro, | BC, | SUM159 | - | in-vitro, | BC, | MDA-MB-231 | - | in-vitro, | BC, | HS587T | - | in-vitro, | BC, | BT549 |
| 1121- | JG, | Juglone suppresses epithelial-mesenchymal transition in prostate cancer cells via the protein kinase B/glycogen synthase kinase-3β/Snail signaling pathway |
| - | in-vitro, | Pca, | LNCaP |
| 1100- | LT, | Luteolin, a flavonoid, as an anticancer agent: A review |
| - | Review, | NA, | NA |
| 2916- | LT, | Antioxidative and Anticancer Potential of Luteolin: A Comprehensive Approach Against Wide Range of Human Malignancies |
| - | Review, | Var, | NA | - | Review, | AD, | NA | - | Review, | Park, | NA |
| 2919- | LT, | Luteolin as a potential therapeutic candidate for lung cancer: Emerging preclinical evidence |
| - | Review, | Var, | NA |
| 2905- | LT, | Luteolin blocks the ROS/PI3K/AKT pathway to inhibit mesothelial-mesenchymal transition and reduce abdominal adhesions |
| - | in-vivo, | NA, | HMrSV5 |
| 2912- | LT, | Luteolin: a flavonoid with a multifaceted anticancer potential |
| - | Review, | Var, | NA |
| 4520- | MAG, | Magnolol Suppresses Pancreatic Cancer Development In Vivo and In Vitro via Negatively Regulating TGF-β/Smad Signaling |
| - | vitro+vivo, | PC, | PANC1 |
| 1782- | MEL, | Melatonin in Cancer Treatment: Current Knowledge and Future Opportunities |
| - | Review, | Var, | NA |
| 2378- | MET, | Metformin inhibits epithelial-mesenchymal transition of oral squamous cell carcinoma via the mTOR/HIF-1α/PKM2/STAT3 pathway |
| - | in-vitro, | SCC, | CAL27 | - | in-vivo, | NA, | NA |
| 3478- | MF, | One Month of Brief Weekly Magnetic Field Therapy Enhances the Anticancer Potential of Female Human Sera: Randomized Double-Blind Pilot Study |
| - | Trial, | BC, | NA | - | in-vitro, | BC, | MCF-7 | - | in-vitro, | Nor, | C2C12 |
| 1129- | NarG, | Naringenin Attenuated Prostate Cancer Invasion via Reversal of Epithelial-to-Mesenchymal Transition and Inhibited uPA Activity |
| - | in-vitro, | Pca, | PC3 |
| 1130- | OA, | Oroxylin A Suppresses the Cell Proliferation, Migration, and EMT via NF-κB Signaling Pathway in Human Breast Cancer Cells |
| - | in-vitro, | BC, | MDA-MB-231 |
| 4630- | OLE, | Targeting resistant breast cancer stem cells in a three-dimensional culture model with oleuropein encapsulated in methacrylated alginate microparticles |
| - | in-vitro, | BC, | NA |
| 1673- | PBG, | An Insight into Anticancer Effect of Propolis and Its Constituents: A Review of Molecular Mechanisms |
| - | Review, | Var, | NA |
| 3257- | PBG, | The Potential Use of Propolis as a Primary or an Adjunctive Therapy in Respiratory Tract-Related Diseases and Disorders: A Systematic Scoping Review |
| - | Review, | Var, | NA |
| 4926- | PEITC, | PEITC inhibits the invasion and migration of colorectal cancer cells by blocking TGF-β-induced EMT |
| - | in-vitro, | CRC, | SW48 |
| 1257- | PI, | Piperlongumine attenuates bile duct ligation-induced liver fibrosis in mice via inhibition of TGF-β1/Smad and EMT pathways |
| - | ex-vivo, | LiverDam, | NA |
| 2948- | PL, | The promising potential of piperlongumine as an emerging therapeutics for cancer |
| - | Review, | Var, | NA |
| - | in-vitro, | BC, | MDA-MB-231 | - | in-vitro, | BC, | MCF-7 |
| 4699- | PTS, | Pterostilbene inhibits triple-negative breast cancer metastasis via inducing microRNA-205 expression and negatively modulates epithelial-to-mesenchymal transition |
| - | in-vitro, | BC, | MDA-MB-231 | - | in-vitro, | BC, | HS587T | - | in-vivo, | BC, | MDA-MB-231 |
| - | in-vitro, | BC, | MCF-7 | - | in-vitro, | BC, | MDA-MB-231 |
| 4693- | PTS, | Pterostilbene in the treatment of inflammatory and oncological diseases |
| 3368- | QC, | The potential anti-cancer effects of quercetin on blood, prostate and lung cancers: An update |
| - | Review, | Var, | NA |
| - | in-vitro, | Pca, | CD44+ | - | in-vitro, | NA, | CD133+ | - | in-vitro, | NA, | PC3 | - | in-vitro, | NA, | LNCaP |
| 80- | QC, | Quercetin reverses EGF-induced epithelial to mesenchymal transition and invasiveness in prostate cancer (PC-3) cell line via EGFR/PI3K/Akt pathway |
| - | in-vitro, | Pca, | PC3 |
| 53- | QC, | Quercetin regulates β-catenin signaling and reduces the migration of triple negative breast cancer |
| - | in-vitro, | BC, | NA |
| 54- | QC, | Quercetin‑3‑methyl ether suppresses human breast cancer stem cell formation by inhibiting the Notch1 and PI3K/Akt signaling pathways |
| - | in-vitro, | BC, | MCF-7 |
| 65- | QC, | Hsp27 participates in the maintenance of breast cancer stem cells through regulation of epithelial-mesenchymal transition and nuclear factor-κB |
| - | in-vitro, | BC, | NA |
| 95- | QC, | Quercetin, a natural dietary flavonoid, acts as a chemopreventive agent |
| - | in-vitro, | Pca, | PC3 |
| 923- | QC, | Quercetin as an innovative therapeutic tool for cancer chemoprevention: Molecular mechanisms and implications in human health |
| - | Review, | Var, | NA |
| 1047- | RES, | Resveratrol induces PD-L1 expression through snail-driven activation of Wnt pathway in lung cancer cells |
| - | in-vitro, | Lung, | H1299 | - | in-vitro, | Lung, | A549 | - | in-vitro, | Lung, | H460 |
| 878- | RES, | Resveratrol suppresses epithelial-to-mesenchymal transition in colorectal cancer through TGF-β1/Smads signaling pathway mediated Snail/E-cadherin expression |
| - | vitro+vivo, | CRC, | LoVo |
| 3076- | RES, | Resveratrol for targeting the tumor microenvironment and its interactions with cancer cells |
| - | Review, | Var, | NA |
| 3092- | RES, | Resveratrol in breast cancer treatment: from cellular effects to molecular mechanisms of action |
| - | Review, | BC, | MDA-MB-231 | - | Review, | BC, | MCF-7 |
| 2687- | RES, | Effects of resveratrol, curcumin, berberine and other nutraceuticals on aging, cancer development, cancer stem cells and microRNAs |
| - | Review, | NA, | NA | - | Review, | AD, | NA |
| 1745- | RosA, | Rosmarinic acid and its derivatives: Current insights on anticancer potential and other biomedical applications |
| - | Review, | Var, | NA | - | Review, | AD, | NA |
| 1748- | RosA, | The Role of Rosmarinic Acid in Cancer Prevention and Therapy: Mechanisms of Antioxidant and Anticancer Activity |
| - | Review, | Var, | NA |
| 3027- | RosA, | Rosmarinic acid inhibits proliferation and invasion of hepatocellular carcinoma cells SMMC 7721 via PI3K/AKT/mTOR signal pathway |
| - | in-vitro, | HCC, | SMMC-7721 cell |
| 3037- | RosA, | Unraveling rosmarinic acid anticancer mechanisms in oral cancer malignant transformation |
| - | in-vitro, | Oral, | SCC9 | - | in-vitro, | Oral, | HSC3 |
| 1132- | RT, | Rutin Promotes Proliferation and Orchestrates Epithelial–Mesenchymal Transition and Angiogenesis in MCF-7 and MDA-MB-231 Breast Cancer Cells |
| - | in-vitro, | BC, | MDA-MB-231 | - | in-vitro, | BC, | MCF-7 |
| 1135- | Selenate, | Selenate induces epithelial-mesenchymal transition in a colorectal carcinoma cell line by AKT activation |
| - | in-vitro, | CRC, | DLD1 |
| 1726- | SFN, | Sulforaphane: A Broccoli Bioactive Phytocompound with Cancer Preventive Potential |
| - | Review, | Var, | NA |
| 3301- | SIL, | Critical review of therapeutic potential of silymarin in cancer: A bioactive polyphenolic flavonoid |
| - | Review, | Var, | NA |
| 3282- | SIL, | Role of Silymarin in Cancer Treatment: Facts, Hypotheses, and Questions |
| - | Review, | NA, | NA |
| 3296- | SIL, | Silibinin induces oral cancer cell apoptosis and reactive oxygen species generation by activating the JNK/c-Jun pathway |
| - | in-vitro, | Oral, | Ca9-22 | - | in-vivo, | Oral, | YD10B |
| - | in-vitro, | BC, | MDA-MB-231 | - | in-vitro, | BC, | 4T1 | - | in-vitro, | Nor, | MCF12A | - | in-vivo, | NA, | NA |
| 1137- | Taur, | Taurine Attenuates Epithelial-Mesenchymal Transition-Related Genes in Human Prostate Cancer Cells |
| - | in-vitro, | Pca, | NA |
| 1138- | TQ, | Thymoquinone inhibits epithelial-mesenchymal transition in prostate cancer cells by negatively regulating the TGF-β/Smad2/3 signaling pathway |
| - | in-vitro, | Pca, | DU145 | - | in-vitro, | Pca, | PC3 |
| 3427- | TQ, | Chemopreventive and Anticancer Effects of Thymoquinone: Cellular and Molecular Targets |
| 3422- | TQ, | Thymoquinone, as a Novel Therapeutic Candidate of Cancers |
| - | Review, | Var, | NA |
| 1139- | UA, | Ursolic acid inhibits epithelial-mesenchymal transition by suppressing the expression of astrocyte-elevated gene-1 in human nonsmall cell lung cancer A549 cells |
| - | in-vitro, | Lung, | A549 |
| 5022- | UA, | Ursolic Acid’s Alluring Journey: One Triterpenoid vs. Cancer Hallmarks |
| - | Review, | Var, | NA |
| 4856- | Uro, | Study on the biological mechanism of urolithin a on nasopharyngeal carcinoma in vitro |
| - | in-vitro, | NPC, | CNE1 | - | in-vitro, | NPC, | CNE2 |
| 4844- | Uro, | Urolithin A Inhibits Epithelial–Mesenchymal Transition in Lung Cancer Cells via P53-Mdm2-Snail Pathway |
| - | in-vitro, | Lung, | A549 | - | in-vitro, | Lung, | H460 |
| 4838- | Uro, | The Therapeutic Potential of Urolithin A for Cancer Treatment and Prevention |
| - | Review, | Var, | NA |
| 1217- | VitC, | High-dose vitamin C suppresses the invasion and metastasis of breast cancer cells via inhibiting epithelial-mesenchymal transition |
| - | in-vitro, | BC, | Bcap37 | - | in-vitro, | BC, | MDA-MB-231 | - | in-vivo, | NA, | NA |
| 1740- | VitD3, | Vitamin D and Cancer: An Historical Overview of the Epidemiology and Mechanisms |
| - | Review, | Var, | NA |
| 2366- | VitD3, | Vitamin D3 decreases glycolysis and invasiveness, and increases cellular stiffness in breast cancer cells |
| - | in-vitro, | BC, | MCF-7 |
| 1820- | VitK3, | Vitamin K3 (menadione) suppresses epithelial-mesenchymal-transition and Wnt signaling pathway in human colorectal cancer cells |
| - | in-vitro, | CRC, | SW480 | - | in-vitro, | CRC, | SW-620 |
| - | in-vitro, | Oral, | NA | - | in-vitro, | Nor, | HEK293 | - | in-vitro, | Nor, | HaCaT |
| 4888- | ZER, | 5-FU, | Modulation of the tumor microenvironment by zerumbone and 5-fluorouracil in colorectal cancer by target in cancer-associated fibroblasts |
| - | in-vitro, | CRC, | CT26 |
Query results interpretion may depend on "conditions" listed in the research papers. Such Conditions may include : -low or high Dose -format for product, such as nano of lipid formations -different cell line effects -synergies with other products -if effect was for normal or cancerous cells
Filter Conditions: Pro/AntiFlg:% IllCat:% CanType:% Cells:% prod#:% Target#:336 State#:% Dir#:%
wNotes=0 sortOrder:rid,rpid