Database Query Results : , , Vim

Vim, Vimentin: Click to Expand ⟱
Source:
Type:
Vimentin, a major constituent of the intermediate filament family of proteins, is ubiquitously expressed in normal mesenchymal cells and is known to maintain cellular integrity and provide resistance against stress. Vimentin is overexpressed in various epithelial cancers, including prostate cancer, gastrointestinal tumors, tumors of the central nervous system, breast cancer, malignant melanoma, and lung cancer. Vimentin’s overexpression in cancer correlates well with accelerated tumor growth, invasion, and poor prognosis; however, the role of vimentin in cancer progression remains obscure.

In many epithelial-derived tumors (carcinomas), elevated Vimentin expression is often observed in cancer cells that have undergone EMT. This upregulation is characteristic of a shift toward a mesenchymal state, which is associated with reduced cell–cell adhesion and increased motility. Vimentin expression is also noted in the tumor stroma, reflecting the presence and activation of mesenchymal cells such as cancer-associated fibroblasts (CAFs). This dual expression can contribute to the remodeling of the tumor microenvironment.
The degree of Vimentin expression may vary depending on the tumor type, grade, and stage. More aggressive and advanced tumors tend to show higher levels of Vimentin expression.

High Vimentin expression has been correlated with poor clinical outcomes in several cancers, including breast, colorectal, prostate, and lung cancers.
Elevated Vimentin levels are typically associated with higher tumor grade, increased invasiveness, enhanced metastatic potential, and a greater risk of recurrence.
As a component of the EMT signature, high Vimentin expression can serve as an indicator of a more aggressive tumor phenotype and is often associated with reduced overall survival.
- vimentin up-regulation is often used as a marker of EMT in cancer



Scientific Papers found: Click to Expand⟱
2433- 2DG,    Hexokinase inhibitor 2-deoxyglucose coordinates citrullination of vimentin and apoptosis of fibroblast-like synoviocytes by inhibiting HK2 /mTORC1-induced autophagy
- in-vitro, Arthritis, NA - in-vivo, NA, NA
Vim↓, HK2↓,
2662- AL,    Allicin inhibits tubular epithelial-myofibroblast transdifferentiation under high glucose conditions in vitro
- in-vitro, Nor, HK-2
*α-SMA↓, *Vim↓, *COL1↓, *E-cadherin↑, *TGF-β1↓, *p‑ERK↓, *EMT↓,
278- ALA,    The Multifaceted Role of Alpha-Lipoic Acid in Cancer Prevention, Occurrence, and Treatment
- Review, NA, NA
ROS↑, NRF2↑, Inflam↓, frataxin↑, *BioAv↓, ChemoSen↑, Hif1a↓, eff↑, FAK↓, ITGB1↓, MMP2↓, MMP9↓, EMT↓, Snail↓, Vim↓, Zeb1↓, P53↑, MGMT↓, Mcl-1↓, Bcl-xL↓, Bcl-2↓, survivin↓, Casp3↑, Casp9↑, BAX↑, p‑Akt↓, GSK‐3β↓, *antiOx↑, *ROS↓, selectivity↑, angioG↓, MMPs↓, NF-kB↓, ITGB3↓, NADPH↓,
1124- ALA,    Alpha lipoic acid inhibits proliferation and epithelial mesenchymal transition of thyroid cancer cells
- in-vitro, Thyroid, BCPAP - in-vitro, Thyroid, HTH-83 - in-vitro, Thyroid, CAL-62 - in-vitro, Thyroid, FTC-133 - in-vivo, NA, NA
TumCP↓, AMPK↑, mTOR↓, TumCMig↓, TumCI↓, EMT↓, E-cadherin↑, β-catenin/ZEB1↓, Vim↓, Snail↓, Twist↓, TGF-β↓, p‑SMAD2↓, TumCG↓,
210- Api,    Apigenin inhibits migration and invasion via modulation of epithelial mesenchymal transition in prostate cancer
- in-vitro, Pca, DU145
EMT↓, E-cadherin↑, Snail↓, Vim↓,
2317- Api,    Apigenin intervenes in liver fibrosis by regulating PKM2-HIF-1α mediated oxidative stress
- in-vivo, Nor, NA
*hepatoP↑, *PKM2↓, *Hif1a↓, *MDA↓, *Catalase↓, *GSH↑, *SOD↑, *GPx↑, *TAC↑, *α-SMA↓, *Vim↓, *ROS↓,
570- ART/DHA,    Artemisinin and its derivatives can significantly inhibit lung tumorigenesis and tumor metastasis through Wnt/β-catenin signaling
- vitro+vivo, NSCLC, A549 - vitro+vivo, NSCLC, H1299
TumCCA↑, CSCs↓, TumCI↓, TumCMig↓, TumCG↓, Wnt/(β-catenin)↓, Nanog↓, SOX2↓, OCT4↓, N-cadherin↓, Vim↓, E-cadherin↑,
1333- AS,    Astragalus polysaccharide inhibits breast cancer cell migration and invasion by regulating epithelial-mesenchymal transition via the Wnt/β-catenin signaling pathway
- in-vitro, BC, NA
TumCMig↓, TumCI↓, Ki-67↓, TumCP↓, Snail↓, Vim↓, E-cadherin↑, Wnt↓, β-catenin/ZEB1↓,
1097- AS,    Astragalus Inhibits Epithelial-to-Mesenchymal Transition of Peritoneal Mesothelial Cells by Down-Regulating β-Catenin
- in-vitro, Nor, HMrSV5 - in-vivo, NA, NA
*EMT↓, *E-cadherin↑, *α-SMA↓, *Vim↓, *β-catenin/ZEB1↓, *Smad7↑,
1358- Ash,    Withaferin A: A Dietary Supplement with Promising Potential as an Anti-Tumor Therapeutic for Cancer Treatment - Pharmacology and Mechanisms
- Review, Var, NA
TumCCA↑, Apoptosis↑, TumAuto↑, Ferroptosis↑, TumCP↓, CSCs↓, TumMeta↓, EMT↓, angioG↓, Vim↓, HSP90↓, annexin II↓, m-FAM72A↓, BCR-ABL↓, Mortalin↓, NRF2↓, cMYB↓, ROS↑, ChemoSen↑, eff↑, ChemoSen↑, ChemoSen↑, eff↑, *BioAv↓, ROCK1↓, TumCI↓, Sp1/3/4↓, VEGF↓, Hif1a↓, EGFR↓,
3159- Ash,    Neuroprotective effects of Withania somnifera in the SH-SY5Y Parkinson cell model
- in-vitro, Park, SH-SY5Y
*neuroP↑, *Inflam↓, *ROS↓, *cognitive↑, *memory↑, *GPx↑, *Prx↓, *ATP↑, *Vim↓, *mtDam↓,
3160- Ash,    Withaferin A: A Pleiotropic Anticancer Agent from the Indian Medicinal Plant Withania somnifera (L.) Dunal
- Review, Var, NA
TumCCA↑, H3↑, P21↑, cycA1/CCNA1↓, CycB/CCNB1↓, cycE/CCNE↓, CDC2↓, CHK1↓, Chk2↓, p38↑, MAPK↑, E6↓, E7↓, P53↑, Akt↓, FOXO3↑, ROS↑, γH2AX↑, MMP↓, mitResp↓, eff↑, TumCD↑, Mcl-1↓, ER Stress↑, ATF4↑, ATF3↑, CHOP↑, NOTCH↓, NF-kB↓, Bcl-2↓, STAT3↓, CDK1↓, β-catenin/ZEB1↓, N-cadherin↓, EMT↓, Cyt‑c↑, eff↑, CDK4↓, p‑RB1↓, PARP↑, cl‑Casp3↑, cl‑Casp9↑, NRF2↑, ER-α36↓, LDHA↓, lipid-P↑, AP-1↓, COX2↓, RenoP↑, PDGFR-BB↓, SIRT3↑, MMP2↓, MMP9↓, NADPH↑, NQO1↑, GSR↑, HO-1↑, *SOD2↑, *Prx↑, *Casp3?, eff↑, Snail↓, Slug↓, Vim↓, CSCs↓, HEY1↓, MMPs↓, VEGF↓, uPA↓, *toxicity↓, CDK2↓, CDK4↓, HSP90↓,
3162- Ash,    Molecular insights into cancer therapeutic effects of the dietary medicinal phytochemical withaferin A
- Review, Var, NA
lipid-P↓, SOD↑, GPx↑, P53↑, Bcl-2↑, E6↓, E7↓, pRB↑, CycB/CCNB1↑, CDC2↑, P21↑, PCNA↓, ALDH1A1↓, Vim↓, Glycolysis↓, cMyc↓, BAX↑, NF-kB↓, Casp3↑, CHOP↑, DR5↑, ERK↓, Wnt↓, β-catenin/ZEB1↓, Akt↓, HSP90↓,
3167- Ash,    Withaferin A Inhibits the Proteasome Activity in Mesothelioma In Vitro and In Vivo
- in-vitro, MM, H226
TumCP↓, cMyc↓, cFos↓, cJun↓, TIMP2↑, Vim↓, ROS↑, BAX↑, IKKα↑, Casp3↑, cl‑PARP↑,
1098- BA,    Baicalein inhibits fibronectin-induced epithelial–mesenchymal transition by decreasing activation and upregulation of calpain-2
- in-vitro, Nor, MCF10 - in-vivo, NA, NA
*TumCMig↓, *F-actin↓, *E-cadherin↑, *ZO-1↑, *N-cadherin↓, *Vim↓, *Snail↓, *cal2↓, *Ca+2↝,
999- Ba,    Baicalin Inhibits EMT through PDK1/AKT Signaling in Human Nonsmall Cell Lung Cancer
- in-vitro, Lung, H460
TumCP↓, p‑PDK1↓, p‑Akt↓, EMT↓, E-cadherin↑, Vim↓,
2047- BA,    Sodium butyrate inhibits migration and induces AMPK-mTOR pathway-dependent autophagy and ROS-mediated apoptosis via the miR-139-5p/Bmi-1 axis in human bladder cancer cells
- in-vitro, CRC, T24 - in-vitro, Nor, SV-HUC-1 - in-vitro, Bladder, 5637 - in-vivo, NA, NA
HDAC↓, AntiTum↑, TumCMig↓, AMPK↑, mTOR↑, TumAuto↑, ROS↑, miR-139-5p↑, BMI1↓, TumCI?, E-cadherin↑, N-cadherin↓, Vim↓, Snail↓, cl‑PARP↑, cl‑Casp3↑, BAX↑, Bcl-2↓, Bcl-xL↓, MMP↓, PINK1↑, PARK2↑, TumMeta↓, TumCG↓, LC3II↑, p62↓, eff↓,
2617- Ba,    Potential of baicalein in the prevention and treatment of cancer: A scientometric analyses based review
- Review, Var, NA
Ca+2↑, MMP2↓, MMP9↓, Vim↓, Snail↓, E-cadherin↑, Wnt↓, β-catenin/ZEB1↓, p‑Akt↓, p‑mTOR↓, NF-kB↓, i-ROS↑, Bcl-2↓, BAX↑, Cyt‑c↑, Casp3↑, Casp9↑, STAT3↓, IL6↓, MMP2↓, MMP9↓, NOTCH↓, PPARγ↓, p‑NRF2↓, HK2↓, LDHA↓, PDK1↓, Glycolysis↓, PTEN↑, Akt↓, Hif1a↓, MMP↓, VEGF↓, VEGFR2↓, TOP2↓, uPA↓, TIMP1↓, TIMP2↓, cMyc↓, TrxR↓, ASK1↑, Vim↓, ZO-1↑, E-cadherin↑, SOX2↓, OCT4↓, Shh↓, Smo↓, Gli1↓, N-cadherin↓, XIAP↓,
2296- Ba,    The most recent progress of baicalein in its anti-neoplastic effects and mechanisms
- Review, Var, NA
CDK1↓, Cyc↓, p27↑, P21↑, P53↑, TumCCA↑, TumCI↓, MMP2↓, MMP9↓, E-cadherin↑, N-cadherin↓, Vim↓, LC3A↑, p62↓, p‑mTOR↓, PD-L1↓, CAFs/TAFs↓, VEGF↓, ROCK1↓, Bcl-2↓, Bcl-xL↓, BAX↑, ROS↑, cl‑PARP↑, Casp3↑, Casp9↑, PTEN↑, MMP↓, Cyt‑c↑, Ca+2↑, PERK↑, IRE1↑, CHOP↑, Copper↑, Snail↓, Vim↓, Twist↓, GSH↓, NRF2↓, HO-1↓, GPx4↓, XIAP↓, survivin↓, DR5↑,
2473- BA,    Baicalin Inhibits EMT through PDK1/AKT Signaling in Human Nonsmall Cell Lung Cancer
- in-vitro, Lung, A549 - in-vitro, Nor, BEAS-2B - in-vitro, Lung, H460
EMT↓, PDK1↓, Akt↓, TumCMig↓, E-cadherin↑, Vim↓,
1398- BBR,    Berberine inhibits the progression of renal cell carcinoma cells by regulating reactive oxygen species generation and inducing DNA damage
- in-vitro, Kidney, NA
TumCP↓, TumCMig↓, ROS↑, Apoptosis↑, BAX↑, BAD↑, Bak↑, Cyt‑c↑, cl‑Casp3↑, cl‑Casp9↑, E-cadherin↑, TIMP1↑, γH2AX↑, Bcl-2↓, N-cadherin↓, Vim↓, Snail↓, RAD51↓, PCNA↓,
1392- BBR,    Based on network pharmacology and experimental validation, berberine can inhibit the progression of gastric cancer by modulating oxidative stress
- in-vitro, GC, AGS - in-vitro, GC, MKN45
TumCG↓, TumCMig↓, ROS↑, MDA↑, SOD↓, NRF2↓, HO-1↓, Hif1a↓, EMT↓, Snail↓, Vim↓,
2738- BetA,    Betulinic Acid Suppresses Breast Cancer Metastasis by Targeting GRP78-Mediated Glycolysis and ER Stress Apoptotic Pathway
- in-vitro, BC, MDA-MB-231 - in-vitro, BC, BT549 - in-vivo, NA, NA
TumCI↓, TumCMig↓, Glycolysis↓, lactateProd↓, GRP78/BiP↑, ER Stress↑, PERK↑, p‑eIF2α↑, β-catenin/ZEB1↓, cMyc↓, ROS↑, angioG↓, Sp1/3/4↓, DNAdam↑, TOP1↓, TumMeta↓, MMP2↓, MMP9↓, N-cadherin↓, Vim↓, E-cadherin↑, EMT↓, LDHA↓, p‑PDK1↓, PDK1↓, ECAR↓, OCR↓, Hif1a↓, STAT3↓,
733- Bor,    The analysis of boric acid effect on epithelial-mesenchymal transition of CD133 + CD117 + lung cancer stem cells
- in-vitro, Lung, NA
Snail↑, ITGB1↑, ITGA5↑, COL1A1↓, LAMA5↑, MMP3↓, Vim↓, E-cadherin↑, EMT↓, Zeb1↑,
756- Bor,    Evaluation of Boric Acid Treatment on microRNA‐127‐5p and Metastasis Genes Orchestration of Breast Cancer Stem Cells
- in-vitro, BC, MCF-7
COL1A1↓, Vim↓, miR-127-5p↑, Zeb1↑, CDH1↑, ITGB1↑, ITGA5↑, LAMA5↑, Snail↑,
736- Bor,    Evaluation of Boric Acid Treatment on microRNA-127-5p and Metastasis Genes Orchestration of Breast Cancer Stem Cells
- in-vitro, BC, MCF-7
miR-126↑, COL1A1↓, Vim↓, Zeb1↑, CDH1↑, ITGB1↑, ITGA5↑, LAMA5↑, Snail↑, miR-127-5p↑,
1422- Bos,    Boswellic acid exerts antitumor effects in colorectal cancer cells by modulating expression of the let-7 and miR-200 microRNA family
- in-vitro, CRC, NA - in-vivo, NA, NA
5LO↓, TumCG↓, Let-7↑, miR-200b↑, NF-kB↓, cMyc↓, cycD1/CCND1↓, MMP9↓, CXCR4↓, VEGF↓, Bcl-xL↓, survivin↓, IAP1↓, XIAP↓, TumCG↓, CDK6↓, Vim↓, E-cadherin↑,
1651- CA,  PBG,    Caffeic acid and its derivatives as potential modulators of oncogenic molecular pathways: New hope in the fight against cancer
- Review, Var, NA
Apoptosis↑, TumCCA↓, TumCMig↓, TumMeta↓, ChemoSen↑, eff↑, eff↑, eff↓, eff↝, Dose∅, AMPK↑, p62↓, LC3II↑, Ca+2↑, Bax:Bcl2↑, CDK4↑, CDK6↑, RB1↑, EMT↓, E-cadherin↑, Vim↓, β-catenin/ZEB1↓, NF-kB↓, angioG↑, VEGF↓, TSP-1↑, MMP9↓, MMP2↓, ChemoSen↑, eff↑, ROS↑, CSCs↓, Fas↑, P53↑, BAX↑, Casp↑, β-catenin/ZEB1↓, NDRG1↑, STAT3↓, MAPK↑, ERK↑, eff↑, eff↑, eff↑,
1652- CA,    Caffeic Acid and Diseases—Mechanisms of Action
- Review, Var, NA
Dose∅, ROS⇅, NF-kB↓, STAT3↓, VEGF↓, MMP9↓, HSP70/HSPA5↑, AST↝, ALAT↝, ALP↝, Hif1a↓, IL6↓, IGF-1R↓, P21↑, iNOS↓, ERK↓, Snail↓, BID↑, BAX↑, Casp3↑, Casp7↑, Casp9↑, cycD1/CCND1↓, Vim↓, β-catenin/ZEB1↓, COX2↓, ROS↑,
1104- CAR,    Carvacrol Ameliorates Transforming Growth Factor-β1-Induced Extracellular Matrix Deposition and Reduces Epithelial-Mesenchymal Transition by Regulating The Phosphatidylinositol 3-Kinase/Protein Kinase B Pathway In Hk-2 Cells
- in-vitro, Kidney, HK-2
tumCV↓, COL4↓, COL1↓, Fibronectin↓, E-cadherin↑, Snail↑, Vim↑, α-SMA↑, PI3K↓, Akt↓,
3870- Carno,    Could carnosine or related structures suppress Alzheimer's disease?
- Review, AD, NA
*IronCh↑, *Aβ↓, *ROS↓, *Vim↓,
1103- CBD,    Cannabidiol inhibits invasion and metastasis in colorectal cancer cells by reversing epithelial-mesenchymal transition through the Wnt/β-catenin signaling pathway
- vitro+vivo, NA, NA
Apoptosis↑, TumCP↓, TumCMig↓, TumMeta↓, EMT↓, E-cadherin↑, N-cadherin↓, Snail↓, Vim↓, Hif1a↓, Wnt/(β-catenin)↓, AXIN1↑, TumVol↓, TumW↓,
1106- CGA,    Chlorogenic Acid Inhibits Epithelial-Mesenchymal Transition and Invasion of Breast Cancer by Down-Regulating LRP6
- vitro+vivo, BC, MCF-7
E-cadherin↑, ZO-1↑, Zeb1↓, N-cadherin↓, Vim↓, Snail↓, Slug↓, MMP2↓, MMP9↓, TumCMig↓, TumCI↓, LRP6↓, p‑LRP6↓, β-catenin/ZEB1↓, TumVol↓, TumW↓,
1107- CHr,    Chrysin inhibits metastatic potential of human triple-negative breast cancer cells by modulating matrix metalloproteinase-10, epithelial to mesenchymal transition, and PI3K/Akt signaling pathway
- in-vitro, BC, NA
TumCP↓, Apoptosis↑, MMP-10↓, E-cadherin↑, Vim↓, Snail↓, Slug↓, EMT↓,
2785- CHr,    Emerging cellular and molecular mechanisms underlying anticancer indications of chrysin
- Review, Var, NA
*NF-kB↓, *COX2↓, *iNOS↓, angioG↓, TOP1↓, HDAC↓, TNF-α↓, IL1β↓, cardioP↑, RenoP↑, neuroP↑, LDL↓, BioAv↑, eff↑, cycD1/CCND1↓, hTERT/TERT↓, MMP-10↓, Akt↓, STAT3↓, VEGF↓, EGFR↓, Snail↓, Slug↓, Vim↓, E-cadherin↑, eff↑, TET1↑, ROS↑, mTOR↓, PPARα↓, ER Stress↑, Ca+2↑, ERK↓, MMP↑, Cyt‑c↑, Casp3↑, HK2↓, NRF2↓, HO-1↓, MMP2↓, MMP9↓, Fibronectin↓, GRP78/BiP↑, XBP-1↓, p‑eIF2α↑, *AST↓, ALAT↓, ALP↓, LDH↓, COX2↑, Bcl-xL↓, IL6↓, PGE2↓, iNOS↓, DNAdam↑, UPR↑, Hif1a↓, EMT↓, Twist↓, lipid-P↑, CLDN1↓, PDK1↓, IL10↓, TLR4↓, NOTCH1↑, PARP↑, Mcl-1↓, XIAP↓,
11- CUR,    Curcumin inhibits hypoxia-induced epithelial‑mesenchymal transition in pancreatic cancer cells via suppression of the hedgehog signaling pathway
- in-vitro, PC, PANC1
HH↓, Shh↓, Smo↓, Gli1↓, N-cadherin↓, E-cadherin↑, Vim↓,
424- CUR,    Curcumin inhibits autocrine growth hormone-mediated invasion and metastasis by targeting NF-κB signaling and polyamine metabolism in breast cancer cells
- in-vitro, BC, MCF-7 - in-vitro, BC, MDA-MB-231
Src↓, p‑STAT1↓, p‑Akt↓, p‑p44↓, p‑p42↓, RAS↓, Raf↓, Vim↓, β-catenin/ZEB1↓, P53↓, Bcl-2↓, Mcl-1↓, PIAS-3↑, SOCS-3↑, SOCS1↑, ROS↑, NF-kB↓, PAO↑, SSAT↑, P21↑, Bak↑,
429- CUR,    TAp63α Is Involved in Tobacco Smoke-Induced Lung Cancer EMT and the Anti-cancer Activity of Curcumin via miR-19 Transcriptional Suppression
- in-vitro, Lung, H1299 - in-vitro, Lung, A549
TAp63α↑, E-cadherin↑, ZO-1↑, Vim↓, N-cadherin↓, miR-19b↓,
433- CUR,    Curcumin Inhibits the Migration and Invasion of Non-Small-Cell Lung Cancer Cells Through Radiation-Induced Suppression of Epithelial-Mesenchymal Transition and Soluble E-Cadherin Expression
- in-vitro, Lung, A549
E-cadherin↓, Vim↓, Slug↓, N-cadherin↓, Snail↓, MMP9↓, EMT↓,
420- CUR,    Anti-metastasis activity of curcumin against breast cancer via the inhibition of stem cell-like properties and EMT
- in-vitro, BC, MCF-7 - in-vitro, BC, MDA-MB-231
Vim↓, Fibronectin↓, β-catenin/ZEB1↓, E-cadherin↓, CD44↑, CD24↓, OCT4↓, Nanog↓, SOX2↓,
464- CUR,    Curcumin inhibits the viability, migration and invasion of papillary thyroid cancer cells by regulating the miR-301a-3p/STAT3 axis
- in-vitro, Thyroid, BCPAP - in-vitro, Thyroid, TPC-1
TumCI↓, TumCI↓, MMP2↓, MMP9↓, EMT↓, STAT3↓, miR-301a-3p↓, STAT↓, N-cadherin↓, Vim↓, Fibronectin↓, p‑JAK↓, p‑JAK2↓, p‑JAK3↓, p‑STAT1↓, p‑STAT2↓, E-cadherin↑,
470- CUR,    Regulation of carcinogenesis and modulation through Wnt/β-catenin signaling by curcumin in an ovarian cancer cell line
- in-vitro, Ovarian, SKOV3
Wnt/(β-catenin)↓, EMT↓, DNMT3A↓, cycD1/CCND1↓, cMyc↓, Fibronectin↓, Vim↓, E-cadherin↑, SFRP5↑,
473- CUR,    Curcumin inhibits epithelial-mesenchymal transition in oral cancer cells via c-Met blockade
- in-vitro, Oral, HSC4 - in-vitro, Oral, Ca9-22
Vim↓, p‑cMET↓, p‑ERK↓, pro‑MMP9↓, E-cadherin↑,
442- CUR,  5-FU,    Curcumin may reverse 5-fluorouracil resistance on colonic cancer cells by regulating TET1-NKD-Wnt signal pathway to inhibit the EMT progress
- in-vitro, CRC, HCT116
Apoptosis↑, TumCP↓, TumCCA↑, TET1↑, NKD2↑, Wnt↓, EMT↓, Vim↑, E-cadherin↓, β-catenin/ZEB1↓, TCF↓, AXIN1↓,
443- CUR,    Reduced Caudal Type Homeobox 2 (CDX2) Promoter Methylation Is Associated with Curcumin’s Suppressive Effects on Epithelial-Mesenchymal Transition in Colorectal Cancer Cells
- in-vitro, CRC, SW480
DNMT1↓, DNMT3A↓, N-cadherin↓, Vim↓, Wnt↓, Snail↓, Twist↓, β-catenin/ZEB1↓, E-cadherin↑, EMT↓, CDX2↓,
455- CUR,    Curcumin Affects Gastric Cancer Cell Migration, Invasion and Cytoskeletal Remodeling Through Gli1-β-Catenin
- in-vitro, GC, SGC-7901
Shh↓, Gli1↓, FOXM1↓, β-catenin/ZEB1↓, TumCMig↓, Apoptosis↑, TumCCA↑, Wnt↓, EMT↓, E-cadherin↑, Vim↓,
478- CUR,    Curcumin decreases epithelial‑mesenchymal transition by a Pirin‑dependent mechanism in cervical cancer cells
- in-vitro, Cerv, SiHa
EMT↓, N-cadherin↓, Vim↓, Slug↓, Zeb1↓, PIR↓, Pirin↓, E-cadherin↑,
5012- DSF,  Cu,    Advancing Cancer Therapy with Copper/Disulfiram Nanomedicines and Drug Delivery Systems
ROS↑, ALDH↓, TumCP↓, CSCs↓, angioG↓, TumMeta↓, DNAdam↑, Proteasome↓, SOD1↓, GSR↓, ox-GSSG↑, GSH/GSSG↓, MMP↓, Akt↓, cycD1/CCND1↓, NF-kB↓, CSCs↓, MAPK↓, angioG↓, DrugR↓, EMT↓, Vim↓, BioAv↑, eff↑,
1621- EA,    The multifaceted mechanisms of ellagic acid in the treatment of tumors: State-of-the-art
- Review, Var, NA
AntiCan↑, Apoptosis↑, TumCP↓, TumMeta↓, TumCI↓, TumAuto↑, VEGFR2↓, MAPK↓, PI3K↓, Akt↓, PD-1↓, NOTCH↓, PCNA↓, Ki-67↓, cycD1/CCND1↓, CDK2↑, CDK6↓, Bcl-2↓, cl‑PARP↑, BAX↑, Casp3↑, DR4↑, DR5↑, Snail↓, MMP2↓, MMP9↓, TGF-β↑, PKCδ↓, β-catenin/ZEB1↓, SIRT1↓, HO-1↓, ROS↑, CHOP↑, Cyt‑c↑, MMP↓, OCR↓, AMPK↑, Hif1a↓, NF-kB↓, E-cadherin↑, Vim↓, EMT↓, LC3II↑, CIP2A↓, GLUT1↓, PDH↝, MAD↓, LDH↓, GSTs↑, NOTCH↓, survivin↓, XIAP↓, ER Stress↑, ChemoSideEff↓, ChemoSen↑,
692- EGCG,    EGCG: The antioxidant powerhouse in lung cancer management and chemotherapy enhancement
- Review, NA, NA
ROS↑, Apoptosis↑, DNAdam↑, CTR1↑, JWA↑, β-catenin/ZEB1↓, P53↑, Vim↓, VEGF↓, p‑Akt↓, Hif1a↓, COX2↓, ERK↓, NF-kB↓, Akt↓, Bcl-xL↓, miR-210↓,
688- EGCG,  GEM,    Epigallocatechin-3-Gallate (EGCG) Suppresses Pancreatic Cancer Cell Growth, Invasion, and Migration partly through the Inhibition of Akt Pathway and Epithelial–Mesenchymal Transition: Enhanced Efficacy When Combined with Gemcitabine
- in-vitro, PC, NA
Zeb1↓, β-catenin/ZEB1↓, Vim↓, Akt↓, p‑IGFR↓, TumCG↓, TumCMig↓, TumCI↓,
4682- EGCG,    Human cancer stem cells are a target for cancer prevention using (−)-epigallocatechin gallate
- Review, Var, NA
CSCs↓, EMT↓, ChemoSen↑, CD133↓, CD44↓, ALDH1A1↓, Nanog↓, OCT4↓, TumCP↓, Apoptosis↑, p‑GSK‐3β↓, GSK‐3β↑, β-catenin/ZEB1↓, cMyc↓, XIAP↓, Bcl-2↓, survivin↓, Vim↓, Slug↓, Snail↓,
4685- EGCG,    Epigallocathechin gallate, polyphenol present in green tea, inhibits stem-like characteristics and epithelial-mesenchymal transition in nasopharyngeal cancer cell lines
- in-vitro, NPC, TW01 - in-vitro, NPC, TW06
CSCs↓, EMT↓, TumCMig↓, TumCI↓, OCT4↓, Snail↓, Vim↓, E-cadherin↓, HSP70/HSPA5↓, HSP90↓, AntiTum↓,
1247- EMD,    Emodin exerts antitumor effects in ovarian cancer cell lines by preventing the development of cancer stem cells via epithelial mesenchymal transition
- vitro+vivo, Ovarian, SKOV3 - in-vitro, Ovarian, A2780S
TumCP↓, TumCMig↓, TumCI↓, EMT↓, N-cadherin↓, Vim↓, E-cadherin↑, TumCG↓, CD133↓, OCT4↓, CSCs↓,
1656- FA,    Ferulic Acid: A Natural Phenol That Inhibits Neoplastic Events through Modulation of Oncogenic Signaling
- Review, Var, NA
tyrosinase↓, CK2↓, TumCP↓, TumCMig↓, FGF↓, FGFR1↓, PI3K↓, Akt↓, VEGF↓, FGFR1↓, FGFR2↓, PDGF↓, ALAT↓, AST↓, TumCCA↑, CDK2↓, CDK4↓, CDK6↓, BAX↓, Bcl-2↓, MMP2↓, MMP9↓, P53↑, PARP↑, PUMA↑, NOXA↑, Casp3↑, Casp9↑, TIMP1↑, lipid-P↑, mtDam↑, EMT↓, Vim↓, E-cadherin↓, p‑STAT3↓, COX2↓, CDC25↓, RadioS↑, ROS↑, DNAdam↑, γH2AX↑, PTEN↑, LC3II↓, Beclin-1↓, SOD↓, Catalase↓, GPx↓, Fas↑, *BioAv↓, cMyc↓, Beclin-1↑, LC3‑Ⅱ/LC3‑Ⅰ↓,
1113- FIS,    Fisetin suppresses migration, invasion and stem-cell-like phenotype of human non-small cell lung carcinoma cells via attenuation of epithelial to mesenchymal transition
- in-vitro, Lung, A549 - in-vitro, Lung, H1299
TumCI↓, TumCMig↓, EMT↓, E-cadherin↑, ZO-1↑, Vim↓, N-cadherin↓, MMP2↓, CD44↓, CD133↓, β-catenin/ZEB1↓, NF-kB↓, EGFR↓, STAT3↓, CSCs↓,
2845- FIS,    Fisetin: A bioactive phytochemical with potential for cancer prevention and pharmacotherapy
- Review, Var, NA
PI3K↓, Akt↓, mTOR↓, p38↓, *antiOx↑, *neuroP↑, Casp3↑, Bcl-2↓, Mcl-1↓, BAX↑, BIM↑, BAD↑, AMPK↑, ACC↑, DNAdam↑, MMP↓, eff↑, ROS↑, cl‑PARP↑, Cyt‑c↑, Diablo↑, P53↑, p65↓, Myc↓, HSP70/HSPA5↓, HSP27↓, COX2↓, Wnt↓, EGFR↓, NF-kB↓, TumCCA↑, CDK2↓, CDK4↓, cycD1/CCND1↓, cycA1/CCNA1↓, P21↑, MMP2↓, MMP9↓, TumMeta↓, MMP1↓, MMP3↓, MMP7↓, MET↓, N-cadherin↓, Vim↓, Snail↓, Fibronectin↓, E-cadherin↑, uPA↓, ChemoSen↑, EMT↓, Twist↓, Zeb1↓, cFos↓, cJun↓, EGF↓, angioG↓, VEGF↓, eNOS↓, *NRF2↑, HO-1↑, NRF2↓, GSTs↓, ATF4↓,
2857- FIS,    A review on the chemotherapeutic potential of fisetin: In vitro evidences
- Review, Var, NA
COX2↓, PGE2↓, EGFR↓, Wnt↓, β-catenin/ZEB1↓, TCF↑, Apoptosis↑, Casp3↑, cl‑PARP↑, Bcl-2↓, Mcl-1↓, BAX↑, BIM↑, BAD↑, Akt↓, mTOR↓, ACC↑, Cyt‑c↑, Diablo↑, cl‑Casp8↑, Fas↑, DR5↑, TRAIL↑, Securin↓, CDC2↓, CDC25↓, HSP70/HSPA5↓, CDK2↓, CDK4↓, cycD1/CCND1↓, MMP2↓, uPA↓, NF-kB↓, cFos↓, cJun↓, MEK↓, p‑ERK↓, N-cadherin↓, Vim↓, Snail↓, Fibronectin↓, E-cadherin↓, NF-kB↑, ROS↑, DNAdam↑, MMP↓, CHOP↑, eff↑, ChemoSen↑,
2825- FIS,    Exploring the molecular targets of dietary flavonoid fisetin in cancer
- Review, Var, NA
*Inflam↓, *antiOx↓, *ERK↑, *p‑cMyc↑, *NRF2↑, *GSH↑, *HO-1↑, mTOR↓, PI3K↓, Akt↓, TumCCA↑, cycD1/CCND1↓, cycE/CCNE↓, CDK2↓, CDK4↓, CDK6↓, P21↑, p27↑, JNK↑, MMP2↓, MMP9↓, uPA↓, NF-kB↓, cFos↓, cJun↓, E-cadherin↑, Vim↓, N-cadherin↓, EMT↓, MMP↓, Cyt‑c↑, Diablo↑, Casp↑, cl‑PARP↑, P53↑, COX2↓, PGE2↓, HSP70/HSPA5↓, HSP27↓, DNAdam↑, Casp3↑, Casp9↑, ROS↑, AMPK↑, NO↑, Ca+2↑, mTORC1↓, p70S6↓, ROS↓, ER Stress↑, IRE1↑, ATF4↑, GRP78/BiP↑, eff↑, eff↑, eff↑, RadioS↑, ChemoSen↑, Half-Life↝,
2832- FIS,    Fisetin's Promising Antitumor Effects: Uncovering Mechanisms and Targeting for Future Therapies
- Review, Var, NA
MMP↓, mtDam↑, Cyt‑c↑, Diablo↑, Casp↑, cl‑PARP↑, Bak↑, BIM↑, Bcl-xL↓, Bcl-2↓, P53↑, ROS↑, AMPK↑, Casp9↑, Casp3↑, BID↑, AIF↑, Akt↓, mTOR↓, MAPK↓, Wnt↓, β-catenin/ZEB1↓, TumCCA↑, P21↑, p27↑, cycD1/CCND1↓, cycE/CCNE↓, CDK2↓, CDK4↓, CDK6↓, TumMeta↓, uPA↓, E-cadherin↑, Vim↓, EMT↓, Twist↓, DNAdam↑, ROS↓, COX2↓, PGE2↓, HSF1↓, cFos↓, cJun↓, AP-1↓, Mcl-1↓, NF-kB↓, IRE1↑, ER Stress↑, ATF4↑, GRP78/BiP↑, MMP2↓, MMP9↓, TCF-4↓, MMP7↓, RadioS↑, TOP1↓, TOP2↓,
800- GAR,    Garcinol Regulates EMT and Wnt Signaling Pathways In Vitro and In Vivo, Leading to Anticancer Activity against Breast Cancer Cells
- in-vitro, BC, MDA-MB-231 - in-vitro, BC, BT549 - in-vivo, NA, NA
EMT↓, MET↑, E-cadherin↑, Vim↓, Zeb1↓, ZEB2↑, miR-200c↑, Let-7↑, p‑β-catenin/ZEB1↓, NF-kB↓,
805- GAR,  Cisplatin,  PacT,    Garcinol Exhibits Anti-Neoplastic Effects by Targeting Diverse Oncogenic Factors in Tumor Cells
- Review, NA, NA
ERK↓, PI3K/Akt↓, Wnt/(β-catenin)↓, STAT3↓, NF-kB↓, ChemoSen↑, COX2↓, Casp3↑, Casp9↑, BAX↑, Bcl-2↓, VEGF↓, TGF-β↓, HATs↓, E-cadherin↑, Vim↓, Zeb1↓, ZEB2↓, Let-7↑, MMP9↓, TumCCA↑, ROS↑, MMP↓, IL6↓, NOTCH1↓,
1117- Gb,    Ginkgobiloba leaf extract mitigates cisplatin-induced chronic renal interstitial fibrosis by inhibiting the epithelial-mesenchymal transition of renal tubular epithelial cells mediated by the Smad3/TGF-β1 and Smad3/p38 MAPK pathways
- vitro+vivo, Kidney, HK-2
α-SMA↓, COL1↓, TGF-β↓, SMAD2↓, SMAD3↓, p‑SMAD2↓, p‑SMAD3↓, p38↓, p‑p38↓, Vim↓, TIMP1↓, CTGF↓, E-cadherin↑, MMP1:TIMP1↑,
1118- Ge,    Grape Seed Proanthocyanidins Inhibit Migration and Invasion of Bladder Cancer Cells by Reversing EMT through Suppression of TGF- β Signaling Pathway
- in-vitro, Bladder, T24 - in-vitro, Bladder, 5637
TumCMig↓, TumCI↓, MMP2↓, MMP9↓, EMT↓, N-cadherin↓, Vim↓, Slug↓, E-cadherin↑, ZO-1↑, p‑SMAD2↓, p‑SMAD3↓, p‑Akt↓, p‑ERK↓, p‑p38↓,
1240- Ge,  PACs,    Grape Seed Proanthocyanidins Inhibit Melanoma Cell Invasiveness by Reduction of PGE2 Synthesis and Reversal of Epithelial-to-Mesenchymal Transition
- in-vitro, Melanoma, A375 - in-vitro, Melanoma, Hs294T
TumCMig↓, TumCI↓, COX2↓, PGE2↓, NF-kB↓, EMT↓, E-cadherin↑, Vim↓, Fibronectin↓, N-cadherin↓,
1643- HCAs,    Mechanisms involved in the anticancer effects of sinapic acid
- Review, Var, NA
*BioAv↓, *toxicity↓, Dose∅, ROS⇅, ROS↑, Igs↑, TumCCA↑, TumAuto↑, eff↑, angioG↓, TumCI↓, TumMeta↓, EMT↓, Vim↓, MMP9↓, MMP2↓, Snail↓, E-cadherin↑, p‑Akt↓, GSK‐3β↓, TumCP↓, ChemoSen↑,
2882- HNK,    Honokiol Suppresses Perineural Invasion of Pancreatic Cancer by Inhibiting SMAD2/3 Signaling
- in-vitro, PC, PANC1
TumCI↓, TumCMig↓, p‑SMAD2↓, p‑SMAD3↓, EMT↓, N-cadherin↓, Vim↓, E-cadherin↑, Snail↓, Slug↓, Rho↓, ROCK1↓,
2891- HNK,    Honokiol, an Active Compound of Magnolia Plant, Inhibits Growth, and Progression of Cancers of Different Organs
- Review, Var, NA
AntiCan↑, Inflam↓, antiOx↑, selectivity↑, *toxicity↓, cycD1/CCND1↓, cycE/CCNE↓, CDK2↓, CDK4↓, TumMeta↓, NADPH↓, MMP2↓, MMP9↓, p‑mTOR↓, EGFR↓, EMT↓, SIRT1↑, SIRT3↑, EZH2↓, Snail↓, Vim↓, N-cadherin↓, E-cadherin↑, COX2↓, NF-kB↓, *ROS↓, Ca+2↑, ROS↑,
2880- HNK,    Honokiol inhibits breast cancer cell metastasis by blocking EMT through modulation of Snail/Slug protein translation
- in-vitro, BC, MCF-7 - in-vitro, BC, MDA-MB-231 - in-vitro, BC, 4T1 - in-vivo, NA, NA
tumCV↓, E-cadherin↑, Snail↓, Slug↓, Vim↓, TumMeta↓, p‑eIF2α↑,
4632- HT,    Hydroxytyrosol inhibits cancer stem cells and the metastatic capacity of triple-negative breast cancer cell lines by the simultaneous targeting of epithelial-to-mesenchymal transition, Wnt/β-catenin and TGFβ signaling pathways
- in-vitro, BC, MDA-MB-231 - in-vitro, BC, BT549 - in-vitro, BC, SUM159
CSCs↓, TumCMig↓, TumCI↓, β-catenin/ZEB1↓, Wnt↓, p‑LRP6↓, LRP6↓, cycD1/CCND1↓, EMT↓, Slug↓, Zeb1↓, Snail↓, Vim↓, SMAD2↓, SMAD3↓, TGF-β↓,
4636- HT,    Hydroxytyrosol inhibits cancer stem cells and the metastatic capacity of triple-negative breast cancer cell lines by the simultaneous targeting of epithelial-to-mesenchymal transition, Wnt/ß-catenin and TGFß signaling
- in-vitro, BC, SUM159 - in-vitro, BC, MDA-MB-231 - in-vitro, BC, HS587T - in-vitro, BC, BT549
Wnt↓, β-catenin/ZEB1↓, LRP6↓, cycD1/CCND1↓, EMT↓, Slug↓, Zeb1↓, Snail↓, Vim↓, TGF-β↓, CSCs↓, TumCMig↓, chemoP↑,
1121- JG,    Juglone suppresses epithelial-mesenchymal transition in prostate cancer cells via the protein kinase B/glycogen synthase kinase-3β/Snail signaling pathway
- in-vitro, Pca, LNCaP
E-cadherin↑, N-cadherin↓, Vim↓, Snail↓, GSK‐3β↑,
1100- LT,    Luteolin, a flavonoid, as an anticancer agent: A review
- Review, NA, NA
TumCP↓, TumCCA↑, Apoptosis↑, EMT↓, E-cadherin↑, N-cadherin↓, Snail↓, Vim↓, ROS↑, ER Stress↑, mtDam↑, p‑eIF2α↝, p‑PERK↝, p‑CHOP↝, p‑ATF4↝, cl‑Casp12↝,
2916- LT,    Antioxidative and Anticancer Potential of Luteolin: A Comprehensive Approach Against Wide Range of Human Malignancies
- Review, Var, NA - Review, AD, NA - Review, Park, NA
proCasp9↓, CDC2↓, CycB/CCNB1↓, Casp9↑, Casp3↑, Cyt‑c↑, cycA1/CCNA1↑, CDK2↓, APAF1↑, TumCCA↑, P53↑, BAX↑, VEGF↓, Bcl-2↓, Apoptosis↑, p‑Akt↓, p‑EGFR↓, p‑ERK↓, p‑STAT3↓, cardioP↑, Catalase↓, SOD↓, *BioAv↓, *antiOx↑, *ROS↓, *NO↓, *GSTs↑, *GSR↑, *SOD↑, *Catalase↑, *lipid-P↓, PI3K↓, Akt↓, CDK2↓, BNIP3↑, hTERT/TERT↓, DR5↑, Beclin-1↑, TNF-α↓, NF-kB↓, IL1↓, IL6↓, EMT↓, FAK↓, E-cadherin↑, MDM2↓, NOTCH↓, MAPK↑, Vim↓, N-cadherin↓, Snail↓, MMP2↓, Twist↓, MMP9↓, ROS↑, MMP↓, *AChE↓, *MMP↑, *Aβ↓, *neuroP↑, Trx1↑, ROS↓, *NRF2↑, NRF2↓, *BBB↑, ChemoSen↑, GutMicro↑,
2919- LT,    Luteolin as a potential therapeutic candidate for lung cancer: Emerging preclinical evidence
- Review, Var, NA
RadioS↑, ChemoSen↑, chemoP↑, *lipid-P↓, *Catalase↑, *SOD↑, *GPx↑, *GSTs↑, *GSH↑, *TNF-α↓, *IL1β↓, *Casp3↓, *IL10↑, NRF2↓, HO-1↓, NQO1↓, GSH↓, MET↓, p‑MET↓, p‑Akt↓, HGF/c-Met↓, NF-kB↓, Bcl-2↓, SOD2↓, Casp8↑, Casp3↑, PARP↑, MAPK↓, NLRP3↓, ASC↓, Casp1↓, IL6↓, IKKα↓, p‑p65↓, p‑p38↑, MMP2↓, ICAM-1↓, EGFR↑, p‑PI3K↓, E-cadherin↓, ZO-1↑, N-cadherin↓, CLDN1↓, β-catenin/ZEB1↓, Snail↓, Vim↑, ITGB1↓, FAK↓, p‑Src↓, Rac1↓, Cdc42↓, Rho↓, PCNA↓, Tyro3↓, AXL↓, CEA↓, NSE↓, SOD↓, Catalase↓, GPx↓, GSR↓, GSTs↓, GSH↓, VitE↓, VitC↓, CYP1A1↓, cFos↑, AR↓, AIF↑, p‑STAT6↓, p‑MDM2↓, NOTCH1↓, VEGF↓, H3↓, H4↓, HDAC↓, SIRT1↓, ROS↑, DR5↑, Cyt‑c↑, p‑JNK↑, PTEN↓, mTOR↓, CD34↓, FasL↑, Fas↑, XIAP↓, p‑eIF2α↑, CHOP↑, LC3II↑, PD-1↓, STAT3↓, IL2↑, EMT↓, cachexia↓, BioAv↑, *Half-Life↝, *eff↑,
2905- LT,    Luteolin blocks the ROS/PI3K/AKT pathway to inhibit mesothelial-mesenchymal transition and reduce abdominal adhesions
- in-vivo, NA, HMrSV5
*ROS↓, *p‑Akt↓, *Vim↓, *E-cadherin↑, *PI3K↓,
2912- LT,    Luteolin: a flavonoid with a multifaceted anticancer potential
- Review, Var, NA
ROS↑, TumCCA↑, TumCP↓, angioG↓, ER Stress↑, mtDam↑, PERK↑, ATF4↑, eIF2α↑, cl‑Casp12↑, EMT↓, E-cadherin↑, N-cadherin↓, Vim↓, *neuroP↑, NF-kB↓, PI3K↓, Akt↑, XIAP↓, MMP↓, Ca+2↑, BAX↑, Casp3↑, Casp9↑, Bcl-2↓, Cyt‑c↑, IronCh↑, SOD↓, *ROS↓, *LDHA↑, *SOD↑, *GSH↑, *BioAv↓, Telomerase↓, cMyc↓, hTERT/TERT↓, DR5↑, Fas↑, FADD↑, BAD↑, BOK↑, BID↑, NAIP↓, Mcl-1↓, CDK2↓, CDK4↓, MAPK↓, AKT1↓, Akt2↓, *Beclin-1↓, Hif1a↓, LC3II↑, Beclin-1↑,
4520- MAG,    Magnolol Suppresses Pancreatic Cancer Development In Vivo and In Vitro via Negatively Regulating TGF-β/Smad Signaling
- vitro+vivo, PC, PANC1
Vim↓, E-cadherin↑, EMT↓, N-cadherin↓, p‑SMAD2↓, p‑SMAD3↓, TumCP↓, TumCMig↓, TumCI↓, TGF-β↓,
1782- MEL,    Melatonin in Cancer Treatment: Current Knowledge and Future Opportunities
- Review, Var, NA
AntiCan↑, Apoptosis↑, TumCP↓, TumCG↑, TumMeta↑, ChemoSideEff↓, radioP↑, ChemoSen↑, *ROS↓, *SOD↑, *GSH↑, *GPx↑, *Catalase↑, Dose∅, VEGF↓, eff↑, Hif1a↓, GLUT1↑, GLUT3↑, CAIX↑, P21↑, p27↑, PTEN↑, Warburg↓, PI3K↓, Akt↓, NF-kB↓, cycD1/CCND1↓, CDK4↓, CycB/CCNB1↓, CDK4↓, MAPK↑, IGF-1R↓, STAT3↓, MMP9↓, MMP2↓, MMP13↓, E-cadherin↑, Vim↓, RANKL↓, JNK↑, Bcl-2↓, P53↑, Casp3↑, Casp9↑, BAX↑, DNArepair↑, COX2↓, IL6↓, IL8↓, NO↓, T-Cell↑, NK cell↑, Treg lymp↓, FOXP3↓, CD4+↑, TNF-α↑, Th1 response↑, BioAv↝, RadioS↑, OS↑,
2378- MET,    Metformin inhibits epithelial-mesenchymal transition of oral squamous cell carcinoma via the mTOR/HIF-1α/PKM2/STAT3 pathway
- in-vitro, SCC, CAL27 - in-vivo, NA, NA
TumCP↓, TumCMig↓, TumCI↓, EMT↓, mTOR↓, Hif1a↓, PKM2↓, STAT3↓, E-cadherin↑, Vim↓, Snail↓, STAT3↓,
3478- MF,    One Month of Brief Weekly Magnetic Field Therapy Enhances the Anticancer Potential of Female Human Sera: Randomized Double-Blind Pilot Study
- Trial, BC, NA - in-vitro, BC, MCF-7 - in-vitro, Nor, C2C12
TumCP↓, TumCMig↓, TumCI↓, *toxicity∅, TGF-β↓, Twist↓, Slug↓, β-catenin/ZEB1↓, Vim↓, p‑SMAD2↓, p‑SMAD3↓, angioG↓, VEGF↓, selectivity↑, LIF↑,
1129- NarG,    Naringenin Attenuated Prostate Cancer Invasion via Reversal of Epithelial-to-Mesenchymal Transition and Inhibited uPA Activity
- in-vitro, Pca, PC3
E-cadherin↓, Vim↓, Snail↓, Twist↓, EMT↓, uPA↓,
1130- OA,    Oroxylin A Suppresses the Cell Proliferation, Migration, and EMT via NF-κB Signaling Pathway in Human Breast Cancer Cells
- in-vitro, BC, MDA-MB-231
TumCP↓, TumCI↓, TumCMig↓, E-cadherin↑, N-cadherin↓, Vim↓, NF-kB↓,
4630- OLE,    Targeting resistant breast cancer stem cells in a three-dimensional culture model with oleuropein encapsulated in methacrylated alginate microparticles
- in-vitro, BC, NA
Bcl-2↓, BAX↑, Casp3↑, Casp9↑, Vim↓, Slug↓, E-cadherin↑, CSCs↓, P21↑, survivin↝, OCT4↑, Nanog↑, SOX4↑,
1673- PBG,    An Insight into Anticancer Effect of Propolis and Its Constituents: A Review of Molecular Mechanisms
- Review, Var, NA
TumCP↓, Apoptosis↑, TumCCA↑, MALAT1↓, P53↑, RadioS↑, OS↑, ROS↑, NF-kB↓, p65↑, MMP↓, ROS↑, MMP9↓, β-catenin/ZEB1↓, Vim↓, E-cadherin↓, VEGF↓, EMT↓,
3257- PBG,    The Potential Use of Propolis as a Primary or an Adjunctive Therapy in Respiratory Tract-Related Diseases and Disorders: A Systematic Scoping Review
- Review, Var, NA
CDK4↓, CDK6↓, pRB↓, ROS↓, TumCCA↑, P21↑, PI3K↓, Akt↓, EMT↓, E-cadherin↑, Vim↓, *COX2↓, *MPO↓, *MDA↓, *TNF-α↓, *IL6↓, *Catalase↑, *SOD↑, *AST↓, *ALAT↓, *IL1β↓, *IL10↓, *GPx↓, *TLR4↓, *Sepsis↓, *IFN-γ↑, *GSH↑, *NRF2↑, *α-SMA↓, *TGF-β↓, *IL5↓, *IL6↓, *IL8↓, *PGE2↓, *NF-kB↓, *MMP9↓,
4926- PEITC,    PEITC inhibits the invasion and migration of colorectal cancer cells by blocking TGF-β-induced EMT
- in-vitro, CRC, SW48
TumCI↓, TumCMig↓, EMT↓, Smad1↓, AntiCan↑, Snail↓, Slug↓, Zeb1↓, ZEB2↓, TGF-β1↓, eff↑, E-cadherin↑, N-cadherin↓, Vim↓,
1257- PI,    Piperlongumine attenuates bile duct ligation-induced liver fibrosis in mice via inhibition of TGF-β1/Smad and EMT pathways
- ex-vivo, LiverDam, NA
*Fibronectin↓, *α-SMA↓, *COL1↓, *COL3A1↓, *TGF-β↓, *EMT↓, *MMP2↓, *α-SMA↓, *Smad7↑, *E-cadherin↑, *Vim↓, *hepatoP↑, *antiOx↑, *GSH↑, *ROS↓,
2948- PL,    The promising potential of piperlongumine as an emerging therapeutics for cancer
- Review, Var, NA
tumCV↓, TumCP↓, TumCI↓, angioG↓, EMT↓, TumMeta↓, *hepatoP↑, *lipid-P↓, *GSH↑, cardioP↑, CycB/CCNB1↓, cycD1/CCND1↓, CDK2↓, CDK1↓, CDK4↓, CDK6↓, PCNA↓, Akt↓, mTOR↓, Glycolysis↓, NF-kB↓, IKKα↓, JAK1↓, JAK2↓, STAT3↓, ERK↓, cFos↓, Slug↓, E-cadherin↑, TOP2↓, P53↑, P21↑, Bcl-2↓, BAX↑, Casp3↑, Casp7↑, Casp8↑, p‑HER2/EBBR2↓, HO-1↑, NRF2↑, BIM↑, p‑FOXO3↓, Sp1/3/4↓, cMyc↓, EGFR↓, survivin↓, cMET↓, NQO1↑, SOD2↑, TrxR↓, MDM2↓, p‑eIF2α↑, ATF4↑, CHOP↑, MDA↑, Ki-67↓, MMP9↓, Twist↓, SOX2↓, Nanog↓, OCT4↓, N-cadherin↓, Vim↓, Snail↓, TumW↓, TumCG↓, HK2↓, RB1↓, IL6↓, IL8↓, SOD1↑, RadioS↑, ChemoSen↑, toxicity↓, Sp1/3/4↓, GSH↓, SOD↑,
4700- PTS,    Pterostilbene, a bioactive component of blueberries, suppresses the generation of breast cancer stem cells within tumor microenvironment and metastasis via modulating NF-κB/microRNA 448 circuit
- in-vitro, BC, MDA-MB-231 - in-vitro, BC, MCF-7
CSCs↓, NF-kB↓, Twist↓, Vim↓, E-cadherin↑,
4699- PTS,    Pterostilbene inhibits triple-negative breast cancer metastasis via inducing microRNA-205 expression and negatively modulates epithelial-to-mesenchymal transition
- in-vitro, BC, MDA-MB-231 - in-vitro, BC, HS587T - in-vivo, BC, MDA-MB-231
TumCMig↓, TumCI↓, E-cadherin↑, Snail↓, Slug↓, Vim↓, Zeb1↑, miR-205↑, Src↓, TumCG↓, FAK↓, EMT↓,
4698- PTS,    Pterostilbene, a bioactive component of blueberries, suppresses the generation of breast cancer stem cells within tumor microenvironment and metastasis via modulating NF ‐κ B /microRNA 448 circuit
- in-vitro, BC, MCF-7 - in-vitro, BC, MDA-MB-231
CSCs↓, NF-kB↓, Twist↓, Vim↓, E-cadherin↑, miR-448↑,
4693- PTS,    Pterostilbene in the treatment of inflammatory and oncological diseases
BioAv↑, *Inflam↓, *antiOx↑, AntiTum↑, BBB↑, Half-Life↝, *ROS↓, *NRF2↑, *NQO1↑, *HO-1↑, PTEN↑, miR-19b↓, TumCCA↑, ER Stress↑, PERK↑, ATF4↑, CHOP↑, Ca+2↝, EMT↓, NF-kB↓, Twist↓, Vim↓, E-cadherin↑, ChemoSen↑, toxicity∅, toxicity↝,
3368- QC,    The potential anti-cancer effects of quercetin on blood, prostate and lung cancers: An update
- Review, Var, NA
*Inflam↓, *antiOx↑, *AntiCan↑, Casp3↓, p‑Akt↓, p‑mTOR↓, p‑ERK↓, β-catenin/ZEB1↓, Hif1a↓, AntiAg↓, VEGFR2↓, EMT↓, EGFR↓, MMP2↓, MMP↓, TumMeta↓, MMPs↓, Akt↓, Snail↓, N-cadherin↓, Vim↓, E-cadherin↑, STAT3↓, TGF-β↓, ROS↓, P53↑, BAX↑, PKCδ↓, PI3K↓, COX2↓, cFLIP↓, cycD1/CCND1↓, cMyc↓, IL6↓, IL10↓, Cyt‑c↑, TumCCA↑, DNMTs↓, HDAC↓, ac‑H3↑, ac‑H4↑, Diablo↑, Casp3↑, Casp9↑, PARP1↑, eff↑, PTEN↑, VEGF↓, NO↓, iNOS↓, ChemoSen↑, eff↑, eff↑, eff↑, uPA↓, CXCR4↓, CXCL12↓, CLDN2↓, CDK6↓, MMP9↓, TSP-1↑, Ki-67↓, PCNA↓, ROS↑, ER Stress↑,
77- QC,  EGCG,    The dietary bioflavonoid quercetin synergizes with epigallocathechin gallate (EGCG) to inhibit prostate cancer stem cell characteristics, invasion, migration and epithelial-mesenchymal transition
- in-vitro, Pca, CD44+ - in-vitro, NA, CD133+ - in-vitro, NA, PC3 - in-vitro, NA, LNCaP
Casp3↑, Casp7↑, Bcl-2↓, survivin↓, XIAP↓, EMT↓, Vim↓, Slug↓, Snail↓, β-catenin/ZEB1↓, LEF1↓, TCF↓, Nanog↓,
80- QC,    Quercetin reverses EGF-induced epithelial to mesenchymal transition and invasiveness in prostate cancer (PC-3) cell line via EGFR/PI3K/Akt pathway
- in-vitro, Pca, PC3
Vim↓, ERK↓, Snail↓, Slug↓, Twist↓, EGFR↓, p‑Akt↓, EGFR↓, N-cadherin↓,
53- QC,    Quercetin regulates β-catenin signaling and reduces the migration of triple negative breast cancer
- in-vitro, BC, NA
E-cadherin↑, Vim↓, cycD1/CCND1↓, cMyc↓, EMT↓,
54- QC,    Quercetin‑3‑methyl ether suppresses human breast cancer stem cell formation by inhibiting the Notch1 and PI3K/Akt signaling pathways
- in-vitro, BC, MCF-7
EMT↓, E-cadherin↑, Vim↓, MMP2↓, NOTCH1↓, PI3K/Akt↓, PI3k/Akt/mTOR↓, p‑Akt↓, EZH2↓,
65- QC,    Hsp27 participates in the maintenance of breast cancer stem cells through regulation of epithelial-mesenchymal transition and nuclear factor-κB
- in-vitro, BC, NA
HSP27↓, EMT↓, NF-kB↓, Snail↓, Vim↓, E-cadherin↑,
95- QC,    Quercetin, a natural dietary flavonoid, acts as a chemopreventive agent
- in-vitro, Pca, PC3
p‑ERK↓, p‑STAT3↓, p‑Akt↓, N-cadherin↓, Vim↓, cycD1/CCND1↓, Snail↓, Slug↓, Twist↓, PCNA↓,
923- QC,    Quercetin as an innovative therapeutic tool for cancer chemoprevention: Molecular mechanisms and implications in human health
- Review, Var, NA
ROS↑, GSH↓, Ca+2↝, MMP↓, Casp3↑, Casp8↑, Casp9↑, other↓, *ROS↓, *NRF2↑, HO-1↑, TumCCA↑, Inflam↓, STAT3↓, DR5↑, P450↓, MMPs↓, IFN-γ↓, IL6↓, COX2↓, IL8↓, iNOS↓, TNF-α↓, cl‑PARP↑, Apoptosis↑, P53↑, Sp1/3/4↓, survivin↓, TRAILR↑, Casp10↑, DFF45↑, TNFR 1↑, Fas↑, NF-kB↓, IKKα↓, cycD1/CCND1↓, Bcl-2↓, BAX↑, PI3K↓, Akt↓, E-cadherin↓, Vim↓, β-catenin/ZEB1↓, cMyc↓, EMT↓, MMP2↓, NOTCH1↓, MMP7↓, angioG↓, TSP-1↑, CSCs↓, XIAP↓, Snail↓, Slug↓, LEF1↓, P-gp↓, EGFR↓, GSK‐3β↓, mTOR↓, RAGE↓, HSP27↓, VEGF↓, TGF-β↓, COL1↓, COL3A1↓,
1047- RES,    Resveratrol induces PD-L1 expression through snail-driven activation of Wnt pathway in lung cancer cells
- in-vitro, Lung, H1299 - in-vitro, Lung, A549 - in-vitro, Lung, H460
PD-L1↑, Snail↑, E-cadherin↓, N-cadherin↑, Fibronectin↑, Vim↑, Axin2↓,
878- RES,    Resveratrol suppresses epithelial-to-mesenchymal transition in colorectal cancer through TGF-β1/Smads signaling pathway mediated Snail/E-cadherin expression
- vitro+vivo, CRC, LoVo
TumMeta↓, E-cadherin↑, Vim↓, TGF-β↓, SMAD2↓, EMT↓, SMAD3↓,
3076- RES,    Resveratrol for targeting the tumor microenvironment and its interactions with cancer cells
- Review, Var, NA
IL6↓, MMPs↓, MMP2↓, MMP9↓, BioAv↓, Half-Life↑, BioAv↑, Dose↝, angioG↓, IL10↓, VEGF↓, NF-kB↓, COX2↓, SIRT1↑, Wnt↓, cMyc↓, STAT3↓, PTEN↑, ROS↑, RadioS↑, Hif1a↓, E-cadherin↓, Vim↓, angioG↓,
3092- RES,    Resveratrol in breast cancer treatment: from cellular effects to molecular mechanisms of action
- Review, BC, MDA-MB-231 - Review, BC, MCF-7
TumCP↓, tumCV↓, TumCI↓, TumMeta↓, *antiOx↑, *cardioP↑, *Inflam↓, *neuroP↑, *Keap1↓, *NRF2↑, *ROS↓, p62↓, IL1β↓, CRP↓, VEGF↓, Bcl-2↓, MMP2↓, MMP9↓, FOXO4↓, POLD1↓, CK2↓, MMP↓, ROS↑, Apoptosis↑, TumCCA↑, Beclin-1↓, Ki-67↓, ATP↓, GlutMet↓, PFK↓, TGF-β↓, SMAD2↓, SMAD3↓, Vim?, Snail↓, Slug↓, E-cadherin↑, EMT↓, Zeb1↓, Fibronectin↓, IGF-1↓, PI3K↓, Akt↓, HO-1↑, eff↑, PD-1↓, CD8+↑, Th1 response↑, CSCs↓, RadioS↑, SIRT1↑, Hif1a↓, mTOR↓,
2687- RES,    Effects of resveratrol, curcumin, berberine and other nutraceuticals on aging, cancer development, cancer stem cells and microRNAs
- Review, NA, NA - Review, AD, NA
NF-kB↓, P450↓, COX2↓, Hif1a↓, VEGF↓, *SIRT1↑, SIRT1↓, SIRT2↓, ChemoSen⇅, cardioP↑, *memory↑, *angioG↑, *neuroP↑, STAT3↓, CSCs↓, RadioS↑, Nestin↓, Nanog↓, TP53↑, P21↑, CXCR4↓, *BioAv↓, EMT↓, Vim↓, Slug↓, E-cadherin↑, AMPK↑, MDR1↓, DNAdam↑, TOP2↓, PTEN↑, Akt↓, Wnt↓, β-catenin/ZEB1↓, cMyc↓, MMP7↓, MALAT1↓, TCF↓, ALDH↓, CD44↓, Shh↓, IL6↓, VEGF↓, eff↑, HK2↓, ROS↑, MMP↓,
1745- RosA,    Rosmarinic acid and its derivatives: Current insights on anticancer potential and other biomedical applications
- Review, Var, NA - Review, AD, NA
ChemoSideEff↓, ChemoSen↑, antiOx↑, MMP2↓, MMP9↓, p‑AMPK↑, DNMTs↓, tumCV↓, COX2↓, E-cadherin↑, Vim↓, N-cadherin↓, EMT↓, Casp3↑, Casp9↓, ROS↓, GSH↑, ERK↓, Akt↓, ROS↓, NF-kB↓, p‑IκB↓, p50↓, p65↓, neuroP↑, Dose↝,
1748- RosA,    The Role of Rosmarinic Acid in Cancer Prevention and Therapy: Mechanisms of Antioxidant and Anticancer Activity
- Review, Var, NA
AntiCan↑, *BioAv↝, *CardioT↓, *Iron↓, *ROS↓, *SOD↑, *Catalase↑, *GPx↑, *NRF2↑, MARK4↓, MMP9↓, TumCCA↑, Bcl-2↓, BAX↑, Apoptosis↑, E-cadherin↑, N-cadherin↓, Vim↓, Gli1↓, HDAC2↓, Warburg↓, Hif1a↓, miR-155↓, p‑PI3K↑, ROS↑, *IronCh↑,
3027- RosA,    Rosmarinic acid inhibits proliferation and invasion of hepatocellular carcinoma cells SMMC 7721 via PI3K/AKT/mTOR signal pathway
- in-vitro, HCC, SMMC-7721 cell
TumCP↓, TumCCA↑, Apoptosis↑, EMT↓, TumCI↓, PI3K↓, Akt↓, mTOR↓, TumCMig↓, MMPs↓, Vim↓,
3037- RosA,    Unraveling rosmarinic acid anticancer mechanisms in oral cancer malignant transformation
- in-vitro, Oral, SCC9 - in-vitro, Oral, HSC3
survivin↓, AntiCan↑, Vim↓, Snail↓, SOX9↓, EMT↓, MMP2↓, MMP9↓, P-gp↓, TumCG↓, ROS↑, MMP↓, GSH↓, P-gp↓, ATP↓,
1132- RT,    Rutin Promotes Proliferation and Orchestrates Epithelial–Mesenchymal Transition and Angiogenesis in MCF-7 and MDA-MB-231 Breast Cancer Cells
- in-vitro, BC, MDA-MB-231 - in-vitro, BC, MCF-7
Vim↑, N-cadherin↑, E-cadherin↓, TumCP↑, TumCMig↑, tumCV↑, MKI67↑,
1135- Selenate,    Selenate induces epithelial-mesenchymal transition in a colorectal carcinoma cell line by AKT activation
- in-vitro, CRC, DLD1
EMT↑, Akt↑, Twist↑, Vim↑, E-cadherin↓,
1726- SFN,    Sulforaphane: A Broccoli Bioactive Phytocompound with Cancer Preventive Potential
- Review, Var, NA
Dose↝, eff↝, IL1β↓, IL6↓, IL12↓, TNF-α↓, COX2↓, CXCR4↓, MPO↓, HSP70/HSPA5↓, HSP90↓, VCAM-1↓, IKKα↓, NF-kB↓, HO-1↑, Casp3↑, Casp7↑, Casp8↑, Casp9↑, cl‑PARP↑, Cyt‑c↑, Diablo↑, CHOP↑, survivin↓, XIAP↓, p38↑, Fas↑, PUMA↑, VEGF↓, Hif1a↓, Twist↓, Zeb1↓, Vim↓, MMP2↓, MMP9↓, E-cadherin↑, N-cadherin↓, Snail↓, CD44↓, cycD1/CCND1↓, cycA1/CCNA1↓, CycB/CCNB1↓, cycE/CCNE↓, CDK4↓, CDK6↓, p50↓, P53↑, P21↑, GSH↑, SOD↑, GSTs↑, mTOR↓, Akt↓, PI3K↓, β-catenin/ZEB1↓, IGF-1↓, cMyc↓, CSCs↓,
3301- SIL,    Critical review of therapeutic potential of silymarin in cancer: A bioactive polyphenolic flavonoid
- Review, Var, NA
Inflam↓, TumCCA↑, Apoptosis↓, TumMeta↓, TumCG↓, angioG↓, chemoP↑, radioP↑, p‑ERK↓, p‑p38↓, p‑JNK↓, P53↑, Bcl-2↓, Bcl-xL↓, TGF-β↓, MMP2↓, MMP9↓, E-cadherin↑, Wnt↓, Vim↓, VEGF↓, IL6↓, STAT3↓, *ROS↓, IL1β↓, PGE2↓, CDK1↓, CycB/CCNB1↓, survivin↓, Mcl-1↓, Casp3↑, Casp9↑, cMyc↓, COX2↓, Hif1a↓, CXCR4↓, CSCs↓, EMT↓, N-cadherin↓, PCNA↓, cycD1/CCND1↓, ROS↑, eff↑, eff↑, eff↑, HER2/EBBR2↓,
3282- SIL,    Role of Silymarin in Cancer Treatment: Facts, Hypotheses, and Questions
- Review, NA, NA
hepatoP↑, AntiCan↑, TumCMig↓, Hif1a↓, selectivity↑, toxicity∅, *antiOx↑, *Inflam↓, TumCCA↑, P21↑, CDK4↓, NF-kB↓, ERK↓, PSA↓, TumCG↓, p27↑, COX2↓, IL1↓, VEGF↓, IGFBP3↑, AR↓, STAT3↓, Telomerase↓, Cyt‑c↑, Casp↑, eff↝, HDAC↓, HATs↑, Zeb1↓, E-cadherin↑, miR-203↑, NHE1↓, MMP2↓, MMP9↓, PGE2↓, Vim↓, Wnt↓, angioG↓, VEGF↓, *TIMP1↓, EMT↓, TGF-β↓, CD44↓, EGFR↓, PDGF↓, *IL8↓, SREBP1↓, MMP↓, ATP↓, uPA↓, PD-L1↓, NOTCH↓, *SIRT1↑, SIRT1↓, CA↓, Ca+2↑, chemoP↑, cardioP↑, Dose↝, Half-Life↝, BioAv↓, BioAv↓, BioAv↓, toxicity↝, Half-Life↓, ROS↓, FAK↓,
3296- SIL,    Silibinin induces oral cancer cell apoptosis and reactive oxygen species generation by activating the JNK/c-Jun pathway
- in-vitro, Oral, Ca9-22 - in-vivo, Oral, YD10B
TumCP↓, TumCCA↑, ROS↑, SOD1↓, SOD2↓, *JNK↑, toxicity?, TumCMig↓, TumCI↓, N-cadherin↓, Vim↓, E-cadherin↑, EMT↓, P53↑, cl‑Casp3↑, cl‑PARP↑, BAX↑, Bcl-2↓, SOD↓,
3048- SK,    Shikonin inhibits triple-negative breast cancer-cell metastasis by reversing the epithelial-to-mesenchymal transition via glycogen synthase kinase 3β-regulated suppression of β-catenin signaling
- in-vitro, BC, MDA-MB-231 - in-vitro, BC, 4T1 - in-vitro, Nor, MCF12A - in-vivo, NA, NA
tumCV↓, selectivity↑, EMT↓, TumCMig↓, TumCI↓, E-cadherin↑, N-cadherin↓, Vim↓, Snail↓, β-catenin/ZEB1↓, GSK‐3β↑,
1137- Taur,    Taurine Attenuates Epithelial-Mesenchymal Transition-Related Genes in Human Prostate Cancer Cells
- in-vitro, Pca, NA
N-cadherin↓, Twist↓, Zeb1↓, Snail↓, Vim↓, E-cadherin↑,
1138- TQ,    Thymoquinone inhibits epithelial-mesenchymal transition in prostate cancer cells by negatively regulating the TGF-β/Smad2/3 signaling pathway
- in-vitro, Pca, DU145 - in-vitro, Pca, PC3
TumMeta↓, EMT↓, E-cadherin↑, Vim↓, Slug↓, TGF-β↓, SMAD2↓, SMAD3↓,
3427- TQ,    Chemopreventive and Anticancer Effects of Thymoquinone: Cellular and Molecular Targets
ROS⇅, Fas↑, DR5↑, TRAIL↑, Casp3↑, Casp8↑, Casp9↑, P53↑, mTOR↓, Bcl-2↓, BID↓, CXCR4↓, JNK↑, p38↑, MAPK↑, LC3II↑, ATG7↑, Beclin-1↑, AMPK↑, PPARγ↑, eIF2α↓, P70S6K↓, VEGF↓, ERK↓, NF-kB↓, XIAP↓, survivin↓, p65↓, DLC1↑, FOXO↑, TET2↑, CYP1B1↑, UHRF1↓, DNMT1↓, HDAC1↓, IL2↑, IL1↓, IL6↓, IL10↓, IL12↓, TNF-α↓, iNOS↓, COX2↓, 5LO↓, AP-1↓, PI3K↓, Akt↓, cMET↓, VEGFR2↓, CXCL1↓, ITGA5↓, Wnt↓, β-catenin/ZEB1↓, GSK‐3β↓, Myc↓, cycD1/CCND1↓, N-cadherin↓, Snail↓, Slug↓, Vim↓, Twist↓, Zeb1↓, MMP2↓, MMP7↓, MMP9↓, JAK2↓, STAT3↓, NOTCH↓, cycA1/CCNA1↓, CDK2↓, CDK4↓, CDK6↓, CDC2↓, CDC25↓, Mcl-1↓, E2Fs↓, p16↑, p27↑, P21↑, ChemoSen↑,
3422- TQ,    Thymoquinone, as a Novel Therapeutic Candidate of Cancers
- Review, Var, NA
selectivity↑, P53↑, PTEN↑, NF-kB↓, PPARγ↓, cMyc↓, Casp↑, *BioAv↓, BioAv↝, eff↑, survivin↓, Bcl-xL↓, Bcl-2↓, Akt↓, BAX↑, cl‑PARP↑, CXCR4↓, MMP9↓, VEGFR2↓, Ki-67↓, COX2↓, JAK2↓, cSrc↓, Apoptosis↑, p‑STAT3↓, cycD1/CCND1↓, Casp3↑, Casp7↑, Casp9↑, N-cadherin↓, Vim↓, Twist↓, E-cadherin↑, ChemoSen↑, eff↑, EMT↓, ROS↑, DNMT1↓, eff↑, EZH2↓, hepatoP↑, Zeb1↓, RadioS↑, HDAC↓, HDAC1↓, HDAC2↓, HDAC3↓, *NAD↑, *SIRT1↑, SIRT1↓, *Inflam↓, *CRP↓, *TNF-α↓, *IL6↓, *IL1β↓, *eff↑, *MDA↓, *NO↓, *GSH↑, *SOD↑, *Catalase↑, *GPx↑, PI3K↓, mTOR↓,
1139- UA,    Ursolic acid inhibits epithelial-mesenchymal transition by suppressing the expression of astrocyte-elevated gene-1 in human nonsmall cell lung cancer A549 cells
- in-vitro, Lung, A549
TumMeta↓, AEG1↓, E-cadherin↑, N-cadherin↓, Vim↓, EMT↓,
5022- UA,    Ursolic Acid’s Alluring Journey: One Triterpenoid vs. Cancer Hallmarks
- Review, Var, NA
TumCP↓, Apoptosis↑, angioG↑, TumMeta↓, BioAv↓, Hif1a↓, Glycolysis↓, mitResp↓, Akt↓, MAPK↓, ERK↓, mTOR↓, P53↑, P21↑, E2Fs↑, STAT3↓, MMP↓, NLRP3↓, iNOS↓, CHK1↓, Chk2↓, BRCA1↓, E-cadherin↑, N-cadherin↓, Casp↑, p62↓, LC3II↑, Vim↓, ROS↑, CSCs↓, DNAdam↑, GutMicro↑, VEGF↓,
4856- Uro,    Study on the biological mechanism of urolithin a on nasopharyngeal carcinoma in vitro
- in-vitro, NPC, CNE1 - in-vitro, NPC, CNE2
Apoptosis↑, MMP↓, ROS↑, E-cadherin↑, BAX↑, cl‑Casp3↑, PARP↑, MMP2↓, MMP9↓, N-cadherin↓, Vim↓, Snail↓, eff↓, TumCP↓, TumCMig↓, TumCI↓, EMT↓,
4844- Uro,    Urolithin A Inhibits Epithelial–Mesenchymal Transition in Lung Cancer Cells via P53-Mdm2-Snail Pathway
- in-vitro, Lung, A549 - in-vitro, Lung, H460
TumCMig↓, TumCI↓, EMT↓, Snail↓, MDM2↑, P53↑, E-cadherin↑, N-cadherin↓, Vim↓,
4838- Uro,    The Therapeutic Potential of Urolithin A for Cancer Treatment and Prevention
- Review, Var, NA
BioAv↑, Inflam↓, IL6↓, IL1β↓, NOS2↓, p53 Wildtype↑, MDM2↑, Snail↓, E-cadherin↑, N-cadherin↓, Vim↓, NF-kB↓, mTOR↓, p‑Akt↓, selectivity↑, EMT↓,
1217- VitC,    High-dose vitamin C suppresses the invasion and metastasis of breast cancer cells via inhibiting epithelial-mesenchymal transition
- in-vitro, BC, Bcap37 - in-vitro, BC, MDA-MB-231 - in-vivo, NA, NA
TumCMig↓, E-cadherin↑, Vim↓, EMT↓,
1740- VitD3,    Vitamin D and Cancer: An Historical Overview of the Epidemiology and Mechanisms
- Review, Var, NA
Risk↓, eff↑, eff↑, Risk↓, Risk↓, ChemoSen↑, RadioS↑, Cyt‑c↑, Casp3↑, Casp9↑, hTERT/TERT↓, eff↑, E-cadherin↑, CLDN2↑, ZO-1↑, Snail↓, Zeb1↓, Vim↓, VEGF↓, NK cell↑, Risk↓, eff↑,
2366- VitD3,    Vitamin D3 decreases glycolysis and invasiveness, and increases cellular stiffness in breast cancer cells
- in-vitro, BC, MCF-7
Glycolysis↓, tumCV↓, Apoptosis↑, mTOR↓, AMPK↑, EMT↓, E-cadherin↑, F-actin↑, Vim↓,
1820- VitK3,    Vitamin K3 (menadione) suppresses epithelial-mesenchymal-transition and Wnt signaling pathway in human colorectal cancer cells
- in-vitro, CRC, SW480 - in-vitro, CRC, SW-620
selectivity↑, TumCI↓, TumCMig↓, EMT↓, E-cadherin↑, ZO-1↑, N-cadherin↓, Vim↓, Zeb1↓, MMP2↓, MMP9↓, TOPflash↓, β-catenin/ZEB1↓, p300↓, cycD1/CCND1↓, TumCCA↑,
1821- VitK3,    Menadione (Vitamin K3) induces apoptosis of human oral cancer cells and reduces their metastatic potential by modulating the expression of epithelial to mesenchymal transition markers and inhibiting migration
- in-vitro, Oral, NA - in-vitro, Nor, HEK293 - in-vitro, Nor, HaCaT
selectivity↑, TumCD↓, BAX↑, P53↑, Bcl-2↓, p65↓, E-cadherin↑, EMT↓, Vim↓, Fibronectin↓, TumCG↓, TumCMig↓,
4888- ZER,  5-FU,    Modulation of the tumor microenvironment by zerumbone and 5-fluorouracil in colorectal cancer by target in cancer-associated fibroblasts
- in-vitro, CRC, CT26
TumVol↓, *tumCV↓, survivin↓, β-catenin/ZEB1↓, Vim↓,

* indicates research on normal cells as opposed to diseased cells
Total Research Paper Matches: 132

Pathway results for Effect on Cancer / Diseased Cells:


NA, unassigned

DrugR↓, 1,  

Redox & Oxidative Stress

antiOx↑, 2,   ATF3↑, 1,   Catalase↓, 3,   Copper↑, 1,   CYP1A1↓, 1,   Ferroptosis↑, 1,   frataxin↑, 1,   GPx↓, 2,   GPx↑, 1,   GPx4↓, 1,   GSH↓, 6,   GSH↑, 2,   GSH/GSSG↓, 1,   GSR↓, 2,   GSR↑, 1,   ox-GSSG↑, 1,   GSTs↓, 2,   GSTs↑, 2,   HO-1↓, 5,   HO-1↑, 6,   lipid-P↓, 1,   lipid-P↑, 3,   MAD↓, 1,   MDA↑, 2,   MPO↓, 1,   NQO1↓, 1,   NQO1↑, 2,   NRF2↓, 7,   NRF2↑, 3,   p‑NRF2↓, 1,   PAO↑, 1,   PARK2↑, 1,   ROS↓, 8,   ROS↑, 42,   ROS⇅, 3,   i-ROS↑, 1,   SIRT3↑, 2,   SOD↓, 6,   SOD↑, 3,   SOD1↓, 2,   SOD1↑, 1,   SOD2↓, 2,   SOD2↑, 1,   Trx1↑, 1,   TrxR↓, 2,   VitC↓, 1,   VitE↓, 1,  

Metal & Cofactor Biology

IronCh↑, 1,  

Mitochondria & Bioenergetics

AIF↑, 2,   ATP↓, 3,   BCR-ABL↓, 1,   BOK↑, 1,   CDC2↓, 4,   CDC2↑, 1,   CDC25↓, 3,   EGF↓, 1,   FGFR1↓, 2,   MEK↓, 1,   mitResp↓, 2,   MMP↓, 22,   MMP↑, 1,   Mortalin↓, 1,   mtDam↑, 4,   OCR↓, 2,   p‑p42↓, 1,   PINK1↑, 1,   Raf↓, 1,   XIAP↓, 12,  

Core Metabolism/Glycolysis

ACC↑, 2,   AKT1↓, 1,   ALAT↓, 2,   ALAT↝, 1,   AMPK↑, 10,   p‑AMPK↑, 1,   ATG7↑, 1,   CAIX↑, 1,   cMyc↓, 18,   ECAR↓, 1,   GlutMet↓, 1,   Glycolysis↓, 6,   HK2↓, 5,   lactateProd↓, 1,   LDH↓, 2,   LDHA↓, 3,   LDL↓, 1,   NADPH↓, 2,   NADPH↑, 1,   PDH↝, 1,   PDK1↓, 4,   p‑PDK1↓, 2,   PFK↓, 1,   PI3K/Akt↓, 2,   PI3k/Akt/mTOR↓, 1,   PKM2↓, 1,   POLD1↓, 1,   PPARα↓, 1,   PPARγ↓, 2,   PPARγ↑, 1,   SIRT1↓, 5,   SIRT1↑, 3,   SIRT2↓, 1,   SREBP1↓, 1,   SSAT↑, 1,   Warburg↓, 2,  

Cell Death

Akt↓, 29,   Akt↑, 2,   p‑Akt↓, 14,   APAF1↑, 1,   Apoptosis↓, 1,   Apoptosis↑, 23,   ASK1↑, 1,   BAD↑, 4,   Bak↑, 3,   BAX↓, 1,   BAX↑, 25,   Bax:Bcl2↑, 1,   Bcl-2↓, 29,   Bcl-2↑, 1,   Bcl-xL↓, 9,   BID↓, 1,   BID↑, 3,   BIM↑, 4,   Casp↑, 6,   Casp1↓, 1,   Casp10↑, 1,   cl‑Casp12↑, 1,   cl‑Casp12↝, 1,   Casp3↓, 1,   Casp3↑, 29,   cl‑Casp3↑, 5,   Casp7↑, 5,   Casp8↑, 5,   cl‑Casp8↑, 1,   Casp9↓, 1,   Casp9↑, 19,   cl‑Casp9↑, 2,   proCasp9↓, 1,   cFLIP↓, 1,   Chk2↓, 2,   CK2↓, 2,   Cyt‑c↑, 17,   Diablo↑, 6,   DR4↑, 1,   DR5↑, 9,   FADD↑, 1,   Fas↑, 8,   FasL↑, 1,   Ferroptosis↑, 1,   HEY1↓, 1,   HGF/c-Met↓, 1,   hTERT/TERT↓, 4,   IAP1↓, 1,   iNOS↓, 6,   JNK↑, 3,   p‑JNK↓, 1,   p‑JNK↑, 1,   JWA↑, 1,   MAPK↓, 6,   MAPK↑, 5,   Mcl-1↓, 10,   MDM2↓, 2,   MDM2↑, 2,   p‑MDM2↓, 1,   miR-127-5p↑, 2,   Myc↓, 2,   NAIP↓, 1,   NOXA↑, 1,   p27↑, 6,   p38↓, 2,   p38↑, 3,   p‑p38↓, 3,   p‑p38↑, 1,   Proteasome↓, 1,   PUMA↑, 2,   survivin↓, 14,   survivin↝, 1,   Telomerase↓, 2,   TNFR 1↑, 1,   TRAIL↑, 2,   TRAILR↑, 1,   TumCD↓, 1,   TumCD↑, 1,  

Kinase & Signal Transduction

cSrc↓, 1,   HER2/EBBR2↓, 1,   p‑HER2/EBBR2↓, 1,   p70S6↓, 1,   SOX9↓, 1,   Sp1/3/4↓, 5,  

Transcription & Epigenetics

cJun↓, 5,   EZH2↓, 3,   H3↓, 1,   H3↑, 1,   ac‑H3↑, 1,   H4↓, 1,   ac‑H4↑, 1,   HATs↓, 1,   HATs↑, 1,   miR-205↑, 1,   other↓, 1,   pRB↓, 1,   pRB↑, 1,   tumCV↓, 7,   tumCV↑, 1,  

Protein Folding & ER Stress

CHOP↑, 9,   p‑CHOP↝, 1,   eIF2α↓, 1,   eIF2α↑, 1,   p‑eIF2α↑, 5,   p‑eIF2α↝, 1,   ER Stress↑, 10,   GRP78/BiP↑, 4,   HSF1↓, 1,   HSP27↓, 4,   HSP70/HSPA5↓, 5,   HSP70/HSPA5↑, 1,   HSP90↓, 5,   IRE1↑, 3,   PERK↑, 4,   p‑PERK↝, 1,   UPR↑, 1,   XBP-1↓, 1,  

Autophagy & Lysosomes

Beclin-1↓, 2,   Beclin-1↑, 4,   BNIP3↑, 1,   LC3‑Ⅱ/LC3‑Ⅰ↓, 1,   LC3A↑, 1,   LC3II↓, 1,   LC3II↑, 7,   p62↓, 5,   TumAuto↑, 4,  

DNA Damage & Repair

BRCA1↓, 1,   CHK1↓, 2,   CYP1B1↑, 1,   DFF45↑, 1,   DNAdam↑, 11,   DNArepair↑, 1,   DNMT1↓, 3,   DNMT3A↓, 2,   DNMTs↓, 2,   m-FAM72A↓, 1,   MGMT↓, 1,   p16↑, 1,   P53↓, 1,   P53↑, 24,   p53 Wildtype↑, 1,   PARP↑, 5,   cl‑PARP↑, 12,   PARP1↑, 1,   PCNA↓, 8,   RAD51↓, 1,   TP53↑, 1,   UHRF1↓, 1,   γH2AX↑, 3,  

Cell Cycle & Senescence

CDK1↓, 4,   CDK2↓, 12,   CDK2↑, 1,   CDK4↓, 16,   CDK4↑, 1,   Cyc↓, 1,   cycA1/CCNA1↓, 4,   cycA1/CCNA1↑, 1,   CycB/CCNB1↓, 6,   CycB/CCNB1↑, 1,   cycD1/CCND1↓, 24,   cycE/CCNE↓, 5,   E2Fs↓, 1,   E2Fs↑, 1,   P21↑, 17,   RB1↓, 1,   RB1↑, 1,   p‑RB1↓, 1,   Securin↓, 1,   TAp63α↑, 1,   TumCCA↓, 1,   TumCCA↑, 27,  

Proliferation, Differentiation & Cell State

ALDH↓, 2,   ALDH1A1↓, 2,   AXIN1↓, 1,   AXIN1↑, 1,   Axin2↓, 1,   BMI1↓, 1,   CD133↓, 3,   CD24↓, 1,   CD34↓, 1,   CD44↓, 5,   CD44↑, 1,   CDX2↓, 1,   cFos↓, 6,   cFos↑, 1,   CIP2A↓, 1,   cMET↓, 2,   p‑cMET↓, 1,   cMYB↓, 1,   CSCs↓, 21,   EMT↓, 78,   EMT↑, 1,   ERK↓, 11,   ERK↑, 1,   p‑ERK↓, 7,   FGF↓, 1,   FGFR2↓, 1,   FOXM1↓, 1,   FOXO↑, 1,   FOXO3↑, 1,   p‑FOXO3↓, 1,   FOXO4↓, 1,   Gli1↓, 4,   GSK‐3β↓, 4,   GSK‐3β↑, 3,   p‑GSK‐3β↓, 1,   HDAC↓, 6,   HDAC1↓, 2,   HDAC2↓, 2,   HDAC3↓, 1,   HH↓, 1,   IGF-1↓, 2,   IGF-1R↓, 2,   IGFBP3↑, 1,   p‑IGFR↓, 1,   Let-7↑, 3,   LRP6↓, 3,   p‑LRP6↓, 2,   miR-448↑, 1,   mTOR↓, 18,   mTOR↑, 1,   p‑mTOR↓, 4,   mTORC1↓, 1,   Nanog↓, 6,   Nanog↑, 1,   Nestin↓, 1,   NKD2↑, 1,   NOTCH↓, 7,   NOTCH1↓, 4,   NOTCH1↑, 1,   OCT4↓, 7,   OCT4↑, 1,   p300↓, 1,   P70S6K↓, 1,   PI3K↓, 16,   p‑PI3K↓, 1,   p‑PI3K↑, 1,   PIAS-3↑, 1,   Pirin↓, 1,   PTEN↓, 1,   PTEN↑, 9,   RAS↓, 1,   SFRP5↑, 1,   Shh↓, 4,   Smo↓, 2,   SOX2↓, 4,   Src↓, 2,   p‑Src↓, 1,   STAT↓, 1,   p‑STAT1↓, 2,   p‑STAT2↓, 1,   STAT3↓, 22,   p‑STAT3↓, 4,   p‑STAT6↓, 1,   TCF↓, 3,   TCF↑, 1,   TCF-4↓, 1,   TOP1↓, 3,   TOP2↓, 4,   TOPflash↓, 1,   TumCG↓, 14,   TumCG↑, 1,   tyrosinase↓, 1,   Wnt↓, 16,   Wnt/(β-catenin)↓, 4,  

Migration

5LO↓, 2,   AEG1↓, 1,   Akt2↓, 1,   annexin II↓, 1,   AntiAg↓, 1,   AP-1↓, 3,   AXL↓, 1,   CA↓, 1,   Ca+2↑, 8,   Ca+2↝, 2,   CAFs/TAFs↓, 1,   Cdc42↓, 1,   CDH1↑, 2,   CEA↓, 1,   CLDN1↓, 2,   CLDN2↓, 1,   CLDN2↑, 1,   COL1↓, 3,   COL1A1↓, 3,   COL3A1↓, 1,   COL4↓, 1,   CTGF↓, 1,   CXCL12↓, 1,   DLC1↑, 1,   E-cadherin↓, 14,   E-cadherin↑, 86,   ER-α36↓, 1,   F-actin↑, 1,   FAK↓, 5,   Fibronectin↓, 10,   Fibronectin↑, 1,   ITGA5↓, 1,   ITGA5↑, 3,   ITGB1↓, 2,   ITGB1↑, 3,   ITGB3↓, 1,   Ki-67↓, 6,   LAMA5↑, 3,   LEF1↓, 2,   MALAT1↓, 2,   MARK4↓, 1,   MET↓, 2,   MET↑, 1,   p‑MET↓, 1,   miR-139-5p↑, 1,   miR-155↓, 1,   miR-19b↓, 2,   miR-200b↑, 1,   miR-200c↑, 1,   miR-203↑, 1,   miR-301a-3p↓, 1,   MMP-10↓, 2,   MMP1↓, 1,   MMP1:TIMP1↑, 1,   MMP13↓, 1,   MMP2↓, 36,   MMP3↓, 2,   MMP7↓, 5,   MMP9↓, 39,   pro‑MMP9↓, 1,   MMPs↓, 6,   N-cadherin↓, 51,   N-cadherin↑, 2,   p‑p44↓, 1,   PDGF↓, 2,   PIR↓, 1,   PKCδ↓, 2,   Rac1↓, 1,   RAGE↓, 1,   Rho↓, 2,   ROCK1↓, 3,   Slug↓, 25,   Smad1↓, 1,   SMAD2↓, 5,   p‑SMAD2↓, 6,   SMAD3↓, 5,   p‑SMAD3↓, 5,   Snail↓, 53,   Snail↑, 5,   SOX4↑, 1,   TET1↑, 2,   TGF-β↓, 14,   TGF-β↑, 1,   TGF-β1↓, 1,   TIMP1↓, 2,   TIMP1↑, 2,   TIMP2↓, 1,   TIMP2↑, 1,   Treg lymp↓, 1,   TSP-1↑, 3,   TumCI?, 1,   TumCI↓, 33,   TumCMig↓, 37,   TumCMig↑, 1,   TumCP↓, 29,   TumCP↑, 1,   TumMeta↓, 20,   TumMeta↑, 1,   Twist↓, 19,   Twist↑, 1,   Tyro3↓, 1,   uPA↓, 9,   VCAM-1↓, 1,   Vim?, 1,   Vim↓, 119,   Vim↑, 6,   Zeb1↓, 18,   Zeb1↑, 4,   ZEB2↓, 2,   ZEB2↑, 1,   ZO-1↑, 8,   α-SMA↓, 1,   α-SMA↑, 1,   β-catenin/ZEB1↓, 36,   p‑β-catenin/ZEB1↓, 1,  

Angiogenesis & Vasculature

angioG↓, 16,   angioG↑, 2,   ATF4↓, 1,   ATF4↑, 6,   p‑ATF4↝, 1,   EGFR↓, 12,   EGFR↑, 1,   p‑EGFR↓, 1,   eNOS↓, 1,   Hif1a↓, 22,   miR-126↑, 1,   miR-210↓, 1,   NO↓, 2,   NO↑, 1,   PDGFR-BB↓, 1,   VEGF↓, 30,   VEGFR2↓, 5,  

Barriers & Transport

BBB↑, 1,   CTR1↑, 1,   GLUT1↓, 1,   GLUT1↑, 1,   GLUT3↑, 1,   NHE1↓, 1,   P-gp↓, 3,  

Immune & Inflammatory Signaling

ASC↓, 1,   CD4+↑, 1,   COX2↓, 22,   COX2↑, 1,   CRP↓, 1,   CXCL1↓, 1,   CXCR4↓, 7,   FOXP3↓, 1,   ICAM-1↓, 1,   IFN-γ↓, 1,   Igs↑, 1,   IKKα↓, 4,   IKKα↑, 1,   IL1↓, 3,   IL10↓, 4,   IL12↓, 2,   IL1β↓, 5,   IL2↑, 2,   IL6↓, 16,   IL8↓, 3,   Inflam↓, 5,   p‑IκB↓, 1,   p‑JAK↓, 1,   JAK1↓, 1,   JAK2↓, 3,   p‑JAK2↓, 1,   p‑JAK3↓, 1,   LIF↑, 1,   NF-kB↓, 40,   NF-kB↑, 1,   NK cell↑, 2,   p50↓, 2,   p65↓, 4,   p65↑, 1,   p‑p65↓, 1,   PD-1↓, 3,   PD-L1↓, 2,   PD-L1↑, 1,   PGE2↓, 7,   PSA↓, 1,   SOCS-3↑, 1,   SOCS1↑, 1,   T-Cell↑, 1,   Th1 response↑, 2,   TLR4↓, 1,   TNF-α↓, 5,   TNF-α↑, 1,  

Protein Aggregation

NLRP3↓, 2,  

Hormonal & Nuclear Receptors

AR↓, 2,   CDK6↓, 10,   CDK6↑, 1,   RANKL↓, 1,  

Drug Metabolism & Resistance

BioAv↓, 5,   BioAv↑, 6,   BioAv↝, 2,   ChemoSen↑, 23,   ChemoSen⇅, 1,   Dose↝, 4,   Dose∅, 4,   eff↓, 3,   eff↑, 39,   eff↝, 3,   Half-Life↓, 1,   Half-Life↑, 1,   Half-Life↝, 3,   MDR1↓, 1,   P450↓, 2,   RadioS↑, 12,   selectivity↑, 9,   TET2↑, 1,  

Clinical Biomarkers

ALAT↓, 2,   ALAT↝, 1,   ALP↓, 1,   ALP↝, 1,   AR↓, 2,   AST↓, 1,   AST↝, 1,   BRCA1↓, 1,   CEA↓, 1,   CRP↓, 1,   E6↓, 2,   E7↓, 2,   EGFR↓, 12,   EGFR↑, 1,   p‑EGFR↓, 1,   EZH2↓, 3,   FOXM1↓, 1,   GutMicro↑, 2,   HER2/EBBR2↓, 1,   p‑HER2/EBBR2↓, 1,   hTERT/TERT↓, 4,   IL6↓, 16,   Ki-67↓, 6,   LDH↓, 2,   Myc↓, 2,   NOS2↓, 1,   NSE↓, 1,   PD-L1↓, 2,   PD-L1↑, 1,   PSA↓, 1,   RAGE↓, 1,   TP53↑, 1,  

Functional Outcomes

AntiCan↑, 7,   AntiTum↓, 1,   AntiTum↑, 2,   cachexia↓, 1,   cardioP↑, 5,   chemoP↑, 4,   ChemoSideEff↓, 3,   hepatoP↑, 2,   MKI67↑, 1,   NDRG1↑, 1,   neuroP↑, 2,   OS↑, 2,   radioP↑, 2,   RenoP↑, 2,   Risk↓, 4,   toxicity?, 1,   toxicity↓, 1,   toxicity↝, 2,   toxicity∅, 2,   TumVol↓, 3,   TumW↓, 3,  

Infection & Microbiome

CD8+↑, 1,  
Total Targets: 633

Pathway results for Effect on Normal Cells:


Redox & Oxidative Stress

antiOx↓, 1,   antiOx↑, 8,   Catalase↓, 1,   Catalase↑, 6,   GPx↓, 1,   GPx↑, 6,   GSH↑, 9,   GSR↑, 1,   GSTs↑, 2,   HO-1↑, 2,   Iron↓, 1,   Keap1↓, 1,   lipid-P↓, 3,   MDA↓, 3,   MPO↓, 1,   NQO1↑, 1,   NRF2↑, 8,   Prx↓, 1,   Prx↑, 1,   ROS↓, 15,   SOD↑, 8,   SOD2↑, 1,   TAC↑, 1,  

Metal & Cofactor Biology

IronCh↑, 2,  

Mitochondria & Bioenergetics

ATP↑, 1,   MMP↑, 1,   mtDam↓, 1,  

Core Metabolism/Glycolysis

ALAT↓, 1,   p‑cMyc↑, 1,   LDHA↑, 1,   NAD↑, 1,   PKM2↓, 1,   SIRT1↑, 3,  

Cell Death

p‑Akt↓, 1,   Casp3?, 1,   Casp3↓, 1,   iNOS↓, 1,   JNK↑, 1,  

Transcription & Epigenetics

tumCV↓, 1,  

Autophagy & Lysosomes

Beclin-1↓, 1,  

Proliferation, Differentiation & Cell State

EMT↓, 3,   ERK↑, 1,   p‑ERK↓, 1,   PI3K↓, 1,  

Migration

Ca+2↝, 1,   cal2↓, 1,   COL1↓, 2,   COL3A1↓, 1,   E-cadherin↑, 5,   F-actin↓, 1,   Fibronectin↓, 1,   MMP2↓, 1,   MMP9↓, 1,   N-cadherin↓, 1,   Smad7↑, 2,   Snail↓, 1,   TGF-β↓, 2,   TGF-β1↓, 1,   TIMP1↓, 1,   TumCMig↓, 1,   Vim↓, 8,   ZO-1↑, 1,   α-SMA↓, 6,   β-catenin/ZEB1↓, 1,  

Angiogenesis & Vasculature

angioG↑, 1,   Hif1a↓, 1,   NO↓, 2,  

Barriers & Transport

BBB↑, 1,  

Immune & Inflammatory Signaling

COX2↓, 2,   CRP↓, 1,   IFN-γ↑, 1,   IL10↓, 1,   IL10↑, 1,   IL1β↓, 3,   IL5↓, 1,   IL6↓, 3,   IL8↓, 2,   Inflam↓, 7,   NF-kB↓, 2,   PGE2↓, 1,   TLR4↓, 1,   TNF-α↓, 3,  

Synaptic & Neurotransmission

AChE↓, 1,  

Protein Aggregation

Aβ↓, 2,  

Drug Metabolism & Resistance

BioAv↓, 8,   BioAv↝, 1,   eff↑, 2,   Half-Life↝, 1,  

Clinical Biomarkers

ALAT↓, 1,   AST↓, 2,   CRP↓, 1,   IL6↓, 3,  

Functional Outcomes

AntiCan↑, 1,   cardioP↑, 1,   CardioT↓, 1,   cognitive↑, 1,   hepatoP↑, 3,   memory↑, 2,   neuroP↑, 6,   toxicity↓, 3,   toxicity∅, 1,  

Infection & Microbiome

Sepsis↓, 1,  
Total Targets: 102

Scientific Paper Hit Count for: Vim, Vimentin
12 Curcumin
8 Quercetin
5 Ashwagandha(Withaferin A)
5 EGCG (Epigallocatechin Gallate)
5 Fisetin
5 Luteolin
5 Resveratrol
4 Pterostilbene
4 Rosmarinic acid
3 Baicalein
3 Boron
3 Propolis -bee glue
3 Honokiol
3 Silymarin (Milk Thistle) silibinin
3 Thymoquinone
3 Urolithin
2 Alpha-Lipoic-Acid
2 Apigenin (mainly Parsley)
2 Astragalus
2 Baicalin
2 Berberine
2 Caffeic acid
2 Chrysin
2 5-fluorouracil
2 Garcinol
2 Grapeseed extract
2 HydroxyTyrosol
2 Ursolic acid
2 Vitamin D3
2 VitK3,menadione
1 2-DeoxyGlucose
1 Allicin (mainly Garlic)
1 Artemisinin
1 Butyrate
1 Betulinic acid
1 Boswellia (frankincense)
1 Carvacrol
1 Carnosine
1 Cannabidiol
1 Chlorogenic acid
1 Disulfiram
1 Copper and Cu NanoParticlex
1 Ellagic acid
1 Gemcitabine (Gemzar)
1 Emodin
1 Ferulic acid
1 Cisplatin
1 Paclitaxel
1 Ginkgo biloba
1 Proanthocyanidins
1 Hydroxycinnamic-acid
1 Juglone
1 Magnolol
1 Melatonin
1 Metformin
1 Magnetic Fields
1 Naringin
1 Oroxylin A
1 Oleuropein
1 Phenethyl isothiocyanate
1 Piperine
1 Piperlongumine
1 Rutin
1 Selenate
1 Sulforaphane (mainly Broccoli)
1 Shikonin
1 Taurine
1 Vitamin C (Ascorbic Acid)
1 Zerumbone
Query results interpretion may depend on "conditions" listed in the research papers.
Such Conditions may include : 
  -low or high Dose
  -format for product, such as nano of lipid formations
  -different cell line effects
  -synergies with other products 
  -if effect was for normal or cancerous cells
Filter Conditions: Pro/AntiFlg:%  IllCat:%  CanType:%  Cells:%  prod#:%  Target#:336  State#:%  Dir#:%
wNotes=0 sortOrder:rid,rpid

 

Home Page