Database Query Results : , , Slug

Slug, transcription factor Slug: Click to Expand ⟱
Source:
Type:
Slug is well known to promote tumor progression and metastasis through the epithelial-mesenchymal transition (EMT), causing loss of cell adhesion and polarity while conferring migratory and invasive properties.
Slug/SNAI2: A transcription factor that belongs to the Snail family. It is best known for its role in regulating epithelial-to-mesenchymal transition (EMT).
Expression: Upregulation of Slug in cancers is often associated with the induction of EMT. This causes cells to lose epithelial markers (like E-cadherin) and gain mesenchymal markers, leading to increased invasiveness.
Metastatic Spread: By promoting EMT, high levels of Slug facilitate tumor cell dissemination and metastasis.
Cancer Stem Cells: There is evidence suggesting that EMT, spurred by factors like Slug, can increase the proportion of cancer stem cells (CSCs). These CSCs are thought to be key players in tumor recurrence and maintenance.

General Trend: High Slug expression in various cancers (including breast, colorectal, head and neck, and others) is frequently correlated with a more aggressive phenotype and poorer clinical outcomes.


Scientific Papers found: Click to Expand⟱
240- Api,    The flavonoid apigenin reduces prostate cancer CD44(+) stem cell survival and migration through PI3K/Akt/NF-κB signaling
- in-vitro, Pca, PC3 - in-vitro, Pca, CD44+
P21↑, p27↑, Casp3↑, Casp8↑, Slug↓, Snail↓, NF-kB↓, PI3K↓, Akt↓,
1560- Api,    Apigenin as an anticancer agent
- Review, NA, NA
Apoptosis↑, Casp3∅, Casp8∅, TNF-α∅, Cyt‑c↑, MMP2↓, MMP9↓, Snail↓, Slug↓, NF-kB↓, p50↓, PI3K↓, Akt↓, p‑Akt↓,
3383- ART/DHA,    Dihydroartemisinin: A Potential Natural Anticancer Drug
- Review, Var, NA
TumCP↓, Apoptosis↑, TumMeta↓, angioG↓, TumAuto↑, ER Stress↑, ROS↑, Ca+2↑, p38↑, HSP70/HSPA5↓, PPARγ↑, GLUT1↓, Glycolysis↓, PI3K↓, Akt↓, Hif1a↓, PKM2↓, lactateProd↓, GlucoseCon↓, EMT↓, Slug↓, Zeb1↓, ZEB2↓, Twist↓, Snail?, CAFs/TAFs↓, TGF-β↓, p‑STAT3↓, M2 MC↓, uPA↓, HH↓, AXL↓, VEGFR2↓, JNK↑, Beclin-1↑, GRP78/BiP↑, eff↑, eff↑, eff↑, eff↑, eff↑, eff↑, IL4↓, DR5↑, Cyt‑c↑, Fas↑, FADD↑, cl‑PARP↑, cycE/CCNE↓, CDK2↓, CDK4↓, Mcl-1↓, Ki-67↓, Bcl-2↓, CDK6↓, VEGF↓, COX2↓, MMP9↓,
3160- Ash,    Withaferin A: A Pleiotropic Anticancer Agent from the Indian Medicinal Plant Withania somnifera (L.) Dunal
- Review, Var, NA
TumCCA↑, H3↑, P21↑, cycA1/CCNA1↓, CycB/CCNB1↓, cycE/CCNE↓, CDC2↓, CHK1↓, Chk2↓, p38↑, MAPK↑, E6↓, E7↓, P53↑, Akt↓, FOXO3↑, ROS↑, γH2AX↑, MMP↓, mitResp↓, eff↑, TumCD↑, Mcl-1↓, ER Stress↑, ATF4↑, ATF3↑, CHOP↑, NOTCH↓, NF-kB↓, Bcl-2↓, STAT3↓, CDK1↓, β-catenin/ZEB1↓, N-cadherin↓, EMT↓, Cyt‑c↑, eff↑, CDK4↓, p‑RB1↓, PARP↑, cl‑Casp3↑, cl‑Casp9↑, NRF2↑, ER-α36↓, LDHA↓, lipid-P↑, AP-1↓, COX2↓, RenoP↑, PDGFR-BB↓, SIRT3↑, MMP2↓, MMP9↓, NADPH↑, NQO1↑, GSR↑, HO-1↑, *SOD2↑, *Prx↑, *Casp3?, eff↑, Snail↓, Slug↓, Vim↓, CSCs↓, HEY1↓, MMPs↓, VEGF↓, uPA↓, *toxicity↓, CDK2↓, CDK4↓, HSP90↓,
2719- BetA,    Betulinic Acid Restricts Human Bladder Cancer Cell Proliferation In Vitro by Inducing Caspase-Dependent Cell Death and Cell Cycle Arrest, and Decreasing Metastatic Potential
- in-vitro, CRC, T24 - in-vitro, Bladder, UMUC3 - in-vitro, Bladder, 5637
TumCD↑, Apoptosis↑, TumCCA↑, CycB/CCNB1↓, cycA1/CCNA1↓, CDK2↓, CDC25↓, mtDam↑, BAX↑, cl‑PARP↑, Casp3↑, Casp8↑, Casp9↑, Snail↓, Slug↓, MMP9↓, selectivity↑, MMP↓, ROS∅, TumCMig↓, TumCI↓,
1106- CGA,    Chlorogenic Acid Inhibits Epithelial-Mesenchymal Transition and Invasion of Breast Cancer by Down-Regulating LRP6
- vitro+vivo, BC, MCF-7
E-cadherin↑, ZO-1↑, Zeb1↓, N-cadherin↓, Vim↓, Snail↓, Slug↓, MMP2↓, MMP9↓, TumCMig↓, TumCI↓, LRP6↓, p‑LRP6↓, β-catenin/ZEB1↓, TumVol↓, TumW↓,
1107- CHr,    Chrysin inhibits metastatic potential of human triple-negative breast cancer cells by modulating matrix metalloproteinase-10, epithelial to mesenchymal transition, and PI3K/Akt signaling pathway
- in-vitro, BC, NA
TumCP↓, Apoptosis↑, MMP-10↓, E-cadherin↑, Vim↓, Snail↓, Slug↓, EMT↓,
2785- CHr,    Emerging cellular and molecular mechanisms underlying anticancer indications of chrysin
- Review, Var, NA
*NF-kB↓, *COX2↓, *iNOS↓, angioG↓, TOP1↓, HDAC↓, TNF-α↓, IL1β↓, cardioP↑, RenoP↑, neuroP↑, LDL↓, BioAv↑, eff↑, cycD1/CCND1↓, hTERT/TERT↓, MMP-10↓, Akt↓, STAT3↓, VEGF↓, EGFR↓, Snail↓, Slug↓, Vim↓, E-cadherin↑, eff↑, TET1↑, ROS↑, mTOR↓, PPARα↓, ER Stress↑, Ca+2↑, ERK↓, MMP↑, Cyt‑c↑, Casp3↑, HK2↓, NRF2↓, HO-1↓, MMP2↓, MMP9↓, Fibronectin↓, GRP78/BiP↑, XBP-1↓, p‑eIF2α↑, *AST↓, ALAT↓, ALP↓, LDH↓, COX2↑, Bcl-xL↓, IL6↓, PGE2↓, iNOS↓, DNAdam↑, UPR↑, Hif1a↓, EMT↓, Twist↓, lipid-P↑, CLDN1↓, PDK1↓, IL10↓, TLR4↓, NOTCH1↑, PARP↑, Mcl-1↓, XIAP↓,
433- CUR,    Curcumin Inhibits the Migration and Invasion of Non-Small-Cell Lung Cancer Cells Through Radiation-Induced Suppression of Epithelial-Mesenchymal Transition and Soluble E-Cadherin Expression
- in-vitro, Lung, A549
E-cadherin↓, Vim↓, Slug↓, N-cadherin↓, Snail↓, MMP9↓, EMT↓,
478- CUR,    Curcumin decreases epithelial‑mesenchymal transition by a Pirin‑dependent mechanism in cervical cancer cells
- in-vitro, Cerv, SiHa
EMT↓, N-cadherin↓, Vim↓, Slug↓, Zeb1↓, PIR↓, Pirin↓, E-cadherin↑,
685- EGCG,  CUR,  SFN,  RES,  GEN  The “Big Five” Phytochemicals Targeting Cancer Stem Cells: Curcumin, EGCG, Sulforaphane, Resveratrol and Genistein
- Analysis, NA, NA
Bcl-2↓, survivin↓, XIAP↓, EMT↓, Apoptosis↑, Nanog↓, cMyc↓, OCT4↓, Snail↓, Slug↓, Zeb1↓, TCF↓,
4682- EGCG,    Human cancer stem cells are a target for cancer prevention using (−)-epigallocatechin gallate
- Review, Var, NA
CSCs↓, EMT↓, ChemoSen↑, CD133↓, CD44↓, ALDH1A1↓, Nanog↓, OCT4↓, TumCP↓, Apoptosis↑, p‑GSK‐3β↓, GSK‐3β↑, β-catenin/ZEB1↓, cMyc↓, XIAP↓, Bcl-2↓, survivin↓, Vim↓, Slug↓, Snail↓,
1155- F,    The anti-cancer effects of fucoidan: a review of both in vivo and in vitro investigations
- Review, NA, NA
*toxicity↓, Casp3↑, Casp7↑, Casp8↑, Casp9↑, VEGF↓, angioG↓, PI3K↓, Akt↓, PARP↑, Bak↑, BID↑, Fas↑, Mcl-1↓, survivin↓, XIAP↓, ERK↓, EMT↓, EM↑, IM↓, Snail↓, Slug↓, Twist↓,
1118- Ge,    Grape Seed Proanthocyanidins Inhibit Migration and Invasion of Bladder Cancer Cells by Reversing EMT through Suppression of TGF- β Signaling Pathway
- in-vitro, Bladder, T24 - in-vitro, Bladder, 5637
TumCMig↓, TumCI↓, MMP2↓, MMP9↓, EMT↓, N-cadherin↓, Vim↓, Slug↓, E-cadherin↑, ZO-1↑, p‑SMAD2↓, p‑SMAD3↓, p‑Akt↓, p‑ERK↓, p‑p38↓,
2882- HNK,    Honokiol Suppresses Perineural Invasion of Pancreatic Cancer by Inhibiting SMAD2/3 Signaling
- in-vitro, PC, PANC1
TumCI↓, TumCMig↓, p‑SMAD2↓, p‑SMAD3↓, EMT↓, N-cadherin↓, Vim↓, E-cadherin↑, Snail↓, Slug↓, Rho↓, ROCK1↓,
2880- HNK,    Honokiol inhibits breast cancer cell metastasis by blocking EMT through modulation of Snail/Slug protein translation
- in-vitro, BC, MCF-7 - in-vitro, BC, MDA-MB-231 - in-vitro, BC, 4T1 - in-vivo, NA, NA
tumCV↓, E-cadherin↑, Snail↓, Slug↓, Vim↓, TumMeta↓, p‑eIF2α↑,
4659- HNK,    Honokiol Eliminates Human Oral Cancer Stem-Like Cells Accompanied with Suppression of Wnt/β-Catenin Signaling and Apoptosis Induction
- in-vitro, Oral, NA
cl‑Casp3↑, survivin↓, Bcl-2↓, CD44↓, Wnt↓, β-catenin/ZEB1↑, EMT↓, Slug↓, Snail↓, CSCs↓, Apoptosis↑,
4632- HT,    Hydroxytyrosol inhibits cancer stem cells and the metastatic capacity of triple-negative breast cancer cell lines by the simultaneous targeting of epithelial-to-mesenchymal transition, Wnt/β-catenin and TGFβ signaling pathways
- in-vitro, BC, MDA-MB-231 - in-vitro, BC, BT549 - in-vitro, BC, SUM159
CSCs↓, TumCMig↓, TumCI↓, β-catenin/ZEB1↓, Wnt↓, p‑LRP6↓, LRP6↓, cycD1/CCND1↓, EMT↓, Slug↓, Zeb1↓, Snail↓, Vim↓, SMAD2↓, SMAD3↓, TGF-β↓,
4636- HT,    Hydroxytyrosol inhibits cancer stem cells and the metastatic capacity of triple-negative breast cancer cell lines by the simultaneous targeting of epithelial-to-mesenchymal transition, Wnt/ß-catenin and TGFß signaling
- in-vitro, BC, SUM159 - in-vitro, BC, MDA-MB-231 - in-vitro, BC, HS587T - in-vitro, BC, BT549
Wnt↓, β-catenin/ZEB1↓, LRP6↓, cycD1/CCND1↓, EMT↓, Slug↓, Zeb1↓, Snail↓, Vim↓, TGF-β↓, CSCs↓, TumCMig↓, chemoP↑,
4535- MAG,  5-FU,    Magnolol and 5-fluorouracil synergy inhibition of metastasis of cervical cancer cells by targeting PI3K/AKT/mTOR and EMT pathways
- in-vitro, Cerv, NA
ChemoSen↑, TumCP↓, vinculin↓, TumCA↓, TumCMig↓, TumCI↓, p‑Akt↓, p‑PI3K↓, mTOR↓, E-cadherin↑, β-catenin/ZEB1↑, Snail↓, Slug↓,
3478- MF,    One Month of Brief Weekly Magnetic Field Therapy Enhances the Anticancer Potential of Female Human Sera: Randomized Double-Blind Pilot Study
- Trial, BC, NA - in-vitro, BC, MCF-7 - in-vitro, Nor, C2C12
TumCP↓, TumCMig↓, TumCI↓, *toxicity∅, TGF-β↓, Twist↓, Slug↓, β-catenin/ZEB1↓, Vim↓, p‑SMAD2↓, p‑SMAD3↓, angioG↓, VEGF↓, selectivity↑, LIF↑,
4630- OLE,    Targeting resistant breast cancer stem cells in a three-dimensional culture model with oleuropein encapsulated in methacrylated alginate microparticles
- in-vitro, BC, NA
Bcl-2↓, BAX↑, Casp3↑, Casp9↑, Vim↓, Slug↓, E-cadherin↑, CSCs↓, P21↑, survivin↝, OCT4↑, Nanog↑, SOX4↑,
1227- OLST,    Anti-Obesity Drug Orlistat Alleviates Western-Diet-Driven Colitis-Associated Colon Cancer via Inhibition of STAT3 and NF-κB-Mediated Signaling
- in-vivo, CRC, NA
OS↑, Inflam↓, TumCG↓, STAT3↓, NF-kB↓, β-catenin/ZEB1↓, Slug↓, XIAP↓, CDK4↓, cycD1/CCND1↓, Bcl-2↓,
4926- PEITC,    PEITC inhibits the invasion and migration of colorectal cancer cells by blocking TGF-β-induced EMT
- in-vitro, CRC, SW48
TumCI↓, TumCMig↓, EMT↓, Smad1↓, AntiCan↑, Snail↓, Slug↓, Zeb1↓, ZEB2↓, TGF-β1↓, eff↑, E-cadherin↑, N-cadherin↓, Vim↓,
1131- PI,    Piperlongumine‑loaded nanoparticles inhibit the growth, migration and invasion and epithelial‑to‑mesenchymal transition of triple‑negative breast cancer cells
- in-vitro, BC, MDA-MB-231 - in-vitro, BC, BT549
TumCG↓, tumCV↓, TumCMig↓, TumCI↓, MMP2↓, Slug↓, N-cadherin↓, β-catenin/ZEB1↓, SMAD3↓, E-cadherin↑, EMT↓,
2952- PL,    Piperlongumine suppresses bladder cancer invasion via inhibiting epithelial mesenchymal transition and F-actin reorganization
- in-vitro, Bladder, T24 - in-vivo, Bladder, NA
TumCP↓, TumCCA↑, TumCMig↓, TumCI↓, ROS↑, Slug↓, β-catenin/ZEB1↓, Zeb1↓, N-cadherin↓, F-actin↓, GSH↓, EMT↓, CLDN1↓, ZO-1↓,
2948- PL,    The promising potential of piperlongumine as an emerging therapeutics for cancer
- Review, Var, NA
tumCV↓, TumCP↓, TumCI↓, angioG↓, EMT↓, TumMeta↓, *hepatoP↑, *lipid-P↓, *GSH↑, cardioP↑, CycB/CCNB1↓, cycD1/CCND1↓, CDK2↓, CDK1↓, CDK4↓, CDK6↓, PCNA↓, Akt↓, mTOR↓, Glycolysis↓, NF-kB↓, IKKα↓, JAK1↓, JAK2↓, STAT3↓, ERK↓, cFos↓, Slug↓, E-cadherin↑, TOP2↓, P53↑, P21↑, Bcl-2↓, BAX↑, Casp3↑, Casp7↑, Casp8↑, p‑HER2/EBBR2↓, HO-1↑, NRF2↑, BIM↑, p‑FOXO3↓, Sp1/3/4↓, cMyc↓, EGFR↓, survivin↓, cMET↓, NQO1↑, SOD2↑, TrxR↓, MDM2↓, p‑eIF2α↑, ATF4↑, CHOP↑, MDA↑, Ki-67↓, MMP9↓, Twist↓, SOX2↓, Nanog↓, OCT4↓, N-cadherin↓, Vim↓, Snail↓, TumW↓, TumCG↓, HK2↓, RB1↓, IL6↓, IL8↓, SOD1↑, RadioS↑, ChemoSen↑, toxicity↓, Sp1/3/4↓, GSH↓, SOD↑,
2973- PL,    The Natural Alkaloid Piperlongumine Inhibits Metastatic Activity and Epithelial-to-Mesenchymal Transition of Triple-Negative Mammary Carcinoma Cells
- in-vitro, BC, MDA-MB-231 - in-vitro, BC, 4T1
MMP2↓, MMP9↓, IL6↓, E-cadherin↑, ROS↑, EMT↓, Zeb1↓, Slug↓, TumMeta↓, selectivity↑, MMP2↓, GSH↓,
4699- PTS,    Pterostilbene inhibits triple-negative breast cancer metastasis via inducing microRNA-205 expression and negatively modulates epithelial-to-mesenchymal transition
- in-vitro, BC, MDA-MB-231 - in-vitro, BC, HS587T - in-vivo, BC, MDA-MB-231
TumCMig↓, TumCI↓, E-cadherin↑, Snail↓, Slug↓, Vim↓, Zeb1↑, miR-205↑, Src↓, TumCG↓, FAK↓, EMT↓,
3374- QC,    Therapeutic effects of quercetin in oral cancer therapy: a systematic review of preclinical evidence focused on oxidative damage, apoptosis and anti-metastasis
- Review, Oral, NA - Review, AD, NA
α-SMA↓, α-SMA↑, TumCP↓, tumCV↓, TumVol↓, TumCI↓, TumMeta↓, TumCMig↓, ROS↑, Apoptosis↑, BioAv↓, *neuroP↑, *antiOx↑, *Inflam↓, *Aβ↓, *cardioP↑, MMP↓, Cyt‑c↑, MMP2↓, MMP9↓, EMT↓, MMPs↓, Twist↓, Slug↓, Ca+2↑, AIF↑, Endon↑, P-gp↓, LDH↑, HK2↓, PKA↓, Glycolysis↓, GlucoseCon↓, lactateProd↓, GRP78/BiP↑, Casp12↑, CHOP↑,
77- QC,  EGCG,    The dietary bioflavonoid quercetin synergizes with epigallocathechin gallate (EGCG) to inhibit prostate cancer stem cell characteristics, invasion, migration and epithelial-mesenchymal transition
- in-vitro, Pca, CD44+ - in-vitro, NA, CD133+ - in-vitro, NA, PC3 - in-vitro, NA, LNCaP
Casp3↑, Casp7↑, Bcl-2↓, survivin↓, XIAP↓, EMT↓, Vim↓, Slug↓, Snail↓, β-catenin/ZEB1↓, LEF1↓, TCF↓, Nanog↓,
80- QC,    Quercetin reverses EGF-induced epithelial to mesenchymal transition and invasiveness in prostate cancer (PC-3) cell line via EGFR/PI3K/Akt pathway
- in-vitro, Pca, PC3
Vim↓, ERK↓, Snail↓, Slug↓, Twist↓, EGFR↓, p‑Akt↓, EGFR↓, N-cadherin↓,
60- QC,  EGCG,  isoFl,  isoFl,  isoFl  The dietary bioflavonoid quercetin synergizes with epigallocathechin gallate (EGCG) to inhibit prostate cancer stem cell characteristics, invasion, migration and epithelial-mesenchymal transition
- in-vitro, Pca, pCSCs
Casp3↑, Casp7↑, Bcl-2↓, survivin↓, XIAP↓, EMT↓, Slug↓, Snail↓, β-catenin/ZEB1↓, LEF1↓,
95- QC,    Quercetin, a natural dietary flavonoid, acts as a chemopreventive agent
- in-vitro, Pca, PC3
p‑ERK↓, p‑STAT3↓, p‑Akt↓, N-cadherin↓, Vim↓, cycD1/CCND1↓, Snail↓, Slug↓, Twist↓, PCNA↓,
923- QC,    Quercetin as an innovative therapeutic tool for cancer chemoprevention: Molecular mechanisms and implications in human health
- Review, Var, NA
ROS↑, GSH↓, Ca+2↝, MMP↓, Casp3↑, Casp8↑, Casp9↑, other↓, *ROS↓, *NRF2↑, HO-1↑, TumCCA↑, Inflam↓, STAT3↓, DR5↑, P450↓, MMPs↓, IFN-γ↓, IL6↓, COX2↓, IL8↓, iNOS↓, TNF-α↓, cl‑PARP↑, Apoptosis↑, P53↑, Sp1/3/4↓, survivin↓, TRAILR↑, Casp10↑, DFF45↑, TNFR 1↑, Fas↑, NF-kB↓, IKKα↓, cycD1/CCND1↓, Bcl-2↓, BAX↑, PI3K↓, Akt↓, E-cadherin↓, Vim↓, β-catenin/ZEB1↓, cMyc↓, EMT↓, MMP2↓, NOTCH1↓, MMP7↓, angioG↓, TSP-1↑, CSCs↓, XIAP↓, Snail↓, Slug↓, LEF1↓, P-gp↓, EGFR↓, GSK‐3β↓, mTOR↓, RAGE↓, HSP27↓, VEGF↓, TGF-β↓, COL1↓, COL3A1↓,
3092- RES,    Resveratrol in breast cancer treatment: from cellular effects to molecular mechanisms of action
- Review, BC, MDA-MB-231 - Review, BC, MCF-7
TumCP↓, tumCV↓, TumCI↓, TumMeta↓, *antiOx↑, *cardioP↑, *Inflam↓, *neuroP↑, *Keap1↓, *NRF2↑, *ROS↓, p62↓, IL1β↓, CRP↓, VEGF↓, Bcl-2↓, MMP2↓, MMP9↓, FOXO4↓, POLD1↓, CK2↓, MMP↓, ROS↑, Apoptosis↑, TumCCA↑, Beclin-1↓, Ki-67↓, ATP↓, GlutMet↓, PFK↓, TGF-β↓, SMAD2↓, SMAD3↓, Vim?, Snail↓, Slug↓, E-cadherin↑, EMT↓, Zeb1↓, Fibronectin↓, IGF-1↓, PI3K↓, Akt↓, HO-1↑, eff↑, PD-1↓, CD8+↑, Th1 response↑, CSCs↓, RadioS↑, SIRT1↑, Hif1a↓, mTOR↓,
2687- RES,    Effects of resveratrol, curcumin, berberine and other nutraceuticals on aging, cancer development, cancer stem cells and microRNAs
- Review, NA, NA - Review, AD, NA
NF-kB↓, P450↓, COX2↓, Hif1a↓, VEGF↓, *SIRT1↑, SIRT1↓, SIRT2↓, ChemoSen⇅, cardioP↑, *memory↑, *angioG↑, *neuroP↑, STAT3↓, CSCs↓, RadioS↑, Nestin↓, Nanog↓, TP53↑, P21↑, CXCR4↓, *BioAv↓, EMT↓, Vim↓, Slug↓, E-cadherin↑, AMPK↑, MDR1↓, DNAdam↑, TOP2↓, PTEN↑, Akt↓, Wnt↓, β-catenin/ZEB1↓, cMyc↓, MMP7↓, MALAT1↓, TCF↓, ALDH↓, CD44↓, Shh↓, IL6↓, VEGF↓, eff↑, HK2↓, ROS↑, MMP↓,
1466- SFN,    Sulforaphane inhibits thyroid cancer cell growth and invasiveness through the reactive oxygen species-dependent pathway
- vitro+vivo, Thyroid, FTC-133
TumCP↓, TumCCA↑, Apoptosis↑, TumCMig↓, TumCI↓, EMT↓, Slug↓, Twist↓, MMP2↓, MMP9↓, TumCG↓, p‑Akt↓, P21↑, ERK↑, p38↑, ROS↑, *toxicity∅, MMP↓, eff↓,
3323- SIL,    Anticancer therapeutic potential of silibinin: current trends, scope and relevance
- Review, Var, NA
Inflam↓, angioG↓, antiOx↑, TumMeta↓, TumCP↓, TumCCA↑, TumCD↑, α-SMA↓, p‑Akt↓, p‑STAT3↓, COX2↓, IL6↓, MMP2↓, HIF-1↓, Snail↓, Slug↓, Zeb1↓, NF-kB↓, p‑EGFR↓, JAK2↓, PI3K↓, PD-L1↓, VEGF↓, CDK4↓, CDK2↓, cycD1/CCND1↓, E2Fs↓,
1138- TQ,    Thymoquinone inhibits epithelial-mesenchymal transition in prostate cancer cells by negatively regulating the TGF-β/Smad2/3 signaling pathway
- in-vitro, Pca, DU145 - in-vitro, Pca, PC3
TumMeta↓, EMT↓, E-cadherin↑, Vim↓, Slug↓, TGF-β↓, SMAD2↓, SMAD3↓,
3427- TQ,    Chemopreventive and Anticancer Effects of Thymoquinone: Cellular and Molecular Targets
ROS⇅, Fas↑, DR5↑, TRAIL↑, Casp3↑, Casp8↑, Casp9↑, P53↑, mTOR↓, Bcl-2↓, BID↓, CXCR4↓, JNK↑, p38↑, MAPK↑, LC3II↑, ATG7↑, Beclin-1↑, AMPK↑, PPARγ↑, eIF2α↓, P70S6K↓, VEGF↓, ERK↓, NF-kB↓, XIAP↓, survivin↓, p65↓, DLC1↑, FOXO↑, TET2↑, CYP1B1↑, UHRF1↓, DNMT1↓, HDAC1↓, IL2↑, IL1↓, IL6↓, IL10↓, IL12↓, TNF-α↓, iNOS↓, COX2↓, 5LO↓, AP-1↓, PI3K↓, Akt↓, cMET↓, VEGFR2↓, CXCL1↓, ITGA5↓, Wnt↓, β-catenin/ZEB1↓, GSK‐3β↓, Myc↓, cycD1/CCND1↓, N-cadherin↓, Snail↓, Slug↓, Vim↓, Twist↓, Zeb1↓, MMP2↓, MMP7↓, MMP9↓, JAK2↓, STAT3↓, NOTCH↓, cycA1/CCNA1↓, CDK2↓, CDK4↓, CDK6↓, CDC2↓, CDC25↓, Mcl-1↓, E2Fs↓, p16↑, p27↑, P21↑, ChemoSen↑,

* indicates research on normal cells as opposed to diseased cells
Total Research Paper Matches: 41

Pathway results for Effect on Cancer / Diseased Cells:


Redox & Oxidative Stress

antiOx↑, 1,   ATF3↑, 1,   GSH↓, 4,   GSR↑, 1,   HO-1↓, 1,   HO-1↑, 4,   lipid-P↑, 2,   MDA↑, 1,   NQO1↑, 2,   NRF2↓, 1,   NRF2↑, 2,   ROS↑, 10,   ROS⇅, 1,   ROS∅, 1,   SIRT3↑, 1,   SOD↑, 1,   SOD1↑, 1,   SOD2↑, 1,   TrxR↓, 1,  

Mitochondria & Bioenergetics

AIF↑, 1,   ATP↓, 1,   CDC2↓, 2,   CDC25↓, 2,   mitResp↓, 1,   MMP↓, 7,   MMP↑, 1,   mtDam↑, 1,   XIAP↓, 9,  

Core Metabolism/Glycolysis

ALAT↓, 1,   AMPK↑, 2,   ATG7↑, 1,   cMyc↓, 5,   GlucoseCon↓, 2,   GlutMet↓, 1,   Glycolysis↓, 3,   HK2↓, 4,   lactateProd↓, 2,   LDH↓, 1,   LDH↑, 1,   LDHA↓, 1,   LDL↓, 1,   NADPH↑, 1,   PDK1↓, 1,   PFK↓, 1,   PKM2↓, 1,   POLD1↓, 1,   PPARα↓, 1,   PPARγ↑, 2,   SIRT1↓, 1,   SIRT1↑, 1,   SIRT2↓, 1,  

Cell Death

Akt↓, 11,   p‑Akt↓, 7,   Apoptosis↑, 11,   Bak↑, 1,   BAX↑, 4,   Bcl-2↓, 13,   Bcl-xL↓, 1,   BID↓, 1,   BID↑, 1,   BIM↑, 1,   Casp10↑, 1,   Casp12↑, 1,   Casp3↑, 10,   Casp3∅, 1,   cl‑Casp3↑, 2,   Casp7↑, 4,   Casp8↑, 6,   Casp8∅, 1,   Casp9↑, 5,   cl‑Casp9↑, 1,   Chk2↓, 1,   CK2↓, 1,   Cyt‑c↑, 5,   DR5↑, 3,   Endon↑, 1,   FADD↑, 1,   Fas↑, 4,   HEY1↓, 1,   hTERT/TERT↓, 1,   iNOS↓, 3,   JNK↑, 2,   MAPK↑, 2,   Mcl-1↓, 5,   MDM2↓, 1,   Myc↓, 1,   p27↑, 2,   p38↑, 4,   p‑p38↓, 1,   survivin↓, 9,   survivin↝, 1,   TNFR 1↑, 1,   TRAIL↑, 1,   TRAILR↑, 1,   TumCD↑, 3,  

Kinase & Signal Transduction

p‑HER2/EBBR2↓, 1,   Sp1/3/4↓, 3,  

Transcription & Epigenetics

H3↑, 1,   miR-205↑, 1,   other↓, 1,   tumCV↓, 5,  

Protein Folding & ER Stress

CHOP↑, 3,   eIF2α↓, 1,   p‑eIF2α↑, 3,   ER Stress↑, 3,   GRP78/BiP↑, 3,   HSP27↓, 1,   HSP70/HSPA5↓, 1,   HSP90↓, 1,   UPR↑, 1,   XBP-1↓, 1,  

Autophagy & Lysosomes

Beclin-1↓, 1,   Beclin-1↑, 2,   LC3II↑, 1,   p62↓, 1,   TumAuto↑, 1,  

DNA Damage & Repair

CHK1↓, 1,   CYP1B1↑, 1,   DFF45↑, 1,   DNAdam↑, 2,   DNMT1↓, 1,   p16↑, 1,   P53↑, 4,   PARP↑, 3,   cl‑PARP↑, 3,   PCNA↓, 2,   TP53↑, 1,   UHRF1↓, 1,   γH2AX↑, 1,  

Cell Cycle & Senescence

CDK1↓, 2,   CDK2↓, 6,   CDK4↓, 7,   cycA1/CCNA1↓, 3,   CycB/CCNB1↓, 3,   cycD1/CCND1↓, 9,   cycE/CCNE↓, 2,   E2Fs↓, 2,   P21↑, 7,   RB1↓, 1,   p‑RB1↓, 1,   TumCCA↑, 7,  

Proliferation, Differentiation & Cell State

ALDH↓, 1,   ALDH1A1↓, 1,   CD133↓, 1,   CD44↓, 3,   cFos↓, 1,   cMET↓, 2,   CSCs↓, 9,   EMT↓, 28,   ERK↓, 5,   ERK↑, 1,   p‑ERK↓, 2,   FOXO↑, 1,   FOXO3↑, 1,   p‑FOXO3↓, 1,   FOXO4↓, 1,   GSK‐3β↓, 2,   GSK‐3β↑, 1,   p‑GSK‐3β↓, 1,   HDAC↓, 1,   HDAC1↓, 1,   HH↓, 1,   IGF-1↓, 1,   LRP6↓, 3,   p‑LRP6↓, 2,   mTOR↓, 6,   Nanog↓, 5,   Nanog↑, 1,   Nestin↓, 1,   NOTCH↓, 2,   NOTCH1↓, 1,   NOTCH1↑, 1,   OCT4↓, 3,   OCT4↑, 1,   P70S6K↓, 1,   PI3K↓, 8,   p‑PI3K↓, 1,   Pirin↓, 1,   PTEN↑, 1,   Shh↓, 1,   SOX2↓, 1,   Src↓, 1,   STAT3↓, 7,   p‑STAT3↓, 3,   TCF↓, 3,   TOP1↓, 1,   TOP2↓, 2,   TumCG↓, 5,   Wnt↓, 5,  

Migration

5LO↓, 1,   AP-1↓, 2,   AXL↓, 1,   Ca+2↑, 3,   Ca+2↝, 1,   CAFs/TAFs↓, 1,   CLDN1↓, 2,   COL1↓, 1,   COL3A1↓, 1,   DLC1↑, 1,   E-cadherin↓, 2,   E-cadherin↑, 17,   EM↑, 1,   ER-α36↓, 1,   F-actin↓, 1,   FAK↓, 1,   Fibronectin↓, 2,   ITGA5↓, 1,   Ki-67↓, 3,   LEF1↓, 3,   MALAT1↓, 1,   MMP-10↓, 2,   MMP2↓, 14,   MMP7↓, 3,   MMP9↓, 14,   MMPs↓, 3,   N-cadherin↓, 13,   PIR↓, 1,   PKA↓, 1,   RAGE↓, 1,   Rho↓, 1,   ROCK1↓, 1,   Slug↓, 41,   Smad1↓, 1,   SMAD2↓, 3,   p‑SMAD2↓, 3,   SMAD3↓, 4,   p‑SMAD3↓, 3,   Snail?, 1,   Snail↓, 28,   SOX4↑, 1,   TET1↑, 1,   TGF-β↓, 7,   TGF-β1↓, 1,   TSP-1↑, 1,   TumCA↓, 1,   TumCI↓, 15,   TumCMig↓, 14,   TumCP↓, 11,   TumMeta↓, 8,   Twist↓, 10,   uPA↓, 2,   Vim?, 1,   Vim↓, 24,   vinculin↓, 1,   Zeb1↓, 12,   Zeb1↑, 1,   ZEB2↓, 2,   ZO-1↓, 1,   ZO-1↑, 2,   α-SMA↓, 2,   α-SMA↑, 1,   β-catenin/ZEB1↓, 14,   β-catenin/ZEB1↑, 2,  

Angiogenesis & Vasculature

angioG↓, 7,   ATF4↑, 2,   EGFR↓, 5,   p‑EGFR↓, 1,   HIF-1↓, 1,   Hif1a↓, 4,   PDGFR-BB↓, 1,   VEGF↓, 11,   VEGFR2↓, 2,  

Barriers & Transport

GLUT1↓, 1,   P-gp↓, 2,  

Immune & Inflammatory Signaling

COX2↓, 6,   COX2↑, 1,   CRP↓, 1,   CXCL1↓, 1,   CXCR4↓, 2,   IFN-γ↓, 1,   IKKα↓, 2,   IL1↓, 1,   IL10↓, 2,   IL12↓, 1,   IL1β↓, 2,   IL2↑, 1,   IL4↓, 1,   IL6↓, 7,   IL8↓, 2,   Inflam↓, 3,   JAK1↓, 1,   JAK2↓, 3,   LIF↑, 1,   M2 MC↓, 1,   NF-kB↓, 9,   p50↓, 1,   p65↓, 1,   PD-1↓, 1,   PD-L1↓, 1,   PGE2↓, 1,   Th1 response↑, 1,   TLR4↓, 1,   TNF-α↓, 3,   TNF-α∅, 1,  

Cellular Microenvironment

IM↓, 1,  

Hormonal & Nuclear Receptors

CDK6↓, 3,  

Drug Metabolism & Resistance

BioAv↓, 1,   BioAv↑, 1,   ChemoSen↑, 4,   ChemoSen⇅, 1,   eff↓, 1,   eff↑, 14,   MDR1↓, 1,   P450↓, 2,   RadioS↑, 3,   selectivity↑, 3,   TET2↑, 1,  

Clinical Biomarkers

ALAT↓, 1,   ALP↓, 1,   CRP↓, 1,   E6↓, 1,   E7↓, 1,   EGFR↓, 5,   p‑EGFR↓, 1,   p‑HER2/EBBR2↓, 1,   hTERT/TERT↓, 1,   IL6↓, 7,   Ki-67↓, 3,   LDH↓, 1,   LDH↑, 1,   Myc↓, 1,   PD-L1↓, 1,   RAGE↓, 1,   TP53↑, 1,  

Functional Outcomes

AntiCan↑, 1,   cardioP↑, 3,   chemoP↑, 1,   neuroP↑, 1,   OS↑, 1,   RenoP↑, 2,   toxicity↓, 1,   TumVol↓, 2,   TumW↓, 2,  

Infection & Microbiome

CD8+↑, 1,  
Total Targets: 334

Pathway results for Effect on Normal Cells:


Redox & Oxidative Stress

antiOx↑, 2,   GSH↑, 1,   Keap1↓, 1,   lipid-P↓, 1,   NRF2↑, 2,   Prx↑, 1,   ROS↓, 2,   SOD2↑, 1,  

Core Metabolism/Glycolysis

SIRT1↑, 1,  

Cell Death

Casp3?, 1,   iNOS↓, 1,  

Angiogenesis & Vasculature

angioG↑, 1,  

Immune & Inflammatory Signaling

COX2↓, 1,   Inflam↓, 2,   NF-kB↓, 1,  

Protein Aggregation

Aβ↓, 1,  

Drug Metabolism & Resistance

BioAv↓, 1,  

Clinical Biomarkers

AST↓, 1,  

Functional Outcomes

cardioP↑, 2,   hepatoP↑, 1,   memory↑, 1,   neuroP↑, 3,   toxicity↓, 2,   toxicity∅, 2,  
Total Targets: 24

Scientific Paper Hit Count for: Slug, transcription factor Slug
6 Quercetin
4 EGCG (Epigallocatechin Gallate)
3 Curcumin
3 Resveratrol
3 Honokiol
3 Piperlongumine
3 isoflavones
2 Apigenin (mainly Parsley)
2 Chrysin
2 Sulforaphane (mainly Broccoli)
2 HydroxyTyrosol
2 Thymoquinone
1 Artemisinin
1 Ashwagandha(Withaferin A)
1 Betulinic acid
1 Chlorogenic acid
1 Genistein (soy isoflavone)
1 Fucoidan
1 Grapeseed extract
1 Magnolol
1 5-fluorouracil
1 Magnetic Fields
1 Oleuropein
1 Orlistat
1 Phenethyl isothiocyanate
1 Piperine
1 Pterostilbene
1 Silymarin (Milk Thistle) silibinin
Query results interpretion may depend on "conditions" listed in the research papers.
Such Conditions may include : 
  -low or high Dose
  -format for product, such as nano of lipid formations
  -different cell line effects
  -synergies with other products 
  -if effect was for normal or cancerous cells
Filter Conditions: Pro/AntiFlg:%  IllCat:%  CanType:%  Cells:%  prod#:%  Target#:413  State#:%  Dir#:%
wNotes=0 sortOrder:rid,rpid

 

Home Page