| Source: |
| Type: |
| Process through which new blood vessels. Angiogenesis, the process of new blood vessel formation from pre-existing vessels, plays a crucial role in cancer progression and metastasis. Tumors require a blood supply to grow beyond a certain size and to spread to other parts of the body. Vascular Endothelial Growth Factor (VEGF): VEGF is one of the most important pro-angiogenic factors. It stimulates endothelial cell proliferation and migration, leading to the formation of new blood vessels. Many tumors overexpress VEGF, which correlates with poor prognosis. Hypoxia-Inducible Factor (HIF): In response to low oxygen levels (hypoxia), tumors can activate HIF, which in turn promotes the expression of VEGF and other angiogenic factors. This mechanism allows tumors to adapt to their microenvironment and sustain growth. |
| 1340- | 3BP, | Safety and outcome of treatment of metastatic melanoma using 3-bromopyruvate: a concise literature review and case study |
| - | Review, | NA, | NA |
| 2667- | AL, | Allicin in Digestive System Cancer: From Biological Effects to Clinical Treatment |
| - | Review, | GC, | NA |
| 278- | ALA, | The Multifaceted Role of Alpha-Lipoic Acid in Cancer Prevention, Occurrence, and Treatment |
| - | Review, | NA, | NA |
| 3455- | ALA, | Alpha-lipoic acid inhibits proliferation and migration of human vascular endothelial cells through downregulating HSPA12B/VEGF signaling axis |
| - | in-vitro, | Nor, | HUVECs |
| 1078- | And, | Andrographolide inhibits breast cancer through suppressing COX-2 expression and angiogenesis via inactivation of p300 signaling and VEGF pathway |
| - | in-vitro, | BC, | MDA-MB-231 | - | in-vitro, | Nor, | HUVECs | - | in-vivo, | BC, | MCF-7 | - | in-vitro, | BC, | T47D | - | in-vitro, | BC, | BT549 | - | in-vitro, | BC, | MDA-MB-361 |
| 1146- | AP, | Potential use of nanoformulated ascorbyl palmitate as a promising anticancer agent: First comparative assessment between nano and free forms |
| - | in-vivo, | Nor, | NA |
| 958- | Api, | Apigenin suppresses tumor angiogenesis and growth via inhibiting HIF-1α expression in non-small cell lung carcinoma |
| - | in-vitro, | Lung, | NCIH1299 |
| 1547- | Api, | Apigenin: Molecular Mechanisms and Therapeutic Potential against Cancer Spreading |
| - | Review, | NA, | NA |
| 2584- | Api, | Chemo, | The versatility of apigenin: Especially as a chemopreventive agent for cancer |
| - | Review, | Var, | NA |
| 2639- | Api, | Plant flavone apigenin: An emerging anticancer agent |
| - | Review, | Var, | NA |
| 2299- | Api, | Flavonoids Targeting HIF-1: Implications on Cancer Metabolism |
| - | Review, | Var, | NA |
| 3396- | ART/DHA, | Progress on the study of the anticancer effects of artesunate |
| - | Review, | Var, | NA |
| 3382- | ART/DHA, | Repurposing Artemisinin and its Derivatives as Anticancer Drugs: A Chance or Challenge? |
| - | Review, | Var, | NA |
| 3383- | ART/DHA, | Dihydroartemisinin: A Potential Natural Anticancer Drug |
| - | Review, | Var, | NA |
| 3391- | ART/DHA, | Antitumor Activity of Artemisinin and Its Derivatives: From a Well-Known Antimalarial Agent to a Potential Anticancer Drug |
| - | Review, | Var, | NA |
| 1147- | ART/DHA, | Inhibitory effects of artesunate on angiogenesis and on expressions of vascular endothelial growth factor and VEGF receptor KDR/flk-1 |
| - | vitro+vivo, | Ovarian, | HO-8910 | - | vitro+vivo, | Nor, | HUVECs |
| 1334- | AS, | Astragalus membranaceus: A Review of Its Antitumor Effects on Non-Small Cell Lung Cancer |
| - | Review, | NA, | NA |
| 1358- | Ash, | Withaferin A: A Dietary Supplement with Promising Potential as an Anti-Tumor Therapeutic for Cancer Treatment - Pharmacology and Mechanisms |
| - | Review, | Var, | NA |
| 1178- | Ash, | Withaferin A suppresses the expression of vascular endothelial growth factor in Ehrlich ascites tumor cells via Sp1 transcription factor |
| - | in-vitro, | Nor, | HUVECs | - | in-vivo, | NA, | NA |
| 3155- | Ash, | Overview of the anticancer activity of withaferin A, an active constituent of the Indian ginseng Withania somnifera |
| - | Review, | Var, | NA |
| 3174- | Ash, | Withaferin A Acts as a Novel Regulator of Liver X Receptor-α in HCC |
| - | in-vitro, | HCC, | HepG2 | - | in-vitro, | HCC, | Hep3B | - | in-vitro, | HCC, | HUH7 |
| 2674- | BBR, | Berberine: A novel therapeutic strategy for cancer |
| - | Review, | Var, | NA | - | Review, | IBD, | NA |
| - | Trial, | BC, | NA |
| 2670- | BBR, | Berberine: A Review of its Pharmacokinetics Properties and Therapeutic Potentials in Diverse Vascular Diseases |
| - | Review, | Var, | NA |
| 956- | BBR, | Berberine inhibits HIF-1alpha expression via enhanced proteolysis |
| - | in-vitro, | Nor, | HUVECs | - | in-vitro, | GC, | SCM1 |
| 3682- | BBR, | Berberine Improves Cognitive Impairment by Simultaneously Impacting Cerebral Blood Flow and β-Amyloid Accumulation in an APP/tau/PS1 Mouse Model of Alzheimer’s Disease |
| - | in-vitro, | AD, | NA |
| 2754- | BetA, | Betulinic acid inhibits prostate cancer growth through inhibition of specificity protein transcription factors |
| - | in-vitro, | Pca, | LNCaP |
| 2748- | BetA, | Betulinic Acid: Recent Advances in Chemical Modifications, Effective Delivery, and Molecular Mechanisms of a Promising Anticancer Therapy |
| - | Review, | Var, | NA |
| 2729- | BetA, | Betulinic acid in the treatment of tumour diseases: Application and research progress |
| - | Review, | Var, | NA |
| 2738- | BetA, | Betulinic Acid Suppresses Breast Cancer Metastasis by Targeting GRP78-Mediated Glycolysis and ER Stress Apoptotic Pathway |
| - | in-vitro, | BC, | MDA-MB-231 | - | in-vitro, | BC, | BT549 | - | in-vivo, | NA, | NA |
| 2737- | BetA, | Multiple molecular targets in breast cancer therapy by betulinic acid |
| - | Review, | Var, | NA |
| 3516- | Bor, | Boron in wound healing: a comprehensive investigation of its diverse mechanisms |
| - | Review, | Wounds, | NA |
| 696- | Bor, | Nothing Boring About Boron |
| - | Review, | Var, | NA |
| 1416- | Bos, | Anti-cancer properties of boswellic acids: mechanism of action as anti-cancerous agent |
| - | Review, | NA, | NA |
| 2767- | Bos, | The potential role of boswellic acids in cancer prevention and treatment |
| - | Review, | Var, | NA |
| 2776- | Bos, | Anti-inflammatory and anti-cancer activities of frankincense: Targets, treatments and toxicities |
| - | Review, | Var, | NA |
| 2768- | Bos, | Boswellic acids as promising agents for the management of brain diseases |
| - | Review, | Var, | NA | - | Review, | AD, | NA | - | Review, | Park, | NA |
| 1651- | CA, | PBG, | Caffeic acid and its derivatives as potential modulators of oncogenic molecular pathways: New hope in the fight against cancer |
| - | Review, | Var, | NA |
| 1260- | CAP, | Capsaicin inhibits in vitro and in vivo angiogenesis |
| - | vitro+vivo, | NA, | NA |
| 2015- | CAP, | CUR, | urea, | Anti-cancer Activity of Sustained Release Capsaicin Formulations |
| - | Review, | Var, | NA |
| 2020- | CAP, | Capsaicinoids and Their Effects on Cancer: The “Double-Edged Sword” Postulate from the Molecular Scale |
| - | Review, | Var, | NA |
| 3869- | Carno, | Carnosine, Small but Mighty—Prospect of Use as Functional Ingredient for Functional Food Formulation |
| - | Review, | AD, | NA | - | Review, | Stroke, | NA |
| 954- | CGA, | Chlorogenic acid inhibits hypoxia-induced angiogenesis via down-regulation of the HIF-1α/AKT pathway |
| - | in-vitro, | Lung, | A549 | - | in-vitro, | Nor, | HUVECs |
| 4477- | Chit, | Recent Advances in Chitosan and its Derivatives in Cancer Treatment |
| - | Review, | NA, | NA |
| 2797- | CHr, | A flavonoid chrysin suppresses hypoxic survival and metastatic growth of mouse breast cancer cells |
| - | in-vivo, | BC, | NA | - | in-vitro, | BC, | 4T1 |
| 2802- | CHr, | Chrysin inhibits expression of hypoxia-inducible factor-1alpha through reducing hypoxia-inducible factor-1alpha stability and inhibiting its protein synthesis |
| - | in-vitro, | Pca, | DU145 | - | in-vivo, | Pca, | NA |
| 2781- | CHr, | PBG, | Chrysin a promising anticancer agent: recent perspectives |
| - | Review, | Var, | NA |
| 2780- | CHr, | Anti-cancer Activity of Chrysin in Cancer Therapy: a Systematic Review |
| - | Review, | Var, | NA |
| 2785- | CHr, | Emerging cellular and molecular mechanisms underlying anticancer indications of chrysin |
| - | Review, | Var, | NA |
| 2786- | CHr, | Chemopreventive and therapeutic potential of chrysin in cancer: mechanistic perspectives |
| - | Review, | Var, | NA |
| 2787- | CHr, | Network pharmacology unveils the intricate molecular landscape of Chrysin in breast cancer therapeutics |
| - | Analysis, | Var, | MCF-7 |
| 2788- | CHr, | Chrysin: Sources, beneficial pharmacological activities, and molecular mechanism of action |
| - | Review, | Var, | NA |
| - | Review, | AD, | NA | - | Review, | Var, | NA |
| 3890- | Cin, | The Therapeutic Roles of Cinnamaldehyde against Cardiovascular Diseases |
| - | Review, | NA, | NA |
| 952- | Cin, | Cinnamon Extract Reduces VEGF Expression Via Suppressing HIF-1α Gene Expression and Inhibits Tumor Growth in Mice |
| - | in-vitro, | BC, | MDA-MB-231 | - | in-vitro, | GBM, | U251 | - | in-vivo, | Ovarian, | SKOV3 |
| 1576- | Citrate, | Targeting citrate as a novel therapeutic strategy in cancer treatment |
| - | Review, | Var, | NA |
| 4769- | CoQ10, | CoQ10 Is Key for Cellular Energy and Cancer Support |
| - | Review, | Var, | NA |
| 4764- | CoQ10, | VitE, | Auxiliary effect of trolox on coenzyme Q10 restricts angiogenesis and proliferation of retinoblastoma cells via the ERK/Akt pathway |
| - | in-vitro, | RPE, | Y79 | - | in-vitro, | Nor, | ARPE-19 | - | in-vivo, | NA, | NA |
| 4762- | CoQ10, | The role of coenzyme Q10 as a preventive and therapeutic agent for the treatment of cancers |
| - | Review, | Var, | NA |
| 1596- | Cu, | CDT, | Unveiling the promising anticancer effect of copper-based compounds: a comprehensive review |
| - | Review, | NA, | NA |
| 1598- | Cu, | Targeting copper in cancer therapy: 'Copper That Cancer' |
| - | Review, | NA, | NA |
| 1639- | Cu, | HCAs, | Green synthesis of copper oxide nanoparticles using sinapic acid: an underpinning step towards antiangiogenic therapy for breast cancer |
| - | in-vitro, | BC, | MCF-7 | - | in-vitro, | BC, | MDA-MB-231 |
| 4826- | CUR, | The Bright Side of Curcumin: A Narrative Review of Its Therapeutic Potential in Cancer Management |
| - | Review, | Var, | NA |
| 465- | CUR, | Curcumin inhibits the growth of liver cancer by impairing myeloid-derived suppressor cells in murine tumor tissues |
| - | vitro+vivo, | Liver, | HepG2 | - | vitro+vivo, | Liver, | HUH7 | - | vitro+vivo, | Liver, | MHCC-97H |
| 1880- | DCA, | A Novel Form of Dichloroacetate Therapy for Patients With Advanced Cancer: A Report of 3 Cases |
| - | Case Report, | Var, | NA |
| 1442- | Deg, | Deguelin, a novel anti-tumorigenic agent targeting apoptosis, cell cycle arrest and anti-angiogenesis for cancer chemoprevention |
| - | Review, | Var, | NA |
| 1850- | dietFMD, | Fasting-mimicking diet remodels gut microbiota and suppresses colorectal cancer progression |
| - | in-vivo, | CRC, | NA |
| - | vitro+vivo, | Melanoma, | NA | - | Case Report, | Melanoma, | NA |
| 5012- | DSF, | Cu, | Advancing Cancer Therapy with Copper/Disulfiram Nanomedicines and Drug Delivery Systems |
| 5008- | DSF, | Cu, | Overcoming the compensatory elevation of NRF2 renders hepatocellular carcinoma cells more vulnerable to disulfiram/copper-induced ferroptosis |
| - | in-vitro, | HCC, | NA |
| 4914- | DSF, | immuno, | Disulfiram and cancer immunotherapy: Advanced nano-delivery systems and potential therapeutic strategies |
| - | Review, | Var, | NA |
| 4832- | EA, | Experimental Evidence of the Antitumor, Antimetastatic and Antiangiogenic Activity of Ellagic Acid |
| 1613- | EA, | Ellagitannins in Cancer Chemoprevention and Therapy |
| - | Review, | Var, | NA |
| 1618- | EA, | A comprehensive review on Ellagic acid in breast cancer treatment: From cellular effects to molecular mechanisms of action |
| - | Review, | BC, | NA |
| 1605- | EA, | Ellagic Acid and Cancer Hallmarks: Insights from Experimental Evidence |
| - | Review, | Var, | NA |
| 1620- | EA, | Rad, | Radiosensitizing effect of ellagic acid on growth of Hepatocellular carcinoma cells: an in vitro study |
| - | in-vitro, | Liver, | HepG2 |
| 3238- | EGCG, | Green tea catechin, epigallocatechin-3-gallate (EGCG): mechanisms, perspectives and clinical applications |
| - | Review, | Var, | NA |
| 3217- | EGCG, | Epigallocatechin-3-gallate promotes angiogenesis via up-regulation of Nfr2 signaling pathway in a mouse model of ischemic stroke |
| - | in-vivo, | Stroke, | NA |
| 1516- | EGCG, | Epigallocatechin Gallate (EGCG): Pharmacological Properties, Biological Activities and Therapeutic Potential |
| - | Review, | NA, | NA |
| 1503- | EGCG, | Epigenetic targets of bioactive dietary components for cancer prevention and therapy |
| - | Review, | NA, | NA |
| 1322- | EMD, | The versatile emodin: A natural easily acquired anthraquinone possesses promising anticancer properties against a variety of cancers |
| - | Review, | Var, | NA |
| 1155- | F, | The anti-cancer effects of fucoidan: a review of both in vivo and in vitro investigations |
| - | Review, | NA, | NA |
| 948- | F, | Low Molecular Weight Fucoidan Inhibits Tumor Angiogenesis through Downregulation of HIF-1/VEGF Signaling under Hypoxia |
| - | vitro+vivo, | Bladder, | T24 | - | in-vitro, | Nor, | HUVECs |
| 1654- | FA, | Molecular mechanism of ferulic acid and its derivatives in tumor progression |
| - | Review, | Var, | NA |
| 3716- | FA, | Ferulic Acid as a Protective Antioxidant of Human Intestinal Epithelial Cells |
| - | in-vitro, | IBD, | NA | - | in-vivo, | NA, | NA |
| 2845- | FIS, | Fisetin: A bioactive phytochemical with potential for cancer prevention and pharmacotherapy |
| - | Review, | Var, | NA |
| 2847- | FIS, | Fisetin-induced cell death, apoptosis, and antimigratory effects in cholangiocarcinoma cells |
| - | in-vitro, | CCA, | NA |
| 2824- | FIS, | Fisetin in Cancer: Attributes, Developmental Aspects, and Nanotherapeutics |
| - | Review, | Var, | NA |
| 2827- | FIS, | The Potential Role of Fisetin, a Flavonoid in Cancer Prevention and Treatment |
| - | Review, | Var, | NA |
| 2830- | FIS, | Biological effects and mechanisms of fisetin in cancer: a promising anti-cancer agent |
| - | Review, | Var, | NA |
| 2843- | FIS, | Fisetin and Quercetin: Promising Flavonoids with Chemopreventive Potential |
| - | Review, | Var, | NA |
| 2313- | Flav, | Flavonoids against the Warburg phenotype—concepts of predictive, preventive and personalised medicine to cut the Gordian knot of cancer cell metabolism |
| - | Review, | Var, | NA |
| 947- | GA, | Gallic acid, a phenolic compound, exerts anti-angiogenic effects via the PTEN/AKT/HIF-1α/VEGF signaling pathway in ovarian cancer cells |
| - | in-vitro, | Ovarian, | OVCAR-3 | - | in-vitro, | Melanoma, | A2780S | - | in-vitro, | Nor, | IOSE364 | - | Human, | NA, | NA |
| 1189- | Gb, | New insight into the mechanisms of Ginkgo biloba leaves in the treatment of cancer |
| - | Review, | NA, | NA |
| 1005- | GI, | Ginger Constituent 6-Shogaol Inhibits Inflammation- and Angiogenesis-Related Cell Functions in Primary Human Endothelial Cells |
| - | vitro+vivo, | Nor, | HUVECs |
| 2511- | H2, | Molecular hydrogen suppresses glioblastoma growth via inducing the glioma stem-like cell differentiation |
| - | in-vivo, | GBM, | U87MG |
| 1643- | HCAs, | Mechanisms involved in the anticancer effects of sinapic acid |
| - | Review, | Var, | NA |
| 2894- | HNK, | Pharmacological features, health benefits and clinical implications of honokiol |
| - | Review, | Var, | NA | - | Review, | AD, | NA |
| 2885- | HNK, | Honokiol: a novel natural agent for cancer prevention and therapy |
| 4640- | HT, | The anti-cancer potential of hydroxytyrosol |
| - | Review, | Var, | NA |
| 4642- | HT, | Hydroxytyrosol, a natural molecule from olive oil, suppresses the growth of human hepatocellular carcinoma cells via inactivating AKT and nuclear factor-kappa B pathways |
| - | in-vitro, | HCC, | HepG2 | - | NA, | NA, | Hep3B | - | NA, | NA, | SK-HEP-1 |
| 2180- | itraC, | Repurposing Drugs in Oncology (ReDO)—itraconazole as an anti-cancer agent |
| - | Review, | Var, | NA |
| 2179- | itraC, | Repurposing itraconazole for the treatment of cancer |
| - | Review, | Var, | NA |
| 2914- | LT, | Therapeutic Potential of Luteolin on Cancer |
| - | Review, | Var, | NA |
| 2906- | LT, | Luteolin, a flavonoid with potentials for cancer prevention and therapy |
| - | Review, | Var, | NA |
| 2909- | LT, | Revisiting luteolin: An updated review on its anticancer potential |
| - | Review, | Var, | NA |
| 2912- | LT, | Luteolin: a flavonoid with a multifaceted anticancer potential |
| - | Review, | Var, | NA |
| 3267- | Lyco, | Lycopene inhibits angiogenesis both in vitro and in vivo by inhibiting MMP-2/uPA system through VEGFR2-mediated PI3K-Akt and ERK/p38 signaling pathways |
| - | in-vitro, | Nor, | HUVECs |
| 4791- | Lyco, | Investigating into anti-cancer potential of lycopene: Molecular targets |
| - | Review, | Var, | NA |
| 1708- | Lyco, | The Anti-Cancer Activity of Lycopene: A Systematic Review of Human and Animal Studies |
| - | Review, | Var, | NA |
| 972- | MAG, | Magnolol suppresses hypoxia-induced angiogenesis via inhibition of HIF-1α/VEGF signaling pathway in human bladder cancer cells |
| - | vitro+vivo, | Bladder, | T24 |
| 4514- | MAG, | Magnolol and its semi-synthetic derivatives: a comprehensive review of anti-cancer mechanisms, pharmacokinetics, and future therapeutic potential |
| - | Review, | Var, | NA |
| 4528- | MAG, | Pharmacology, Toxicity, Bioavailability, and Formulation of Magnolol: An Update |
| - | Review, | Nor, | NA |
| 4515- | MAG, | Magnolol as a Potential Anticancer Agent: A Proposed Mechanistic Insight |
| - | Review, | Var, | NA |
| 1779- | MEL, | Therapeutic Potential of Melatonin Counteracting Chemotherapy-Induced Toxicity in Breast Cancer Patients: A Systematic Review |
| - | Review, | BC, | NA |
| 2487- | metroC, | Metronomic Chemotherapy: Possible Clinical Application in Advanced Hepatocellular Carcinoma |
| - | Review, | HCC, | NA |
| 2490- | metroC, | Durable complete response of hepatocellular carcinoma after metronomic capecitabine |
| - | Case Report, | HCC, | NA |
| 3477- | MF, | Electromagnetic fields regulate calcium-mediated cell fate of stem cells: osteogenesis, chondrogenesis and apoptosis |
| - | Review, | NA, | NA |
| 3478- | MF, | One Month of Brief Weekly Magnetic Field Therapy Enhances the Anticancer Potential of Female Human Sera: Randomized Double-Blind Pilot Study |
| - | Trial, | BC, | NA | - | in-vitro, | BC, | MCF-7 | - | in-vitro, | Nor, | C2C12 |
| 3482- | MF, | Pulsed Electromagnetic Fields Increase Angiogenesis and Improve Cardiac Function After Myocardial Ischemia in Mice |
| - | in-vitro, | NA, | NA |
| 3536- | MF, | Targeting Mesenchymal Stromal Cells/Pericytes (MSCs) With Pulsed Electromagnetic Field (PEMF) Has the Potential to Treat Rheumatoid Arthritis |
| - | Review, | Arthritis, | NA | - | Review, | Stroke, | NA |
| 3464- | MF, | Progressive Study on the Non-thermal Effects of Magnetic Field Therapy in Oncology |
| - | Review, | Var, | NA |
| 3465- | MF, | Magnetic fields and angiogenesis |
| - | Review, | Var, | NA |
| 3466- | MF, | The effect of magnetic fields on tumor occurrence and progression: Recent advances |
| - | Review, | Var, | NA |
| 3467- | MF, | Pulsed Magnetic Field Induces Angiogenesis and Improves Cardiac Function of Surgically Induced Infarcted Myocardium in Sprague-Dawley Rats |
| - | in-vivo, | Nor, | NA |
| 4092- | MF, | Mechanisms and therapeutic effectiveness of pulsed electromagnetic field therapy in oncology |
| - | Review, | Var, | NA |
| 499- | MF, | The Effect of Pulsed Electromagnetic Fields on Angiogenesis |
| - | Review, | NA, | NA |
| 524- | MF, | Inhibition of Angiogenesis Mediated by Extremely Low-Frequency Magnetic Fields (ELF-MFs) |
| - | vitro+vivo, | PC, | MS-1 | - | vitro+vivo, | PC, | HUVECs |
| - | Review, | NA, | NA |
| 525- | MF, | Pulsed electromagnetic fields regulate metabolic reprogramming and mitochondrial fission in endothelial cells for angiogenesis |
| - | in-vitro, | Nor, | HUVECs |
| 3497- | MFrot, | MF, | The Effect of a Rotating Magnetic Field on the Regenerative Potential of Platelets |
| - | Human, | Nor, | NA |
| 1799- | NarG, | Naringenin as potent anticancer phytocompound in breast carcinoma: from mechanistic approach to nanoformulations based therapeutics |
| - | Review, | NA, | NA |
| 1798- | NarG, | Naringenin: A potential flavonoid phytochemical for cancer therapy |
| - | Review, | NA, | NA |
| 4971- | Nimb, | Nimbolide, a Neem Limonoid, Is a Promising Candidate for the Anticancer Drug Arsenal |
| - | Review, | Var, | NA |
| 4970- | Nimb, | Insights into Nimbolide molecular crosstalk and its anticancer properties |
| - | Review, | Var, | NA |
| 1229- | OA, | Review of the Clinical Effect of Orlistat |
| - | Review, | NA, | NA |
| 4628- | OLE, | Effects of oleuropein on tumor cell growth and bone remodelling: Potential clinical implications for the prevention and treatment of malignant bone diseases |
| - | in-vitro, | Var, | NA |
| 4646- | OLEC, | Oleocanthal as a Multifunctional Anti-Cancer Agent: Mechanistic Insights, Advanced Delivery Strategies, and Synergies for Precision Oncology |
| - | Review, | Var, | NA |
| 2028- | PB, | Potential of Phenylbutyrate as Adjuvant Chemotherapy: An Overview of Cellular and Molecular Anticancer Mechanisms |
| - | Review, | Var, | NA |
| 2381- | PBG, | Chinese Poplar Propolis Inhibits MDA-MB-231 Cell Proliferation in an Inflammatory Microenvironment by Targeting Enzymes of the Glycolytic Pathway |
| - | in-vitro, | BC, | MDA-MB-231 |
| 1664- | PBG, | Anticancer Activity of Propolis and Its Compounds |
| - | Review, | Var, | NA |
| 1663- | PBG, | Propolis and Their Active Constituents for Chronic Diseases |
| - | Review, | Var, | NA |
| 1660- | PBG, | Emerging Adjuvant Therapy for Cancer: Propolis and its Constituents |
| - | Review, | Var, | NA |
| 1676- | PBG, | Use of Stingless Bee Propolis and Geopropolis against Cancer—A Literature Review of Preclinical Studies |
| - | Review, | Var, | NA |
| 3259- | PBG, | Propolis and its therapeutic effects on renal diseases: A review |
| - | Review, | Nor, | NA |
| 4932- | PEITC, | Pharmacokinetics and Pharmacodynamics of Phenethyl Isothiocyanate: Implications in Breast Cancer Prevention |
| - | Review, | BC, | NA |
| 4939- | PEITC, | Phenethyl Isothiocyanate Inhibits Angiogenesis In vitro and Ex vivo |
| - | in-vitro, | Pca, | PC3 | - | ex-vivo, | Nor, | HUVECs |
| 4922- | PEITC, | Phenethyl Isothiocyanate: A comprehensive review of anti-cancer mechanisms |
| - | Review, | Var, | NA |
| 4918- | PEITC, | Nutritional Sources and Anticancer Potential of Phenethyl Isothiocyanate: Molecular Mechanisms and Therapeutic Insights |
| - | Review, | Var, | NA |
| 1256- | PI, | Hypoxia potentiates the cytotoxic effect of piperlongumine in pheochromocytoma models |
| - | in-vitro, | adrenal, | PHEO | - | in-vivo, | NA, | NA |
| 3587- | PI, | Piperine: A review of its biological effects |
| - | Review, | Park, | NA | - | Review, | AD, | NA |
| 2948- | PL, | The promising potential of piperlongumine as an emerging therapeutics for cancer |
| - | Review, | Var, | NA |
| 2946- | PL, | Piperlongumine, a potent anticancer phytotherapeutic: Perspectives on contemporary status and future possibilities as an anticancer agent |
| - | Review, | Var, | NA |
| 2999- | PL, | Piperlongumine alleviates corneal allograft rejection via suppressing angiogenesis and inflammation |
| - | in-vivo, | Nor, | HUVECs |
| 4968- | PSO, | Psoralidin: emerging biological activities of therapeutic benefits and its potential utility in cervical cancer |
| - | in-vitro, | Cerv, | NA |
| 4694- | PTS, | Pterostilbene as a Multifaceted Anticancer Agent: Molecular Mechanisms, Therapeutic Potential and Future Directions |
| 4690- | PTS, | immuno, | Pterostilbene: Mechanisms of its action as oncostatic agent in cell models and in vivo studies |
| - | Review, | Var, | NA |
| 3343- | QC, | Quercetin, a Flavonoid with Great Pharmacological Capacity |
| - | Review, | Var, | NA | - | Review, | AD, | NA | - | Review, | Arthritis, | NA |
| 3369- | QC, | Pharmacological basis and new insights of quercetin action in respect to its anti-cancer effects |
| - | Review, | Pca, | NA |
| 3363- | QC, | The Protective Effect of Quercetin on Endothelial Cells Injured by Hypoxia and Reoxygenation |
| - | in-vitro, | Nor, | HBMECs |
| 50- | QC, | Anticancer effect and mechanism of polymer micelle-encapsulated quercetin on ovarian cancer |
| - | vitro+vivo, | Ovarian, | A2780S |
| 923- | QC, | Quercetin as an innovative therapeutic tool for cancer chemoprevention: Molecular mechanisms and implications in human health |
| - | Review, | Var, | NA |
| 882- | RES, | Resveratrol: A Double-Edged Sword in Health Benefits |
| - | Review, | NA, | NA |
| 883- | RES, | Targeting Histone Deacetylases with Natural and Synthetic Agents: An Emerging Anticancer Strategy |
| 3080- | RES, | Resveratrol: A miraculous natural compound for diseases treatment |
| - | Review, | Var, | NA |
| 3076- | RES, | Resveratrol for targeting the tumor microenvironment and its interactions with cancer cells |
| - | Review, | Var, | NA |
| 3079- | RES, | Therapeutic role of resveratrol against hepatocellular carcinoma: A review on its molecular mechanisms of action |
| - | Review, | Var, | NA |
| 3090- | RES, | The Effects of Resveratrol Targeting MicroRNA-4325P/PDGF-B to Regulate Tumor Angiogenesis in Osteosarcoma Microenvironment |
| - | in-vitro, | OS, | MG63 |
| 3089- | RES, | The Role of Resveratrol in Cancer Therapy |
| - | Review, | Var, | NA |
| 2687- | RES, | Effects of resveratrol, curcumin, berberine and other nutraceuticals on aging, cancer development, cancer stem cells and microRNAs |
| - | Review, | NA, | NA | - | Review, | AD, | NA |
| 3618- | RosA, | Antioxidant and Antimicrobial Properties of Rosemary (Rosmarinus officinalis, L.): A Review |
| - | Review, | AD, | NA |
| 3006- | RosA, | Rosmarinic acid attenuates glioblastoma cells and spheroids’ growth and EMT/stem-like state by PTEN/PI3K/AKT downregulation and ERK-induced apoptosis |
| - | in-vitro, | GBM, | U87MG | - | in-vitro, | GBM, | LN229 |
| 3007- | RosA, | Hepatoprotective effects of rosmarinic acid: Insight into its mechanisms of action |
| - | Review, | NA, | NA |
| 3639- | Sage, | Pharmacological properties of Salvia officinalis and its components |
| - | Review, | AD, | NA | - | Review, | Var, | NA |
| 4900- | Sal, | Anticancer Mechanisms of Salinomycin in Breast Cancer and Its Clinical Applications |
| - | Review, | BC, | NA |
| 1688- | Se, | Potential Role of Selenium in the Treatment of Cancer and Viral Infections |
| - | Review, | Var, | NA |
| 4603- | Se, | Therapeutic applications of selenium nanoparticles |
| - | Review, | Var, | NA |
| 4739- | Se, | Chemo, | Rad, | Therapeutic Benefits of Selenium in Hematological Malignancies |
| - | Review, | Var, | NA |
| 4469- | Se, | Selenium Nanoparticles in Cancer Therapy: Unveiling Cytotoxic Mechanisms and Therapeutic Potential |
| - | Review, | Var, | NA |
| 963- | SFN, | Sulforaphane inhibits hypoxia-induced HIF-1α and VEGF expression and migration of human colon cancer cells |
| - | in-vitro, | CRC, | HCT116 | - | in-vitro, | GC, | AGS |
| 2556- | SFN, | The role of Sulforaphane in cancer chemoprevention and health benefits: a mini-review |
| - | Review, | Var, | NA |
| 3182- | SFN, | Sulforaphane Modulates AQP8-Linked Redox Signalling in Leukemia Cells |
| - | in-vitro, | AML, | NA |
| 1732- | SFN, | Sulforaphane, a Dietary Component of Broccoli/Broccoli Sprouts, Inhibits Breast Cancer Stem Cells |
| - | in-vitro, | BC, | MCF-7 | - | in-vitro, | BC, | SUM159 | - | in-vivo, | NA, | NA |
| 1729- | SFN, | Discovery and development of sulforaphane as a cancer chemopreventive phytochemical |
| - | Review, | Nor, | NA |
| 1484- | SFN, | Sulforaphane’s Multifaceted Potential: From Neuroprotection to Anticancer Action |
| - | Review, | Var, | NA | - | Review, | AD, | NA |
| 1458- | SFN, | Sulforaphane Impact on Reactive Oxygen Species (ROS) in Bladder Carcinoma |
| - | Review, | Bladder, | NA |
| 1469- | SFN, | Sulforaphane enhances the therapeutic potential of TRAIL in prostate cancer orthotopic model through regulation of apoptosis, metastasis, and angiogenesis |
| - | in-vitro, | Pca, | PC3 | - | in-vitro, | Pca, | LNCaP | - | in-vivo, | Pca, | NA |
| 1508- | SFN, | Nrf2 targeting by sulforaphane: A potential therapy for cancer treatment |
| - | Review, | Var, | NA |
| 3301- | SIL, | Critical review of therapeutic potential of silymarin in cancer: A bioactive polyphenolic flavonoid |
| - | Review, | Var, | NA |
| 3282- | SIL, | Role of Silymarin in Cancer Treatment: Facts, Hypotheses, and Questions |
| - | Review, | NA, | NA |
| 3306- | SIL, | Rad, | Radioprotective and radiosensitizing properties of silymarin/silibinin in response to ionizing radiation |
| - | Review, | Var, | NA |
| 3288- | SIL, | Silymarin in cancer therapy: Mechanisms of action, protective roles in chemotherapy-induced toxicity, and nanoformulations |
| - | Review, | Var, | NA |
| 3289- | SIL, | Silymarin: a promising modulator of apoptosis and survival signaling in cancer |
| - | Review, | Var, | NA |
| 3326- | SIL, | Silymarin suppresses proliferation of human hepatocellular carcinoma cells under hypoxia through downregulation of the HIF-1α/VEGF pathway |
| - | in-vitro, | Liver, | HepG2 | - | in-vitro, | Liver, | Hep3B |
| 3323- | SIL, | Anticancer therapeutic potential of silibinin: current trends, scope and relevance |
| - | Review, | Var, | NA |
| 3314- | SIL, | Silymarin: Unveiling its pharmacological spectrum and therapeutic potential in liver diseases—A comprehensive narrative review |
| - | Review, | NA, | NA |
| 964- | SIL, | Silibinin inhibits hypoxia-induced HIF-1α-mediated signaling, angiogenesis and lipogenesis in prostate cancer cells: In vitro evidence and in vivo functional imaging and metabolomics |
| - | vitro+vivo, | Pca, | LNCaP | - | in-vitro, | Pca, | 22Rv1 |
| 2188- | SK, | Molecular mechanism of shikonin inhibiting tumor growth and potential application in cancer treatment |
| - | Review, | Var, | NA |
| 4549- | SNP, | Silver nanoparticles: Synthesis, medical applications and biosafety |
| - | Review, | Var, | NA | - | Review, | Diabetic, | NA |
| 4426- | SNP, | Antiangiogenic properties of silver nanoparticles |
| - | Study, | NA, | NA |
| 4414- | SNP, | Silver nanoparticles: Forging a new frontline in lung cancer therapy |
| - | Review, | Lung, | NA |
| 1202- | Tb, | The influence of theobromine on angiogenic activity and proangiogenic cytokines production of human ovarian cancer cells |
| - | in-vitro, | Ovarian, | NA |
| 3571- | TQ, | The Role of Thymoquinone in Inflammatory Response in Chronic Diseases |
| - | Review, | Var, | NA | - | Review, | Stroke, | NA |
| 3559- | TQ, | Molecular signaling pathway targeted therapeutic potential of thymoquinone in Alzheimer’s disease |
| - | Review, | AD, | NA | - | Review, | Var, | NA |
| 3420- | TQ, | Thymoquinone alleviates the accumulation of ROS and pyroptosis and promotes perforator skin flap survival through SIRT1/NF-κB pathway |
| - | in-vitro, | Nor, | HUVECs | - | in-vitro, | NA, | NA |
| 3430- | TQ, | Targeting microRNAs with thymoquinone: a new approach for cancer therapy |
| - | Review, | Var, | NA |
| 3397- | TQ, | Thymoquinone: A Promising Therapeutic Agent for the Treatment of Colorectal Cancer |
| - | Review, | CRC, | NA |
| 3425- | TQ, | Advances in research on the relationship between thymoquinone and pancreatic cancer |
| 3424- | TQ, | Thymoquinone Is a Multitarget Single Epidrug That Inhibits the UHRF1 Protein Complex |
| - | Review, | Var, | NA |
| 3423- | TQ, | Epigenetic role of thymoquinone: impact on cellular mechanism and cancer therapeutics |
| - | Review, | Var, | NA |
| 3408- | TQ, | Thymoquinone: A small molecule from nature with high therapeutic potential |
| - | Review, | AD, | NA | - | Review, | Park, | NA |
| 1935- | TQ, | Potential anticancer properties and mechanisms of thymoquinone in osteosarcoma and bone metastasis |
| - | Review, | OS, | NA |
| 1933- | TQ, | Thymoquinone: potential cure for inflammatory disorders and cancer |
| - | Review, | Var, | NA |
| 2138- | TQ, | Thymoquinone has a synergistic effect with PHD inhibitors to ameliorate ischemic brain damage in mice |
| - | in-vivo, | Nor, | NA |
| 2102- | TQ, | A review on therapeutic potential of Nigella sativa: A miracle herb |
| - | Review, | Var, | NA |
| 2094- | TQ, | Cytotoxicity of Nigella sativa Extracts Against Cancer Cells: A Review of In Vitro and In Vivo Studies |
| - | Review, | Var, | NA |
| 5022- | UA, | Ursolic Acid’s Alluring Journey: One Triterpenoid vs. Cancer Hallmarks |
| - | Review, | Var, | NA |
| 5019- | UA, | Ursolic acid in colorectal cancer: mechanisms, current status, challenges, and future research directions |
| - | Review, | Var, | NA |
| 4833- | Uro, | Unveiling the potential of Urolithin A in Cancer Therapy: Mechanistic Insights to Future Perspectives of Nanomedicine |
| - | Review, | Var, | NA | - | Review, | AD, | NA | - | Review, | IBD, | NA |
| 3151- | VitC, | Role of Vitamin C in the Function of the Vascular Endothelium |
| - | Review, | Nor, | NA |
| 4350- | VitD3, | Vitamin D: Evidence-Based Health Benefits and Recommendations for Population Guidelines |
| - | Review, | Var, | NA | - | Review, | AD, | NA |
Query results interpretion may depend on "conditions" listed in the research papers. Such Conditions may include : -low or high Dose -format for product, such as nano of lipid formations -different cell line effects -synergies with other products -if effect was for normal or cancerous cells
Filter Conditions: Pro/AntiFlg:% IllCat:% CanType:% Cells:% prod#:% Target#:447 State#:% Dir#:%
wNotes=0 sortOrder:rid,rpid