| Source: |
| Type: |
| Caspase-9 is the apoptotic initiator protease of the intrinsic or mitochondrial apoptotic pathway, which is activated at multi-protein activation platforms. Caspases are divided into two groups: the initiator caspases (caspase-2, -8, -9 and -10), which are the first to be activated in response to a signal, and the executioner caspases (caspase-3, -6, and -7) that carry out the demolition phase of apoptosis. Caspase-9: Role: Initiator caspase in the intrinsic apoptotic pathway. Cancers: Frequently studied in leukemia and solid tumors. Prognosis: Reduced expression is often linked to chemoresistance and poor prognosis. |
| 234- | AL, | Allicin Induces Anti-human Liver Cancer Cells through the p53 Gene Modulating Apoptosis and Autophagy |
| - | in-vitro, | HCC, | Hep3B |
| 239- | AL, | Allicin induces apoptosis in gastric cancer cells through activation of both extrinsic and intrinsic pathways |
| - | in-vitro, | GC, | SGC-7901 |
| 241- | AL, | Role of p38 MAPK activation and mitochondrial cytochrome-c release in allicin-induced apoptosis in SK-N-SH cells |
| - | in-vitro, | neuroblastoma, | SK-N-SH |
| 245- | AL, | Allicin: a promising modulator of apoptosis and survival signaling in cancer |
| - | Review, | Var, | NA |
| 251- | AL, | Inhibition of allicin in Eca109 and EC9706 cells via G2/M phase arrest and mitochondrial apoptosis pathway |
| - | in-vitro, | ESCC, | Eca109 | - | in-vitro, | ESCC, | EC9706 | - | in-vivo, | NA, | NA |
| 2655- | AL, | Allicin and Digestive System Cancers: From Chemical Structure to Its Therapeutic Opportunities |
| - | Review, | GC, | NA |
| 2660- | AL, | Allicin: A review of its important pharmacological activities |
| - | Review, | AD, | NA | - | Review, | Var, | NA | - | Review, | Park, | NA | - | Review, | Stroke, | NA |
| 281- | ALA, | Reactive oxygen species mediate caspase activation and apoptosis induced by lipoic acid in human lung epithelial cancer cells through Bcl-2 down-regulation |
| - | in-vitro, | Lung, | H460 |
| 278- | ALA, | The Multifaceted Role of Alpha-Lipoic Acid in Cancer Prevention, Occurrence, and Treatment |
| - | Review, | NA, | NA |
| 267- | ALA, | α-Lipoic Acid Targeting PDK1/NRF2 Axis Contributes to the Apoptosis Effect of Lung Cancer Cells |
| - | vitro+vivo, | Lung, | A549 | - | vitro+vivo, | Lung, | PC9 |
| 3448- | ALA, | Alpha lipoic acid attenuates hypoxia-induced apoptosis, inflammation and mitochondrial oxidative stress via inhibition of TRPA1 channel in human glioblastoma cell line |
| 3549- | ALA, | Important roles of linoleic acid and α-linolenic acid in regulating cognitive impairment and neuropsychiatric issues in metabolic-related dementia |
| - | Review, | AD, | NA |
| 3550- | ALA, | Mitochondrial Dysfunction and Alpha-Lipoic Acid: Beneficial or Harmful in Alzheimer's Disease? |
| - | Review, | AD, | NA |
| 3541- | ALA, | Insights on alpha lipoic and dihydrolipoic acids as promising scavengers of oxidative stress and possible chelators in mercury toxicology |
| - | Review, | Var, | NA |
| 1009- | And, | 5-FU, | Andrographis-mediated chemosensitization through activation of ferroptosis and suppression of β-catenin/Wnt-signaling pathways in colorectal cancer |
| - | in-vivo, | CRC, | HCT116 | - | in-vitro, | CRC, | SW480 |
| 1078- | And, | Andrographolide inhibits breast cancer through suppressing COX-2 expression and angiogenesis via inactivation of p300 signaling and VEGF pathway |
| - | in-vitro, | BC, | MDA-MB-231 | - | in-vitro, | Nor, | HUVECs | - | in-vivo, | BC, | MCF-7 | - | in-vitro, | BC, | T47D | - | in-vitro, | BC, | BT549 | - | in-vitro, | BC, | MDA-MB-361 |
| 584- | Api, | Cisplatin, | Apigenin potentiates the antitumor activity of 5-FU on solid Ehrlich carcinoma: Crosstalk between apoptotic and JNK-mediated autophagic cell death platforms |
| - | in-vivo, | Var, | NA |
| 206- | Api, | Inhibition of glutamine utilization sensitizes lung cancer cells to apigenin-induced apoptosis resulting from metabolic and oxidative stress |
| - | in-vitro, | Lung, | H1299 | - | in-vitro, | Lung, | H460 | - | in-vitro, | Lung, | A549 | - | in-vitro, | CRC, | HCT116 | - | in-vitro, | Melanoma, | A375 | - | in-vitro, | Lung, | H2030 | - | in-vitro, | CRC, | SW480 |
| 173- | Api, | Apigenin-induced apoptosis is enhanced by inhibition of autophagy formation in HCT116 human colon cancer cells |
| - | in-vitro, | Colon, | HCT116 |
| 270- | Api, | Apigenin induces apoptosis in human leukemia cells and exhibits anti-leukemic activity in vivo via inactivation of Akt and activation of JNK |
| - | in-vivo, | AML, | U937 |
| 416- | Api, | In Vitro and In Vivo Anti-tumoral Effects of the Flavonoid Apigenin in Malignant Mesothelioma |
| - | vitro+vivo, | NA, | NA |
| 310- | Api, | Apigenin inhibits renal cell carcinoma cell proliferation |
| - | vitro+vivo, | RCC, | ACHN | - | in-vitro, | RCC, | 786-O | - | in-vitro, | RCC, | Caki-1 | - | in-vitro, | RCC, | HK-2 |
| 1563- | Api, | MET, | Metformin-induced ROS upregulation as amplified by apigenin causes profound anticancer activity while sparing normal cells |
| - | in-vitro, | Nor, | HDFa | - | in-vitro, | PC, | AsPC-1 | - | in-vitro, | PC, | MIA PaCa-2 | - | in-vitro, | Pca, | DU145 | - | in-vitro, | Pca, | LNCaP | - | in-vivo, | NA, | NA |
| 2632- | Api, | Apigenin inhibits migration and induces apoptosis of human endometrial carcinoma Ishikawa cells via PI3K-AKT-GSK-3β pathway and endoplasmic reticulum stress |
| - | in-vitro, | EC, | NA |
| 2640- | Api, | Apigenin: A Promising Molecule for Cancer Prevention |
| - | Review, | Var, | NA |
| 2639- | Api, | Plant flavone apigenin: An emerging anticancer agent |
| - | Review, | Var, | NA |
| 2634- | Api, | Apigenin induces both intrinsic and extrinsic pathways of apoptosis in human colon carcinoma HCT-116 cells |
| - | in-vitro, | CRC, | HCT116 |
| 4278- | ART/DHA, | Artemisinin Ameliorates the Neurotoxic Effect of 3-Nitropropionic Acid: A Possible Involvement of the ERK/BDNF/Nrf2/HO-1 Signaling Pathway |
| - | in-vivo, | NA, | NA |
| 3391- | ART/DHA, | Antitumor Activity of Artemisinin and Its Derivatives: From a Well-Known Antimalarial Agent to a Potential Anticancer Drug |
| - | Review, | Var, | NA |
| 2576- | ART/DHA, | AL, | The Synergistic Anticancer Effect of Artesunate Combined with Allicin in Osteosarcoma Cell Line in Vitro and in Vivo |
| - | in-vitro, | OS, | MG63 | - | in-vivo, | NA, | NA |
| 1079- | ART/DHA, | Artesunate inhibits the growth and induces apoptosis of human gastric cancer cells by downregulating COX-2 |
| - | in-vitro, | GC, | BGC-823 | - | in-vitro, | GC, | HGC27 | - | in-vitro, | GC, | MGC803 |
| 566- | ART/DHA, | 2DG, | Dihydroartemisinin inhibits glucose uptake and cooperates with glycolysis inhibitor to induce apoptosis in non-small cell lung carcinoma cells |
| - | in-vitro, | Lung, | A549 | - | in-vitro, | Lung, | PC9 |
| 1295- | AS, | Cisplatin, | Chemosensitizing Effect of Astragalus Polysaccharides on Nasopharyngeal Carcinoma Cells by Inducing Apoptosis and Modulating Expression of Bax/Bcl-2 Ratio and Caspases |
| - | in-vivo, | Laryn, | NA |
| 1364- | Ash, | Withaferin a Triggers Apoptosis and DNA Damage in Bladder Cancer J82 Cells through Oxidative Stress |
| - | in-vitro, | Bladder, | J82 |
| 1369- | Ash, | Withaferin A inhibits cell proliferation of U266B1 and IM-9 human myeloma cells by inducing intrinsic apoptosis |
| - | in-vitro, | Melanoma, | U266 |
| - | in-vitro, | AML, | HL-60 |
| 3160- | Ash, | Withaferin A: A Pleiotropic Anticancer Agent from the Indian Medicinal Plant Withania somnifera (L.) Dunal |
| - | Review, | Var, | NA |
| 1533- | Ba, | Baicalein, as a Prooxidant, Triggers Mitochondrial Apoptosis in MCF-7 Human Breast Cancer Cells Through Mobilization of Intracellular Copper and Reactive Oxygen Species Generation |
| - | in-vitro, | BrCC, | MCF-7 | - | in-vitro, | Nor, | MCF10 |
| 1521- | Ba, | Baicalein induces apoptosis via ROS-dependent activation of caspases in human bladder cancer 5637 cells |
| - | in-vitro, | Bladder, | 5637 |
| 1524- | Ba, | Baicalein Induces Caspase‐dependent Apoptosis Associated with the Generation of ROS and the Activation of AMPK in Human Lung Carcinoma A549 Cells |
| - | in-vitro, | Lung, | A549 |
| - | in-vitro, | Lung, | H1975 | - | in-vivo, | Lung, | NA |
| 1532- | Ba, | Baicalein as Promising Anticancer Agent: A Comprehensive Analysis on Molecular Mechanisms and Therapeutic Perspectives |
| - | Review, | NA, | NA |
| 1526- | Ba, | Baicalein induces apoptosis through ROS-mediated mitochondrial dysfunction pathway in HL-60 cells |
| - | in-vitro, | AML, | HL-60 |
| 2600- | Ba, | Baicalein Induces Apoptosis and Autophagy via Endoplasmic Reticulum Stress in Hepatocellular Carcinoma Cells |
| - | in-vitro, | HCC, | SMMC-7721 cell | - | in-vitro, | HCC, | Bel-7402 |
| 2606- | Ba, | Baicalein: A review of its anti-cancer effects and mechanisms in Hepatocellular Carcinoma |
| - | Review, | HCC, | NA |
| 2627- | Ba, | Cisplatin, | Baicalein, a Bioflavonoid, Prevents Cisplatin-Induced Acute Kidney Injury by Up-Regulating Antioxidant Defenses and Down-Regulating the MAPKs and NF-κB Pathways |
| 2618- | Ba, | Baicalein induces apoptosis by inhibiting the glutamine-mTOR metabolic pathway in lung cancer |
| - | in-vitro, | Lung, | H1299 | - | in-vivo, | Lung, | A549 |
| 2617- | Ba, | Potential of baicalein in the prevention and treatment of cancer: A scientometric analyses based review |
| - | Review, | Var, | NA |
| 2296- | Ba, | The most recent progress of baicalein in its anti-neoplastic effects and mechanisms |
| - | Review, | Var, | NA |
| 2474- | Ba, | Anticancer properties of baicalein: a review |
| - | Review, | Var, | NA | - | in-vitro, | Nor, | BV2 |
| 2477- | Ba, | Baicalein induces apoptosis via a mitochondrial-dependent caspase activation pathway in T24 bladder cancer cells |
| - | in-vitro, | CRC, | T24 |
| 2476- | Ba, | Baicalein Induces Caspase-dependent Apoptosis Associated with the Generation of ROS and the Activation of AMPK in Human Lung Carcinoma A549 Cells |
| - | in-vitro, | Lung, | A549 |
| 1398- | BBR, | Berberine inhibits the progression of renal cell carcinoma cells by regulating reactive oxygen species generation and inducing DNA damage |
| - | in-vitro, | Kidney, | NA |
| 1393- | BBR, | EPI, | Berberine promotes antiproliferative effects of epirubicin in T24 bladder cancer cells by enhancing apoptosis and cell cycle arrest |
| - | in-vitro, | Bladder, | T24 |
| 1402- | BBR, | Berberine-induced apoptosis in human glioblastoma T98G cells is mediated by endoplasmic reticulum stress accompanying reactive oxygen species and mitochondrial dysfunction |
| - | in-vitro, | GBM, | T98G |
| 1404- | BBR, | Berberine-induced apoptosis in human prostate cancer cells is initiated by reactive oxygen species generation |
| - | in-vitro, | Pca, | PC3 |
| 2674- | BBR, | Berberine: A novel therapeutic strategy for cancer |
| - | Review, | Var, | NA | - | Review, | IBD, | NA |
| 2678- | BBR, | Berberine as a Potential Agent for the Treatment of Colorectal Cancer |
| - | Review, | CRC, | NA |
| 2686- | BBR, | Effects of resveratrol, curcumin, berberine and other nutraceuticals on aging, cancer development, cancer stem cells and microRNAs |
| - | Review, | Nor, | NA |
| 2691- | BBR, | Berberine induces FasL-related apoptosis through p38 activation in KB human oral cancer cells |
| - | in-vitro, | Oral, | KB |
| 2753- | BetA, | Betulinic acid induces apoptosis by regulating PI3K/Akt signaling and mitochondrial pathways in human cervical cancer cells |
| - | in-vitro, | Cerv, | HeLa |
| 2744- | BetA, | Betulin and betulinic acid: triterpenoids derivatives with a powerful biological potential |
| - | Review, | Var, | NA |
| 2717- | BetA, | Betulinic Acid Induces ROS-Dependent Apoptosis and S-Phase Arrest by Inhibiting the NF-κB Pathway in Human Multiple Myeloma |
| - | in-vitro, | Melanoma, | U266 | - | in-vivo, | Melanoma, | NA | - | in-vitro, | Melanoma, | RPMI-8226 |
| 2718- | BetA, | The anti-cancer effect of betulinic acid in u937 human leukemia cells is mediated through ROS-dependent cell cycle arrest and apoptosis |
| - | in-vitro, | AML, | U937 |
| 2719- | BetA, | Betulinic Acid Restricts Human Bladder Cancer Cell Proliferation In Vitro by Inducing Caspase-Dependent Cell Death and Cell Cycle Arrest, and Decreasing Metastatic Potential |
| - | in-vitro, | CRC, | T24 | - | in-vitro, | Bladder, | UMUC3 | - | in-vitro, | Bladder, | 5637 |
| 2729- | BetA, | Betulinic acid in the treatment of tumour diseases: Application and research progress |
| - | Review, | Var, | NA |
| 2733- | BetA, | Betulinic Acid Inhibits Cell Proliferation in Human Oral Squamous Cell Carcinoma via Modulating ROS-Regulated p53 Signaling |
| - | in-vitro, | Oral, | KB | - | in-vivo, | NA, | NA |
| 726- | Bor, | Redox Mechanisms Underlying the Cytostatic Effects of Boric Acid on Cancer Cells—An Issue Still Open |
| - | Review, | NA, | NA |
| 724- | Bor, | Does Boric Acid Inhibit Cell Proliferation on MCF-7 and MDA-MB-231 Cells in Monolayer and Spheroid Cultures by Using Apoptosis Pathways? |
| - | in-vitro, | BC, | MDA-MB-231 | - | in-vitro, | BC, | MCF-7 |
| 742- | Bor, | In Vitro Effects of Boric Acid on Cell Cycle, Apoptosis, and miRNAs in Medullary Thyroid Cancer Cells |
| - | in-vitro, | Thyroid, | NA |
| 748- | Bor, | A Study on the Anticarcinogenic Effects of Calcium Fructoborate |
| - | in-vitro, | BC, | MDA-MB-231 |
| 1424- | Bos, | Boswellia sacra essential oil induces tumor cell-specific apoptosis and suppresses tumor aggressiveness in cultured human breast cancer cells |
| - | in-vitro, | BC, | T47D | - | in-vitro, | BC, | MCF-7 | - | in-vitro, | BC, | MDA-MB-231 |
| 2024- | Bos, | Antiproliferative and cell cycle arrest potentials of 3-O-acetyl-11-keto-β-boswellic acid against MCF-7 cells in vitro |
| - | in-vitro, | BC, | MCF-7 | - | in-vitro, | Nor, | MCF10 |
| 2773- | Bos, | Targeted inhibition of tumor proliferation, survival, and metastasis by pentacyclic triterpenoids: Potential role in prevention and therapy of cancer |
| - | Review, | Var, | NA |
| 1652- | CA, | Caffeic Acid and Diseases—Mechanisms of Action |
| - | Review, | Var, | NA |
| 2014- | CAP, | Role of Mitochondrial Electron Transport Chain Complexes in Capsaicin Mediated Oxidative Stress Leading to Apoptosis in Pancreatic Cancer Cells |
| - | in-vitro, | PC, | Bxpc-3 | - | in-vitro, | Nor, | HPDE-6 | - | in-vivo, | PC, | AsPC-1 |
| 1145- | CHr, | Chrysin inhibits propagation of HeLa cells by attenuating cell survival and inducing apoptotic pathways |
| - | in-vitro, | Cerv, | HeLa |
| 2795- | CHr, | Combination of chrysin and cisplatin promotes the apoptosis of Hep G2 cells by up-regulating p53 |
| - | in-vitro, | Liver, | HepG2 |
| 2804- | CHr, | Rad, | Gamma-Irradiated Chrysin Improves Anticancer Activity in HT-29 Colon Cancer Cells Through Mitochondria-Related Pathway |
| - | in-vitro, | CRC, | HT29 |
| 2780- | CHr, | Anti-cancer Activity of Chrysin in Cancer Therapy: a Systematic Review |
| - | Review, | Var, | NA |
| 2782- | CHr, | Broad-Spectrum Preclinical Antitumor Activity of Chrysin: Current Trends and Future Perspectives |
| - | Review, | Var, | NA | - | Review, | Stroke, | NA | - | Review, | Park, | NA |
| 2786- | CHr, | Chemopreventive and therapeutic potential of chrysin in cancer: mechanistic perspectives |
| - | Review, | Var, | NA |
| 2315- | Citrate, | Why and how citrate may sensitize malignant tumors to immunotherapy |
| - | Review, | Var, | NA |
| 1576- | Citrate, | Targeting citrate as a novel therapeutic strategy in cancer treatment |
| - | Review, | Var, | NA |
| 1587- | Citrate, | ATP citrate lyase: A central metabolic enzyme in cancer |
| - | Review, | NA, | NA |
| 1578- | Citrate, | Understanding the Central Role of Citrate in the Metabolism of Cancer Cells and Tumors: An Update |
| - | Review, | Var, | NA |
| 1585- | Citrate, | Sodium citrate targeting Ca2+/CAMKK2 pathway exhibits anti-tumor activity through inducing apoptosis and ferroptosis in ovarian cancer |
| - | in-vitro, | Ovarian, | SKOV3 | - | in-vitro, | Ovarian, | A2780S | - | in-vitro, | Nor, | HEK293 |
| 2818- | CUR, | Novel Insight to Neuroprotective Potential of Curcumin: A Mechanistic Review of Possible Involvement of Mitochondrial Biogenesis and PI3/Akt/ GSK3 or PI3/Akt/CREB/BDNF Signaling Pathways |
| - | Review, | AD, | NA |
| 4652- | CUR, | Anticancer effect of curcumin on breast cancer and stem cells |
| - | Review, | BC, | NA |
| 137- | CUR, | Curcumin induces G0/G1 arrest and apoptosis in hormone independent prostate cancer DU-145 cells by down regulating Notch signaling |
| - | in-vitro, | Pca, | DU145 |
| 167- | CUR, | Curcumin-induced apoptosis in PC3 prostate carcinoma cells is caspase-independent and involves cellular ceramide accumulation and damage to mitochondria |
| - | in-vitro, | Pca, | PC3 |
| 434- | CUR, | Curcumin induces apoptosis in lung cancer cells by 14-3-3 protein-mediated activation of Bad |
| - | in-vitro, | Lung, | A549 |
| 417- | CUR, | Curcumin inhibits the growth of triple‐negative breast cancer cells by silencing EZH2 and restoring DLC1 expression |
| - | vitro+vivo, | BC, | MCF-7 | - | vitro+vivo, | BC, | MDA-MB-231 | - | vitro+vivo, | BC, | MDA-MB-468 |
| 471- | CUR, | Curcumin induces apoptotic cell death and protective autophagy by inhibiting AKT/mTOR/p70S6K pathway in human ovarian cancer cells |
| - | in-vitro, | Ovarian, | SKOV3 | - | in-vitro, | Ovarian, | A2780S |
| 484- | CUR, | PDT, | Low concentrations of curcumin induce growth arrest and apoptosis in skin keratinocytes only in combination with UVA or visible light |
| - | in-vitro, | Melanoma, | NA |
| 485- | CUR, | PDT, | Red Light Combined with Blue Light Irradiation Regulates Proliferation and Apoptosis in Skin Keratinocytes in Combination with Low Concentrations of Curcumin |
| - | in-vitro, | Melanoma, | NA |
| 1444- | Deg, | Deguelin promotes apoptosis and inhibits angiogenesis of gastric cancer |
| - | in-vitro, | GC, | MKN-28 |
| 2263- | dietMet, | Methionine Restriction and Cancer Biology |
| - | Review, | Var, | NA |
| 1605- | EA, | Ellagic Acid and Cancer Hallmarks: Insights from Experimental Evidence |
| - | Review, | Var, | NA |
| - | in-vitro, | HCC, | NA | - | in-vivo, | NA, | NA |
| 651- | EGCG, | Epigallocatechin-3-Gallate Therapeutic Potential in Cancer: Mechanism of Action and Clinical Implications |
| 689- | EGCG, | EGCG inhibited bladder cancer SW780 cell proliferation and migration both in vitro and in vivo via down regulation of NF-κB and MMP-9 |
| - | vitro+vivo, | Bladder, | SW780 |
| 681- | EGCG, | Suppressing glucose metabolism with epigallocatechin-3-gallate (EGCG) reduces breast cancer cell growth in preclinical models |
| - | vitro+vivo, | BC, | NA |
| 668- | EGCG, | The Potential Role of Epigallocatechin-3-Gallate (EGCG) in Breast Cancer Treatment |
| - | Review, | BC, | MCF-7 | - | Review, | BC, | MDA-MB-231 |
| 3238- | EGCG, | Green tea catechin, epigallocatechin-3-gallate (EGCG): mechanisms, perspectives and clinical applications |
| - | Review, | Var, | NA |
| 1318- | EMD, | Aloe-emodin Induces Apoptosis in Human Liver HL-7702 Cells through Fas Death Pathway and the Mitochondrial Pathway by Generating Reactive Oxygen Species |
| - | in-vitro, | Nor, | HL7702 |
| 1321- | EMD, | Antitumor effects of emodin on LS1034 human colon cancer cells in vitro and in vivo: roles of apoptotic cell death and LS1034 tumor xenografts model |
| - | in-vitro, | CRC, | LS1034 | - | in-vivo, | NA, | NA |
| 1323- | EMD, | Anticancer action of naturally occurring emodin for the controlling of cervical cancer |
| - | Review, | Cerv, | NA |
| 1245- | EMD, | Emodin Exhibits Strong Cytotoxic Effect in Cervical Cancer Cells by Activating Intrinsic Pathway of Apoptosis |
| - | in-vitro, | Cerv, | HeLa |
| 1327- | EMD, | Emodin induces apoptosis in human lung adenocarcinoma cells through a reactive oxygen species-dependent mitochondrial signaling pathway |
| - | in-vitro, | Lung, | A549 |
| 1328- | EMD, | Emodin induces apoptosis of human tongue squamous cancer SCC-4 cells through reactive oxygen species and mitochondria-dependent pathways |
| - | in-vitro, | Tong, | SCC4 |
| 1332- | EMD, | Induction of Apoptosis in HepaRG Cell Line by Aloe-Emodin through Generation of Reactive Oxygen Species and the Mitochondrial Pathway |
| - | in-vivo, | Nor, | HepaRG |
| 1329- | EMD, | Aloe-emodin induces cell death through S-phase arrest and caspase-dependent pathways in human tongue squamous cancer SCC-4 cells |
| - | in-vitro, | Tong, | SCC4 |
| 1330- | EMD, | Aloe emodin-induced apoptosis in t-HSC/Cl-6 cells involves a mitochondria-mediated pathway |
| - | in-vitro, | NA, | NA |
| 3460- | EP, | Picosecond pulsed electric fields induce apoptosis in HeLa cells via the endoplasmic reticulum stress and caspase-dependent signaling pathways |
| - | in-vitro, | Cerv, | HeLa |
| 1155- | F, | The anti-cancer effects of fucoidan: a review of both in vivo and in vitro investigations |
| - | Review, | NA, | NA |
| 1656- | FA, | Ferulic Acid: A Natural Phenol That Inhibits Neoplastic Events through Modulation of Oncogenic Signaling |
| - | Review, | Var, | NA |
| 2844- | FIS, | Fisetin, a dietary flavonoid induces apoptosis via modulating the MAPK and PI3K/Akt signalling pathways in human osteosarcoma (U-2 OS) cells |
| - | in-vitro, | OS, | U2OS |
| 2853- | FIS, | Fisetin Inhibits Cell Proliferation and Induces Apoptosis via JAK/STAT3 Signaling Pathways in Human Thyroid TPC 1 Cancer Cells |
| - | in-vitro, | Thyroid, | TPC-1 |
| 2824- | FIS, | Fisetin in Cancer: Attributes, Developmental Aspects, and Nanotherapeutics |
| - | Review, | Var, | NA |
| 2825- | FIS, | Exploring the molecular targets of dietary flavonoid fisetin in cancer |
| - | Review, | Var, | NA |
| 2828- | FIS, | Fisetin, a Potent Anticancer Flavonol Exhibiting Cytotoxic Activity against Neoplastic Malignant Cells and Cancerous Conditions: A Scoping, Comprehensive Review |
| - | Review, | Var, | NA |
| 2829- | FIS, | Fisetin: An anticancer perspective |
| - | Review, | Var, | NA |
| 2830- | FIS, | Biological effects and mechanisms of fisetin in cancer: a promising anti-cancer agent |
| - | Review, | Var, | NA |
| 2832- | FIS, | Fisetin's Promising Antitumor Effects: Uncovering Mechanisms and Targeting for Future Therapies |
| - | Review, | Var, | NA |
| 2839- | FIS, | Dietary flavonoid fisetin for cancer prevention and treatment |
| - | Review, | Var, | NA |
| 2841- | FIS, | Fisetin, an Anti-Inflammatory Agent, Overcomes Radioresistance by Activating the PERK-ATF4-CHOP Axis in Liver Cancer |
| - | in-vitro, | Nor, | RAW264.7 | - | in-vitro, | Liver, | HepG2 | - | in-vitro, | Liver, | Hep3B | - | in-vitro, | Liver, | HUH7 |
| 2843- | FIS, | Fisetin and Quercetin: Promising Flavonoids with Chemopreventive Potential |
| - | Review, | Var, | NA |
| 1967- | GamB, | Gambogic acid induces apoptotic cell death in T98G glioma cells |
| - | in-vitro, | GBM, | T98G |
| 808- | GAR, | CUR, | Synergistic effect of garcinol and curcumin on antiproliferative and apoptotic activity in pancreatic cancer cells |
| - | in-vitro, | PC, | Bxpc-3 | - | in-vitro, | PC, | PANC1 |
| 831- | GAR, | CUR, | Induction of apoptosis by garcinol and curcumin through cytochrome c release and activation of caspases in human leukemia HL-60 cells |
| - | in-vitro, | AML, | HL-60 |
| 823- | GAR, | Garcinol Potentiates TRAIL-Induced Apoptosis through Modulation of Death Receptors and Antiapoptotic Proteins |
| - | in-vitro, | BC, | MCF-7 | - | in-vitro, | Nor, | MCF10 | - | in-vitro, | CRC, | HCT116 |
| 821- | GAR, | Garcinol inhibits cell growth in hepatocellular carcinoma Hep3B cells through induction of ROS-dependent apoptosis |
| - | in-vitro, | Liver, | Hep3B |
| 795- | GAR, | Garcinol—A Natural Histone Acetyltransferase Inhibitor and New Anti-Cancer Epigenetic Drug |
| - | Review, | NA, | NA |
| 805- | GAR, | Cisplatin, | PacT, | Garcinol Exhibits Anti-Neoplastic Effects by Targeting Diverse Oncogenic Factors in Tumor Cells |
| - | Review, | NA, | NA |
| 849- | Gra, | Annona muricata silver nanoparticles exhibit strong anticancer activities against cervical and prostate adenocarcinomas through regulation of CASP9 and the CXCL1/CXCR2 genes axis |
| - | in-vitro, | Pca, | PC3 | - | in-vitro, | Nor, | PNT1A | - | in-vitro, | NA, | HeLa |
| 851- | Gra, | Antiproliferation Activity and Apoptotic Mechanism of Soursop (Annona muricata L.) Leaves Extract and Fractions on MCF7 Breast Cancer Cells |
| - | in-vitro, | BC, | MCF-7 | - | in-vitro, | Nor, | CV1 |
| 848- | Gra, | SNP, | Synthesis, Characterization and Evaluation of Antioxidant and Cytotoxic Potential of Annona muricata Root Extract-derived Biogenic Silver Nanoparticles |
| - | in-vitro, | CRC, | HCT116 |
| 845- | Gra, | A Review on Annona muricata and Its Anticancer Activity |
| - | Review, | NA, | NA |
| - | in-vitro, | CRC, | HT-29 | - | in-vitro, | Nor, | CCD841 |
| 835- | Gra, | Annona muricata leaves induced apoptosis in A549 cells through mitochondrial-mediated pathway and involvement of NF-κB |
| - | in-vitro, | Lung, | A549 |
| 1641- | HCAs, | Lung cancer induced by Benzo(A)Pyrene: ChemoProtective effect of sinapic acid in swiss albino mice |
| - | in-vitro, | Lung, | A549 | - | in-vivo, | Lung, | NA |
| 2885- | HNK, | Honokiol: a novel natural agent for cancer prevention and therapy |
| 2864- | HNK, | Honokiol: A Review of Its Anticancer Potential and Mechanisms |
| - | Review, | Var, | NA |
| 2867- | HNK, | Honokiol ameliorates oxidative stress-induced DNA damage and apoptosis of c2c12 myoblasts by ROS generation and mitochondrial pathway |
| - | in-vitro, | Nor, | C2C12 |
| 2868- | HNK, | Honokiol: A review of its pharmacological potential and therapeutic insights |
| - | Review, | Var, | NA | - | Review, | Sepsis, | NA |
| - | in-vitro, | CRC, | HCT116 | - | in-vitro, | CRC, | LoVo | - | in-vivo, | CRC, | HCT116 |
| 1286- | HNK, | The natural product honokiol induces caspase-dependent apoptosis in B-cell chronic lymphocytic leukemia (B-CLL) cells |
| - | in-vitro, | CLL, | NA |
| 2073- | HNK, | Honokiol induces apoptosis and autophagy via the ROS/ERK1/2 signaling pathway in human osteosarcoma cells in vitro and in vivo |
| - | in-vitro, | OS, | U2OS | - | in-vivo, | NA, | NA |
| 4640- | HT, | The anti-cancer potential of hydroxytyrosol |
| - | Review, | Var, | NA |
| 4292- | LT, | Luteolin for neurodegenerative diseases: a review |
| - | Review, | AD, | NA | - | Review, | Park, | NA | - | Review, | MS, | NA | - | Review, | Stroke, | NA |
| 2915- | LT, | Luteolin promotes apoptotic cell death via upregulation of Nrf2 expression by DNA demethylase and the interaction of Nrf2 with p53 in human colon cancer cells |
| - | in-vitro, | Colon, | HT29 | - | in-vitro, | CRC, | SNU-407 | - | in-vitro, | Nor, | FHC |
| 2916- | LT, | Antioxidative and Anticancer Potential of Luteolin: A Comprehensive Approach Against Wide Range of Human Malignancies |
| - | Review, | Var, | NA | - | Review, | AD, | NA | - | Review, | Park, | NA |
| 2917- | LT, | Rad, | Luteolin acts as a radiosensitizer in non‑small cell lung cancer cells by enhancing apoptotic cell death through activation of a p38/ROS/caspase cascade |
| - | in-vitro, | Lung, | NA |
| 2923- | LT, | Luteolin induces apoptosis through endoplasmic reticulum stress and mitochondrial dysfunction in Neuro-2a mouse neuroblastoma cells |
| - | in-vitro, | NA, | NA |
| 2914- | LT, | Therapeutic Potential of Luteolin on Cancer |
| - | Review, | Var, | NA |
| 2907- | LT, | Protective effect of luteolin against oxidative stress‑mediated cell injury via enhancing antioxidant systems |
| - | in-vitro, | Nor, | NA |
| 2912- | LT, | Luteolin: a flavonoid with a multifaceted anticancer potential |
| - | Review, | Var, | NA |
| 3263- | Lyco, | Lycopene protects against myocardial ischemia-reperfusion injury by inhibiting mitochondrial permeability transition pore opening |
| - | in-vitro, | Nor, | H9c2 | - | in-vitro, | Stroke, | NA |
| 3531- | Lyco, | Lycopene attenuates the inflammation and apoptosis in aristolochic acid nephropathy by targeting the Nrf2 antioxidant system |
| - | in-vivo, | Nor, | NA |
| 4777- | Lyco, | Lycopene Inhibits Activation of Epidermal Growth Factor Receptor and Expression of Cyclooxygenase-2 in Gastric Cancer Cells |
| - | in-vitro, | GC, | AGS |
| 1715- | Lyco, | Pro-oxidant Actions of Carotenoids in Triggering Apoptosis of Cancer Cells: A Review of Emerging Evidence |
| - | Review, | Var, | NA |
| 4514- | MAG, | Magnolol and its semi-synthetic derivatives: a comprehensive review of anti-cancer mechanisms, pharmacokinetics, and future therapeutic potential |
| - | Review, | Var, | NA |
| 4534- | MAG, | Molecular mechanisms of apoptosis induced by magnolol in colon and liver cancer cells |
| - | in-vitro, | Liver, | HepG2 | - | in-vitro, | CRC, | COLO205 |
| 4527- | MAG, | Magnolol inhibits growth and induces apoptosis in esophagus cancer KYSE-150 cell lines via the MAP kinase pathway |
| - | in-vitro, | ESCC, | TE1 | - | in-vitro, | ESCC, | Eca109 | - | vitro+vivo, | SCC, | KYSE150 |
| 4519- | MAG, | Magnolol: A Neolignan from the Magnolia Family for the Prevention and Treatment of Cancer |
| - | Review, | Var, | NA |
| 1314- | MAG, | Magnolol induces apoptosis via activation of both mitochondrial and death receptor pathways in A375-S2 cells |
| - | in-vitro, | Melanoma, | A375 |
| 1782- | MEL, | Melatonin in Cancer Treatment: Current Knowledge and Future Opportunities |
| - | Review, | Var, | NA |
| 4353- | MF, | Chemo, | Pulsed Electromagnetic Field Enhances Doxorubicin-induced Reduction in the Viability of MCF-7 Breast Cancer Cells |
| - | in-vitro, | BC, | MCF-7 |
| 3486- | MF, | Pulsed electromagnetic field potentiates etoposide-induced MCF-7 cell death |
| - | in-vitro, | NA, | NA |
| 3464- | MF, | Progressive Study on the Non-thermal Effects of Magnetic Field Therapy in Oncology |
| - | Review, | Var, | NA |
| 2259- | MFrot, | MF, | Method and apparatus for oncomagnetic treatment |
| - | in-vitro, | GBM, | NA |
| 4643- | OLE, | HT, | Use of Oleuropein and Hydroxytyrosol for Cancer Prevention and Treatment: Considerations about How Bioavailability and Metabolism Impact Their Adoption in Clinical Routine |
| - | Review, | Var, | NA |
| 4630- | OLE, | Targeting resistant breast cancer stem cells in a three-dimensional culture model with oleuropein encapsulated in methacrylated alginate microparticles |
| - | in-vitro, | BC, | NA |
| 1679- | PBG, | Constituents of Propolis: Chrysin, Caffeic Acid, p-Coumaric Acid, and Ferulic Acid Induce PRODH/POX-Dependent Apoptosis in Human Tongue Squamous Cell Carcinoma Cell (CAL-27) |
| - | in-vitro, | SCC, | CAL27 |
| 1678- | PBG, | 5-FU, | sericin, | In vitro and in vivo anti-colorectal cancer effect of the newly synthesized sericin/propolis/fluorouracil nanoplatform through modulation of PI3K/AKT/mTOR pathway |
| - | in-vitro, | CRC, | Caco-2 | - | in-vivo, | NA, | NA |
| 1675- | PBG, | Portuguese Propolis Antitumoral Activity in Melanoma Involves ROS Production and Induction of Apoptosis |
| - | in-vitro, | Melanoma, | A375 | - | in-vitro, | Melanoma, | WM983B |
| 4934- | PEITC, | Differential induction of apoptosis in human breast cancer cell lines by phenethyl isothiocyanate, a glutathione depleting agent |
| - | in-vitro, | BC, | MCF-7 | - | in-vitro, | BC, | MDA-MB-231 |
| 4940- | PEITC, | Phenethyl Isothiocyanate (PEITC) Inhibits the Growth of Human Oral Squamous Carcinoma HSC-3 Cells through G 0/G 1 Phase Arrest and Mitochondria-Mediated Apoptotic Cell Death |
| - | in-vitro, | Oral, | HSC3 |
| - | in-vitro, | Pca, | DU145 |
| 4943- | PEITC, | Phenethyl isothiocyanate (PEITC) inhibits growth of ovarian cancer cells by inducing apoptosis: role of caspase and MAPK activation |
| - | in-vitro, | Ovarian, | OVCAR-3 |
| 3587- | PI, | Piperine: A review of its biological effects |
| - | Review, | Park, | NA | - | Review, | AD, | NA |
| 1950- | PL, | Increased Expression of FosB through Reactive Oxygen Species Accumulation Functions as Pro-Apoptotic Protein in Piperlongumine Treated MCF7 Breast Cancer Cells |
| - | in-vitro, | BC, | MCF-7 | - | in-vitro, | Lung, | A549 |
| 1947- | PL, | Piperlongumine as a direct TrxR1 inhibitor with suppressive activity against gastric cancer |
| - | in-vitro, | GC, | SGC-7901 | - | in-vitro, | GC, | NA |
| 2946- | PL, | Piperlongumine, a potent anticancer phytotherapeutic: Perspectives on contemporary status and future possibilities as an anticancer agent |
| - | Review, | Var, | NA |
| 2006- | Plum, | Plumbagin induces apoptosis in human osteosarcoma through ROS generation, endoplasmic reticulum stress and mitochondrial apoptosis pathway |
| - | in-vitro, | OS, | MG63 | - | in-vitro, | Nor, | hFOB1.19 |
| 3353- | QC, | Quercetin triggers cell apoptosis-associated ROS-mediated cell death and induces S and G2/M-phase cell cycle arrest in KON oral cancer cells |
| - | in-vitro, | Oral, | KON | - | in-vitro, | Nor, | MRC-5 |
| 3350- | QC, | Quercetin and the mitochondria: A mechanistic view |
| - | Review, | NA, | NA |
| 3371- | QC, | Quercetin induces MGMT+ glioblastoma cells apoptosis via dual inhibition of Wnt3a/β-Catenin and Akt/NF-κB signaling pathways |
| - | in-vitro, | GBM, | T98G |
| 3369- | QC, | Pharmacological basis and new insights of quercetin action in respect to its anti-cancer effects |
| - | Review, | Pca, | NA |
| 3368- | QC, | The potential anti-cancer effects of quercetin on blood, prostate and lung cancers: An update |
| - | Review, | Var, | NA |
| 66- | QC, | Emerging impact of quercetin in the treatment of prostate cancer |
| - | in-vitro, | Pca, | NA |
| 69- | QC, | Quercetin enhances TRAIL-induced apoptosis in prostate cancer cells via increased protein stability of death receptor 5 |
| - | in-vitro, | Pca, | DU145 | - | in-vitro, | Pca, | PC3 | - | in-vitro, | Pca, | LNCaP |
| 71- | QC, | Role of Bax in quercetin-induced apoptosis in human prostate cancer cells |
| - | in-vitro, | Pca, | LNCaP | - | in-vitro, | Pca, | PrEC | - | in-vitro, | Pca, | YPEN-1 | - | in-vitro, | Pca, | HCT116 |
| 73- | QC, | The dietary bioflavonoid, quercetin, selectively induces apoptosis of prostate cancer cells by down-regulating the expression of heat shock protein 90 |
| - | in-vitro, | Pca, | LNCaP | - | in-vitro, | Pca, | DU145 | - | in-vitro, | Pca, | PC3 |
| 50- | QC, | Anticancer effect and mechanism of polymer micelle-encapsulated quercetin on ovarian cancer |
| - | vitro+vivo, | Ovarian, | A2780S |
| 55- | QC, | Quercetin inhibits the growth of human gastric cancer stem cells by inducing mitochondrial-dependent apoptosis through the inhibition of PI3K/Akt signaling |
| - | in-vitro, | GC, | GCSCs |
| 41- | QC, | Quercetin induces mitochondrial-derived apoptosis via reactive oxygen species-mediated ERK activation in HL-60 leukemia cells and xenograft |
| - | vitro+vivo, | AML, | HL-60 |
| 86- | QC, | Quercetin regulates insulin like growth factor signaling and induces intrinsic and extrinsic pathway mediated apoptosis in androgen independent prostate cancer cells (PC-3) |
| - | in-vitro, | Pca, | PC3 |
| 89- | QC, | doxoR, | Quercetin reverses the doxorubicin resistance of prostate cancer cells by downregulating the expression of c-met |
| - | in-vitro, | Pca, | PC3 |
| 91- | QC, | The roles of endoplasmic reticulum stress and mitochondrial apoptotic signaling pathway in quercetin-mediated cell death of human prostate cancer PC-3 cells |
| - | in-vitro, | Pca, | PC3 |
| 914- | QC, | Quercetin and Cancer Chemoprevention |
| - | Review, | NA, | NA |
| 923- | QC, | Quercetin as an innovative therapeutic tool for cancer chemoprevention: Molecular mechanisms and implications in human health |
| - | Review, | Var, | NA |
| 4787- | QC, | Quercetin: A Phytochemical with Pro-Apoptotic Effects in Colon Cancer Cells |
| - | Review, | CRC, | NA |
| 103- | RES, | CUR, | QC, | The effect of resveratrol, curcumin and quercetin combination on immuno-suppression of tumor microenvironment for breast tumor-bearing mice |
| - | vitro+vivo, | BC, | 4T1 |
| 882- | RES, | Resveratrol: A Double-Edged Sword in Health Benefits |
| - | Review, | NA, | NA |
| 3078- | RES, | The Effects of Resveratrol on Prostate Cancer through Targeting the Tumor Microenvironment |
| - | Review, | Pca, | NA |
| 3067- | RES, | Proteomic Profiling Reveals That Resveratrol Inhibits HSP27 Expression and Sensitizes Breast Cancer Cells to Doxorubicin Therapy |
| - | in-vitro, | BC, | MCF-7 |
| 1745- | RosA, | Rosmarinic acid and its derivatives: Current insights on anticancer potential and other biomedical applications |
| - | Review, | Var, | NA | - | Review, | AD, | NA |
| - | in-vivo, | IBD, | NA |
| 323- | Sal, | SNP, | Combination of salinomycin and silver nanoparticles enhances apoptosis and autophagy in human ovarian cancer cells: an effective anticancer therapy |
| - | in-vitro, | BC, | MDA-MB-231 | - | in-vitro, | Ovarian, | A2780S |
| 1307- | SANG, | Sanguinarine induces apoptosis of HT-29 human colon cancer cells via the regulation of Bax/Bcl-2 ratio and caspase-9-dependent pathway |
| - | in-vitro, | CRC, | HT-29 |
| 4469- | Se, | Selenium Nanoparticles in Cancer Therapy: Unveiling Cytotoxic Mechanisms and Therapeutic Potential |
| - | Review, | Var, | NA |
| 4453- | Se, | Selenium Nanoparticles: Green Synthesis and Biomedical Application |
| - | Review, | NA, | NA |
| 4471- | Se, | Green synthesis of selenium nanoparticles with extract of hawthorn fruit induced HepG2 cells apoptosis |
| - | in-vitro, | Liver, | HepG2 |
| 4486- | Se, | Chit, | Selenium-Modified Chitosan Induces HepG2 Cell Apoptosis and Differential Protein Analysis |
| - | in-vitro, | Liver, | HepG2 |
| 4484- | Se, | Chit, | PEG, | Anti-cancer potential of selenium-chitosan-polyethylene glycol-carvacrol nanocomposites in multiple myeloma U266 cells |
| - | in-vitro, | Melanoma, | U266 |
| 3656- | SFN, | Chronic diseases, inflammation, and spices: how are they linked? |
| - | Review, | AD, | NA |
| 1722- | SFN, | Sulforaphane as an anticancer molecule: mechanisms of action, synergistic effects, enhancement of drug safety, and delivery systems |
| - | Review, | Var, | NA |
| 1735- | SFN, | Activation of multiple molecular mechanisms for apoptosis in human malignant glioblastoma T98G and U87MG cells treated with sulforaphane |
| - | in-vitro, | GBM, | T98G | - | in-vitro, | GBM, | U87MG |
| 1730- | SFN, | Sulforaphane: An emergent anti-cancer stem cell agent |
| - | Review, | Var, | NA |
| 1726- | SFN, | Sulforaphane: A Broccoli Bioactive Phytocompound with Cancer Preventive Potential |
| - | Review, | Var, | NA |
| - | in-vitro, | Bladder, | T24 |
| 1458- | SFN, | Sulforaphane Impact on Reactive Oxygen Species (ROS) in Bladder Carcinoma |
| - | Review, | Bladder, | NA |
| 1459- | SFN, | Aur, | Auranofin Enhances Sulforaphane-Mediated Apoptosis in Hepatocellular Carcinoma Hep3B Cells through Inactivation of the PI3K/Akt Signaling Pathway |
| - | in-vitro, | Liver, | Hep3B | - | in-vitro, | Liver, | HepG2 |
| 1463- | SFN, | Sulforaphane induces reactive oxygen species-mediated mitotic arrest and subsequent apoptosis in human bladder cancer 5637 cells |
| - | in-vitro, | Bladder, | 5637 |
| 1469- | SFN, | Sulforaphane enhances the therapeutic potential of TRAIL in prostate cancer orthotopic model through regulation of apoptosis, metastasis, and angiogenesis |
| - | in-vitro, | Pca, | PC3 | - | in-vitro, | Pca, | LNCaP | - | in-vivo, | Pca, | NA |
| 1474- | SFN, | Sulforaphane induces p53‑deficient SW480 cell apoptosis via the ROS‑MAPK signaling pathway |
| - | in-vitro, | Colon, | SW480 |
| 1508- | SFN, | Nrf2 targeting by sulforaphane: A potential therapy for cancer treatment |
| - | Review, | Var, | NA |
| 3648- | SIL, | Silymarin/Silybin and Chronic Liver Disease: A Marriage of Many Years |
| - | Review, | NA, | NA |
| 3301- | SIL, | Critical review of therapeutic potential of silymarin in cancer: A bioactive polyphenolic flavonoid |
| - | Review, | Var, | NA |
| 3305- | SIL, | Silymarin inhibits proliferation of human breast cancer cells via regulation of the MAPK signaling pathway and induction of apoptosis |
| - | in-vitro, | BC, | MDA-MB-231 | - | in-vitro, | BC, | MCF-7 | - | in-vivo, | NA, | NA |
| 3293- | SIL, | Silymarin (milk thistle extract) as a therapeutic agent in gastrointestinal cancer |
| - | Review, | Var, | NA |
| 3289- | SIL, | Silymarin: a promising modulator of apoptosis and survival signaling in cancer |
| - | Review, | Var, | NA |
| 3325- | SIL, | Modulatory effect of silymarin on pulmonary vascular dysfunction through HIF-1α-iNOS following rat lung ischemia-reperfusion injury |
| - | in-vivo, | Nor, | NA |
| 1140- | SIL, | Silibinin-mediated metabolic reprogramming attenuates pancreatic cancer-induced cachexia and tumor growth |
| - | in-vitro, | PC, | AsPC-1 | - | in-vivo, | PC, | NA | - | in-vitro, | PC, | MIA PaCa-2 | - | in-vitro, | PC, | PANC1 | - | in-vitro, | PC, | Bxpc-3 |
| 978- | SIL, | A comprehensive evaluation of the therapeutic potential of silibinin: a ray of hope in cancer treatment |
| - | Review, | NA, | NA |
| 2231- | SK, | Shikonin Exerts Cytotoxic Effects in Human Colon Cancers by Inducing Apoptotic Cell Death via the Endoplasmic Reticulum and Mitochondria-Mediated Pathways |
| - | in-vitro, | CRC, | SNU-407 |
| 2228- | SK, | Shikonin induced Apoptosis Mediated by Endoplasmic Reticulum Stress in Colorectal Cancer Cells |
| - | in-vitro, | CRC, | HCT116 | - | in-vitro, | CRC, | HCT15 | - | in-vivo, | NA, | NA |
| 3044- | SK, | Shikonin Inhibits Non-Small-Cell Lung Cancer H1299 Cell Growth through Survivin Signaling Pathway |
| - | in-vitro, | Lung, | H1299 | - | in-vitro, | Lung, | H460 |
| 2007- | SK, | Shikonin Directly Targets Mitochondria and Causes Mitochondrial Dysfunction in Cancer Cells |
| - | in-vitro, | lymphoma, | U937 | - | in-vitro, | BC, | MCF-7 | - | in-vitro, | BC, | SkBr3 | - | in-vitro, | CRC, | HCT116 | - | in-vitro, | OS, | U2OS | - | NA, | Nor, | RPE-1 |
| 2197- | SK, | Shikonin derivatives for cancer prevention and therapy |
| - | Review, | Var, | NA |
| 346- | SNP, | RSQ, | Investigating Silver Nanoparticles and Resiquimod as a Local Melanoma Treatment |
| - | in-vivo, | Melanoma, | SK-MEL-28 | - | in-vivo, | Melanoma, | WM35 |
| 350- | SNP, | Cytotoxic and Apoptotic Effects of Green Synthesized Silver Nanoparticles via Reactive Oxygen Species-Mediated Mitochondrial Pathway in Human Breast Cancer Cells |
| - | in-vitro, | BC, | MCF-7 |
| 351- | SNP, | Study of antitumor activity in breast cell lines using silver nanoparticles produced by yeast |
| - | in-vitro, | BC, | MCF-7 | - | in-vitro, | BC, | T47D |
| 334- | SNP, | Silver-Based Nanoparticles Induce Apoptosis in Human Colon Cancer Cells Mediated Through P53 |
| - | in-vitro, | Colon, | HCT116 |
| 324- | SNP, | CPT, | Silver Nanoparticles Potentiates Cytotoxicity and Apoptotic Potential of Camptothecin in Human Cervical Cancer Cells |
| - | in-vitro, | Cerv, | HeLa |
| 327- | SNP, | MS-275, | Combination Effect of Silver Nanoparticles and Histone Deacetylases Inhibitor in Human Alveolar Basal Epithelial Cells |
| - | in-vitro, | Lung, | A549 |
| 384- | SNP, | Dual functions of silver nanoparticles in F9 teratocarcinoma stem cells, a suitable model for evaluating cytotoxicity- and differentiation-mediated cancer therapy |
| - | in-vitro, | Testi, | F9 |
| 397- | SNP, | GEM, | Silver nanoparticles enhance the apoptotic potential of gemcitabine in human ovarian cancer cells: combination therapy for effective cancer treatment |
| - | in-vitro, | Ovarian, | A2780S |
| 387- | SNP, | Silver nanoparticles induce mitochondria-dependent apoptosis and late non-canonical autophagy in HT-29 colon cancer cells |
| - | in-vitro, | Colon, | HT-29 |
| 359- | SNP, | Anti-cancer & anti-metastasis properties of bioorganic-capped silver nanoparticles fabricated from Juniperus chinensis extract against lung cancer cells |
| - | in-vitro, | Lung, | A549 | - | in-vitro, | Nor, | HEK293 |
| 363- | SNP, | Silver nanoparticles induce oxidative cell damage in human liver cells through inhibition of reduced glutathione and induction of mitochondria-involved apoptosis |
| 369- | SNP, | Silver nanoparticles induce oxidative cell damage in human liver cells through inhibition of reduced glutathione and induction of mitochondria-involved apoptosis |
| - | in-vitro, | Liver, | NA |
| 4438- | SNP, | ART/DHA, | Biogenic synthesis of AgNPs using Artemisia oliveriana extract and their biological activities for an effective treatment of lung cancer |
| - | in-vitro, | Lung, | A549 |
| 3427- | TQ, | Chemopreventive and Anticancer Effects of Thymoquinone: Cellular and Molecular Targets |
| 3397- | TQ, | Thymoquinone: A Promising Therapeutic Agent for the Treatment of Colorectal Cancer |
| - | Review, | CRC, | NA |
| 3425- | TQ, | Advances in research on the relationship between thymoquinone and pancreatic cancer |
| 3422- | TQ, | Thymoquinone, as a Novel Therapeutic Candidate of Cancers |
| - | Review, | Var, | NA |
| 3413- | TQ, | Thymoquinone induces apoptosis in human colon cancer HCT116 cells through inactivation of STAT3 by blocking JAK2- and Src‑mediated phosphorylation of EGF receptor tyrosine kinase |
| - | in-vitro, | CRC, | HCT116 |
| 3414- | TQ, | Thymoquinone induces apoptosis through inhibition of JAK2/STAT3 signaling via production of ROS in human renal cancer Caki cells |
| - | in-vitro, | RCC, | Caki-1 |
| 2123- | TQ, | Thymoquinone suppresses growth and induces apoptosis via generation of reactive oxygen species in primary effusion lymphoma |
| - | in-vitro, | lymphoma, | PEL |
| 2120- | TQ, | Thymoquinone induces apoptosis of human epidermoid carcinoma A431 cells through ROS-mediated suppression of STAT3 |
| - | in-vitro, | Melanoma, | A431 |
| 2097- | TQ, | Crude extract of Nigella sativa inhibits proliferation and induces apoptosis in human cervical carcinoma HeLa cells |
| - | in-vitro, | Cerv, | HeLa |
| 2095- | TQ, | Review on the Potential Therapeutic Roles of Nigella sativa in the Treatment of Patients with Cancer: Involvement of Apoptosis |
| - | Review, | Var, | NA |
| 2085- | TQ, | Anticancer Activities of Nigella Sativa (Black Cumin) |
| - | Review, | Var, | NA |
| 2083- | TQ, | Thymoquinone inhibits proliferation in gastric cancer via the STAT3 pathway in vivo and in vitro |
| - | in-vitro, | GC, | HGC27 | - | in-vitro, | GC, | BGC-823 | - | in-vitro, | GC, | SGC-7901 | - | in-vivo, | NA, | NA |
| 2110- | TQ, | Nigella sativa seed oil suppresses cell proliferation and induces ROS dependent mitochondrial apoptosis through p53 pathway in hepatocellular carcinoma cells |
| - | in-vitro, | HCC, | HepG2 | - | in-vitro, | BC, | MCF-7 | - | in-vitro, | Lung, | A549 | - | in-vitro, | Nor, | HEK293 |
| 2112- | TQ, | Crude flavonoid extract of the medicinal herb Nigella sativa inhibits proliferation and induces apoptosis in breastcancer cells |
| - | in-vitro, | BC, | MCF-7 |
| 3790- | UA, | Therapeutic applications of ursolic acid: a comprehensive review and utilization of predictive tools |
| 5021- | UA, | Anticancer effect of ursolic acid via mitochondria-dependent pathways |
| - | Review, | Var, | NA |
| 4854- | Uro, | Urolithins: Emerging natural compound targeting castration-resistant prostate cancer (CRPC) |
| - | Review, | Pca, | NA |
| 3109- | VitC, | Vitamin C Inhibited Pulmonary Metastasis through Activating Nrf2/HO-1 Pathway |
| - | in-vitro, | Lung, | H1299 |
| 1740- | VitD3, | Vitamin D and Cancer: An Historical Overview of the Epidemiology and Mechanisms |
| - | Review, | Var, | NA |
| 1817- | VitK2, | Research progress on the anticancer effects of vitamin K2 |
| - | Review, | Var, | NA |
| 1838- | VitK3, | PDT, | Photodynamic Effects of Vitamin K3 on Cervical Carcinoma Cells Activating Mitochondrial Apoptosis Pathways |
| - | in-vitro, | Cerv, | NA |
Query results interpretion may depend on "conditions" listed in the research papers. Such Conditions may include : -low or high Dose -format for product, such as nano of lipid formations -different cell line effects -synergies with other products -if effect was for normal or cancerous cells
Filter Conditions: Pro/AntiFlg:% IllCat:% CanType:% Cells:% prod#:% Target#:45 State#:% Dir#:%
wNotes=0 sortOrder:rid,rpid