| Source: |
| Type: |
| AIF is a mitochondrial oxidoreductase that contributes to cell death programmes and participates in the assembly of the respiratory chain. Nuclear translocation of AIF occurs during cell death and has been associated with human disorders. Expression Levels: AIF is often found to be overexpressed in several types of cancers, including breast, lung, and colorectal cancers. The expression of AIF can vary significantly between different tumor types and even among patients with the same type of cancer. Survival Rates: High levels of AIF expression have been associated with poor prognosis in certain cancers, indicating a potential role in tumor aggressiveness and metastasis. Conversely, low AIF expression may correlate with better survival outcomes in some contexts. Overexpression: In many cancers, AIF is overexpressed, which is often associated with poor prognosis, increased tumor aggressiveness, and resistance to therapy. |
| 234- | AL, | Allicin Induces Anti-human Liver Cancer Cells through the p53 Gene Modulating Apoptosis and Autophagy |
| - | in-vitro, | HCC, | Hep3B |
| 1563- | Api, | MET, | Metformin-induced ROS upregulation as amplified by apigenin causes profound anticancer activity while sparing normal cells |
| - | in-vitro, | Nor, | HDFa | - | in-vitro, | PC, | AsPC-1 | - | in-vitro, | PC, | MIA PaCa-2 | - | in-vitro, | Pca, | DU145 | - | in-vitro, | Pca, | LNCaP | - | in-vivo, | NA, | NA |
| 566- | ART/DHA, | 2DG, | Dihydroartemisinin inhibits glucose uptake and cooperates with glycolysis inhibitor to induce apoptosis in non-small cell lung carcinoma cells |
| - | in-vitro, | Lung, | A549 | - | in-vitro, | Lung, | PC9 |
| 1386- | BBR, | Berberine-induced apoptosis in human breast cancer cells is mediated by reactive oxygen species generation and mitochondrial-related apoptotic pathway |
| - | in-vitro, | BC, | MCF-7 | - | in-vitro, | BC, | MDA-MB-231 |
| 2748- | BetA, | Betulinic Acid: Recent Advances in Chemical Modifications, Effective Delivery, and Molecular Mechanisms of a Promising Anticancer Therapy |
| - | Review, | Var, | NA |
| 2735- | BetA, | Betulinic acid as apoptosis activator: Molecular mechanisms, mathematical modeling and chemical modifications |
| - | Review, | Var, | NA |
| 1448- | Bos, | A triterpenediol from Boswellia serrata induces apoptosis through both the intrinsic and extrinsic apoptotic pathways in human leukemia HL-60 cells |
| - | in-vitro, | AML, | HL-60 |
| 2776- | Bos, | Anti-inflammatory and anti-cancer activities of frankincense: Targets, treatments and toxicities |
| - | Review, | Var, | NA |
| 2818- | CUR, | Novel Insight to Neuroprotective Potential of Curcumin: A Mechanistic Review of Possible Involvement of Mitochondrial Biogenesis and PI3/Akt/ GSK3 or PI3/Akt/CREB/BDNF Signaling Pathways |
| - | Review, | AD, | NA |
| 167- | CUR, | Curcumin-induced apoptosis in PC3 prostate carcinoma cells is caspase-independent and involves cellular ceramide accumulation and damage to mitochondria |
| - | in-vitro, | Pca, | PC3 |
| 161- | CUR, | MeSA, | Enhanced apoptotic effects by the combination of curcumin and methylseleninic acid: potential role of Mcl-1 and FAK |
| - | in-vitro, | BC, | MDA-MB-231 | - | in-vitro, | Pca, | DU145 |
| 1605- | EA, | Ellagic Acid and Cancer Hallmarks: Insights from Experimental Evidence |
| - | Review, | Var, | NA |
| 1329- | EMD, | Aloe-emodin induces cell death through S-phase arrest and caspase-dependent pathways in human tongue squamous cancer SCC-4 cells |
| - | in-vitro, | Tong, | SCC4 |
| 2828- | FIS, | Fisetin, a Potent Anticancer Flavonol Exhibiting Cytotoxic Activity against Neoplastic Malignant Cells and Cancerous Conditions: A Scoping, Comprehensive Review |
| - | Review, | Var, | NA |
| 2832- | FIS, | Fisetin's Promising Antitumor Effects: Uncovering Mechanisms and Targeting for Future Therapies |
| - | Review, | Var, | NA |
| 1967- | GamB, | Gambogic acid induces apoptotic cell death in T98G glioma cells |
| - | in-vitro, | GBM, | T98G |
| 2919- | LT, | Luteolin as a potential therapeutic candidate for lung cancer: Emerging preclinical evidence |
| - | Review, | Var, | NA |
| 4940- | PEITC, | Phenethyl Isothiocyanate (PEITC) Inhibits the Growth of Human Oral Squamous Carcinoma HSC-3 Cells through G 0/G 1 Phase Arrest and Mitochondria-Mediated Apoptotic Cell Death |
| - | in-vitro, | Oral, | HSC3 |
| 4947- | PEITC, | Phenethyl Isothiocyanate (PEITC) Inhibits the Growth of Human Oral Squamous Carcinoma HSC-3 Cells through G0/G1 Phase Arrest and Mitochondria-Mediated Apoptotic Cell Death |
| - | in-vitro, | Oral, | HSC3 |
| 4942- | PEITC, | Phenethyl Isothiocyanate (PEITC) Inhibits the Growth of Human Oral Squamous Carcinoma HSC-3 Cells through G(0)/G(1) Phase Arrest and Mitochondria-Mediated Apoptotic Cell Death |
| - | in-vitro, | Oral, | HSC3 |
| 3353- | QC, | Quercetin triggers cell apoptosis-associated ROS-mediated cell death and induces S and G2/M-phase cell cycle arrest in KON oral cancer cells |
| - | in-vitro, | Oral, | KON | - | in-vitro, | Nor, | MRC-5 |
| 3374- | QC, | Therapeutic effects of quercetin in oral cancer therapy: a systematic review of preclinical evidence focused on oxidative damage, apoptosis and anti-metastasis |
| - | Review, | Oral, | NA | - | Review, | AD, | NA |
| 1730- | SFN, | Sulforaphane: An emergent anti-cancer stem cell agent |
| - | Review, | Var, | NA |
| 1480- | SFN, | Sulforaphane Induces Cell Death Through G2/M Phase Arrest and Triggers Apoptosis in HCT 116 Human Colon Cancer Cells |
| - | in-vitro, | CRC, | HCT116 |
| 2227- | SK, | Shikonin induces mitochondria-mediated apoptosis and enhances chemotherapeutic sensitivity of gastric cancer through reactive oxygen species |
| - | in-vitro, | GC, | BGC-823 | - | in-vitro, | GC, | SGC-7901 | - | in-vitro, | Nor, | GES-1 |
| 2100- | TQ, | Dual properties of Nigella Sative: Anti-oxidant and Pro-oxidant |
| - | Review, | NA, | NA |
| 635- | VitC, | VitK3, | The combination of ascorbate and menadione causes cancer cell death by oxidative stress and replicative stress |
| - | in-vitro, | NA, | NA |
Query results interpretion may depend on "conditions" listed in the research papers. Such Conditions may include : -low or high Dose -format for product, such as nano of lipid formations -different cell line effects -synergies with other products -if effect was for normal or cancerous cells
Filter Conditions: Pro/AntiFlg:% IllCat:% CanType:% Cells:% prod#:% Target#:520 State#:% Dir#:%
wNotes=0 sortOrder:rid,rpid