Database Query Results : , , SMAD3

SMAD3, SMAD3: Click to Expand ⟱
Source:
Type:
Deletion or inhibition of Smad3 in the tumour microenvironment suppresses tumour growth, invasion and metastasis in two syngeneic mouse tumour models.
Smad3 promotes cancer progression by inhibiting E4BP4-mediated NK cell development.


Scientific Papers found: Click to Expand⟱
1093- And,    Andrographolide attenuates epithelial‐mesenchymal transition induced by TGF‐β1 in alveolar epithelial cells
- in-vitro, Lung, A549
TGF-β↓, TumCMig↓, MMP2↓, MMP9↓, ECM/TCF↓, p‑SMAD2↓, p‑SMAD3↓, SMAD4↓, p‑ERK↓, ROS↓, NOX4↓, SOD2↑, SIRT1↑, FOXO3↑,
238- Api,    Apigenin inhibits TGF-β-induced VEGF expression in human prostate carcinoma cells via a Smad2/3- and Src-dependent mechanism
- in-vitro, Pca, PC3 - in-vitro, Pca, LNCaP - in-vitro, Pca, C4-2B
VEGF↓, TGF-β↓, Src↓, FAK↓, Akt↓, SMAD2↓, SMAD3↓,
1181- Ash,    Withaferin A inhibits Epithelial to Mesenchymal Transition in Non-Small Cell Lung Cancer Cells
- in-vitro, Lung, A549 - in-vitro, Lung, H1299
TumCMig↓, TumCI↓, EMT↓, p‑SMAD2↓, p‑SMAD3↓, p‑NF-kB↓,
2763- BetA,    Betulinic Acid Inhibits the Stemness of Gastric Cancer Cells by Regulating the GRP78-TGF-β1 Signaling Pathway and Macrophage Polarization
- in-vitro, GC, NA
GRP78/BiP↓, TGF-β↓, ChemoSen↑, CSCs↓, SMAD2↓, SMAD3↓, OCT4↓,
1105- CEL,    Celecoxib inhibits the epithelial-to-mesenchymal transition in bladder cancer via the miRNA-145/TGFBR2/Smad3 axis
- in-vitro, BC, NA
COX2↓, TumCP↓, TumCMig↓, TumCI↓, EMT↓, miR-145↑, TGF-β↓, SMAD3↓,
447- CUR,  OXA,    Curcumin reverses oxaliplatin resistance in human colorectal cancer via regulation of TGF-β/Smad2/3 signaling pathway
- vitro+vivo, CRC, HCT116
p‑p65↓, Bcl-2↓, Casp3↑, EMT↓, p‑SMAD2↓, p‑SMAD3↓, N-cadherin↓, TGF-β↓, E-cadherin↑, TumVol↓, TumCMig↓,
1110- EA,  GEM,    Ellagic Acid Resensitizes Gemcitabine-Resistant Bladder Cancer Cells by Inhibiting Epithelial-Mesenchymal Transition and Gemcitabine Transporters
- vitro+vivo, Bladder, NA
TGF-β↓, SMAD2↓, SMAD3↓, SMAD4↓,
1618- EA,    A comprehensive review on Ellagic acid in breast cancer treatment: From cellular effects to molecular mechanisms of action
- Review, BC, NA
TumCCA↑, TumCMig↓, TumCI↓, TumMeta↓, Apoptosis↑, TGF-β↓, SMAD3↓, CDK6↓, PI3K↓, Akt↓, angioG↓, VEGFR2↓, MAPK↓, NEDD9↓, NF-kB↓, eff↑, eff↑, RadioS↑, ChemoSen↑, DNAdam↑, eff↑, *toxicity∅, *toxicity∅,
1605- EA,    Ellagic Acid and Cancer Hallmarks: Insights from Experimental Evidence
- Review, Var, NA
*BioAv↓, antiOx↓, Inflam↓, TumCP↓, TumCCA↑, cycD1/CCND1↓, cycE/CCNE↓, P53↑, P21↑, COX2↓, NF-kB↓, Akt↑, NOTCH↓, CDK2↓, CDK6↓, JAK↓, STAT3↓, EGFR↓, p‑ERK↓, p‑Akt↓, p‑STAT3↓, TGF-β↓, SMAD3↓, CDK6↓, Wnt/(β-catenin)↓, Myc↓, survivin↓, CDK8↓, PKCδ↓, tumCV↓, RadioS↑, eff↑, MDM2↓, XIAP↓, p‑RB1↓, PTEN↑, p‑FAK↓, Bax:Bcl2↑, Bcl-xL↓, Mcl-1↓, PUMA↑, NOXA↑, MMP↓, Cyt‑c↑, ROS↑, Ca+2↝, Endoglin↑, Diablo↑, AIF↑, iNOS↓, Casp9↑, Casp3↑, cl‑PARP↑, RadioS↑, Hif1a↓, HO-1↓, HO-2↓, SIRT1↓, selectivity↑, Dose∅, NHE1↓, Glycolysis↓, GlucoseCon↓, lactateProd↓, PDK1?, PDK1?, ECAR↝, COX1↓, Snail↓, Twist↓, cMyc↓, Telomerase↓, angioG↓, MMP2↓, MMP9↓, VEGF↓, Dose↝, PD-L1↓, eff↑, SIRT6↑, DNAdam↓,
1072- EGCG,    Epigallocatechin gallate (EGCG) suppresses epithelial-Mesenchymal transition (EMT) and invasion in anaplastic thyroid carcinoma cells through blocking of TGF-β1/Smad signaling pathways
- in-vitro, Thyroid, 8505C
EMT↓, TumCI↓, TumCMig↓, TGF-β↓, p‑SMAD2↓, p‑SMAD3↓, SMAD4↓,
1323- EMD,    Anticancer action of naturally occurring emodin for the controlling of cervical cancer
- Review, Cerv, NA
TumCCA↑, DNAdam↑, mTOR↓, Casp3↑, Casp8↑, Casp9↑, TGF-β↑, SMAD3↓, p‑SMAD4↓, ROS↑, MMP↓, CXCR4↓, HER2/EBBR2↓, ER Stress↓, TumAuto↑, NOTCH1↓,
817- GAR,    Garcinol inhibits esophageal cancer metastasis by suppressing the p300 and TGF-β1 signaling pathways
- vitro+vivo, SCC, KYSE150 - vitro+vivo, SCC, KYSE450
HATs↓, TumCCA↑, Apoptosis↑, TumCMig↓, TumCI↓, CBP↓, p300↓, TGF-β↓, Ki-67↓, SMAD2↓, SMAD3↓,
1117- Gb,    Ginkgobiloba leaf extract mitigates cisplatin-induced chronic renal interstitial fibrosis by inhibiting the epithelial-mesenchymal transition of renal tubular epithelial cells mediated by the Smad3/TGF-β1 and Smad3/p38 MAPK pathways
- vitro+vivo, Kidney, HK-2
α-SMA↓, COL1↓, TGF-β↓, SMAD2↓, SMAD3↓, p‑SMAD2↓, p‑SMAD3↓, p38↓, p‑p38↓, Vim↓, TIMP1↓, CTGF↓, E-cadherin↑, MMP1:TIMP1↑,
1118- Ge,    Grape Seed Proanthocyanidins Inhibit Migration and Invasion of Bladder Cancer Cells by Reversing EMT through Suppression of TGF- β Signaling Pathway
- in-vitro, Bladder, T24 - in-vitro, Bladder, 5637
TumCMig↓, TumCI↓, MMP2↓, MMP9↓, EMT↓, N-cadherin↓, Vim↓, Slug↓, E-cadherin↑, ZO-1↑, p‑SMAD2↓, p‑SMAD3↓, p‑Akt↓, p‑ERK↓, p‑p38↓,
2882- HNK,    Honokiol Suppresses Perineural Invasion of Pancreatic Cancer by Inhibiting SMAD2/3 Signaling
- in-vitro, PC, PANC1
TumCI↓, TumCMig↓, p‑SMAD2↓, p‑SMAD3↓, EMT↓, N-cadherin↓, Vim↓, E-cadherin↑, Snail↓, Slug↓, Rho↓, ROCK1↓,
2884- HNK,    Honokiol inhibits EMT-mediated motility and migration of human non-small cell lung cancer cells in vitro by targeting c-FLIP
- in-vitro, Lung, A549 - in-vitro, Lung, H460
EMT↓, cFLIP↓, N-cadherin↓, Snail↓, p‑SMAD2↓, p‑SMAD3↓, IKKα↑, TumCMig↓,
4632- HT,    Hydroxytyrosol inhibits cancer stem cells and the metastatic capacity of triple-negative breast cancer cell lines by the simultaneous targeting of epithelial-to-mesenchymal transition, Wnt/β-catenin and TGFβ signaling pathways
- in-vitro, BC, MDA-MB-231 - in-vitro, BC, BT549 - in-vitro, BC, SUM159
CSCs↓, TumCMig↓, TumCI↓, β-catenin/ZEB1↓, Wnt↓, p‑LRP6↓, LRP6↓, cycD1/CCND1↓, EMT↓, Slug↓, Zeb1↓, Snail↓, Vim↓, SMAD2↓, SMAD3↓, TGF-β↓,
1266- LE,    Glycyrrhizin suppresses epithelial-mesenchymal transition by inhibiting high-mobility group box1 via the TGF-β1/Smad2/3 pathway in lung epithelial cells
- in-vitro, Lung, A549 - in-vitro, Nor, BEAS-2B
HMGB1↓, EMT↓, TumCMig↓, p‑SMAD2↓, p‑SMAD3↓,
4520- MAG,    Magnolol Suppresses Pancreatic Cancer Development In Vivo and In Vitro via Negatively Regulating TGF-β/Smad Signaling
- vitro+vivo, PC, PANC1
Vim↓, E-cadherin↑, EMT↓, N-cadherin↓, p‑SMAD2↓, p‑SMAD3↓, TumCP↓, TumCMig↓, TumCI↓, TGF-β↓,
2643- MCT,    Medium Chain Triglycerides enhances exercise endurance through the increased mitochondrial biogenesis and metabolism
- Review, Nor, NA
*Akt↑, *AMPK↓, *TGF-β↓, eff↑, *BioEnh↑, *ATP↑, *PGC-1α↑, *p‑mTOR↑, *SMAD3↓,
3478- MF,    One Month of Brief Weekly Magnetic Field Therapy Enhances the Anticancer Potential of Female Human Sera: Randomized Double-Blind Pilot Study
- Trial, BC, NA - in-vitro, BC, MCF-7 - in-vitro, Nor, C2C12
TumCP↓, TumCMig↓, TumCI↓, *toxicity∅, TGF-β↓, Twist↓, Slug↓, β-catenin/ZEB1↓, Vim↓, p‑SMAD2↓, p‑SMAD3↓, angioG↓, VEGF↓, selectivity↑, LIF↑,
201- MFrot,  MF,    Gradient Rotating Magnetic Fields Impairing F-Actin-Related Gene CCDC150 to Inhibit Triple-Negative Breast Cancer Metastasis by Inactivating TGF-β1/SMAD3 Signaling Pathway
- in-vitro, BC, MDA-MB-231 - in-vitro, BC, BT549 - in-vitro, BC, MDA-MB-468
CCDC150↓, TGF-β↓, SMAD3↓,
1128- Myr,    Myricetin suppresses TGF-β-induced epithelial-to-mesenchymal transition in ovarian cancer
- vitro+vivo, Ovarian, NA
MAPK↓, ERK↓, PI3K↓, Akt↓, p‑PARP↑, cl‑Casp3↑, Bax:Bcl2↑, TumCMig↓, SMAD3↓,
1131- PI,    Piperlongumine‑loaded nanoparticles inhibit the growth, migration and invasion and epithelial‑to‑mesenchymal transition of triple‑negative breast cancer cells
- in-vitro, BC, MDA-MB-231 - in-vitro, BC, BT549
TumCG↓, tumCV↓, TumCMig↓, TumCI↓, MMP2↓, Slug↓, N-cadherin↓, β-catenin/ZEB1↓, SMAD3↓, E-cadherin↑, EMT↓,
878- RES,    Resveratrol suppresses epithelial-to-mesenchymal transition in colorectal cancer through TGF-β1/Smads signaling pathway mediated Snail/E-cadherin expression
- vitro+vivo, CRC, LoVo
TumMeta↓, E-cadherin↑, Vim↓, TGF-β↓, SMAD2↓, EMT↓, SMAD3↓,
3098- RES,    Regulation of Cell Signaling Pathways and miRNAs by Resveratrol in Different Cancers
- Review, Var, NA
NOTCH2↓, Wnt↓, β-catenin/ZEB1↓, p‑SMAD2↓, p‑SMAD3↓, PTCH1↓, Smo↓, Gli1↓, E-cadherin↑, NOTCH⇅, TAC?, NKG2D↑, DR4↑, survivin↓, DR5↑, BAX↑, p27↑, cycD1/CCND1↓, Bcl-2↓, STAT3↓, STAT5↓, JAK↓, DNAdam↑, γH2AX↑,
3092- RES,    Resveratrol in breast cancer treatment: from cellular effects to molecular mechanisms of action
- Review, BC, MDA-MB-231 - Review, BC, MCF-7
TumCP↓, tumCV↓, TumCI↓, TumMeta↓, *antiOx↑, *cardioP↑, *Inflam↓, *neuroP↑, *Keap1↓, *NRF2↑, *ROS↓, p62↓, IL1β↓, CRP↓, VEGF↓, Bcl-2↓, MMP2↓, MMP9↓, FOXO4↓, POLD1↓, CK2↓, MMP↓, ROS↑, Apoptosis↑, TumCCA↑, Beclin-1↓, Ki-67↓, ATP↓, GlutMet↓, PFK↓, TGF-β↓, SMAD2↓, SMAD3↓, Vim?, Snail↓, Slug↓, E-cadherin↑, EMT↓, Zeb1↓, Fibronectin↓, IGF-1↓, PI3K↓, Akt↓, HO-1↑, eff↑, PD-1↓, CD8+↑, Th1 response↑, CSCs↓, RadioS↑, SIRT1↑, Hif1a↓, mTOR↓,
1134- SANG,    Sanguinarine inhibits epithelial–mesenchymal transition via targeting HIF-1α/TGF-β feed-forward loop in hepatocellular carcinoma
- in-vitro, HCC, HepG2 - in-vitro, HCC, Hep3B - in-vitro, HCC, HUH7
Hif1a↓, EMT↓, Snail↓, PI3K↓, Akt↓, SMAD2↓, SMAD3↓,
1133- SM,    Salvianolic Acid A, a Component of Salvia miltiorrhiza, Attenuates Endothelial-Mesenchymal Transition of HPAECs Induced by Hypoxia
- in-vitro, Nor, HPAECs
*ROS↓, *p‑Smad1↑, *p‑SMAD5↑, *SMAD2↓, *SMAD3↓, *p‑ERK↓, *p‑Cofilin↓,
1138- TQ,    Thymoquinone inhibits epithelial-mesenchymal transition in prostate cancer cells by negatively regulating the TGF-β/Smad2/3 signaling pathway
- in-vitro, Pca, DU145 - in-vitro, Pca, PC3
TumMeta↓, EMT↓, E-cadherin↑, Vim↓, Slug↓, TGF-β↓, SMAD2↓, SMAD3↓,

* indicates research on normal cells as opposed to diseased cells
Total Research Paper Matches: 30

Pathway results for Effect on Cancer / Diseased Cells:


Redox & Oxidative Stress

antiOx↓, 1,   HO-1↓, 1,   HO-1↑, 1,   HO-2↓, 1,   NOX4↓, 1,   ROS↓, 1,   ROS↑, 3,   SOD2↑, 1,   TAC?, 1,  

Mitochondria & Bioenergetics

AIF↑, 1,   ATP↓, 1,   MMP↓, 3,   XIAP↓, 1,  

Core Metabolism/Glycolysis

cMyc↓, 1,   ECAR↝, 1,   GlucoseCon↓, 1,   GlutMet↓, 1,   Glycolysis↓, 1,   lactateProd↓, 1,   PDK1?, 2,   PFK↓, 1,   POLD1↓, 1,   SIRT1↓, 1,   SIRT1↑, 2,  

Cell Death

Akt↓, 5,   Akt↑, 1,   p‑Akt↓, 2,   Apoptosis↑, 3,   BAX↑, 1,   Bax:Bcl2↑, 2,   Bcl-2↓, 3,   Bcl-xL↓, 1,   Casp3↑, 3,   cl‑Casp3↑, 1,   Casp8↑, 1,   Casp9↑, 2,   CBP↓, 1,   cFLIP↓, 1,   CK2↓, 1,   Cyt‑c↑, 1,   Diablo↑, 1,   DR4↑, 1,   DR5↑, 1,   iNOS↓, 1,   MAPK↓, 2,   Mcl-1↓, 1,   MDM2↓, 1,   Myc↓, 1,   NOXA↑, 1,   p27↑, 1,   p38↓, 1,   p‑p38↓, 2,   PUMA↑, 1,   survivin↓, 2,   Telomerase↓, 1,  

Kinase & Signal Transduction

HER2/EBBR2↓, 1,  

Transcription & Epigenetics

HATs↓, 1,   miR-145↑, 1,   tumCV↓, 3,  

Protein Folding & ER Stress

ER Stress↓, 1,   GRP78/BiP↓, 1,  

Autophagy & Lysosomes

Beclin-1↓, 1,   p62↓, 1,   TumAuto↑, 1,  

DNA Damage & Repair

DNAdam↓, 1,   DNAdam↑, 3,   P53↑, 1,   p‑PARP↑, 1,   cl‑PARP↑, 1,   SIRT6↑, 1,   γH2AX↑, 1,  

Cell Cycle & Senescence

CDK2↓, 1,   cycD1/CCND1↓, 3,   cycE/CCNE↓, 1,   P21↑, 1,   p‑RB1↓, 1,   TumCCA↑, 5,  

Proliferation, Differentiation & Cell State

CDK8↓, 1,   CSCs↓, 3,   EMT↓, 15,   ERK↓, 1,   p‑ERK↓, 3,   FOXO3↑, 1,   FOXO4↓, 1,   Gli1↓, 1,   IGF-1↓, 1,   LRP6↓, 1,   p‑LRP6↓, 1,   mTOR↓, 2,   NOTCH↓, 1,   NOTCH⇅, 1,   NOTCH1↓, 1,   NOTCH2↓, 1,   OCT4↓, 1,   p300↓, 1,   PI3K↓, 4,   PTCH1↓, 1,   PTEN↑, 1,   Smo↓, 1,   Src↓, 1,   STAT3↓, 2,   p‑STAT3↓, 1,   STAT5↓, 1,   TumCG↓, 1,   Wnt↓, 2,   Wnt/(β-catenin)↓, 1,  

Migration

Ca+2↝, 1,   CCDC150↓, 1,   COL1↓, 1,   CTGF↓, 1,   E-cadherin↑, 10,   FAK↓, 1,   p‑FAK↓, 1,   Fibronectin↓, 1,   Ki-67↓, 2,   MMP1:TIMP1↑, 1,   MMP2↓, 5,   MMP9↓, 4,   N-cadherin↓, 6,   NEDD9↓, 1,   PKCδ↓, 1,   Rho↓, 1,   ROCK1↓, 1,   Slug↓, 7,   SMAD2↓, 10,   p‑SMAD2↓, 12,   SMAD3↓, 17,   p‑SMAD3↓, 12,   SMAD4↓, 3,   p‑SMAD4↓, 1,   Snail↓, 6,   TGF-β↓, 18,   TGF-β↑, 1,   TIMP1↓, 1,   TumCI↓, 12,   TumCMig↓, 16,   TumCP↓, 5,   TumMeta↓, 4,   Twist↓, 2,   Vim?, 1,   Vim↓, 8,   Zeb1↓, 2,   ZO-1↑, 1,   α-SMA↓, 1,   β-catenin/ZEB1↓, 4,  

Angiogenesis & Vasculature

angioG↓, 3,   ECM/TCF↓, 1,   EGFR↓, 1,   Endoglin↑, 1,   Hif1a↓, 3,   VEGF↓, 4,   VEGFR2↓, 1,  

Barriers & Transport

NHE1↓, 1,  

Immune & Inflammatory Signaling

COX1↓, 1,   COX2↓, 2,   CRP↓, 1,   CXCR4↓, 1,   HMGB1↓, 1,   IKKα↑, 1,   IL1β↓, 1,   Inflam↓, 1,   JAK↓, 2,   LIF↑, 1,   NF-kB↓, 2,   p‑NF-kB↓, 1,   p‑p65↓, 1,   PD-1↓, 1,   PD-L1↓, 1,   Th1 response↑, 1,  

Hormonal & Nuclear Receptors

CDK6↓, 3,  

Drug Metabolism & Resistance

ChemoSen↑, 2,   Dose↝, 1,   Dose∅, 1,   eff↑, 7,   RadioS↑, 4,   selectivity↑, 2,  

Clinical Biomarkers

CRP↓, 1,   EGFR↓, 1,   HER2/EBBR2↓, 1,   Ki-67↓, 2,   Myc↓, 1,   PD-L1↓, 1,  

Functional Outcomes

NKG2D↑, 1,   TumVol↓, 1,  

Infection & Microbiome

CD8+↑, 1,  
Total Targets: 185

Pathway results for Effect on Normal Cells:


Redox & Oxidative Stress

antiOx↑, 1,   Keap1↓, 1,   NRF2↑, 1,   ROS↓, 2,  

Mitochondria & Bioenergetics

ATP↑, 1,   PGC-1α↑, 1,  

Core Metabolism/Glycolysis

AMPK↓, 1,  

Cell Death

Akt↑, 1,  

Proliferation, Differentiation & Cell State

p‑ERK↓, 1,   p‑mTOR↑, 1,  

Migration

p‑Cofilin↓, 1,   p‑Smad1↑, 1,   SMAD2↓, 1,   SMAD3↓, 2,   p‑SMAD5↑, 1,   TGF-β↓, 1,  

Immune & Inflammatory Signaling

Inflam↓, 1,  

Drug Metabolism & Resistance

BioAv↓, 1,   BioEnh↑, 1,  

Functional Outcomes

cardioP↑, 1,   neuroP↑, 1,   toxicity∅, 3,  
Total Targets: 22

Scientific Paper Hit Count for: SMAD3, SMAD3
3 Ellagic acid
3 Resveratrol
2 Honokiol
2 Magnetic Fields
1 Andrographis
1 Apigenin (mainly Parsley)
1 Ashwagandha(Withaferin A)
1 Betulinic acid
1 Celecoxib
1 Curcumin
1 Oxaliplatin
1 Gemcitabine (Gemzar)
1 EGCG (Epigallocatechin Gallate)
1 Emodin
1 Garcinol
1 Ginkgo biloba
1 Grapeseed extract
1 HydroxyTyrosol
1 Licorice
1 Magnolol
1 MCToil
1 Magnetic Field Rotating
1 Myricetin
1 Piperine
1 Sanguinarine
1 Salvia miltiorrhiza
1 Thymoquinone
Query results interpretion may depend on "conditions" listed in the research papers.
Such Conditions may include : 
  -low or high Dose
  -format for product, such as nano of lipid formations
  -different cell line effects
  -synergies with other products 
  -if effect was for normal or cancerous cells
Filter Conditions: Pro/AntiFlg:%  IllCat:%  CanType:%  Cells:%  prod#:%  Target#:556  State#:%  Dir#:%
wNotes=0 sortOrder:rid,rpid

 

Home Page