| Source: |
| Type: |
| GPX4 (Glutathione Peroxidase 4) is a selenoprotein that plays a crucial role in the regulation of ferroptosis, a form of programmed cell death characterized by the iron-dependent accumulation of lipid reactive oxygen species (ROS). GPX4 has been found to be upregulated in several tumor types, promoting cancer cell survival and resistance to therapy. For instance, GPX4 overexpression has been observed in renal cell carcinoma, pancreatic ductal adenocarcinoma, and triple-negative breast cancer, among others. -GPX4 is known as a lipid peroxidation inhibitor protein, and its antioxidant effect is closely related to ferrous iron |
| 1349- | And, | Andrographolide promoted ferroptosis to repress the development of non-small cell lung cancer through activation of the mitochondrial dysfunction |
| - | in-vitro, | Lung, | H460 | - | in-vitro, | Lung, | H1650 |
| 3345- | ART/DHA, | Dihydroartemisinin-induced unfolded protein response feedback attenuates ferroptosis via PERK/ATF4/HSPA5 pathway in glioma cells |
| - | in-vitro, | GBM, | NA |
| 3382- | ART/DHA, | Repurposing Artemisinin and its Derivatives as Anticancer Drugs: A Chance or Challenge? |
| - | Review, | Var, | NA |
| 3384- | ART/DHA, | Dihydroartemisinin triggers ferroptosis in primary liver cancer cells by promoting and unfolded protein response‑induced upregulation of CHAC1 expression |
| - | in-vitro, | Liver, | Hep3B | - | in-vitro, | Liver, | HUH7 | - | in-vitro, | Liver, | HepG2 |
| 3387- | ART/DHA, | Ferroptosis: A New Research Direction of Artemisinin and Its Derivatives in Anti-Cancer Treatment |
| - | Review, | Var, | NA |
| 2575- | ART/DHA, | docx, | Artemisia santolinifolia-Mediated Chemosensitization via Activation of Distinct Cell Death Modes and Suppression of STAT3/Survivin-Signaling Pathways in NSCLC |
| - | in-vitro, | Lung, | H23 |
| 575- | ART/DHA, | Dihydroartemisinin initiates ferroptosis in glioblastoma through GPX4 inhibition |
| - | in-vitro, | GBM, | U87MG |
| 3156- | Ash, | Withaferin A: From ayurvedic folk medicine to preclinical anti-cancer drug |
| - | Review, | Var, | NA |
| 3173- | Ash, | Nano-targeted induction of dual ferroptotic mechanisms eradicates high-risk neuroblastoma |
| - | in-vitro, | neuroblastoma, | NA |
| 4822- | ASTX, | Rad, | Astaxanthin Synergizes with Ionizing Radiation (IR) in Oral Squamous Cell Carcinoma (OSCC) |
| 2625- | Ba, | LT, | Baicalein and luteolin inhibit ischemia/reperfusion-induced ferroptosis in rat cardiomyocyte |
| - | in-vivo, | Stroke, | NA |
| 2296- | Ba, | The most recent progress of baicalein in its anti-neoplastic effects and mechanisms |
| - | Review, | Var, | NA |
| 2475- | Ba, | Baicalein triggers ferroptosis in colorectal cancer cells via blocking the JAK2/STAT3/GPX4 axis |
| - | in-vitro, | CRC, | HCT116 | - | in-vitro, | CRC, | DLD1 | - | in-vivo, | NA, | NA |
| 2756- | BetA, | Betulinic acid inhibits growth of hepatoma cells through activating the NCOA4-mediated ferritinophagy pathway |
| - | in-vitro, | HCC, | HUH7 | - | in-vitro, | HCC, | H1299 |
| 738- | Bor, | Borax induces ferroptosis of glioblastoma by targeting HSPA5/NRF2/GPx4/GSH pathways |
| - | in-vitro, | GBM, | U251 | - | in-vitro, | GBM, | A172 | - | in-vitro, | Nor, | SVGp12 |
| 739- | Bor, | Borax regulates iron chaperone- and autophagy-mediated ferroptosis pathway in glioblastoma cells |
| - | in-vitro, | GBM, | U87MG | - | in-vitro, | Nor, | HMC3 |
| 1447- | Bos, | Boswellia carterii n-hexane extract suppresses breast cancer growth via induction of ferroptosis by downregulated GPX4 and upregulated transferrin |
| - | in-vitro, | BC, | MDA-MB-231 | - | in-vitro, | BC, | MCF-7 | - | in-vivo, | BC, | 4T1 | - | in-vitro, | Nor, | MCF10 |
| 1585- | Citrate, | Sodium citrate targeting Ca2+/CAMKK2 pathway exhibits anti-tumor activity through inducing apoptosis and ferroptosis in ovarian cancer |
| - | in-vitro, | Ovarian, | SKOV3 | - | in-vitro, | Ovarian, | A2780S | - | in-vitro, | Nor, | HEK293 |
| 1410- | CUR, | Curcumin induces ferroptosis and apoptosis in osteosarcoma cells by regulating Nrf2/GPX4 signaling pathway |
| - | vitro+vivo, | OS, | MG63 |
| 414- | CUR, | Transcriptome Investigation and In Vitro Verification of Curcumin-Induced HO-1 as a Feature of Ferroptosis in Breast Cancer Cells |
| - | in-vitro, | BC, | MCF-7 | - | in-vitro, | BC, | MDA-MB-231 |
| 448- | CUR, | Heat shock protein 27 influences the anti-cancer effect of curcumin in colon cancer cells through ROS production and autophagy activation |
| - | in-vitro, | CRC, | HT-29 |
| 3215- | EGCG, | Epigallocatechin gallate modulates ferroptosis through downregulation of tsRNA-13502 in non-small cell lung cancer |
| - | in-vitro, | NSCLC, | A549 | - | in-vitro, | NSCLC, | H1299 |
| 2204- | erastin, | Regulation of ferroptotic cancer cell death by GPX4 |
| - | in-vitro, | fibroS, | HT1080 |
| 2080- | HNK, | Honokiol Induces Ferroptosis by Upregulating HMOX1 in Acute Myeloid Leukemia Cells |
| - | in-vitro, | AML, | THP1 | - | in-vitro, | AML, | U937 | - | in-vitro, | AML, | SK-HEP-1 |
| 2081- | HNK, | Honokiol induces ferroptosis in colon cancer cells by regulating GPX4 activity |
| - | in-vitro, | Colon, | RKO | - | in-vitro, | Colon, | HCT116 | - | in-vitro, | Colon, | SW48 | - | in-vitro, | Colon, | HT-29 | - | in-vitro, | Colon, | LS174T | - | in-vitro, | Colon, | HCT8 | - | in-vitro, | Colon, | SW480 | - | in-vivo, | NA, | NA |
| 2082- | HNK, | Revealing the role of honokiol in human glioma cells by RNA-seq analysis |
| - | in-vitro, | GBM, | U87MG | - | in-vitro, | GBM, | U251 |
| 4641- | HT, | Hydroxytyrosol induced ferroptosis through Nrf2 signaling pathway in colorectal cancer cells |
| - | in-vitro, | CRC, | HCT116 | - | in-vitro, | CRC, | SW48 |
| 1924- | JG, | Juglone triggers apoptosis of non-small cell lung cancer through the reactive oxygen species -mediated PI3K/Akt pathway |
| - | in-vitro, | Lung, | A549 |
| 1275- | LT, | Mechanism of luteolin induces ferroptosis in nasopharyngeal carcinoma cells |
| - | in-vitro, | Laryn, | NA |
| 1204- | MET, | Metformin induces ferroptosis through the Nrf2/HO-1 signaling in lung cancer |
| - | in-vitro, | Lung, | A549 | - | in-vitro, | Lung, | H1299 |
| 2249- | MF, | Pulsed electromagnetic fields modulate energy metabolism during wound healing process: an in vitro model study |
| - | in-vitro, | Nor, | L929 |
| 3457- | MF, | Cellular stress response to extremely low‐frequency electromagnetic fields (ELF‐EMF): An explanation for controversial effects of ELF‐EMF on apoptosis |
| - | Review, | Var, | NA |
| 4102- | MF, | Modulation of antioxidant enzyme gene expression by extremely low frequency electromagnetic field in post-stroke patients |
| - | Human, | Stroke, | NA |
| 582- | MF, | immuno, | VitC, | Magnetic field boosted ferroptosis-like cell death and responsive MRI using hybrid vesicles for cancer immunotherapy |
| - | in-vitro, | Pca, | TRAMP-C1 | - | in-vivo, | NA, | NA |
| 525- | MF, | Pulsed electromagnetic fields regulate metabolic reprogramming and mitochondrial fission in endothelial cells for angiogenesis |
| - | in-vitro, | Nor, | HUVECs |
| 3567- | MFrot, | MF, | The Effect of Extremely Low-Frequency Magnetic Field on Stroke Patients: A Systematic Review |
| - | Review, | Stroke, | NA |
| 1273- | Myr, | Myricetin Induces Ferroptosis and Inhibits Gastric Cancer Progression by Targeting NOX4 |
| - | vitro+vivo, | GC, | NA |
| 4927- | PEITC, | Targeting ferroptosis in osteosarcoma |
| - | Review, | OS, | NA |
| 2958- | PL, | Natural product piperlongumine inhibits proliferation of oral squamous carcinoma cells by inducing ferroptosis and inhibiting intracellular antioxidant capacity |
| - | in-vitro, | Oral, | HSC3 |
| 4965- | PSO, | Cisplatin, | The synergistic antitumor effects of psoralidin and cisplatin in gastric cancer by inducing ACSL4-mediated ferroptosis |
| - | vitro+vivo, | GC, | HGC27 | - | vitro+vivo, | GC, | MKN45 |
| 5026- | QC, | Quercetin induces ferroptosis in gastric cancer cells by targeting SLC1A5 and regulating the p-Camk2/p-DRP1 and NRF2/GPX4 Axes |
| - | in-vitro, | GC, | NA |
| 1489- | RES, | Molecular mechanisms of resveratrol as chemo and radiosensitizer in cancer |
| - | Review, | Var, | NA |
| 3023- | RosA, | Rosmarinic acid alleviates septic acute respiratory distress syndrome in mice by suppressing the bronchial epithelial RAS-mediated ferroptosis |
| - | in-vivo, | Sepsis, | NA |
| 3039- | RosA, | Rosmarinic acid liposomes suppress ferroptosis in ischemic brain via inhibition of TfR1 in BMECs |
| - | in-vivo, | Nor, | NA | - | in-vivo, | Stroke, | NA |
| 4904- | Sal, | CUR, | Co-delivery of Salinomycin and Curcumin for Cancer Stem Cell Treatment by Inhibition of Cell Proliferation, Cell Cycle Arrest, and Epithelial–Mesenchymal Transition |
| 4613- | Se, | Rad, | Effect of Selenium and Selenoproteins on Radiation Resistance |
| - | Review, | Nor, | NA |
| 4727- | Se, | Selenium inhibits ferroptosis in ulcerative colitis through the induction of Nrf2/Gpx4 |
| - | in-vivo, | Col, | NA |
| 4723- | Se, | Selenium Induces Ferroptosis in Colorectal Cancer Cells via Direct Interaction with Nrf2 and Gpx4 |
| - | in-vitro, | CRC, | HCT116 |
| 4732- | Se, | Selenium inhibits ferroptosis and ameliorates autistic-like behaviors of BTBR mice by regulating the Nrf2/GPx4 pathway |
| - | in-vivo, | Autism, | NA |
| 1483- | SFN, | Targeting p62 by sulforaphane promotes autolysosomal degradation of SLC7A11, inducing ferroptosis for osteosarcoma treatment |
| - | in-vitro, | OS, | 143B | - | in-vitro, | Nor, | HEK293 | - | in-vivo, | OS, | NA |
| 3313- | SIL, | Silymarin attenuates post-weaning bisphenol A-induced renal injury by suppressing ferroptosis and amyloidosis through Kim-1/Nrf2/HO-1 signaling modulation in male Wistar rats |
| - | in-vivo, | NA, | NA |
| 1284- | SK, | Shikonin induces ferroptosis in multiple myeloma via GOT1-mediated ferritinophagy |
| - | in-vitro, | Melanoma, | RPMI-8226 | - | in-vitro, | Melanoma, | U266 |
| 2201- | SK, | Shikonin promotes ferroptosis in HaCaT cells through Nrf2 and alleviates imiquimod-induced psoriasis in mice |
| - | in-vitro, | PSA, | HaCaT | - | in-vivo, | NA, | NA |
| 2203- | SK, | Shikonin suppresses small cell lung cancer growth via inducing ATF3-mediated ferroptosis to promote ROS accumulation |
| - | in-vitro, | Lung, | NA |
| 2202- | SK, | Enhancing Tumor Therapy of Fe(III)-Shikonin Supramolecular Nanomedicine via Triple Ferroptosis Amplification |
| - | in-vitro, | Var, | NA |
| 2200- | SK, | Shikonin inhibits the growth of anaplastic thyroid carcinoma cells by promoting ferroptosis and inhibiting glycolysis |
| - | in-vitro, | Thyroid, | CAL-62 | - | in-vitro, | Thyroid, | 8505C |
| 2199- | SK, | Induction of Ferroptosis by Shikonin in Gastric Cancer via the DLEU1/mTOR/GPX4 Axis |
| - | in-vitro, | GC, | NA |
| 2198- | SK, | Shikonin suppresses proliferation of osteosarcoma cells by inducing ferroptosis through promoting Nrf2 ubiquitination and inhibiting the xCT/GPX4 regulatory axis |
| - | in-vitro, | OS, | MG63 | - | in-vitro, | OS, | 143B |
| 2196- | SK, | Research progress in mechanism of anticancer action of shikonin targeting reactive oxygen species |
| - | Review, | Var, | NA |
| 2195- | SK, | Shikonin induces ferroptosis in osteosarcomas through the mitochondrial ROS-regulated HIF-1α/HO-1 axis |
| - | in-vitro, | OS, | NA |
| 1068- | SM, | Danshen Improves Survival of Patients With Breast Cancer and Dihydroisotanshinone I Induces Ferroptosis and Apoptosis of Breast Cancer Cells |
| - | in-vitro, | BC, | MCF-7 | - | in-vitro, | BC, | MDA-MB-231 | - | in-vivo, | BC, | NA | - | Human, | BC, | NA |
| 4558- | SNP, | Role of Oxidative and Nitro-Oxidative Damage in Silver Nanoparticles Cytotoxic Effect against Human Pancreatic Ductal Adenocarcinoma Cells |
| - | in-vitro, | PC, | PANC1 |
| 3399- | TQ, | Anticancer Effects of Thymoquinone through the Antioxidant Activity, Upregulation of Nrf2, and Downregulation of PD-L1 in Triple-Negative Breast Cancer Cells |
| - | in-vitro, | BC, | MDA-MB-231 | - | NA, | BC, | MDA-MB-468 |
| 3405- | TQ, | doxoR, | Protective effect of thymoquinone against doxorubicin-induced cardiotoxicity and the underlying mechanism |
| - | vitro+vivo, | NA, | NA |
| 1215- | VitC, | immuno, | Metabolomics reveals ascorbic acid inhibits ferroptosis in hepatocytes and boosts the effectiveness of anti-PD1 immunotherapy in hepatocellular carcinoma |
| - | ex-vivo, | HCC, | NA | - | in-vivo, | HCC, | NA |
| 1216- | VitC, | Ascorbic acid induces ferroptosis via STAT3/GPX4 signaling in oropharyngeal cancer |
| - | in-vitro, | Laryn, | FaDu | - | in-vitro, | SCC, | SCC-154 |
Query results interpretion may depend on "conditions" listed in the research papers. Such Conditions may include : -low or high Dose -format for product, such as nano of lipid formations -different cell line effects -synergies with other products -if effect was for normal or cancerous cells
Filter Conditions: Pro/AntiFlg:% IllCat:% CanType:% Cells:% prod#:% Target#:643 State#:% Dir#:%
wNotes=0 sortOrder:rid,rpid