Database Query Results : , , SOD2

SOD2, MnSOD: Click to Expand ⟱
Source:
Type: protein
Manganese superoxide dismutase (MnSOD, also known as SOD2).
SOD2 (Superoxide Dismutase 2) is a protein that is a member of the superoxide dismutase family of enzymes, which are involved in the detoxification of superoxide radicals.

-MnSOD is localized in the mitochondria and plays a key role in detoxifying superoxide radicals, thereby limiting oxidative damage and maintaining mitochondrial integrity.
• By modulating ROS levels, MnSOD influences cellular signaling pathways involved in proliferation, apoptosis, and metabolic adaptation—all of which are critical during tumorigenesis.

Typically low SOD2 expression in cancers, with poor prognosis.

-Increased MnSOD levels may help tumor cells manage the high levels of ROS resulting from rapid cell division and metabolic alterations, which can contribute to tumor progression.
- Some prognostic studies associate high levels of MnSOD with resistance to apoptosis and poorer patient outcomes; however, findings are not entirely consistent across all studies.

• Depending on the tumor type and the balance with other antioxidant systems, high MnSOD can be associated with either favorable or unfavorable clinical outcomes, reflecting its dual roles in cancer biology.


Scientific Papers found: Click to Expand⟱
4113-   Post-exposure Effects of PEMF on ROS levels in H2O2-treated Glioblastoma Cell Line
- in-vitro, Nor, U87MG
*ROS↓, *SOD2↑,
3453- 5-ALA,    The heme precursor 5-aminolevulinic acid disrupts the Warburg effect in tumor cells and induces caspase-dependent apoptosis
- in-vitro, Lung, A549
OXPHOS↑, OCR↑, Warburg↓, ROS↑, SOD2↑, Catalase↑, HO-1↑, Casp3↑, Apoptosis↑,
1093- And,    Andrographolide attenuates epithelial‐mesenchymal transition induced by TGF‐β1 in alveolar epithelial cells
- in-vitro, Lung, A549
TGF-β↓, TumCMig↓, MMP2↓, MMP9↓, ECM/TCF↓, p‑SMAD2↓, p‑SMAD3↓, SMAD4↓, p‑ERK↓, ROS↓, NOX4↓, SOD2↑, SIRT1↑, FOXO3↑,
3160- Ash,    Withaferin A: A Pleiotropic Anticancer Agent from the Indian Medicinal Plant Withania somnifera (L.) Dunal
- Review, Var, NA
TumCCA↑, H3↑, P21↑, cycA1/CCNA1↓, CycB/CCNB1↓, cycE/CCNE↓, CDC2↓, CHK1↓, Chk2↓, p38↑, MAPK↑, E6↓, E7↓, P53↑, Akt↓, FOXO3↑, ROS↑, γH2AX↑, MMP↓, mitResp↓, eff↑, TumCD↑, Mcl-1↓, ER Stress↑, ATF4↑, ATF3↑, CHOP↑, NOTCH↓, NF-kB↓, Bcl-2↓, STAT3↓, CDK1↓, β-catenin/ZEB1↓, N-cadherin↓, EMT↓, Cyt‑c↑, eff↑, CDK4↓, p‑RB1↓, PARP↑, cl‑Casp3↑, cl‑Casp9↑, NRF2↑, ER-α36↓, LDHA↓, lipid-P↑, AP-1↓, COX2↓, RenoP↑, PDGFR-BB↓, SIRT3↑, MMP2↓, MMP9↓, NADPH↑, NQO1↑, GSR↑, HO-1↑, *SOD2↑, *Prx↑, *Casp3?, eff↑, Snail↓, Slug↓, Vim↓, CSCs↓, HEY1↓, MMPs↓, VEGF↓, uPA↓, *toxicity↓, CDK2↓, CDK4↓, HSP90↓,
2612- Ba,  MF,    The effect of a static magnetic field and baicalin or baicalein interactions on amelanotic melanoma cell cultures (C32)
- in-vitro, Melanoma, NA
SOD1↑, SOD2↑, GPx1↑, Dose?, eff↝, SOD1↓, SOD2↓, GPx1↓,
2717- BetA,    Betulinic Acid Induces ROS-Dependent Apoptosis and S-Phase Arrest by Inhibiting the NF-κB Pathway in Human Multiple Myeloma
- in-vitro, Melanoma, U266 - in-vivo, Melanoma, NA - in-vitro, Melanoma, RPMI-8226
Apoptosis↑, TumCCA↑, MMP↓, ROS↑, eff↓, NF-kB↓, Cyt‑c↑, Casp3↑, Casp8↑, Casp9↑, cl‑PARP1↑, MDA↑, SOD↓, SOD2↓, GCLM↓, GSTA1↓, FTH1↓, GSTs↓, TumVol↓,
2736- BetA,  Chemo,    Multifunctional Roles of Betulinic Acid in Cancer Chemoprevention: Spotlight on JAK/STAT, VEGF, EGF/EGFR, TRAIL/TRAIL-R, AKT/mTOR and Non-Coding RNAs in the Inhibition of Carcinogenesis and Metastasis
- Review, Var, NA
chemoPv↑, p‑STAT3↓, JAK1↓, JAK2↓, VEGF↓, EGFR↓, Cyt‑c↑, Diablo↑, AMPK↑, mTOR↓, Sp1/3/4↓, DNAdam↑, Gli1↓, GLI2↓, PTCH1↓, MMP2↓, MMP9↓, miR-21↓, SOD2↓, ROS↑, Apoptosis↑,
3201- EGCG,    Epigallocatechin Gallate (EGCG): Pharmacological Properties, Biological Activities and Therapeutic Potential
- Review, NA, NA
*AntiCan↑, *cardioP↑, *neuroP↑, *BioAv↝, *BioAv↓, *BioAv↓, *Dose↝, *Half-Life↝, *BioAv↑, *BBB↑, *hepatoP↓, *other↓, *Inflam↓, *NF-kB↓, *AP-1↓, *iNOS↓, *COX2↓, *ROS↓, *RNS↓, *IL8↓, *JAK↓, *PDGFR-BB↓, *IGF-1R↓, *MMP2↓, *P53↓, *NRF2↑, *TNF-α↓, *IL6↓, *E2Fs↑, *SOD1↑, *SOD2↑, Casp3↑, Cyt‑c↑, PARP↑, DNMTs↓, Telomerase↓, Hif1a↓, MMPs↓, BAX↑, Bak↑, Bcl-2↓, Bcl-xL↓, P53↑, PTEN↑, TumCP↓, MAPK↓, HGF/c-Met↓, TIMP1↑, HDAC↓, MMP9↓, uPA↓, GlutMet↓, ChemoSen↑, chemoP↑,
2893- HNK,  doxoR,    Honokiol protects against doxorubicin cardiotoxicity via improving mitochondrial function in mouse hearts
- in-vivo, Nor, NA
*mitResp↑, *PPARγ↑, *cardioP↑, *SIRT3↑, *ROS↓, *GSH↑, *SOD2↑,
2899- HNK,    SIRT3 activator honokiol ameliorates surgery/anesthesia-induced cognitive decline in mice through anti-oxidative stress and anti-inflammatory in hippocampus
- in-vivo, Nor, NA
*memory↑, *Inflam↓, *ROS↓, neuroP↑, SIRT3↑, ac‑SOD2↓,
2901- HNK,  doxoR,    Honokiol protects against doxorubicin cardiotoxicity via improving mitochondrial function in mouse hearts
- in-vivo, Nor, NA
*mitResp↑, *PPARγ↑, *Inflam↓, *ROS↓, *cardioP↑, *SOD2↑, *LDH↓,
2871- HNK,    Antihyperalgesic Properties of Honokiol in Inflammatory Pain Models by Targeting of NF-κB and Nrf2 Signaling
- in-vivo, Nor, NA
*TNF-α↓, *IL1β↓, *IL6↓, *VEGF↓, *NRF2↑, *SOD2↑, *HO-1↑, *Inflam↓, *Pain↓, *NO↓, toxicity↓,
2919- LT,    Luteolin as a potential therapeutic candidate for lung cancer: Emerging preclinical evidence
- Review, Var, NA
RadioS↑, ChemoSen↑, chemoP↑, *lipid-P↓, *Catalase↑, *SOD↑, *GPx↑, *GSTs↑, *GSH↑, *TNF-α↓, *IL1β↓, *Casp3↓, *IL10↑, NRF2↓, HO-1↓, NQO1↓, GSH↓, MET↓, p‑MET↓, p‑Akt↓, HGF/c-Met↓, NF-kB↓, Bcl-2↓, SOD2↓, Casp8↑, Casp3↑, PARP↑, MAPK↓, NLRP3↓, ASC↓, Casp1↓, IL6↓, IKKα↓, p‑p65↓, p‑p38↑, MMP2↓, ICAM-1↓, EGFR↑, p‑PI3K↓, E-cadherin↓, ZO-1↑, N-cadherin↓, CLDN1↓, β-catenin/ZEB1↓, Snail↓, Vim↑, ITGB1↓, FAK↓, p‑Src↓, Rac1↓, Cdc42↓, Rho↓, PCNA↓, Tyro3↓, AXL↓, CEA↓, NSE↓, SOD↓, Catalase↓, GPx↓, GSR↓, GSTs↓, GSH↓, VitE↓, VitC↓, CYP1A1↓, cFos↑, AR↓, AIF↑, p‑STAT6↓, p‑MDM2↓, NOTCH1↓, VEGF↓, H3↓, H4↓, HDAC↓, SIRT1↓, ROS↑, DR5↑, Cyt‑c↑, p‑JNK↑, PTEN↓, mTOR↓, CD34↓, FasL↑, Fas↑, XIAP↓, p‑eIF2α↑, CHOP↑, LC3II↑, PD-1↓, STAT3↓, IL2↑, EMT↓, cachexia↓, BioAv↑, *Half-Life↝, *eff↑,
2260- MF,    Alternative magnetic field exposure suppresses tumor growth via metabolic reprogramming
- in-vitro, GBM, U87MG - in-vitro, GBM, LN229 - in-vivo, NA, NA
TumCP↓, TumCG↓, OS↑, ROS↑, SOD2↑, eff↓, ECAR↓, OCR↑, selectivity↑, *toxicity∅, TumVol↓, PGC-1α↑, OXPHOS↑, Glycolysis↓, PKM2↓,
2255- MF,    Pulsed Electromagnetic Fields Induce Skeletal Muscle Cell Repair by Sustaining the Expression of Proteins Involved in the Response to Cellular Damage and Oxidative Stress
- in-vitro, Nor, SkMC
*HSP70/HSPA5↑, *Apoptosis↓, *Inflam↓, *Trx↓, *PONs↓, *SOD2↓, *TumCG↑, *Diff↑, *HIF2a↑, *Cyt‑c↑, P21↑,
3484- MF,    Extremely low frequency pulsed electromagnetic fields cause antioxidative defense mechanisms in human osteoblasts via induction of •O2 − and H2O2
- in-vitro, Nor, NA
*GPx↑, *SOD2↑, *Catalase↑, *GSR↑, *ROS↓,
3462- MF,    The Effect of a Static Magnetic Field on microRNA in Relation to the Regulation of the Nrf2 Signaling Pathway in a Fibroblast Cell Line That Had Been Treated with Fluoride Ions
- in-vitro, Nor, NA
*NRF2↑, *Keap1↓, *SOD↑, *GPx↑, *ROS↓, *MDA↓, *SOD1↑, *SOD2↑, *GSR↑,
4102- MF,    Modulation of antioxidant enzyme gene expression by extremely low frequency electromagnetic field in post-stroke patients
- Human, Stroke, NA
*Catalase↑, *SOD1↑, *SOD2↑, *GPx1↑, *GPx4↑, *Dose↝,
4111- MF,    Coupling of pulsed electromagnetic fields (PEMF) therapy to molecular grounds of the cell
- Review, Arthritis, NA
*Inflam↓, *Cartilage↑, *Pain↓, *QoL↑, *Dose↝, *VEGF↑, *NO↑, *TGF-β↑, *MMP9↓, *PGE2↑, *GPx3↑, *SOD2↑, *Catalase↑, *GSR↑, *Ca+2↑,
3567- MFrot,  MF,    The Effect of Extremely Low-Frequency Magnetic Field on Stroke Patients: A Systematic Review
- Review, Stroke, NA
*eff↑, *ROS↓, *Inflam↓, *cognitive↑, *Catalase↑, *SOD↑, *SOD1↑, *SOD2↑, *GPx1↑, *GPx4↑, *IL1β↑, *neuroP↑, *toxicity∅,
4977- Nimb,    Nimbolide Inhibits SOD2 to Control Pancreatic Ductal Adenocarcinoma Growth and Metastasis
- vitro+vivo, PC, AsPC-1 - in-vitro, PC, PANC1
SOD2↑, TumCG↓, TumMeta↓, ROS↑, Apoptosis↑, PI3K↓, Akt↓, EMT↓, BAX↑, cl‑Casp3↑, cl‑Casp8↑, cl‑PARP↑, Bcl-2↓,
968- OA,    Oroxylin A inhibits glycolysis-dependent proliferation of human breast cancer via promoting SIRT3-mediated SOD2 transcription and HIF1α destabilization
- vitro+vivo, BC, MDA-MB-231 - in-vitro, BC, MBT-2
Hif1a↓, SIRT3↑, SOD2↑, GlucoseCon↓, Glycolysis↓, TumCG↓,
4643- OLE,  HT,    Use of Oleuropein and Hydroxytyrosol for Cancer Prevention and Treatment: Considerations about How Bioavailability and Metabolism Impact Their Adoption in Clinical Routine
- Review, Var, NA
TumCCA↑, Apoptosis↑, ER Stress↑, UPR↑, CHOP↑, ROS↑, Bcl-2↓, NOX4↑, Hif1a↓, MMP2↓, MMP↓, VEGF↓, Akt↓, NF-kB↓, p65↓, SIRT3↓, mTOR↓, Catalase↓, SOD2↓, FASN↓, STAT3↓, HDAC2↓, HDAC3↓, BAD↑, BAX↑, Bak↑, Casp3↑, Casp9↑, PARP↑, P53↑, P21↑, p27↑, Half-Life↝, BioAv↓, BioAv↓, selectivity↑, RadioS↑, *ROS↓, *GSH↑, *MDA↓, *SOD↑, *Catalase↑, *NRF2↑, *chemoP↑, *Inflam↓, PPARγ↑,
1987- Part,  Rad,    A NADPH oxidase dependent redox signaling pathway mediates the selective radiosensitization effect of parthenolide in prostate cancer cells
- in-vitro, Pca, PC3 - in-vitro, Nor, PrEC
selectivity↑, RadioS↑, ROS↑, *ROS∅, NADPH↑, Trx↓, PI3K↑, Akt↑, p‑FOXO3↓, SOD2↓, Catalase↓, radioP↑, *NADPH∅, *GSH↑, *GSH/GSSG↑, *NRF2↑,
2042- PB,    Phenylbutyrate, a histone deacetylase inhibitor, protects against Adriamycin-induced cardiac injury
- in-vitro, Nor, NA
*HDAC↓, *toxicity↓, *LDH↓, *SOD2↑, *ROS↓, *cardioP↑, *antiOx↑,
4922- PEITC,    Phenethyl Isothiocyanate: A comprehensive review of anti-cancer mechanisms
- Review, Var, NA
Risk↓, AntiCan↑, TumCP↓, TumMeta↓, ChemoSen↑, *BioAv↑, *other↝, *Dose↝, Dose↓, *BioAv↑, *Dose↝, *Half-Life↝, *toxicity↝, GSH↓, ROS↑, CYP1A1↑, CYP1A2↑, P450↓, CYP2E1↑, CYP3A4↓, CYP2A3/CYP2A6↓, *ROS↓, *GPx1↑, *SOD1↑, *SOD2↑, Akt↓, EGFR↓, HER2/EBBR2↓, P53↑, Telomerase↓, selectivity↑, MMP↓, Cyt‑c↑, Apoptosis↑, DR4↑, Fas↑, XIAP↓, survivin↓, TumAuto↑, Hif1a↓, angioG↓, MMPs↓, ERK↓, NF-kB↓, EMT↓, TumCI↓, TumCMig↓, Glycolysis↓, ATP↓, selectivity↑, *antiOx↑, Dose↝, other↝, OCR↓, GSH↓, ITGB1↓, ITGB6↓, ChemoSen↑,
2948- PL,    The promising potential of piperlongumine as an emerging therapeutics for cancer
- Review, Var, NA
tumCV↓, TumCP↓, TumCI↓, angioG↓, EMT↓, TumMeta↓, *hepatoP↑, *lipid-P↓, *GSH↑, cardioP↑, CycB/CCNB1↓, cycD1/CCND1↓, CDK2↓, CDK1↓, CDK4↓, CDK6↓, PCNA↓, Akt↓, mTOR↓, Glycolysis↓, NF-kB↓, IKKα↓, JAK1↓, JAK2↓, STAT3↓, ERK↓, cFos↓, Slug↓, E-cadherin↑, TOP2↓, P53↑, P21↑, Bcl-2↓, BAX↑, Casp3↑, Casp7↑, Casp8↑, p‑HER2/EBBR2↓, HO-1↑, NRF2↑, BIM↑, p‑FOXO3↓, Sp1/3/4↓, cMyc↓, EGFR↓, survivin↓, cMET↓, NQO1↑, SOD2↑, TrxR↓, MDM2↓, p‑eIF2α↑, ATF4↑, CHOP↑, MDA↑, Ki-67↓, MMP9↓, Twist↓, SOX2↓, Nanog↓, OCT4↓, N-cadherin↓, Vim↓, Snail↓, TumW↓, TumCG↓, HK2↓, RB1↓, IL6↓, IL8↓, SOD1↑, RadioS↑, ChemoSen↑, toxicity↓, Sp1/3/4↓, GSH↓, SOD↑,
3930- PTS,    A Review of Pterostilbene Antioxidant Activity and Disease Modification
- Review, Var, NA - Review, adrenal, NA - Review, Stroke, NA
*BioAv↑, *antiOx↑, *neuroP↑, *Inflam↓, *ROS↓, *H2O2↓, *GSH↑, *GPx↑, *GSR↑, *SOD↑, TumCG↓, PTEN↑, HGF/c-Met↓, PI3K↓, Akt↓, NF-kB↓, TumMeta↓, MMP2↓, MMP9↓, Ki-67↓, Casp3↑, MMP↓, H2O2↑, ROS↑, ChemoSen↑, *cardioP↑, *CDK2↓, *CDK4↓, *cycE/CCNE↓, *cycD1/CCND1↓, *RB1↓, *PCNA↓, *CREB↑, *GABA↑, *memory↑, *IGF-1↑, *ERK↑, TIMP1↑, BAX↑, Cyt‑c↑, Diablo↑, SOD2↑,
3929- PTS,    New Insights into Dietary Pterostilbene: Sources, Metabolism, and Health Promotion Effects
- Review, Var, NA - Review, Arthritis, NA
*NRF2↑, *BioAv↑, *ROS↓, *Inflam↓, *HO-1↑, *SOD↑, *Catalase↑, *GPx↑, *lipid-P↓, *hepatoP↑, *neuroP↑, *iNOS↓, *COX2↓, TumMeta↓, SOD2↓, ROS↑, TumCI↓, TumCG↓, HDAC1↓, PTEN↑, BP↓, *GutMicro↑,
3919- PTS,    Low-dose pterostilbene, but not resveratrol, is a potent neuromodulator in aging and Alzheimer's disease
- in-vivo, AD, NA
*cognitive↑, *SIRT1∅, *PPARα↑, *SOD2↑, *JNK↓, *p‑tau↓,
3341- QC,    Antioxidant Activities of Quercetin and Its Complexes for Medicinal Application
- Review, Var, NA - Review, Stroke, NA
*antiOx↑, *BioAv↑, *GSH↑, *AChE↓, *BChE↓, *H2O2↓, *lipid-P↓, *SOD↑, *SOD2↑, *Catalase↑, *GPx↑, *neuroP↑, *HO-1↑, *cardioP↑, *MDA↓, *NF-kB↓, *IKKα↓, *ROS↓, *PI3K↑, *Akt↑, *hepatoP↑, P53↑, BAX↑, IGF-1R↓, Akt↓, AR↓, TumCP↓, GSH↑, SOD↑, Catalase↑, lipid-P↓, *TNF-α↓, *Ca+2↓,
3068- RES,    Resveratrol decreases the expression of genes involved in inflammation through transcriptional regulation
- in-vitro, lymphoma, U937
p65↓, SOD2↓, Prx↓, Catalase↓, Trx↓, TNF-α↓, IL8↓, MCP1↓, SIRT1↑,
3017- RosA,  Per,    Molecular Mechanism of Antioxidant and Anti-Inflammatory Effects of Omega-3 Fatty Acids in Perilla Seed Oil and Rosmarinic Acid Rich Fraction Extracted from Perilla Seed Meal on TNF-α Induced A549 Lung Adenocarcinoma Cells
- in-vitro, Lung, A549
TumCD∅, ROS↓, IL1β↓, IL6↓, IL8↓, TNF-α↓, COX2↓, SOD2↓, FOXO1↓, NF-kB↓, JNK↓, antiOx↑, tumCV∅,
4730- Se,    Association between plasma selenium level and NRF2 target genes expression in humans
- Human, Nor, NA
*NRF2↑, *GSTP1/GSTπ↓, *SOD2↓,
3296- SIL,    Silibinin induces oral cancer cell apoptosis and reactive oxygen species generation by activating the JNK/c-Jun pathway
- in-vitro, Oral, Ca9-22 - in-vivo, Oral, YD10B
TumCP↓, TumCCA↑, ROS↑, SOD1↓, SOD2↓, *JNK↑, toxicity?, TumCMig↓, TumCI↓, N-cadherin↓, Vim↓, E-cadherin↑, EMT↓, P53↑, cl‑Casp3↑, cl‑PARP↑, BAX↑, Bcl-2↓, SOD↓,

* indicates research on normal cells as opposed to diseased cells
Total Research Paper Matches: 35

Pathway results for Effect on Cancer / Diseased Cells:


NA, unassigned

chemoPv↑, 1,  

Redox & Oxidative Stress

antiOx↑, 1,   ATF3↑, 1,   Catalase↓, 4,   Catalase↑, 2,   CYP1A1↓, 1,   CYP1A1↑, 1,   CYP2E1↑, 1,   GCLM↓, 1,   GPx↓, 1,   GPx1↓, 1,   GPx1↑, 1,   GSH↓, 5,   GSH↑, 1,   GSR↓, 1,   GSR↑, 1,   GSTA1↓, 1,   GSTs↓, 2,   H2O2↑, 1,   HO-1↓, 1,   HO-1↑, 3,   lipid-P↓, 1,   lipid-P↑, 1,   MDA↑, 2,   NOX4↓, 1,   NOX4↑, 1,   NQO1↓, 1,   NQO1↑, 2,   NRF2↓, 1,   NRF2↑, 2,   OXPHOS↑, 2,   Prx↓, 1,   ROS↓, 2,   ROS↑, 13,   SIRT3↓, 1,   SIRT3↑, 3,   SOD↓, 3,   SOD↑, 2,   SOD1↓, 2,   SOD1↑, 2,   SOD2↓, 10,   SOD2↑, 8,   ac‑SOD2↓, 1,   Trx↓, 2,   TrxR↓, 1,   VitC↓, 1,   VitE↓, 1,  

Metal & Cofactor Biology

FTH1↓, 1,  

Mitochondria & Bioenergetics

AIF↑, 1,   ATP↓, 1,   CDC2↓, 1,   mitResp↓, 1,   MMP↓, 5,   OCR↓, 1,   OCR↑, 2,   PGC-1α↑, 1,   XIAP↓, 2,  

Core Metabolism/Glycolysis

AMPK↑, 1,   cMyc↓, 1,   CYP3A4↓, 1,   ECAR↓, 1,   FASN↓, 1,   GlucoseCon↓, 1,   GlutMet↓, 1,   Glycolysis↓, 4,   HK2↓, 1,   LDHA↓, 1,   NADPH↑, 2,   PKM2↓, 1,   PPARγ↑, 1,   SIRT1↓, 1,   SIRT1↑, 2,   Warburg↓, 1,  

Cell Death

Akt↓, 7,   Akt↑, 1,   p‑Akt↓, 1,   Apoptosis↑, 6,   BAD↑, 1,   Bak↑, 2,   BAX↑, 7,   Bcl-2↓, 7,   Bcl-xL↓, 1,   BIM↑, 1,   Casp1↓, 1,   Casp3↑, 7,   cl‑Casp3↑, 3,   Casp7↑, 1,   Casp8↑, 3,   cl‑Casp8↑, 1,   Casp9↑, 2,   cl‑Casp9↑, 1,   Chk2↓, 1,   Cyt‑c↑, 7,   Diablo↑, 2,   DR4↑, 1,   DR5↑, 1,   Fas↑, 2,   FasL↑, 1,   HEY1↓, 1,   HGF/c-Met↓, 3,   JNK↓, 1,   p‑JNK↑, 1,   MAPK↓, 2,   MAPK↑, 1,   Mcl-1↓, 1,   MDM2↓, 1,   p‑MDM2↓, 1,   p27↑, 1,   p38↑, 1,   p‑p38↑, 1,   survivin↓, 2,   Telomerase↓, 2,   TumCD↑, 1,   TumCD∅, 1,  

Kinase & Signal Transduction

HER2/EBBR2↓, 1,   p‑HER2/EBBR2↓, 1,   Sp1/3/4↓, 3,  

Transcription & Epigenetics

H3↓, 1,   H3↑, 1,   H4↓, 1,   miR-21↓, 1,   other↝, 1,   tumCV↓, 1,   tumCV∅, 1,  

Protein Folding & ER Stress

CHOP↑, 4,   p‑eIF2α↑, 2,   ER Stress↑, 2,   HSP90↓, 1,   UPR↑, 1,  

Autophagy & Lysosomes

LC3II↑, 1,   TumAuto↑, 1,  

DNA Damage & Repair

CHK1↓, 1,   DNAdam↑, 1,   DNMTs↓, 1,   P53↑, 7,   PARP↑, 4,   cl‑PARP↑, 2,   cl‑PARP1↑, 1,   PCNA↓, 2,   γH2AX↑, 1,  

Cell Cycle & Senescence

CDK1↓, 2,   CDK2↓, 2,   CDK4↓, 3,   cycA1/CCNA1↓, 1,   CycB/CCNB1↓, 2,   cycD1/CCND1↓, 1,   cycE/CCNE↓, 1,   P21↑, 4,   RB1↓, 1,   p‑RB1↓, 1,   TumCCA↑, 4,  

Proliferation, Differentiation & Cell State

CD34↓, 1,   cFos↓, 1,   cFos↑, 1,   cMET↓, 1,   CSCs↓, 1,   EMT↓, 6,   ERK↓, 2,   p‑ERK↓, 1,   FOXO1↓, 1,   FOXO3↑, 2,   p‑FOXO3↓, 2,   Gli1↓, 1,   HDAC↓, 2,   HDAC1↓, 1,   HDAC2↓, 1,   HDAC3↓, 1,   IGF-1R↓, 1,   mTOR↓, 4,   Nanog↓, 1,   NOTCH↓, 1,   NOTCH1↓, 1,   OCT4↓, 1,   PI3K↓, 2,   PI3K↑, 1,   p‑PI3K↓, 1,   PTCH1↓, 1,   PTEN↓, 1,   PTEN↑, 3,   SOX2↓, 1,   p‑Src↓, 1,   STAT3↓, 4,   p‑STAT3↓, 1,   p‑STAT6↓, 1,   TOP2↓, 1,   TumCG↓, 6,  

Migration

AP-1↓, 1,   AXL↓, 1,   Cdc42↓, 1,   CEA↓, 1,   CLDN1↓, 1,   E-cadherin↓, 1,   E-cadherin↑, 2,   ER-α36↓, 1,   FAK↓, 1,   GLI2↓, 1,   ITGB1↓, 2,   ITGB6↓, 1,   Ki-67↓, 2,   MET↓, 1,   p‑MET↓, 1,   MMP2↓, 6,   MMP9↓, 6,   MMPs↓, 3,   N-cadherin↓, 4,   Rac1↓, 1,   Rho↓, 1,   Slug↓, 2,   p‑SMAD2↓, 1,   p‑SMAD3↓, 1,   SMAD4↓, 1,   Snail↓, 3,   TGF-β↓, 1,   TIMP1↑, 2,   TumCI↓, 4,   TumCMig↓, 3,   TumCP↓, 6,   TumMeta↓, 5,   Twist↓, 1,   Tyro3↓, 1,   uPA↓, 2,   Vim↓, 3,   Vim↑, 1,   ZO-1↑, 1,   β-catenin/ZEB1↓, 2,  

Angiogenesis & Vasculature

angioG↓, 2,   ATF4↑, 2,   ECM/TCF↓, 1,   EGFR↓, 3,   EGFR↑, 1,   Hif1a↓, 4,   PDGFR-BB↓, 1,   VEGF↓, 4,  

Immune & Inflammatory Signaling

ASC↓, 1,   COX2↓, 2,   ICAM-1↓, 1,   IKKα↓, 2,   IL1β↓, 1,   IL2↑, 1,   IL6↓, 3,   IL8↓, 3,   JAK1↓, 2,   JAK2↓, 2,   MCP1↓, 1,   NF-kB↓, 8,   p65↓, 2,   p‑p65↓, 1,   PD-1↓, 1,   TNF-α↓, 2,  

Protein Aggregation

NLRP3↓, 1,  

Hormonal & Nuclear Receptors

AR↓, 2,   CDK6↓, 1,  

Drug Metabolism & Resistance

BioAv↓, 2,   BioAv↑, 1,   ChemoSen↑, 6,   CYP1A2↑, 1,   CYP2A3/CYP2A6↓, 1,   Dose?, 1,   Dose↓, 1,   Dose↝, 1,   eff↓, 2,   eff↑, 3,   eff↝, 1,   Half-Life↝, 1,   P450↓, 1,   RadioS↑, 4,   selectivity↑, 5,  

Clinical Biomarkers

AR↓, 2,   BP↓, 1,   CEA↓, 1,   E6↓, 1,   E7↓, 1,   EGFR↓, 3,   EGFR↑, 1,   HER2/EBBR2↓, 1,   p‑HER2/EBBR2↓, 1,   IL6↓, 3,   Ki-67↓, 2,   NSE↓, 1,  

Functional Outcomes

AntiCan↑, 1,   cachexia↓, 1,   cardioP↑, 1,   chemoP↑, 2,   neuroP↑, 1,   OS↑, 1,   radioP↑, 1,   RenoP↑, 1,   Risk↓, 1,   toxicity?, 1,   toxicity↓, 2,   TumVol↓, 2,   TumW↓, 1,  
Total Targets: 292

Pathway results for Effect on Normal Cells:


Redox & Oxidative Stress

antiOx↑, 4,   Catalase↑, 8,   GPx↑, 6,   GPx1↑, 3,   GPx3↑, 1,   GPx4↑, 2,   GSH↑, 7,   GSH/GSSG↑, 1,   GSR↑, 4,   GSTP1/GSTπ↓, 1,   GSTs↑, 1,   H2O2↓, 2,   HO-1↑, 3,   Keap1↓, 1,   lipid-P↓, 4,   MDA↓, 3,   NRF2↑, 7,   Prx↑, 1,   RNS↓, 1,   ROS↓, 14,   ROS∅, 1,   SIRT3↑, 1,   SOD↑, 7,   SOD1↑, 5,   SOD2↓, 2,   SOD2↑, 15,   Trx↓, 1,  

Mitochondria & Bioenergetics

mitResp↑, 2,  

Core Metabolism/Glycolysis

CREB↑, 1,   LDH↓, 2,   NADPH∅, 1,   PONs↓, 1,   PPARα↑, 1,   PPARγ↑, 2,   SIRT1∅, 1,  

Cell Death

Akt↑, 1,   Apoptosis↓, 1,   Casp3?, 1,   Casp3↓, 1,   Cyt‑c↑, 1,   iNOS↓, 2,   JNK↓, 1,   JNK↑, 1,  

Transcription & Epigenetics

other↓, 1,   other↝, 1,  

Protein Folding & ER Stress

HSP70/HSPA5↑, 1,  

DNA Damage & Repair

P53↓, 1,   PCNA↓, 1,  

Cell Cycle & Senescence

CDK2↓, 1,   CDK4↓, 1,   cycD1/CCND1↓, 1,   cycE/CCNE↓, 1,   E2Fs↑, 1,   RB1↓, 1,  

Proliferation, Differentiation & Cell State

Diff↑, 1,   ERK↑, 1,   HDAC↓, 1,   IGF-1↑, 1,   IGF-1R↓, 1,   PI3K↑, 1,   TumCG↑, 1,  

Migration

AP-1↓, 1,   Ca+2↓, 1,   Ca+2↑, 1,   Cartilage↑, 1,   MMP2↓, 1,   MMP9↓, 1,   TGF-β↑, 1,  

Angiogenesis & Vasculature

HIF2a↑, 1,   NO↓, 1,   NO↑, 1,   PDGFR-BB↓, 1,   VEGF↓, 1,   VEGF↑, 1,  

Barriers & Transport

BBB↑, 1,  

Immune & Inflammatory Signaling

COX2↓, 2,   IKKα↓, 1,   IL10↑, 1,   IL1β↓, 2,   IL1β↑, 1,   IL6↓, 2,   IL8↓, 1,   Inflam↓, 10,   JAK↓, 1,   NF-kB↓, 2,   PGE2↑, 1,   TNF-α↓, 4,  

Synaptic & Neurotransmission

AChE↓, 1,   BChE↓, 1,   GABA↑, 1,   p‑tau↓, 1,  

Drug Metabolism & Resistance

BioAv↓, 2,   BioAv↑, 6,   BioAv↝, 1,   Dose↝, 5,   eff↑, 2,   Half-Life↝, 3,  

Clinical Biomarkers

GutMicro↑, 1,   IL6↓, 2,   LDH↓, 2,  

Functional Outcomes

AntiCan↑, 1,   cardioP↑, 6,   chemoP↑, 1,   cognitive↑, 2,   hepatoP↓, 1,   hepatoP↑, 3,   memory↑, 2,   neuroP↑, 5,   Pain↓, 2,   QoL↑, 1,   toxicity↓, 2,   toxicity↝, 1,   toxicity∅, 2,  
Total Targets: 113

Scientific Paper Hit Count for: SOD2, MnSOD
8 Magnetic Fields
4 Honokiol
3 Pterostilbene
2 Betulinic acid
2 doxorubicin
1 5-Aminolevulinic acid
1 Andrographis
1 Ashwagandha(Withaferin A)
1 Baicalein
1 Chemotherapy
1 EGCG (Epigallocatechin Gallate)
1 Luteolin
1 Magnetic Field Rotating
1 Nimbolide
1 Oroxylin-A
1 Oleuropein
1 HydroxyTyrosol
1 Parthenolide
1 Radiotherapy/Radiation
1 Phenylbutyrate
1 Phenethyl isothiocyanate
1 Piperlongumine
1 Quercetin
1 Resveratrol
1 Rosmarinic acid
1 Perilla
1 Selenium
1 Silymarin (Milk Thistle) silibinin
Query results interpretion may depend on "conditions" listed in the research papers.
Such Conditions may include : 
  -low or high Dose
  -format for product, such as nano of lipid formations
  -different cell line effects
  -synergies with other products 
  -if effect was for normal or cancerous cells
Filter Conditions: Pro/AntiFlg:%  IllCat:%  CanType:%  Cells:%  prod#:%  Target#:935  State#:%  Dir#:%
wNotes=0 sortOrder:rid,rpid

 

Home Page