Database Query Results : , , PFK1

PFK1, Phosphofructokinase-1: Click to Expand ⟱
Source:
Type:
Phosphofructokinase-1 (PFK1) is a key regulatory enzyme in glycolysis that catalyzes the conversion of fructose-6-phosphate to fructose-1,6-bisphosphate.
– As a rate-limiting enzyme in glycolysis, PFK1 is subject to complex regulation through allosteric effectors including ATP, AMP, and fructose-2,6-bisphosphate.
• Metabolic Control:
PFK1 activity is central to controlling the pace of glycolysis, thereby influencing energy production and intermediary metabolite supply.
– In highly proliferative cells or cells under growth conditions, increased glycolytic flux (and, by extension, PFK1 activity) supports the biosynthetic demands of cell division.

– Many tumors (including breast, colorectal, and lung cancers) have been reported to have increased PFK1 expression/activity relative to normal tissues.
– High glycolytic flux, driven partly by enhanced PFK1, supports rapid cell proliferation and survival in the nutrient/stress-challenged tumor microenvironment.

Inhibitors:(typically glycolysis is targeted more broadly)
-Citrate
-Hydrogen ions (pH) – Acidic conditions can have inhibitory effects.
-3PO: inhibits PFKFB3, thereby indirectly reducing PFK1 activity.
-Resveratrol can downregulate glycolytic flux in cancer cells, which may indirectly affect PFK1 activity.
- FMDs offer an indirect strategy to modulate cancer metabolism by broadly reducing glycolysis. Their impact on PFK1 is likely part of a complex network of metabolic adaptations rather than a direct inhibitory effect.


Scientific Papers found: Click to Expand⟱
2291- Ba,  BA,    Baicalein and Baicalin Promote Melanoma Apoptosis and Senescence via Metabolic Inhibition
- in-vitro, Melanoma, SK-MEL-28 - in-vitro, Melanoma, A375
LDHA↓, ENO1↓, PKM2↓, GLUT1↓, GLUT3↓, HK2↓, PFK1↓, GPI↓, TPI↓, GlucoseCon↓, TumCG↓, TumCP↓, mTORC1↓, Hif1a↓, Ki-67↓,
2293- Ba,    Baicalein suppresses inflammation and attenuates acute lung injury by inhibiting glycolysis via HIF‑1α signaling
- in-vitro, Nor, MH-S - in-vivo, NA, NA
*Hif1a↓, *Glycolysis↓, *Inflam↓, *HK2↓, *PFK1↓, *PKM2↓,
2740- BetA,    Effects and mechanisms of fatty acid metabolism-mediated glycolysis regulated by betulinic acid-loaded nanoliposomes in colorectal cancer
- in-vitro, CRC, HCT116
TumCP↓, Glycolysis↓, HK2↓, PFK1↓, PKM2↓, ACSL1↓, CPT1A↓, FASN↓, FAO↓, GlucoseCon↓, lactateProd↓,
1587- Citrate,    ATP citrate lyase: A central metabolic enzyme in cancer
- Review, NA, NA
ACLY↓, other↓, PFK1↓, ATP↓, PFK2↓, Mcl-1↓, Casp3↑, Casp2↑, Casp9↑, IGF-1R↓, PI3K↓, Akt↓, p‑Akt↓, p‑ERK↓, PTEN↑, Snail↓, E-cadherin↑, ChemoSen↑,
1578- Citrate,    Understanding the Central Role of Citrate in the Metabolism of Cancer Cells and Tumors: An Update
- Review, Var, NA
TCA↑, FASN↑, Glycolysis↓, glucoNG↑, PFK1↓, PFK2↓, FBPase↑, TumCP↓, eff↑, ACLY↓, Dose↑, Casp3↑, Casp2↑, Casp8↑, Casp9↑, Bcl-xL↓, Mcl-1↓, IGF-1R↓, PI3K↓, Akt↓, mTOR↓, PTEN↑, ChemoSen↑, Dose?,
1583- Citrate,    Extracellular citrate and metabolic adaptations of cancer cells
- Review, NA, NA
Warburg↓, OXPHOS↓, Dose∅, TumCP↓, ATP↓, eff↑, Apoptosis↑, TumCG↓, PFK1↓,
2308- CUR,    Counteracting Action of Curcumin on High Glucose-Induced Chemoresistance in Hepatic Carcinoma Cells
- in-vitro, Liver, HepG2
GlucoseCon↓, lactateProd↓, ECAR↓, NO↓, ROS↑, HK2↓, PFK1↓, GAPDH↓, PKM2↓, LDHA↓, FASN↓, GLUT1↓, MCT1↓, MCT4↓, HCAR1↓, SDH↑, ChemoSen↑, ROS↑, BioAv↑, P53↑, NF-kB↓, pH↑,
1861- dietFMD,  Chemo,    Fasting induces anti-Warburg effect that increases respiration but reduces ATP-synthesis to promote apoptosis in colon cancer models
- in-vitro, Colon, CT26 - in-vivo, NA, NA
selectivity↑, ChemoSen↑, BG↓, AminoA↓, Warburg↓, OCR↑, ATP↓, ROS↑, Apoptosis↑, GlucoseCon↓, PI3K↓, PTEN↑, GLUT1↓, GLUT2↓, HK2↓, PFK1↓, PKA↓, ATP:AMP↓, Glycolysis↓, lactateProd↓,
1070- IVM,    Ivermectin accelerates autophagic death of glioma cells by inhibiting glycolysis through blocking GLUT4 mediated JAK/STAT signaling pathway activation
- vitro+vivo, GBM, NA
TumCG↓, LC3II↑, p62↓, ATP↓, Pyruv↓, GlucoseCon↑, HK2↓, PFK1↓, GLUT4↓, Glycolysis↓, JAK2↓, p‑STAT3↓, p‑STAT5↓,
2421- PB,    Sodium butyrate inhibits aerobic glycolysis of hepatocellular carcinoma cells via the c‐myc/hexokinase 2 pathway
- in-vitro, HCC, HCCLM3 - in-vivo, NA, NA - in-vitro, HCC, Bel-7402 - in-vitro, HCC, SMMC-7721 cell - in-vitro, Nor, L02
Glycolysis↓, Apoptosis↑, TumCP↓, lactateProd↓, GlucoseCon↓, HK2↓, ChemoSen↑, *toxicity↓, cMyc↓, PFK1↓, LDHA↓, cMyc↓, ChemoSen↑,
2380- PBG,    Potential Strategies for Overcoming Drug Resistance Pathways Using Propolis and Its Polyphenolic/Flavonoid Compounds in Combination with Chemotherapy and Radiotherapy
- Review, Var, NA
Hif1a↓, Glycolysis↓, PKM2↓, LDHA↓, GLUT2↓, HK2↓, PFK1↓, PDK1↓, chemoP↓, radioP↑,
2332- RES,    Resveratrol’s Anti-Cancer Effects through the Modulation of Tumor Glucose Metabolism
- Review, Var, NA
Glycolysis↓, GLUT1↓, PFK1↓, Hif1a↓, ROS↑, PDH↑, AMPK↑, TumCG↓, TumCI↓, TumCP↓, p‑NF-kB↓, SIRT1↑, SIRT3↑, LDH↓, PI3K↓, mTOR↓, PKM2↓, R5P↝, G6PD↓, TKT↝, talin↓, HK2↓, GRP78/BiP↑, GlucoseCon↓, ER Stress↑, Warburg↓, PFK↓,
2334- RES,    Glut 1 in Cancer Cells and the Inhibitory Action of Resveratrol as A Potential Therapeutic Strategy
- Review, Var, NA
GLUT1↓, GlucoseCon↓, lactateProd↓, Akt↓, mTOR↓, Dose↝, SIRT6↑, PKM2↓, HK2↓, PFK1↓, ChemoSen↑,
2419- SK,    Regulation of glycolysis and the Warburg effect in wound healing
- in-vivo, Nor, NA
Glycolysis↓, GLUT1↓, GLUT3↓, HK2↓, HK1↓, PFK1↓, PFK2↓, PKM2↓, lactateProd↓, GlucoseCon↓,
3144- VitC,    Some characteristics of Rabbit muscle phosphofructokinase-1 inhibition by ascorbate
- in-vitro, Nor, NA
PFK1↓, LDH↓,

* indicates research on normal cells as opposed to diseased cells
Total Research Paper Matches: 15

Pathway results for Effect on Cancer / Diseased Cells:


Redox & Oxidative Stress

HK1↓, 1,   OXPHOS↓, 1,   ROS↑, 4,   SIRT3↑, 1,   TKT↝, 1,  

Mitochondria & Bioenergetics

ATP↓, 4,   OCR↑, 1,   SDH↑, 1,  

Core Metabolism/Glycolysis

ACLY↓, 2,   ACSL1↓, 1,   AminoA↓, 1,   AMPK↑, 1,   ATP:AMP↓, 1,   cMyc↓, 2,   CPT1A↓, 1,   ECAR↓, 1,   ENO1↓, 1,   FAO↓, 1,   FASN↓, 2,   FASN↑, 1,   FBPase↑, 1,   G6PD↓, 1,   GAPDH↓, 1,   glucoNG↑, 1,   GlucoseCon↓, 8,   GlucoseCon↑, 1,   GLUT2↓, 2,   Glycolysis↓, 8,   GPI↓, 1,   HK2↓, 10,   lactateProd↓, 6,   LDH↓, 2,   LDHA↓, 4,   MCT4↓, 1,   PDH↑, 1,   PDK1↓, 1,   PFK↓, 1,   PFK1↓, 14,   PFK2↓, 3,   PKM2↓, 7,   Pyruv↓, 1,   R5P↝, 1,   SIRT1↑, 1,   TCA↑, 1,   TPI↓, 1,   Warburg↓, 3,  

Cell Death

Akt↓, 3,   p‑Akt↓, 1,   Apoptosis↑, 3,   Bcl-xL↓, 1,   Casp2↑, 2,   Casp3↑, 2,   Casp8↑, 1,   Casp9↑, 2,   Mcl-1↓, 2,   MCT1↓, 1,  

Transcription & Epigenetics

other↓, 1,  

Protein Folding & ER Stress

ER Stress↑, 1,   GRP78/BiP↑, 1,  

Autophagy & Lysosomes

LC3II↑, 1,   p62↓, 1,  

DNA Damage & Repair

P53↑, 1,   SIRT6↑, 1,  

Proliferation, Differentiation & Cell State

p‑ERK↓, 1,   IGF-1R↓, 2,   mTOR↓, 3,   mTORC1↓, 1,   PI3K↓, 4,   PTEN↑, 3,   p‑STAT3↓, 1,   p‑STAT5↓, 1,   TumCG↓, 4,  

Migration

E-cadherin↑, 1,   Ki-67↓, 1,   PKA↓, 1,   Snail↓, 1,   talin↓, 1,   TumCI↓, 1,   TumCP↓, 6,  

Angiogenesis & Vasculature

Hif1a↓, 3,   NO↓, 1,  

Barriers & Transport

GLUT1↓, 6,   GLUT3↓, 2,   GLUT4↓, 1,  

Immune & Inflammatory Signaling

HCAR1↓, 1,   JAK2↓, 1,   NF-kB↓, 1,   p‑NF-kB↓, 1,  

Cellular Microenvironment

pH↑, 1,  

Drug Metabolism & Resistance

BioAv↑, 1,   ChemoSen↑, 7,   Dose?, 1,   Dose↑, 1,   Dose↝, 1,   Dose∅, 1,   eff↑, 2,   selectivity↑, 1,  

Clinical Biomarkers

BG↓, 1,   Ki-67↓, 1,   LDH↓, 2,  

Functional Outcomes

chemoP↓, 1,   radioP↑, 1,  
Total Targets: 102

Pathway results for Effect on Normal Cells:


Core Metabolism/Glycolysis

Glycolysis↓, 1,   HK2↓, 1,   PFK1↓, 1,   PKM2↓, 1,  

Angiogenesis & Vasculature

Hif1a↓, 1,  

Immune & Inflammatory Signaling

Inflam↓, 1,  

Functional Outcomes

toxicity↓, 1,  
Total Targets: 7

Scientific Paper Hit Count for: PFK1, Phosphofructokinase-1
3 Citric Acid
2 Baicalein
2 Resveratrol
1 Baicalin
1 Betulinic acid
1 Curcumin
1 diet FMD Fasting Mimicking Diet
1 Chemotherapy
1 Ivermectin
1 Phenylbutyrate
1 Propolis -bee glue
1 Shikonin
1 Vitamin C (Ascorbic Acid)
Query results interpretion may depend on "conditions" listed in the research papers.
Such Conditions may include : 
  -low or high Dose
  -format for product, such as nano of lipid formations
  -different cell line effects
  -synergies with other products 
  -if effect was for normal or cancerous cells
Filter Conditions: Pro/AntiFlg:%  IllCat:%  CanType:%  Cells:%  prod#:%  Target#:988  State#:%  Dir#:%
wNotes=0 sortOrder:rid,rpid

 

Home Page